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Abstract
The longitudinal fields of a tightly focused Laguerre–Gaussian (LG) laser can be used to accelerate electron pulse trains
when it is reflected from a solid plasma. However, the normal transverse mode of laser beams in high-power laser systems
is approximately Gaussian. A routine and reliable way to obtain high-intensity LG lasers in experiments remains a major
challenge. One approach involves utilizing a solid plasma with a ‘light fan’ structure to reflect the Gaussian laser and
obtain a relativistic intense LG laser. In this work, we propose a way to combine the mode transformation of a relativistic
laser and the process of electron injection and acceleration. It demonstrates that by integrating a nanowire structure at the
center of the ‘light fan’, electrons can be efficiently injected and accelerated during the twisted laser generation process.
Using three-dimensional particle-in-cell simulations, it is shown that a circularly polarized Gaussian beam with a0 = 20
can efficiently inject electrons into the laser beam in interaction with the solid plasma. The electrons injected close to
the laser axis are driven by a longitudinal electric field to gain longitudinal momentum, forming bunches with a low
energy spread and a small divergence angle. The most energetic bunch exhibits an energy of 310 MeV, with a spread
of 6%. The bunch charge is 57 pC, the duration is 400 as and the divergence angle is less than 50 mrad. By employing
Gaussian beams, our proposed approach has the potential to reduce experimental complexity in the demonstrations of
twisted laser-driven electron acceleration.

Keywords: laser-driven electron acceleration; laser–plasma interactions; light fan; Laguerre–Gaussian laser

1. Introduction

With the development and construction of high-power
laser systems[1–3], the study of laser–plasma interactions
is becoming increasingly important. One hot topic is
electron acceleration. Conventional radio frequency (RF)
accelerators are limited by the strength of the accelerating
gradient supported by a specific material, thereby limiting
the energy of the accelerated particles and the size of the
facilities. However, high-intensity lasers can achieve higher
acceleration gradients in laser-driven wakefield acceleration
and direct laser acceleration[4–8]. Laser-driven electron
acceleration has been of great significance for the realization
of compact accelerators and radiation sources[9–12] after
the invention of the chirped pulse amplification (CPA)
technology[13]. Intense vortex beams, or Laguerre–Gaussian
(LG) beams, have attracted the attention of the laser–plasma
community because of their special properties, such as
a twisted phase front, orbital angular momentum (OAM)
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carrying, hollow intensity distribution and spatially isolated
longitudinal fields[14]. These properties can change the laser–
plasma interactions in corresponding ways and produce
different applications. To generate a relativistic intense
twisted laser, one approach is to use a solid plasma with
a ‘light fan’ structure to reflect the Gaussian laser and obtain
a relativistic intense twisted laser, as proposed by Shi et al.
in 2014[15]. Porat et al.[16] demonstrated the feasibility of
generating a relativistic intense twisted laser using a solid
plasma with the ‘light fan’ structure in the laboratory in
2022. The experiment used a structured mirror based on
microscale three-dimensional (3D) printing technology. An
intense plane wave is obliquely incident on the ‘light fan’ to
obtain the reflected vortex beam. In addition, several papers
have been published on the generation of terawatt helical
lasers using CPA systems[17,18]. Although the technology
for generating higher-power helical beams has not yet been
integrated into high-power laser facilities, these advances
provide new opportunities and approaches for laser–plasma
interactions and particle acceleration.

In previous work, a circularly polarized (CP) LG laser
beam has been studied to generate high-quality electron
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pulse trains by the reflection of the laser from a high-density
solid target[19–22]. The twist index l of LG beams, often
referred to as the topological charge, indicates the number
of 2π phase shifts around the beam’s axis and determines
the beam’s OAM, giving an OAM of l� per photon[14,23,24].
When the twist index l of the LG beam and the CP index σ

satisfy the condition l×σ = −1, the spin angular momentum
and the OAM are antiparallel, resulting in a longitudinal
electromagnetic field along the axis for the twisted laser.
Due to the hollow structure of the LG01 helical wavefront and
the strongest axial field along the axis, a spatial separation
between longitudinal and transverse fields is possible. This
feature is impossible for a conventional laser beam. For a
given twist index, a linearly polarized (LP)-LG laser beam
can be decomposed into a pair of CP-LG beams, where
σ = 1, −1 represent the right-CP beam and the left-CP
beam, respectively. According to the theoretical analysis,
only a CP-LG beam with l×σ = −1 contributes to the
longitudinal fields on the axis. Although their symmetry is
broken at the position away from the axis, the longitudinal
fields of an LP-LG beam still peak at the axis. While the
strong high harmonic effect is unavoidable when an LP-
LG laser beam interacts with solid plasma, it can still
be used to generate electron pulse trains[25]. The scheme
of accelerating electrons using relativistically strongly
tightly focused radially polarized laser beams has also been
investigated[26–29].

