
Psychological Medicine

cambridge.org/psm

Original Article

*These authors contributed equally to this
work.

Cite this article: Deng L et al (2024). Dynamic
aberrances of substantia nigra-relevant
coactivation patterns in first-episode
treatment-naïve patients with schizophrenia.
Psychological Medicine 54, 2527–2537. https://
doi.org/10.1017/S0033291724000655

Received: 12 June 2023
Revised: 11 February 2024
Accepted: 23 February 2024
First published online: 25 March 2024

Keywords:
brain dynamics; coactivation pattern;
dopamine hypothesis; edge-centric model;
first-episode treatment-naïve schizophrenia;
resting-state fMRI

Corresponding author:
Tao Li;
Email: litaozjusc@zju.edu.cn

© The Author(s), 2024. Published by
Cambridge University Press

Dynamic aberrances of substantia nigra-
relevant coactivation patterns in first-episode
treatment-naïve patients with schizophrenia

Lihong Deng1,2,3,4,5,* , Wei Wei1,2,3,4,*, Chunxia Qiao5, Yubing Yin5,

Xiaojing Li1,2,3,4, Hua Yu1,2,3,4, Lingqi Jian5, Xiaohong Ma5, Liansheng Zhao5,

Qiang Wang5, Wei Deng1,2,3,4, Wanjun Guo1,2,3,4 and Tao Li1,2,3,4

1Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang
University School of Medicine, Hangzhou, Zhejiang, China; 2Nanhu Brain-computer Interface Institute, Hangzhou,
Zhejiang, China; 3Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine
Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China;
4NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China and
5Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of
Sichuan University, Chengdu, Sichuan, China

Abstract

Background. Although dopaminergic disturbances are well-known in schizophrenia, the
understanding of dopamine-related brain dynamics remains limited. This study investigates
the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key
dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES).
Methods. Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs).
Frame-wise clustering was implemented to generate CAPs related to SN activation or deacti-
vation. Connectome features of each CAP were derived using an edge-centric method. The
occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and
compared between two groups, and correlations between temporal dynamic metrics and
symptom burdens were explored.
Results. Functional reconfigurations in CAPs exhibited significant differences between the
activation and deactivation states of SN. During SN activation, FES more frequently recruited
a CAP characterized by activated default network, language network, control network, and the
caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance
towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as
opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES
exhibited increased recruitment of a CAP with activated visual and dorsal attention networks
but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034).
Conclusion. Our results suggest that neuroregulatory dysfunction in dopaminergic pathways
involving SN potentially mediates aberrant time-varying functional reorganizations in schizo-
phrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective
of brain dynamics.

Introduction

Schizophrenia is a severe and often chronic mental disorder characterized by positive symp-
toms, negative symptoms, and cognitive deficits, affecting approximately 1% of the global
population and resulting in substantial economic burden (Charlson et al., 2018; Cloutier
et al., 2016; Marder, Ropper, & Cannon, 2019). The dopamine hypothesis has been a primary
concern in the pathophysiology of schizophrenia (Howes & Kapur, 2009; McKenna, 1987),
suggesting that the neuromodulatory dysfunction in dopaminergic pathways leads to wide-
spread brain dysconnection in schizophrenia (Friston, Brown, Siemerkus, & Stephan, 2016)
and contributes to the genesis of psychotic symptoms (Howes, McCutcheon, Owen, &
Murray, 2017; Owen, Sawa, & Mortensen, 2016). Substantia nigra (SN), a key dopaminergic
nucleus, is structurally and functionally connected with other subcortical structures and exten-
sive cortical areas (Bär et al., 2016; Chinta & Andersen, 2005; Conio et al., 2020). Previous
studies have shown elevated dopamine synthesis capacity of SN in schizophrenia and its
link to clinical symptoms (Howes et al., 2013). Recent in vivo imaging advances demonstrated
that dopaminergic dysfunction in schizophrenia is most significant in the nigrostriatal rather
than the mesolimbic pathway (McCutcheon, Abi-Dargham, & Howes, 2019; McCutcheon,
Beck, Jauhar, & Howes, 2018). This suggests nigral dysfunction may underlie the neuropatho-
logical mechanism of schizophrenia.
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To date, only a limited number of resting-state functional mag-
netic resonance imaging (rs-fMRI) studies have investigated the
influence of SN on the functional organization of the brain in
schizophrenia. Conio et al., suggested that the hyperactive dopa-
mine signaling in SN may lead to overactivity in sensorimotor
network (SMN) and salience network (SAN), along with concur-
rent underactivity in the default mode network (DMN) (Conio
et al., 2020). This imbalance in network activity may contribute
to the development of psychotic symptoms (Conio et al., 2020).
Recent functional connectivity (FC) research on schizophrenia
has identified aberrations in striato-thalamo-cortical FC related
to SN (Martino et al., 2018). However, partly due to a significant
shortage of dynamic information on generated connectivity pat-
terns, the mechanistic interpretation of ‘static’ rs-fMRI research
remains limited (Sporns, Tononi, & Kötter, 2005).