In this paper, we propose a scheme that combines the
generation of the LG beam and the process of electron
acceleration by the longitudinal fields. The basic idea is
using the ‘light fan’ structure[15] with a nanowire in the
center (see Figure 1). The use of relativistic intense LG beam
interaction with a nanowire target or micro-droplet to obtain
attosecond beams has been studied[30,31]. In experiments,
silicon nano-integrated targets have been used to increase the
total and cutoff energies of the resulting electron beams[32].
Here, we present the results of a 3D particle-in-cell (PIC)
simulation for a CP Gaussian beam reflected from the ‘light
fan’ structure above. The peak power of the CP laser beam
is around 490 TW. The electrons from the nanowire can
be extracted and injected into the reflected laser beam. The
electrons injected near the laser axis can obtain longitudinal
acceleration driven by a longitudinal electric field. Although
the LG laser generated by reflection has a mixture of radial
modes p, which is bad for electron acceleration[20,21], the
longitudinal fields still have a remarkable acceleration effect.
The most energetic bunch exhibits an energy of 310 MeV,
with a spread of 6%. The bunch charge is 57 pC, the
duration is 400 as and the angle of divergence is less
than 50 mrad. By using a Gaussian beam, our proposed
approach can potentially reduce the experimental complexity
in demonstrating twisted laser-driven electron acceleration.
These dense ultrashort bunches have the potential to be
utilized in research and technology[33,34].
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Figure 1. The target features a ‘light fan’ structure and a nanowire structure
(blue part) at the center. The ‘light fan’ has eight parts, each with a uniform
step height of �h = λ0/16. This setup emulates the effect of a spiral phase
plate with �h = λ0/2. The colors in green represent different phase changes
that occur when a plane wave is incident normally. To prevent transmission
of the laser pulse, the maximum thickness of the target is set to 1.6 μm.

In the remainder of this paper, the setup of the 3D PIC
simulation, the field structure of the reflected beam and the
mode decomposition of the generated LG laser are first given
in Section 2. In Section 3, the injection and initial accelera-
tion of the electron bunches are discussed when the laser is
reflected by the ‘light fan’ and interacts with the nanowire.
The longitudinal momentum gain in a mixed longitudinal
electric field mode is shown with the supporting theory in
Section 4. Finally, we summarize the main conclusions and
discuss potential applications in Section 5.

2. Simulation setup and mode structure of the reflected
laser beam

In this section, we present the simulation setup using the PIC
code SMILEI[35]. In our 3D PIC simulation, a CP Gaussian
laser beam is reflected from the solid plasma with a ‘light
fan’ structure that features a central integrated nanowire, as
shown in Figure 1. We use a 490 TW CP Gaussian beam
with σ = +1, which propagates along the negative x-axis
direction upon entering the simulation box. The focal plane
of the beam is situated at x = 0 μm, which coincides with
the location of the target surface. The electron density is
ne = 120nc, where nc = 1.74×1027 m−3 is the critical density
for a laser with λ0 = 0.8 μm. Because of the high energy of
the incident beam, we assume that the target is completely
ionized when the beam arrives, so the target is set up as
a cold and preionized plasma. To track the acceleration of
the electrons over an extended period, a moving window
is utilized. The window size is set to encompass the entire
simulation box and moves with a velocity of c, starting at
t = 25 fs. The time t = 0 is defined as the instant at which
the peak of the laser envelope reaches x = 0. The time
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Table 1. 3D PIC simulation parameters. nc = 1.74 × 1027 m−3 is the critical density
corresponding to the laser wavelength λ0. The initial temperatures for electrons and ions
are set to zero.
Parameters for circularly polarized Gaussian laser
Normalized amplitude a0 = 20
Wavelength λ0 = 0.8 μm
Pulse duration (Gaussian shape envelope) τg = 20 fs
Focal spot size w0 = 3 μm
Location of the focal plane x = 0 μm
Laser propagation direction −x
Circular polarization index σ = +1
Other simulation parameters

Position of the foil and the wire –1.6 μm ≤ x ≤ 0 μm and 0 μm < x ≤ 1.6 μm
Length and radius of wire L0 = 1.6 μm, R0 = 0.1 μm
Electron and ion (C6+) density in target ne = 120.0nc and ni = 20.0nc
Simulation box (x× y× z) 20.48 μm × 20.48 μm × 20.48 μm
Cell number (x× y× z) 1024 cells × 1024 cells × 1024 cells
Macroparticles per cell for electrons 200 at x ≥ −0.95 μm, 40 at x < −0.95 μm
Macroparticles per cell for C6+ 20

resolution of the simulation is 0.012 laser cycles to better
resolve the electron trajectories as well as to satisfy the
Courant–Friedrichs–Lewy condition. Detailed parameters of
the laser beam and the target are listed in Table 1. Through
its ‘light fan’ structure, the wavefront of the reflected beam
is twisted. In our scheme, we need to ensure the condition
l × σ = −1 for the reflected beam to have a longitudinal
electromagnetic field. For the CP beam with σ = +1 in our
simulation, the wavefront should be twisted with index l = 1
by setting the handedness of the eight parts in Figure 1.
Otherwise, there will be no longitudinal component of the
electromagnetic field generated on the axis.

To ensure that the longitudinal field of the reflected beam
is of relativistic magnitude[20], the peak period-averaged
power of the CP Gaussian beam should be greater than
80 TW. In this study, we utilized a high-density target and a
modest intensity to mitigate the effects of self-focusing[36] or
target concavity, which needs further investigation in future
work. Considering the limited computer resources, we also
chose a small spot size and a short pulse width to set the
simulation window as small. These limits provide an upper
limit on peak power. Although higher peak power can result
in higher energy gain, modest peak power is preferable for
a proof-of-principle experiment from a technical challenge
standpoint. That is why we set these parameters in our PIC
simulation.

The structures of the electric and magnetic fields of the
reflected beam in the (x,z)-plane at time t = 50 fs are shown
in Figure 2. The figures demonstrate the contrast in topology
between the longitudinal and transverse field components.
The longitudinal electric and magnetic fields attain their
maximum amplitude on the axis of the reflected beam, as
shown in Figures 2(a) and 2(c). Conversely, the transverse
electric field diminishes to zero on the axis, as shown in
Figure 2(b). Furthermore, the transverse field is positive

and negative at corresponding positions on both sides of
the axis (z = y = 0), which is also a feature of the twist
mode. A quantitative comparison shows that the maximum
amplitude of the longitudinal electric field is about 20%
of the maximum amplitude of the transverse electric field.
Although the reflected laser beam is a mixture of different
LG modes, as will be shown later, the ratio of 20% is close
to our previous results based on a single mode[20]. Due to
the high peak power and the tight focus, the longitudinal
field is still relativistic. The simulation results show that by
integrating a nanowire structure at the center of the target,
electrons can be efficiently injected and then accelerated
during the twisted laser generation process, as shown in
Figure 2(d). This will be discussed in Section 3.

The reflected beam contains extreme nonlinear effects and
obtains phase singularities in the interaction between the
intense laser and the target plasma with a step-like structure.
The reflected beam has been analyzed as a combination of
different LG modes[15]. The transverse scale of the nanowire
is much smaller than the laser wavelength. Therefore, the
proportion of different modes in the reflected beam should
not be very different. However, the electron acceleration is
sensitive to the LG modes according to our previous the-
ory[20,21,25]. After being injected into the longitudinal field,
the electrons move at near-light speed in the beam. Because
of the Gouy phase shift ϕp,l (x̃) = (2p+|l|+1)arctan (x̃),
which depends on the twist index l and the radial index p, the
phase velocity will be superluminous after the pulse reaches
the focal plane. The x̃ is defined as the longitudinal coordi-
nate x being normalized to xR, that is, x̃ ≡ x/xR, where xR is
the Rayleigh length. The fields that the electrons perceive are
altered by the difference between their longitudinal velocity
and the phase velocity of the reflected beam. Electrons that
are accelerated at the start may later be decelerated and
return energy to the field. It should be noted that a beam
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Figure 2. The longitudinal slices of the electric and magnetic field components of the twisted laser beam are generated by the reflection of the plasma and
the electron density from the PIC simulation. Panels (a) and (c) show the longitudinal electromagnetic field Ex and Bx in the (x,z)-plane at y = 0. Panel (b)
shows Ey at the same location. The dashed lines in (b) and (c) are cuts that will be displayed as line-outs in (e) and (f). Panel (d) shows the electron density
and the longitudinal electric field, where the blue and red contour lines represent ne = 0.2nc and nc, respectively. All the snapshots are taken at t = 50 fs from
the simulation with the parameters listed in Table 1. The line-outs are from those longitudinal slices in (b) and (c) and their corresponding spectral analysis.
The red and the blue curves in panel (e) are the line-outs from the longitudinal slices of Ey (the cut shown as a dashed line at z = 0 in (b)) and Bx (the cut
shown as a dashed line at z = 0.6w0 in (c)), respectively. (f) The frequency spectra of Ey (red curve) and Bx (blue curve) from panel (e) were generated using
the FFT. The dashed line represents the predicted attenuation curve of the high harmonic of the ROM mechanism In ∝ n−8/3.

with different LG modes or different wavelengths would
have different acceleration ranges. A mixture of LG modes
or different frequency components can cause a degradation
of the electron acceleration. To figure out the acceleration
process in our simulation, it is necessary to perform a more
comprehensive mode analysis of the reflected beam in the
remainder of this section.

Before commencing the analysis of the LG modes, we
need to examine the spectrum of the reflected fields in
more detail. Figure 2(e) shows the plots of the longitudinal
magnetic field along the axis (y = 0 and z = 0, shown as
a dashed line in Figure 2(c)) and the transverse electric
field at an off-axis position (y = 0 and z = 0.6w0, shown
as a dashed line in Figure 2(b)) of the reflected beam at
t = 50 fs. The reason why Bx is shown instead of Ex is
that it is difficult to separate the field of the electrons in
the center from the longitudinal electric field of the laser.
Since the transverse electric field in Figure 2(b) disappears
on the axis of the reflected beam, it is displayed off-axis.
The position of (y=0, z = 0.6w0) is chosen to get the highest
amplitude. Using the fast Fourier transform (FFT), we obtain
the frequency spectra of Bx and Ey shown in Figure 2(f).
The predicted high harmonic attenuation curve In ∝ n−8/3

in the relativistic oscillating mirror (ROM) mechanism is

shown by the black dashed line[37]. Here, n = ω/ω0 is the
high harmonic order. It is evident that the descent rate of
the spectrum for both Ey (red line) and Bx (blue line) is
faster than that of the predicted high harmonic attenuation
curve (dashed line). It means that the high harmonic effect
is weak in our case. Quantitatively, the proportion of high
frequency is more than two orders of magnitude smaller
than the fundamental frequency. It is different from the case
using the LP-LG laser[25], where the high harmonic part is
much stronger. So we can ignore the high-frequency portion
of the reflected beam and consider the reflected beam to
have the same spectrum as the incident beam. Existing the-
oretical analyses[38] and experiments[39,40] strongly confirm
that energy and momentum are conserved in high harmonic
generation (HHG), and the physical mechanism indicates
that angular momentum and frequency are not independently
modulated[41]. Therefore, it can be considered that the nth
harmonic of a laser pulse with initial twist mode l and photon
energy �ω has twist index nl and energy n�ω. Since higher-
order twist modes are always associated with higher-order
frequencies, we consider the reflected beam to have only one
twist mode l = 1.