The human brain is a highly dynamic system, operating on
multiple spatial and temporal scales even when no specific task
is being performed (Chang & Glover, 2010; Hutchison et al.,
2013). The coactivation pattern (CAP) method is a framewise
dynamic approach specifically designed for analyzing rs-MRI
data, allowing for the capture of transient brain organizations
(Liu & Duyn, 2013; Liu, Zhang, Chang, & Duyn, 2018). CAPs
can be generated through temporal clustering of rs-fMRI frames
(i.e. time points or volumes), representing recurrent activity pat-
terns observed during scanning. These CAPs enable us to conduct
spatial and temporal dynamic analyses, potentially uncovering
evidence for etiopathological mechanisms of schizophrenia that
go beyond the scope of stationary FC characterizations (Chen,
Chang, Greicius, & Glover, 2015; Christoff, Irving, Fox, Spreng,
& Andrews-Hanna, 2016; Liu & Duyn, 2013). Individuals with
subthreshold psychotic experiences displayed reduced recruitment
of a CAP encompassing SAN and visual network (VIS) compared
to healthy controls (HCs) (Wang et al., 2021). This reduction was
negatively correlated with the severity of psychotic experiences
(Wang et al., 2021). In chronic schizophrenia, temporal dynamic
abnormalities extended to more CAPs, including a lower occur-
rence in a CAP featuring frontoparietal network and SMN and
higher occurrence in a CAP involving DMN and SAN (Wang
et al., 2021; Yang et al., 2021). A recent CAP study found coacti-
vation between the SAN and basal ganglia networks in pre-
psychosis, which may suggest the involvement of the dopamin-
ergic pathway (Bolton et al., 2020c). However, the exploratory,
whole-brain approach adopted by most CAP studies limited the
in-depth investigation of dopaminergic neuromodulation in
brain dynamics. Additionally, most CAP studies have been con-
ducted in either schizophrenic patients with lengthy disease
courses or individuals at clinical high risks for schizophrenia,
which may be affected by medication effects and disease progres-
sions (Vita, De Peri, Deste, & Sacchetti, 2012; Vita, De Peri, Deste,
Barlati, & Sacchetti, 2015; Zhang et al., 2018). As a result, there is
a need for directly investigating SN-relevant CAPs in the early
stage of unmedicated schizophrenia.

The primary objective of this study is to explore the dopamine
hypothesis of schizophrenia from a dynamic perspective. We have
focused on the dopaminergic SN as a seed region to reveal tem-
poral dynamic features of SN-relevant brain CAPs in first-episode
treatment-naïve patients with schizophrenia (FES) and HCs.
These features are characterized by the occurrence of each CAP
and the balance between antagonistic CAPs. Additionally, to illus-
trate the spatial features of each CAP, we have described their
activity characteristics and derived their connectome profiles
using a novel edge-centric method (Sporns, Faskowitz, Teixeira,

Cutts, & Betzel, 2021). Moreover, we investigated the correlations
between aberrant dynamics and symptom burden in FES. In light
of the dopamine hypothesis and supporting evidence, we propose
that there will be observable temporal and spatial dynamic aber-
rances in CAPs, coupled with either the activation or deactivation
of the SN, particularly in the early stage of schizophrenia.

Methods

Participants

A total of 86 FES and 97 age- and gender-matched HCs were
recruited from the Mental Health Center of West China
Hospital, Sichuan University, from October 2014 to June 2018
in this study. Details are provided in the online Supplement.
The severity of symptoms was rated by the Positive and
Negative Syndrome Scale (PANSS) (Kay, Fiszbein, & Opler,
1987). A consensus five-factor model of the PANSS was adopted,
including Positive, Negative, Disorganized/Concrete, Excited, and
Depressed factors (Wallwork, Fortgang, Hashimoto, Weinberger,
& Dickinson, 2012). The short version of the Wechsler Adult
Intelligence Scale-Revised in China (WAIS-RC) was used to
evaluate intelligence quotient (IQ) (Gong & Dai, 1984; Schopp,
Callahan, Johnstone, & Schwake, 1998). Written informed con-
sent was obtained from all participants or their legal guardians
after explaining the research. This study was approved by the
Institutional Review Board of West China Hospital of Sichuan
University and in accordance with the Helsinki Declaration.

MRI data acquisition

All scanning was performed on a Philips 3.0 T MR scanner
(Achieva, TX, best, Amsterdam, the Netherlands) with an
eight-channel phased-array head coil. The rs-fMRI images were
collected by using a gradient-echo echo-planar imaging sequence
with the following parameters: repetition time 2000 ms, echo time
30 ms, flip angle = 90°, slice thickness 4.0 mm with no slice gap,
matrix size 64 × 64, field of view 240 × 240 mm2, reconstructed
voxel size 3.75 × 3.75 × 4mm3, and 38 slices. Each functional
run contained 240 volumes and lasted for 8 min and 6 s. See
the scanning details in the Supplement.