It is convenient to represent the fields of the reflected
laser beam as a combination of orthogonal LG modes. The
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transverse electric field of an LG mode with twist index l
and radial index p can be defined in cylindrical coordinates
(r,ψ,x) as follows:

Ey (x̃, r̃,φ;t) = E0ψp,lg(ξ)exp(iξ), (1)

ψp,l ≡ Cp,lf (x̃)
|l|+1+2p(1+ x̃2)p

L|l|
p

(
2r̃2

1+ x̃2

)

×
(√

2r̃
)|l|

exp
[−r̃2f (x̃)+ ilφ

]
, (2)

f (x̃) ≡ 1− ix̃
1+ x̃2 , ξ ≡ 2x̃/θ2

d −ωt, (3)

where r and φ are the distance from the axis in the (y,z)-
plane and the polar angle, respectively, E0 is the amplitude
of the field, Cp,l is the normalization factor, g(ξ) is the
pulsed envelope term and L|l|

p is the generalized Laguerre
polynomial term. Furthermore, the divergence angle of
the beam is defined as θd = w0/xR, and the Rayleigh length
is xR = πw2

0/λ0. The normalized transverse distance is
r̃ ≡ r/w0.

Usually, without special settings, the field’s propagation
information output by the PIC code only includes the real
part. Using the Hilbert transform[21], we can get the complex
field BH

z from the real field Bz produced in the simulation.
In our case, the incident beam is totally reflected by the
target. The imaginary component of the result is the phase
information associated with the propagation of the beam in
the positive x-axis direction. The percentage of each radial
mode can be calculated from their ratios by obtaining the
corresponding complex amplitudes bp,l of each mode. The
complex amplitude bp,l corresponding to the mode of p can
be obtained by the double integration:

bp,l (ξ) =
∫ 2π

0
dφ

[∫ ∞

0

| e | BH
z

meω
ψ∗

p,l (x̃, r̃,φ)exp (−iξ) r̃dr̃
]

.

(4)

Here, the mode with different l is assumed to be negligible
by the previous discussion. Based on the mode decompo-
sition from a snapshot of Bz (see Figure 3(a)) at t = 50 fs
in the simulation, the occupancy of the radial modes p = 0
and p = 1 is shown in Figures 3(b) and 3(c), respectively.
We have performed scanning calculations for p ∈ [0,6].
The higher-order radial index modes can be ignored due to
their relatively small proportions. Considering only p = 0,
1 and 2, the amplitude proportions of the LG01, LG11 and
LG21 modes are about 65%, 22% and 13%, respectively (see
the Appendix A). The percentage of LG01 is similar to the
64.8% result provided by Shi et al.[15].

From the results of the spectrum analysis above, the
amplitude of the second harmonic is more than two orders
of magnitude smaller than that of the base mode. However,
in the mode decomposition, the fraction of LG11 can be about
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Figure 3. The transverse magnetic field distribution of each mode obtained
from the mode decomposition of the simulation results at the same time
of Figure 2. (a) The distribution of the transverse magnetic field Bz in the
simulation in the (x,z)-plane at t = 50 fs. It is also the real part of the
complex magnetic field BH

z in the (x,z) plane, which is the raw data of the
Hilbert transform used to obtain (b) and (c). (b) The distribution of the main
mode with l = 1 and p = 0. (c) The distribution of another mode with l = 1
and p = 1.

34% of LG01. A consequence of the significant contribution
of the mode with p = 1 is that the maximum transverse
field of the reflected beam is significantly closer to the axis
than for the modes with p = 0. Therefore, in the spectrum
analysis we take the maximum transverse electric field Ey at
r = √

z2 + y2 = 0.6w0 instead of r = 0.7w0 of the base mode.
Based on these results, we will focus on the effects of the
high-order radial modes and ignore the effect of HHG. In
Section 4 we will analyze the effect of high p modes on the
electron acceleration.

3. Electron injection into the twisted laser beam

In this section, we will study the origin of those acceler-
ated electrons that can surf with the laser beam once the
bunches are formed. Returning to the start of the laser beam
reflection from the target, we will recover the process of
‘electron injection’. A 3D rendering of the electron density
at t = 50 fs is shown in Figure 4(a). Each electron bunch has
a ring shape, where the blue and red isosurfaces represent
ne = 0.5nc and nc, respectively. By setting the different
species of electrons on the ‘light fan’ and the nanowire, we
obtain that 98% of the electrons come from the nanowire
for the bunches at t = 248 fs. On the back of the ‘light fan’
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Figure 4. (a) 3D rendering of the electron density at t = 50 fs, where
the blue and red isosurfaces represent ne = 0.5nc and nc, respectively. The
early trajectories of some electrons, which were randomly selected from the
central region in the third bunch at t = 248 fs. The line color shows electron
energy. (b) Representative electron trajectories in the (y,z) transverse plane
from time t = 0 fs to time t = 20 fs. Images (c) and (d) are the trajectories of
the same electrons in the longitudinal plane of (x,y) and (x,z), respectively.

we also find some accelerated electrons. They have a broad
energy spectrum and a large divergence angle. We think that
they are accelerated by the transverse fields of the incident
Gaussian beam. Since they quickly leave the acceleration
region, we do not consider these electrons in this work. In
our case, the results of a series of simulations indicate that
the shape of the electron bunch is always annular or semi-
annular, which is sensitive to the parameters of the laser and
target.

Figures 4(b)–4(d) show the trajectory of 15 electrons that
were traced back to represent the dynamics of the electrons in
the third bunch. These representative electrons are selected
at random from the central region in the third bunch at
t = 248 fs. To study the initial electron positions, we tracked
these electrons back to the very beginning of our simulation,
when the laser was just reflected off the target. The time step
is 0.16 fs to ensure that more details are recovered. Since
we are interested in the dynamics of the injection process,
Figure 4 only provides trajectories from time t = 0 to time
t = 20 fs. Trajectories of representative electrons are shown
in the transverse (y-z) plane in Figure 4(b). Figures 4(c)
and 4(d) are the trajectories of the same electrons in the
longitudinal plane of (y,x) and (z,x), respectively. The line
color represents the electron energy. It can be seen that

the electrons move in a helical motion in the early stage.
The longitudinal displacement is about the length of the
nanowire, which is L0 = 1.6 μm = 2λ0. During the stage of
helical motion, the electrons are not significantly accelerated.
After detachment from the nanowire, they are accelerated
by the longitudinal fields. At the same time, they stop their
helical motion and approach the axis of the laser beam.

Since the reflected beam is not strictly in the LG01 mode,
the motion of the electron injection stage can only be
predicted qualitatively by theory. Considering that the right-
CP LG01 mode plays the major role, the transverse fields,
which have y-polarized and z-polarized beams with π/2
phase difference, can be written in the cylindrical coordinate
system. The radial and polar components are as follows:

Er,φ = E0
ψp,l

exp (ilφ)
g(ξ)

{
exp (iξ),

exp
[
i(ξ −π/2)

]
.

(5)

According to Equation (5), it is obtained that both Er and
Eφ are independent of the polar angle (when l × σ = −1),
the periodic Er may cause the electrons to be pulled out
of the nanowire and the toroidal electric field Eφ explains
the helical motion of the electrons in the early stage[30]. The
radial ponderomotive force in the vacuum laser acceleration
(VLA) of the detached nanowire gives some electron con-
vergence effect. That is why the electrons approach the laser
axis during VLA. The whole process is different from LG
laser interaction with dense plasma[19,20,25] and the push–pull
model[42]. It is similar to the process of electron injection
in the interaction between the twisted laser beam and a
nanowire[30].

4. Electron acceleration in the reflected laser beam

In Section 3, we have shown that the reflected twisted
beam generates dense electron bunches from the nanowire.
The bunches can travel with the reflected beam and gain
longitudinal momentum. This section will examine the phase
velocity of the reflected beam and the longitudinal momen-
tum gain in the acceleration process.

Figure 5(a) shows the line density of the electron bunches
at t = 248 fs and it is computed by choosing the near-
axis region at r < 3 μm. It shows the linear density of the
third electron bunch is relatively high (the black dashed box
marks), and its charge is 57 pC according to our simulation
results. Therefore, the next analysis focuses on the third
bunch. In further analysis of the areal density of the third
bunch, as shown in Figure 5(b), it can be seen that the
peak of areal density is semi-annular, which is consis-
tent with the results discussed in Section 3. As shown in
Figure 5(d), although the areal density of the third bunch
has a special distribution shape, the data computed show
that the divergence angle of the electrons is only related to
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Figure 5. Acceleration results for the electron bunches in the reflected twisted beam. (a) The line density of electron bunches in the region of r < 3 μm. The
black dashed box marks the third bunch. (b) The third electron bunch areal density ρe, in which the red dashed circle represents the region of r < 1.5 μm.
(c) The background color image represents the time evolution of the third bunch electron energy spectrum inside the red dashed circle of (b). The final energy
spectrum of the third electron bunch is represented by the solid red curve. The black dashed line represents the prediction of the electron energy gain from
Equation (13) with �0 = 0.8π . The initiation time of the acceleration serves as a variable parameter. (d) The cell-averaged electron divergence angle 〈θ〉 of
the third bunch. All plots are derived from the simulation results at t = 248 fs.

the off-axis distance. It can be seen that most of the cell-
averaged electron divergence angles are less than 50 mrad
at the region about r < w0. The divergence angle 〈θ〉 ≡〈
arctan

(
p⊥/p‖

)〉
is averaged on every mesh cell of the (y,z)-

plane. The energy spectrum evolution and the final spectrum
of the third bunch with r < 1.5 μm are shown in Figure 5(c).
Some particles experience continuous acceleration and grad-
ually stabilize after injection into the beam. However, certain
electrons are influenced by higher-order radial modes and
enter a deceleration phase. This can be supported by the
theoretical results that odd radial modes are not able to
generate energetic electrons[20]. The maximum energy of
electrons can reach approximately 350 MeV and the peak
energy is 310 MeV, with a spread of 6%.

The energy gain of electrons in the LG01 mode can already
be approximately predicted theoretically, including the
energy gain of electrons in higher-order radial modes[20,21]. In
the following, we will analyze the phase velocity and predict
the energy gain of electrons in the mixed modes. To analyze
the maximum effect of beam acceleration on electrons, we
only analyze the maximum portion of the pulse envelope,
which means we no longer consider the envelope shape. The
longitudinal electric field is expressed as follows:

E‖ = −Emax
‖ sin(�+�0)

1+ x̃2 , (6)

where x̃ = x/xR, xR = πw2
0/λ0:

Emax
‖ = 2

√
p+1

π
θdE0 = 2

π

√
p+1

π

λ0

w0
E0, (7)

where �0 represents the initial phase of electron injection at
x ≈ 0, t ≈ 0. The phase � is expressed as follows:

� = 2
[
θ−2

d x̃− (p+1)arctan (x̃)
]−ωt, (8)

where the beam divergence angle θd = w0/xR = λ0/πw0.
In our case, the beam is tightly focused to around three or
four wavelengths, and it can be assumed that θd � 1. The
phase velocity (vph) is defined as dx/dt when � = const.
Differentiating Equation (8), where � is held constant, we
can obtain the relationship between the phase velocity and
radial index p as follows:

vph − c
c

≈ (p+1)θ2
d

1+ x̃2 . (9)

The electron is accelerated by the longitudinal electric
field with vx < c, where vph > c, evidently vph > vx. The elec-
tron slips relative to the wavefront are determined by vph −vx.
Equation (9) represents that the higher-order radial modes
p correspond to a faster phase velocity while keeping the
other quantities constant. Meanwhile, the phase velocity is
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superluminal after the focal plane and then decays to c after
several Rayleigh lengths. This affects the electrons gaining
energy in the longitudinal field. Here, �� is the phase slip
that the electrons experience from x0 to x, which can be
calculated by bringing x = x0 + c(t − t0) into Equation (8),
and obtaining the following:

�� = 2(p+1)
[
arctan (x̃0)− arctan (x̃)

]
, (10)

where x̃0 = x0/xR. With regards to x0 � xR, Equation (10)
can be simplified as �� = 2(p+1)arctan (x̃). From
Equation (10), it can be observed that the phase slip
experienced by electrons is strongly correlated with the value
of the radial index p. When p = 0, the phase slip for electrons
after a Rayleigh length is �� ≈ −π[20]. This implies that
some electrons can still be in the accelerating phase of the
longitudinal electric field. However, due to significant phase
slip caused by higher-order radial modes, electrons quickly
slide into the decelerating phase, and may even fail to gain
energy from the electric field.

By integrating the momentum balance equation dp‖/dt =
− | e | E‖ with the assumption of x0 � xR, the momentum
gain of the electron in E‖ can be obtained as follows:

�p‖ = −| e | Emax‖ xR

2(p+1)c

{
cos�0

− cos
[
�0 −2(p+1)arctan (x̃)

]}
. (11)

Equation (11) indicates that if the initial phase of the
electron is appropriate, momentum gain can be continuously
obtained from E‖. Electrons in other phases may lose energy
due to entering the deceleration phase. Since the reflected
beam contains multiple radial modes, we need to analyze
the phase velocity evolution of the mixed-mode beam first.
In Section 2, we obtain the proportion of radial modes with
p = 0, 1 and 2. It is important to note that the longitudinal
electric field maxima Emax

‖ are required for the analysis.
Here, E‖ is the longitudinal electric field only containing
radial modes with p = 0, 1 and 2, and the longitudinal
field of each mode is represented by E‖,p. The computational
analysis determined that the p = 0, 1 and 2 modes contribute
55%, 24% and 19%, respectively, to the amplitude of the
longitudinal electric field. We measure Emax

‖ ≈ 4mecω/|e|
when the longitudinal electric field variation becomes stable
in the simulation result.

In the reflected beam, two higher-order radial modes
possess phase differences �ϑ0,1,�ϑ0,2 from the base mode,
where �ϑ0,1 is defined as the phase difference between p = 0
and p = 1, and �ϑ0,2 is defined as the phase difference
between p = 0 and p = 2. This phase difference plays a
very important role in the prediction of the energy gain. The
expression for the longitudinal electric field can be updated
to the following:

0 50 100 150 200 250 300

0.6

0.8

1

1.2

1.4 (a)

50 100 150 200 250 300
0

1

2
(b)

-5

0

5

Figure 6. Phase velocity vph analysis of reflected twisted beams. (a) The
evolution of vph of three beams with different modes under the same initial
conditions. The black dashed curve represents vph with the LG01 mode. The
solid blue curve represents vph with the LG11 mode. The red dashed curve
is the analytical prediction for vph of the reflected beam. (b) Evolution of
the longitudinal electric field Ex on the axis with t. The solid black contours
represent Ex = 0, while the red dashed curve is identical to that in (a).

E‖ =
2∑

p=0

−E‖,p sin
[
ξ +�0 +�ϑ0,p −2(p+1)arctan (x̃)

]

× (
1+ x̃2)−1

. (12)

By varying the phase difference �ϑ0,1 and �ϑ0,2, we
match the evolution of the longitudinal electric field in
Equation (12) as closely as possible to the evolution of
the longitudinal electric field of the reflected beam in the
simulation results, as shown in Figure 6(b), where the solid
black curve is the contour representing that the longitudinal
electric field is zero. Although the phase difference
information cannot be obtained directly in the simulation,
the total phase velocity of the mixed mode can be calculated.
In the previous analysis, the proportion of different radial
modes was obtained. According to Equation (12), we can
perform parameter scanning on the phase difference to
make the calculated phase velocity curve (red dashed curve)
closest to the phase velocity curve of the mixed mode (solid
black curve) in Figure 6(b). The most appropriate phase
difference is calculated as �ϑ0,1 = 0.3π and �ϑ0,2 = 0.1π .
As shown in Figure 6(a), the phase velocity of the reflected
beam is compared with the phase velocity evolution of the
LG01 (black dashed curve) and LG11 modes (blue curve), and
it can be obtained that the phase slip of the reflected beam
after a Rayleigh length is about 12% larger than that of the
LG01 mode, but is still smaller than that of the LG11 mode.