Imaging preprocessing

Data preprocessing was performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) software suite
(http://rfmri.org/DPARSF) (Yan & Zang, 2010). Standard prepro-
cessing was performed, including the following steps: removing
the first 10 time points, slice timing correction, realignment,
co-registration, T1 segmentation, normalization, nuisance regres-
sion (including head motion, mean white matter, mean cerebro-
spinal fluid signal, and mean global signal), detrending,
bandpass filtering (0.01–0.1 Hz), and spatial smoothing using a
6 mm FWHM Gaussian kernel. Details of preprocessing are pro-
vided in the Supplement.

To reduce the impact of head motion, we scrubbed the frames
with >0.5 mm framewise displacement (FD) (Power, Barnes,
Snyder, Schlaggar, & Petersen, 2012). Subjects with a mean FD
exceeding 0.5 mm or with more than 30 scrubbed frames were
excluded. After quality control, 84 FES and 94 HCs remained.
We followed the codes from the TbCAPs toolbox (Bolton et al.,
2020b) for this step.
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Next, to reduce the dimensionality of the original voxel-wise
rs-fMRI data, we extracted the mean blood oxygen level-dependent
(BOLD) time series for each cortical region using the Schaefer2018
atlas with 400 cortical parcellations, which are matched to the
Kong2022 17 network order (Kong et al., 2021), and that of the sub-
cortex with the Harvard-Oxford subcortical structural atlas with 16
parcels (Desikan et al., 2006). See details of the two atlases in the
Supplement. This step was executed in DPARSF.

To determine the relative level of spontaneous neural activity,
we standardized the time series of the 416 regions of interest
(ROIs) into Z scores. This standardization was essential for our
subsequent CAP analyses (Liu et al., 2018). Normalization was
carried out using the codes of TbCAPs (Bolton et al., 2020b).

CAP analysis

To investigate the SN-coupled CAPs, the SN was chosen as a seed
region for a seed-based CAP approach. For extracting the mean
BOLD signal of the SN, we utilized a bilateral 7 T MRI SN
mask from the ATAG-Atlas (https://www.nitrc.org/projects/
atag), which allowed us to accurately capture the SN’s activity
(Keuken et al., 2014).

Prior to clustering analysis, time points with SN activity inten-
sity among the top 20% (approximately 46 time points) and the
bottom 20% were extracted separately. The intensity threshold
(20%) was chosen to ensure that we could capture the dynamic
variability of the brain (Chen et al., 2015; Liu & Duyn, 2013). A
resampling-based consensus clustering method (Monti, Tamayo,
Mesirov, & Golub, 2003), which is regarded as particularly effect-
ive in the condition of dimensionally large datasets, was imple-
mented to classify the extracted time points at the population
level. Clustering was performed for the time points coupled
with SN activation and deactivation, respectively, using the spher-
ical k-means clustering algorithm with the R package ‘cola’ (Gu,
Schlesner, & Hübschmann, 2021). The consensus of optimal clus-
ter number was voted according to the silhouette score
(Rousseeuw, 1987) and the proportion of ambiguously clustered
pairs (Șenbabaoğlu, Michailidis, & Li, 2014) of 50 times repeated
clustering results. In this study, to balance the clustering validity
and stability, the solution of six clusters was exploited for both
sets of time points (see details of clustering analyses in the
Supplement and cluster validation in online Supplementary
Fig. S1). Each cluster referred to a transient brain activity state
that recurred during SN activation or SN deactivation. Finally,
time points in the same cluster were averaged and then spatially
Z-scored to generate the activity maps (i.e. CAPs) at the whole
population level.

Edge-centric analysis

In our edge-centric approach to depict the connectome profiles of
SN-related CAPs, we computed the strength of edges between
ROI pairs using the elementwise product for each SN-related
frame (Faskowitz, Esfahlani, Jo, Sporns, & Betzel, 2020). Given
that the average of edge magnitudes over time equates to the
Pearson’s correlation coefficient (Faskowitz et al., 2020), we con-
structed connectome maps for each CAP by averaging the edge
profiles from each SN-related frame.

Analysis of spatial features

To test the spatial similarities among all SN-relevant CAPs and
their connectome maps, we employed Spearman’s correlation

tests. This approach allowed us to quantitatively evaluate the
degree of similarity in the spatial organization of these CAPs.

To examine group differences in spatial features, we generated
CAPs and corresponding connectome maps for each group and
also created individual-level CAPs. Initially, we evaluated the
spatial similarities between group-level CAPs and connectome maps
of the two groups using Spearman’s correlations. Subsequently, we
conducted two-sample t tests comparing individual-level CAPs
between the groups. We applied false discovery rate (FDR) correc-
tion to the p values, considering FDR-corrected p < 0.05 as statistic-
ally significant.