The analysis of the phase velocity yields a phase difference
among the three modes, which can be considered as having
different initial phases �0. Consequently, the formula for
the momentum gain in the mixed mode is refined to the
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Figure 7. Electrons in the long-term trajectory, where the trajectory’s color
represents the energy. (a) The trajectories of electron off-axis distance r
with x, which are randomly selected from the third bunch that is situated
close to the beam axis at t = 248 fs. (b) The variation of electron trajectories
off-axis distance with x, selected from the third bunch with the condition
that energy is less than 150 MeV at t = 248 fs. (c) The trajectories of
randomly selected electrons from the Figure 5(b) high-density region.

following expression:

�p‖ =
2∑

p=0

−| e | Emax
‖,p xR

2(p+1)c

{
cos

(
�0 +�ϑ0,p

)
−cos

[
�0 +�ϑ0,p −2(p+1)arctan (x̃)

]}
. (13)

The phase difference �ϑ0,1 = 0.3π,�ϑ0,2 = 0.1π and the
initial phase �0 = 0.8π are brought into Equation (13) based
on the proportion of the longitudinal electric fields of each
radial mode. The energy gain can be obtained using �ε‖ =
c�p‖, and the mixed-mode energy gain prediction is plotted
as the black dashed curve in Figure 5(c).

For the higher-order radial mode acceleration effect,
Shi et al.[20] concluded that for even radial modes, energy
can be gained when the initial phase is �0 ∈ [0.5π,1.5π ].
However, odd radial modes cannot result in energy gain.
In the case of a pure radial mode p = 0, electrons with the
appropriate initial phase can remain in the accelerating phase
for several Rayleigh lengths due to the phase slip �� = −π .
Since the initial momentum gain is always negative for
odd radial modes, electrons cannot be injected into the
acceleration process. In our work, it can be found that
the LG01 mode dominated mixed mode can still accelerate
electrons efficiently. However, the quality of the electron
beam (maximum energy gain) is not as good as that of the
LG01 mode, which is affected by the odd radial mode as well
as the larger phase slip.

Figure 7 represents the long-range trajectory of electrons,
which gain energy in a longitudinal field after being injected
into the beam. However, due to the higher-order radial mode,
electrons in different phases may have different energies
after accelerating for about two Rayleigh lengths. Figure 7(a)
shows the trajectory of 30 randomly selected electrons in

the third bunch at t = 248 fs close to the beam axis, where
electrons can gain good acceleration. It is characterized by
being in a paraxial position after being detached from the
nanowire, being in an accelerated state without slowing
down, and can accelerate to about 300 MeV. Figure 7(b)
represents the trajectory of 30 electrons selected through
energy limiting conditions in the third beam of electrons
at t = 248 fs. It can be seen that these electrons have a
maximum energy of about 150 MeV at x ≈ xR, and then
enter the deceleration phase as predicted by our theory
above. Figure 7(c) represents the trajectory of 30 electrons
randomly selected from the Figure 7(b) high areal density
region, which also accelerate to about 150 MeV and then
decelerate. Due to the presence of the higher-order radial
mode, the range of the acceleration phase is compressed,
making it easier for electrons that deviate from the axis in
the early stages to slip into the deceleration phase.

We choose only one set of parameters to demonstrate
our scheme. However, the scheme can work with a wide
range of parameters. By using a higher peak power
(P [PW]), we can accelerate the electron bunches to higher
energy (εterm [GeV]) according to a scaling relation of
εterm [GeV] ≈ 0.72ηP1/2 [PW]. Here η is the amplitude
conversion rate from the Gaussian mode to the LG01 mode.
If we use a longer laser pulse τg[fs] with other parameters
unchanged, every cycle of the long pulse will accelerate one
electron bunch. The total change (Qtrain

[
pC

]
) that we can

get in the ideal case is Qtrain
[
pC

] ≈ 21τg [fs]. Although the
energy gain from the longitudinal fields is typically less than
the energy from the laser wakefield acceleration at the same
peak power, our scheme has several potential advantages.
One advantage is that the long laser pulse can be used
directly in vacuum without considering the self-modulation
in the underdense plasma. As another advantage, a train of
electron bunches with sub-femtosecond duration can find
applications as an ultrafast probe beam[43] or in short-pulse
backlight radiography[44].

For high-power laser systems, laser pointing stability is an
unavoidable issue. The results of the additional simulations
with laser random offset show that our approach has a certain
tolerance for laser pointing stability. When the incident beam
is off-axis, the fraction of the LG01 mode in the reflected
beam decreases[15], which mainly affects the cutoff energy
of the electron bunch.

5. Summary and discussion

Using 3D PIC simulations, we have investigated the electron
acceleration resulting from the reflection of a 490 TW CP
Gaussian laser beam (σ = +1) off a solid plasma inte-
grated with a nanowire. The solid plasma with a ‘light fan’
structure imparts angular momentum to the reflected beam,
endowing it with a helical wavefront structure, effectively
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generating LG beams. Analyzing the mode decomposition
of the reflected beam reveals dominance of the LG01 mode,
accounting for 65% of the total. The longitudinal field of the
generated relativistic intense laser is capable of accelerating
injected electrons to an energy of several hundred MeV. We
can get electron bunches with a low energy spread and a
small divergence angle. The most energetic bunch exhibits an
energy of 310 MeV, with a spread of 6%. The bunch charge is
57 pC, the duration is 400 as and the divergence angle is less
than 50 mrad. We have also traced the origin of the electrons,
revealing that over 97% of them originate from the nanowire.
The unique structure of the nanowires not only enhances the
amount of charge injected into the longitudinal field but also
effectively suppresses the process of electron expulsion due
to the transverse fields of Gaussian beam incidence.