Calculation of temporal dynamic metrics

To illustrate the temporal features of CAPs, we calculated the
occurrence of each CAP and the balance ratio of antagonistic
CAPs for each participant. The occurrence was defined by the
times a given CAP emerged, which describes how frequently
the CAP recurred during the whole scan. Previous CAP research
has discovered that some CAPs displayed opposing spatial pat-
terns, and these CAPs may exhibit competing dynamics (Bolton
et al., 2020c; Yang et al., 2021). To assess a potential competing
relationship among CAPs, we computed a balance ratio for all
pairs of CAPs with opposing activation patterns that we previ-
ously identified in spatial similarity tests. The balance ratio was
calculated as (CAP1 occurrences – CAP2 occurrences) / (CAP1
occurrences + CAP2 occurrences). This will yield values between
−1 and 1, with a higher absolute value indicating the predomin-
ance of CAP1 (positive values) or CAP2 (negative values), and a
zero-value reflecting the balance between two CAPs.

The dynamic analyses in this study were performed using cus-
tomized scripts in MATLAB 2017a (MathWorks), except that the
clustering analyses were conducted in R 4.0.5. The schematic
pipeline of the study design is shown in Fig. 1.

Statistical analysis

Statistical analyses were carried out in SPSS 25.0 (IBM SPSS
Statistics). Chi-square tests or two-sample t tests were used to
examine the group differences in sex, age, and years of education.
One-way analyses of covariance (ANCOVAs) were conducted to
test the intergroup difference in temporal features of CAPs and
IQ, adjusting for age, gender, and years of education. Then partial
correlation tests adjusting for age, sex, and years of education were
used to assess the relationship between altered temporal metrics
and symptom severity (PANSS total and factor scores). We
used Spearman’s correlation to evaluate the relationship between
temporal dynamics and the duration of untreated psychosis
(DUP) after regressing out age, sex, and years of education, as
DUP showed a skewed distribution. The FDR corrections were
applied to correct multiple comparisons. Statistical significance
was set at FDR-corrected p < 0.05.

In our statistical analysis, we examined the potential influence
of IQ on our findings by including it as an additional confound-
ing factor in the between-group comparisons of temporal features
and correlation tests.

Results

Demographic, clinical, and neurocognitive data

The demographic, clinical, and neurocognitive information of all
subjects is presented in Table 1. Age and sex did not differ
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between the two groups, but years of education were lower in FES
(t =−6.549, p < 0.001, Cohen’s d = 0.980). Additionally, the FES
group had lower IQ (F = 31.31, p < 0.001, Partial η2 = 0.162) com-
pared to HCs.

Activity features of SN-relevant CAPs

We identified six CAPs coupled with SN activation (CAP A1 to
A6) and six CAPs coupled with SN deactivation (CAP D1 to

Figure 1. Overall analysis pipeline for this SN-relevant CAP study. We included six main steps: (a) the time series of 416 ROIs and the seed (bilateral SN) were
normalized for each participant; (b) time points with SN activity intensity among the top 20% and the bottom 20% were labeled and later extracted separately;
(c) consensus clustering was performed to classify activated and deactivated SN coupled time points into k clusters respectively; (d) CAP maps for each state were
generated by averaging and spatially Z-scoring the frames within the same cluster; (e) edge-centric analyses were applied to generate the connectome patterns for
each CAP; and (f) temporal metrics, the occurrence of each CAP and balance ratio for opposing CAPs, were computed. SN, substantia nigra; ROI, region of interest;
CAP, coactivation pattern.

Table 1. Demographic, clinical, and neurocognitive characteristics

FES (n = 84) HC (n = 94) df Statistics p value Effect size

Age (years) 22.62 (6.59) 23.91 (6.14) 176 t = -1.36 0.176 Cohen’s d = 0.204

Sex (Male/Female) 40/44 39/55 1 χ2 = 0.68 0.411 w = 0.062

Education (years) 12.25 (2.43) 14.78 (2.69) 176 t = -6.55 <0.001 Cohen’s d = 0.980

IQ 95.31 (17.91) 114.10 (13.57) 166 F = 31.31 <0.001 Partial η2 = 0.162

DUP (months) 6 (1; 12)a

PANSS

Total 90.80 (20.16)

Positive 14.77 (4.00)

Negative 20.92 (7.28)

Disorganized/concrete 9.86 (3.84)

Excited 9.55 (4.50)

Depressed 7.52 (3.17)

FES, first-episode treatment-naïve patients with schizophrenia; HC, healthy control; IQ, intelligence quotient; DUP, duration of untreated psychosis; PANSS, Positive and Negative Syndrome
Scale.
Note: values are presented as mean (standard deviation).
aMedian (quarter; three quarters).
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D6). According to their activity patterns, these CAPs can be
divided into six distinct pairs: CAPs A1—A4, A2—A3, A5—A6,
D1—D2, D3—D5, and D4—D6, with each pair containing oppos-
ing CAPs but similar connectome features (Fig. 2).

The activated SN-relevant CAPs are shown in Fig. 2a. CAP A1
mainly involved activation in salience/ventral attention network
(VAN), SMN, auditory network (AUD), dorsal attention network
(DAN), and putamen. CAP A2 was characterized by deactivated
VIS and SMN, and activated control network (CON), caudate,
thalamus, putamen, pallidum, and brainstem. CAP A3 showed
activation in VIS, SMN, DMN, hippocampus, amygdala,

brainstem, and thalamus. CAP A4 mainly included activation in
canonical DMN, CON, hippocampus, brainstem, amygdala, and
thalamus. CAP A5 was characterized by activation in DAN and
CON, and deactivation in DMN and language network (LAN).
CAP A6 showed coactivation with SN in DMN, LAN, CON,
and widespread subcortical regions, including hippocampus,
amygdala, caudate, accumbens, thalamus, brainstem, pallidum,
and putamen.

As for deactivated SN-relevant CAPs (Fig. 2b), CAP D1 mainly
comprised deactivated DMN, LAN, CON, hippocampus, amyg-
dala, and brainstem. CAP D2 was characterized by activation of

Figure 2. Spatial features of SN-relevant CAPs. According to spatial similarity tests, SN-relevant CAPs could be grouped into six distinct pairs: CAPs A1—A4, A2—A3,
A5—A6, D1—D2, D3—D5, and D4—D6, with each pair containing opposing activity patterns but similar connectome profiles. (a) Activity patterns of six SN-activation
coupled CAPs and (b) six SN-deactivation coupled CAPs. Regions in warm colors show coactivation whereas regions in cool colors show co-deactivation. To illus-
trate the brain areas showing significant activity, thresholds of 1 and −1 were used for visualization of each pattern. (c) Connectome maps of six CAPs coupled with
SN activation and (d) six CAPs coupled with SN-deactivation. Values in red indicate positive FC, while values in blue indicate negative FC of a pair of ROIs.
Spearman’s correlation ‘r’ values are shown in the middle of each pair of CAPs, which represent the spatial similarity between corresponding patterns. SN, sub-
stantia nigra; CAP, coactivation pattern; ROI, region of interest; DMN, default mode network; LAN, language network; CON, control network; VAN, salience/ventral
attention network; DAN, dorsal attention network; AUD, auditory network; SMN, somatomotor network; VIS, visual network; SUB, subcortex.
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DMN, LAN, and CON. CAP D3 contained activated VIS and
DAN. CAP D4 mainly included activated CON, DMN, and
DAN. CAP D5 involved deactivation in the VIS, DAN, DMN,
CON, hippocampus, brainstem, and thalamus. CAP D6 showed
deactivation in DMN, CON, VAN, and a number of subcortical
structures, involving the thalamus, caudate, brainstem, and
accumbens.

See detailed description in online Supplementary Table S1.

Connectome features of SN-relevant CAPs

To further investigate the constructures of CAPs, we depicted the
connectome features of SN-relevant CAPs using the edge-centric
method (Fig. 2c and 2d). We noticed that each CAP seems to
share a similar connectome feature with its opposing CAP.
CAPs A1 and A4 mainly showed intra-network positive FCs in
VAN, AUD, and SMN, positive internetwork FCs among VAN,
DAN, AUD, and SMN, as well as negative FCs between DMN
and VAN, DAN, AUD, SMN. CAPs A2 and A3 exhibited strong
within-network positive FCs in VIS, and negative FCs between
VIS and CON, VAN, and subcortex. CAPs A5 and A6 displayed
strong positive FCs within DMN, DAN, and VIS, but negative
FCs between DMN and VAN, DAN. CAPs D1 and D2 were
largely similar to CAPs A5 and A6 but demonstrated stronger
positive FCs within VAN and between VAN and DAN. CAPs
D3 and D5 were characterized by prevalent weak whole-brain
positive FCs, with the exception of strong positive FCs within
VIS and negative FCs between VIS and other networks. CAPs
D4 and D6 primarily exhibited positive FCs both within and
between SMN and VIS, as well as negative FCs between SMN,
VIS, and CON, DMN.

Spatial similarity

We estimated similarities among all CAPs and their connectome
maps by computing Spearman’s correlation coefficients respect-
ively (online Supplementary Fig. S2). We confirmed that each
CAP shared similar connectome features with its corresponding
opposing CAP. Across the activated and deactivated states of
SN, CAPs showed relatively distinct patterns.

Temporal features of SN-relevant CAPs

Compared to HCs, FES exhibited a significantly lower occurrence
of CAP A3 (F = 7.14, FDR-corrected p = 0.030, Partial η2 = 0.040),
and a significantly higher occurrence of CAP A6 (F = 8.54,
FDR-corrected p = 0.030, Partial η2 = 0.047) (Fig. 3a). During
SN deactivation, FES showed an increased occurrence of CAP
D3 (F = 8.09, FDR-corrected p = 0.030, Partial η2 = 0.045) and a
reduced occurrence of CAP D5 (F = 6.58, FDR-corrected p =
0.034, Partial η2 = 0.037) compared to HCs (Fig. 3b).