Multi-radial mode LG beams can introduce intricate
effects on electron acceleration. Twisted lasers with different
radial indexes p have different phase slips, resulting in
different acceleration phases. We analyzed the effect of
radial mode p = 0, 1 and 2 on the electron acceleration
effect based on the results of PIC simulations. Higher-
order radial modes bring the transverse field closer to the
axis and increase the rate of change of the beam phase
velocity compared to the basic radial mode. This can lead to
a decrease in the accelerated phase range of the electrons.
However, the expected maximum energy of the electron
bunch satisfies the prediction formula using mixed modes.

By employing CP Gaussian beams, our proposed approach
offers the potential to reduce experimental complexity in
the demonstration of vortex laser-driven electron accelera-
tion. From an experimental standpoint, generating relativis-
tic twisted beams remains a significant challenge, as the
majority of high-power laser setups currently only deliver
Gaussian beams. The use of a solid plasma with the ‘light
fan’ structure for generating twisted beams in the laboratory
has been recently validated through experiments[16]. Our
approach demonstrates that similar electron acceleration
results to those achieved with twisted beams can be obtained
using a CP Gaussian beam and a ‘light fan’ structure with a
nanowire at the center.

With the progress in the use of microengineering tech-
niques in the laser–plasma community[16,32,45], our proposal
can take advantage of target fabrication and reduce the
complexity of optical setups in large laser facilities. An array
of small sacrificial ‘light fan’ mirrors can be made. A fresh
area can be moved into the laser beam with each shot. Since
large laser systems typically operate at low repetition rates,
this sacrificial ‘light fan’ mirror array in the glass substrate
can be realistic. Cost effectiveness can be another advantage
over large-diameter mirrors. In particular, we can use kilo-
joule picosecond laser beams to obtain a train of electron
bunches. For example, an 800 fs 500 TW CP-Gaussian laser
beam contains about 300 cycles that could produce a similar
number of bunches. The train of sub-femtosecond electron

bunches can be directly used as an ultrafast probe beam[43]

or to generate high-brightness ultrafast X-ray radiation. Both
can be used as an on-line diagnostic beam in facilities such
as SG-II UP[46].

Appendix A. Mode decomposition
The field data output by the 3D PIC simulation can be
represented as a combination of ψp,l (x̃, r̃,φ) modes with
different twist indexes l and radial indexes p. In the reflected
beams of our case, all of these modes are along the x-
axis positive direction of propagation. This indicates that
their complex fields include the oscillation term exp (iξ) =
exp(ikx− iωt), where k = 2π/λ0 represents the wave vector.
However, the information we obtain from the PIC code
output contains only the real part of the complex field. This
makes it challenging to perform mode decomposition on
the reflected beam. Nevertheless, we can apply the Hilbert
transform along the x-direction to the electromagnetic field
information from the PIC code output, which allows us to
recover the imaginary part of the field. The imaginary part
represents the phase information of the beam propagating in
the positive x-axis direction[21]. We use the superscript H to
represent the field obtained through the Hilbert transform.
For example, the Hilbert transform can transform f (t) =
A · cos (ωt +ϕ) into f H(t) = A · ei(ωt+ϕ), where Re

[
f H(t)

] =
f (x̃) = A · cos(ωt +ϕ) and Im

[
f H(t)

] = A · sin(ωt +ϕ).
Because the influence of electrons on the electric field

cannot be separated, we chose the magnetic field data Bz

for mode decomposition to increase the accuracy of the
results. The field data through the Hilbert transform can be
represented as a combination of the following:

| e | BH
z (x̃, r̃,φ;t)
meω

=
∞∑

p=0

[ ∞∑
l=−∞

bp,l (ξ)ψp,l

(
x̃, r̃,φ

)
exp (iξ)

]
.

(A1)

Here the complex amplitude bp,l is dimensionless and
includes both real and imaginary parts, and can be recovered
through double integration if Bz is known at time t for the
corresponding p:

bp,l (ξ) =
∫ 2π

0
dφ

[∫ ∞

0

| e | BH
z

meω
ψ∗

p,l (x̃, r̃,φ)exp(−iξ) r̃dr̃
]

.

(A2)

In this case, the complex form of the wave represented by
bp,l can be explained as follows:

BH
z (x̃, r̃,φ) = B0ψp,l (x̃, r̃,φ)g(ξ)exp (iξ), (A3)

where B0ψp,l (x̃, r̃,φ) represents the amplitudes of different
modes of the LG beam, and g(ξ) is the envelope term. The
relative proportion of different LG modes (including enve-
lope terms) can be obtained by plotting the real part of bp,l.
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Figure A1. The results of mode decomposition, in which the red solid line,
black dashed line and blue dotted line represent the radial modes p = 0,
p = 1 and p = 2, respectively. Here, bp,l is a dimensionless number that can
be used to represent the relative proportions of different modes. The black
dashed line indicates the position of the peak of the envelope.

The percentage of each radial mode can be calculated
from their ratios by obtaining the corresponding complex
amplitudes of each radial mode. We performed mode decom-
position for radial modes p = 0,1, . . . ,6, and the results
indicate that the dominant modes are p = 0, 1 and 2,
accounting for 65%, 22% and 13%, respectively, shown in
Figure A1. We ran a benchmark in the PIC simulation where
a multi-mode mixed beam containing radial modes p = 0,
1 and 2 (with proportions 4:2:1) with the same twist mode
l = 1 propagates along the positive x-direction in vacuum.
The mode decomposition method accurately determines the
proportions of each radial mode.
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