We found statistically significant between-group differences in
the balance ratios of two pairs of CAPs, which were CAPs A3—
A2 (F = 7.48, FDR-corrected p = 0.030, Partial η2 = 0.041) and
CAPs D5—D3 (F = 12.20, FDR-corrected p = 0.011, Partial η2 =
0.066) (Fig. 3c). In the case of CAPs A3 and A2, the imbalance
was more pronounced towards CAP A2 in FES compared to
HCs. For CAPs D5 and D3, FES shifted their balance towards
CAP D3, whereas HCs maintained the balance between the two
patterns. See detailed results in online Supplementary Table S2.
After accounting for IQ as an additional covariate, most of our
significant findings remained unchanged, with the notable

exception of the occurrence of CAP D5 (online Supplementary
Table S3).

Correlation between aberrant temporal dynamics and
symptom burden

In FES patients, we noted a suggestive correlation between a
higher frequency of CAP A6 and a lower positive factor score
of PANSS (including delusions, hallucinations, grandiosity, and
unusual thought content items, df = 61, r =−0.353, uncorrected
p = 0.005, Fig. 4a). Adjusting for IQ slightly altered this correl-
ation (df = 55, r = −0.353, uncorrected p = 0.007). The occurrence
of CAP D5 exhibited a marginal positive correlation with DUP
(df = 64, r = 0.247, uncorrected p = 0.041, Fig. 4b), which was atte-
nuated when including IQ as an additional covariate (df = 57, r =
0.247, uncorrected p = 0.051). However, no correlations survived
FDR corrections.

Between-group spatial comparison

Our analysis indicated that the spatial organizations of CAPs were
similar across both groups. The similarity estimates for CAPs and
connectome maps between the groups ranged from r = 0.84 to r =
0.99 (see online Supplementary Fig. S3). Further, two-sample t
tests on subject-level CAPs revealed no significant differences
between the groups after applying FDR correction.

Discussion

In the current study, we revealed rich functional reconfigurations
in CAPs under both the activation and deactivation states of SN.
We also found that CAPs with opposing activation patterns
shared similar connectome profiles. During SN activation, FES
demonstrated increased recruitment of CAP A6 (characterized
by activated DMN, LAN, CON, caudate, and other subcortical
regions) compared to HCs. Furthermore, the balance in a pair
of antagonistic CAPs in FES shifted towards a CAP characterized
by SN-coactivation with CON, caudate, and thalamus. During SN
deactivation, FES exhibited excessive recruitment of CAP D3 (fea-
turing VIS and DAN activation) but insufficient recruitment of its
opposing pattern CAP D5. These findings depict a disrupted tem-
poral structure of functional organization related to SN in the
early unmedicated stage of schizophrenia.

Dynamic functional reconfigurations under SN activation and
deactivation

We observed that the CAPs related to SN activation and deactiva-
tion displayed distinct spatial organizations. In all CAPs relevant
to SN activation, SN consistently coactivated with most other
subcortical structures, especially adjacent regions within the
brainstem, dopamine-rich structures (caudate, accumbens)
(McCutcheon et al., 2018), the key hub of cortical-subcortical cir-
cuitry (thalamus) (Giraldo-Chica & Woodward, 2017), hippo-
campus, and amygdala. At the cortical level, SN was frequently
and strongly coactivated with DMN and CON. Regarding the
deactivated-SN state, SN only co-deactivated with other subcor-
tical regions in three of the six deactivation-relevant CAPs,
namely CAPs D1, D5, and D6. Meanwhile, SN showed frequent
co-deactivation with DMN and CON in these three CAPs. The
identified profiles of SN-relevant CAPs partly support the domin-
ance of CAPs involving midline cortical regions in dynamic
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resting-state brain functioning (Janes, Peechatka, Frederick, &
Kaiser, 2020). Besides, such rich dynamic reconfigurations sup-
port the contribution of SN to brain dynamics. The neuromodu-
latory effects of dopamine in coordinating network dynamics
have been confirmed in previous simultaneous positron emission
tomography-fMRI study (Roffman et al., 2016). Specifically, the
dopaminergic midbrain nuclei were reported to be functionally
integrated with DMN (Bär et al., 2016). Furthermore, dopamine
agonists could increase the midbrain-DMN and caudate-CON
FCs (Cole et al., 2013b), as well as CON’s FCs with basal ganglia
network and DMN (Cole et al., 2013a). Other major subcortical
structures (thalamus, striatum, amygdala, and hippocampus)
also contribute to network dynamics through intra-subcortical
communications as well as with cortical areas (Chumin et al.,

2022). Taken together, these findings suggest that SN may play
an important role in brain dynamics, which are potentially
mediated by changing dopaminergic activities. Moreover, network
dynamics possibly involves the coordination between SN and key
subcortical structures.

Our findings reveal that CAPs exhibit dynamic and antagonis-
tic organization, often forming pairs with opposing activation pat-
terns. This observation aligns with findings from previous CAP
studies (Li et al., 2021; Yang et al., 2021). Intriguingly, through
an edge-centric approach, we discovered that these opposing
CAPs exhibit highly similar connectome profiles. The connections
between brain areas are fundamental to the brain’s functional
organization and the integration of cognitive functions
(Thiebaut de Schotten & Forkel, 2022). Previous research has

Figure 3. Between-group comparison of temporal features. (a) Statistically significant intergroup differences were found in the occurrence of CAPs A3 and A6 that
coupled with SN-activation, (b) as well as in the occurrence of CAPs D3 and D5 that coupled with SN-deactivation. (c) The balance ratio of CAPs A3—A2 and CAPs D5
—D3 were significantly reduced in FES. Boxplots represent the means (the white circle), the medians (the line), the upper and lower quartiles (the end of the box),
and the highest and lowest values excluding outliers (the extreme lines) of the CAP occurrence or the balance ratio.
Note: *indicates p < 0.05, with FDR correction. Abbreviations: CAP, coactivation pattern; SN, substantia nigra; FES, first-episode treatment-naïve patients with schizo-
phrenia; HC, healthy control.
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shown that the activities of specific networks correlate with varia-
tions in FCs within and between certain networks, and dynamic
changes in FCs may lead to network reconfigurations (Di &
Biswal, 2015). Our observations suggest that the antagonistic
activity patterns observed in CAPs could be underpinned by com-
mon connectome configurations.

Aberrant temporal features of SN-relevant CAPs in FES

In the activated-SN state, we found significantly increased recruit-
ment of CAP A6 and a tilted balance towards CAP A2 against its
antagonistic CAP A3 in FES. The classic dopamine hypothesis of
schizophrenia mainly emphasizes mesolimbic hyperdopaminergia
involving the ventral tegmental area (VTA), but recent neuroima-
ging meta-analysis has established that the major hyperdopami-
nergia in schizophrenia happens in the dorsal striatum
(containing caudate and putamen), which receives input from
SN rather than VTA (McCutcheon et al., 2018, 2019;
Stahl, 2021). CAPs A2 and A6 both demonstrated strong SN-
coactivation with caudate and secondarily with putamen and pal-
lidum at a lower intensity. The over-recruitment of CAPs A2 and
A6 in FES supports and extends the recent notion of the dopa-
mine hypothesis in a temporal dimension. Notably, CAP A6
also involved the coactivation of the amygdala and hippocampus.
Previous literature found that stress leads to hyperactivity in the
amygdala and subsequently hippocampus (Grace, 2016). The hip-
pocampal overdrive causes increased dopamine neuron firing and
a hyper-responsive dopamine state, leading to aberrant salience
and psychotic symptoms (Grace, 2016; Winton-Brown, Fusar-
Poli, Ungless, & Howes, 2014). Regarding the cortical level,
CAP A6 exhibited strong coactivation in DMN, LAN, and CON
and CAP A2 displayed SN-coactivation with CON. These
large-scale networks were found disrupted in schizophrenia and
widely associated with clinical symptoms (Baker et al., 2014,
2019; Li et al., 2017; Whitfield-Gabrieli et al., 2009).

We noted a trend suggesting a correlation between the
increased recruitment of CAP A6 and less severe positive symp-
toms, although this finding did not withstand FDR correction.
This observation aligns with recent findings by Li et al., who
reported higher gray matter concentration in a network involving
frontoparietal and temporal regions (encompassing parts of
DMN, LAN, and CON) associated with less severe positive symp-
toms in FES (Li et al., 2022). This leads us to speculate that

heightened activity in the SN-related striato-thalamo-cortical cir-
cuit might represent a compensatory functional reorganization in
response to dopaminergic disturbances in schizophrenia, even
prior to medication exposure. However, considering the weak
and uncorrected nature of the correlation between occurrence of
CAP A6 and the severity of positive symptoms, it is clear that
more extensive, longitudinal studies with larger sample size are
necessary to determine whether SN-related brain dynamics
could serve as a marker of resilience contributing to a reduced
symptom burden in schizophrenia.

In contrast, during the deactivated-SN state, we observed over-
recruitment of CAP D3 but reduced recruitment of CAP D5 in
FES, as well as an imbalance between these two CAPs. CAP D5
featured co-deactivation of VIS, DAN, DMN, and CON, whereas
CAP D3 exhibited coactivation in VIS and DAN. Elevated base-
line extracellular dopamine levels have been reported in schizo-
phrenia, which may be caused by continuously excessive tonic
dopamine releases, and facilitate salience dysregulation (Abi-
Dargham et al., 2000; Winton-Brown et al., 2014). One possibility
is that brain dynamics under SN deactivation in schizophrenia
may still be impacted by elevated baseline dopamine levels,
which may drive more coactivation of DAN and VIS and lead
to the relative predominance of CAP D3. VIS and DAN support
visual processing and goal-directed attention respectively
(Corbetta & Shulman, 2011; Uddin, Yeo, & Spreng, 2019). The
over-recruitment of CAP D3 might contribute to improper alloca-
tion of attention to internal thought and emotion (Lefort-Besnard
et al., 2018; Winton-Brown et al., 2014) as well as biased visual
perception (Li, Sweeney, & Hu, 2020; Türközer et al., 2019),
thus providing a potential neuropathological basis for psychotic
symptoms such as hallucination and delusion. What’s more, we
found with longer DUP, the recruitment of CAP D5 tended to
increase in FES, which might be a compensatory mechanism con-
ferred by dynamic reconfiguration in unmedicated states.
However, the observed imbalance between CAPs D3 and D5 sug-
gests that this compensation would be unsuccessful.

Strength and limitations

To our knowledge, we reported brain dynamic aberrances related
to SN at a drug-naïve first-episode stage of a large schizophrenia
sample for the first time. Studying drug-naïve patients ensures
that observed differences are related to the underlying

Figure 4. Clinical association of temporal dynamic alterations in FES. (a) The occurrence of CAP A6 displayed a negatively correlated trend with the Positive factor
score of PANSS, measured by partial Pearson’s correlation adjusting for age, gender, and years of education. (b) The occurrence of CAP D5 showed a trend towards
a positive correlation with DUP, assessed by Spearman’s correlation after regressing out age, gender, and years of education. The shadow represents the 95%
confidence interval of the linear trend.
Note: p values were not FDR corrected. FES, first-episode treatment-naïve patients with schizophrenia; CAP, coactivation pattern; PANSS, Positive and Negative
Syndrome Scale; DUP, duration of untreated psychosis.
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pathophysiology of schizophrenia rather than the effects of medi-
cation, and also minimizes the influence of disease progression
and its potential effects on brain structure and function.
Another strength is that our CAP analyses focus on time points
with strong links to SN, allowing us to address the dopamine
hypothesis of schizophrenia. While the CAP method focuses on
activity and the edge-centric model emphasizes connectivity
(Preti, Bolton, & Van De Ville, 2017), our work shows that inte-
grating complementary dynamic approaches is likely to enrich the
research on spatiotemporal brain organization (Bolton,
Morgenroth, Preti, & Van De Ville, 2020a).

There are also a few limitations. Firstly, it is crucial to recog-
nize that the SN-relevant CAPs identified in our study do not
establish a causal link between dopamine signaling and brain
dynamics, primarily due to the limited temporal resolution of
fMRI, which cannot track brain dynamics at the millisecond
scale. Nonetheless, existing research has demonstrated that
fMRI is capable of capturing neuronal activation signals poten-
tially influenced by transient dopaminergic input (Schultz,
2010; Winton-Brown et al., 2014). Moreover, BOLD signals are
known to reflect dynamic changes in neuronal spike rate or the
neuromodulatory effects of dopamine (Logothetis, 2008). Given
the standard spatial resolution of 3 T fMRI, we utilized a high-
resolution SN atlas map and averaged the signal across all voxels
in the bilateral SN to optimize anatomical specificity and
signal-to-noise ratio. While this study offers important insights
into the interplay between the SN and other brain regions, caution
should be exercised in interpreting the anatomical specificity of
SN-relevant CAPs. Future research in this domain could benefit
from employing ultra-high resolution fMRI combined with multi-
band or parallel acquisition techniques to enhance both spatial
and temporal resolution. Additionally, subdividing the SN into
the pars compacta and reticulata using high-field fMRI may pro-
vide further insights into whether MRI metrics in these SN sub-
regions correlate with specific neuropathological substrate of
schizophrenia. Secondly, this work focuses on dopaminergic-
SN, but understanding identified dynamic alterations in
schizophrenia to what extent are SN specific will require future
investigation across multiple neuromodulatory nuclei (van den
Brink, Pfeffer, & Donner, 2019). Thirdly, since our research
focused on investigating the dynamics of CAPs, we adopted a
6-cluster solution for categorizing SN-related CAPs, enabling us
to capture the nuanced and dynamic nature of these patterns.
However, we posit that if the clustering procedure were performed
basing on connectome features or edges between brain areas, a
3-means solution might emerge, which would suggest a more uni-
fied underlying connectome structure among certain CAP pairs.
Lastly, from our observation, the spatial between-group differ-
ences of CAPs are relatively subtle. Though these results are con-
sistent with a recent CAP study (Wang et al., 2021), more rigorous
statistical methods or incorporating graph theory will be required
on testing spatial differences in future research.

Conclusion

In summary, we illustrate that the brain exhibited rich functional
reconfigurations under both SN activation and deactivation. We
demonstrate excessive or insufficient recruitments of specific
SN-relevant CAPs in an early unmedicated stage of schizophrenia,
which involves dopamine-rich subcortical regions and critical
large-scale networks such as DMN, LAN, CON, DAN, and VIS.
Such abnormal temporal functional organizations in

schizophrenia are potentially shaped by the dysregulated dopa-
minergic system involving SN, which enriches the current dopa-
mine hypothesis from a dynamic level. In future research,
adopting multimodal approaches within a longitudinal cohort
could be highly beneficial. This would enable a more comprehen-
sive understanding of the role of dopamine-relevant brain dynam-
ics in the pathophysiology of schizophrenia.
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