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ABSTRACT. A constitutive theory of snow is developed to describe the 
mechanical properties of snow in terms of the properties of the ice grains and the 
necks that interconnect them. The principle of virtual work is used to calculate the 
stresses in the particles and necks. A number of different deformation mechanisms are 
investigated and, depending upon the deformation mechanism which is dominant for 
given load conditions, different equations are used to calculate the strains in the 
grains and necks. These strains around a representative ice grain are then averaged 
and scaled to obtain the global strains in the snow. The theory is then compared with 
experimental data to determine if the mechanical properties of snow can be 
adequately represented. Results show that the constitutive theory does work, but that 
it is cumbersome to implement, and that for practical use substantial computational 
capability is needed. 

INTRODUCTION 

Snow is a granular geologic material with ice as the 
matrix material. The particles have varying shapes, 
crystallographic orientations and numbers of bonds 
connecting each particle to neighboring particles. In its 
natural state, snow exists at close to its melting point and 
can readily undergo a variety of metamorphic processes 
including sintering and bonding of grains, temperature­
gradient metamorphism, melt/freeze processes, and heat 
and mass transport due to inhomogeneities in physical 
properties. The process leading to the formation of a 
rounded equilibrium form is called equitemperature 
metamorphism, for it proceeds in bodies which are not 
far from a uniform temperature. The overall strength of 
snow is also affected during this metamorphic process. 
The deposition of ice at contact points produces bonds or 
necks between adjoining grains in a process known as 
sintering. As the process proceeds, the necks become 
larger and the snowpack strengthens. 

An externally applied pressure serves to increase the 
rate of sintering. The mechanism of pressure sintering is 
analogous to creep kinetics for polycrystalline metals. A 
number of processes, including lattice diffusion, grain­
boundary diffusion and dislocation creep, have been used 
to explain the phenomenon. The regime of dominance of 
each of the above mechanisms depends upon the snow 
microstructure, the applied pressure and temperature. 
Maeno and Ebinuma (1983) used pressure-sintering 
diagrams to show these various regimes in snow samples 
with densities varying from 600 to 900 kg m-3

. Depending 
on the radius of the particles, at very low pressure lattice 
diffusion or boundary diffusion may be the predominant 

mechanism for sintering. At higher pressures dislocation 
creep takes over. However, if pressure is very high, it is 
likely to lead to neck fracture, resulting in interparticle 
slip. 

In this study, snow is modeled as an assembly of 
spherical particles joined by areas of much smaller cross­
section called bonds or necks. Because of their smaller 
cross-section, the necks are subjected to much higher 
stresses than are the ice particles and therefore undergo 
large deformations. It is the deformation of necks which is 
responsible for deformation of snow with densities in 
excess of 250 kg m -3, particularly at low stresses. At higher 
stresses, the necks may fracture and interparticle slip 
becomes a significant deformation mechanism. It is this 
relative displacement between the particles which is 
largely responsible for strains at large stresses. 

In this study we attempt to determine the relative 
contribution of each of these mechanisms (dislocation 
strain, superplastic strain and interparticle sliding) to the 
overall deformation of snow. We will restrict ourselves to 
medium- to high-density snow and therefore utilize an 
approach that does not need to consider chains of ice 
grains as done by Kry (1975). For snow with densities 
greater than 250 kg m-3, the coordination number 
(number of bonds per grain) is equal to or larger than 
the value of 3. Therefore, the role of chains is minimized 
relative to deformation taking place in the necks. 
Modeling all of the processes mentioned above and 
incorporating them into a macroscopic constitutive 
relation is not an easy task. The results we present here 
are not final but do provide a measure of the potential of 
constitutive equations developed in terms of microstruc­
tural processes. 
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CONSTITUTIVE FORMULATION 

Oda (1974) and Kanatani (1983) used probability 
principles to determine stresses at contact points of sand 
grains. The same principles can also be applied to ice 
particles in snow. Suppose the material, composed of rigid 
spheres, is subject to a macroscopically uniform stress. 
The contact forces vary from particle to particle and with 
the position of the contact on the grain surface. All 
contact forces are superposed on a hypothetical repre­
sentative particle whose radius is the average particle 
radius. 

If the number of particles is sufficiently large, the 
contact-force distribution on the representative particle is 
approximated by a continuous function, D(n), of the 
contact direction determined by n, the outward unit 
normal vector at the contact point. The direction of n is 
determined by the two angles, Cl! and (3, shown in Figure 
I. The unit normal, n, is actually the same vector as the 
vector V3 shown in Figure 1. Since D(n)dn is the number 
of contact points on all particles in the differential solid 
angle, dn, divided by the number of particles, we see that 

N = TD(n)dn (1) 

where N is the coordination number (number of contacts 
per grain). Let N· li(n)D(n)dn be the components of the 
total force acting in the differen tial solid angle, dn, then 
by equilibrium of force and moments, one can show that 

TMn)D(n) dn = 0, 

Fig. 1. Coordinate system. Xi global coordinate system 
entered at the ice particle center. The x/ neck coordinate 
system is centered at the center of neck. 
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(2) 

(3) 

where f[i(n)nj) is the skew part of fi(n)nj. In other 
words, the matrix of components of f[i(n)nj] are just 
f[i(n)nj] = (finj - !;ni)!2. This last relation results 
directly from requiring that the forces applied to the 
grain satisfy equilibrium of moments about the grain 
center. f(i(n)nj) = (finj + !;ni)/2 is the symmetric part 
of Mn)nj. 

Kanatani (1983) imposed a virtual displacement 
which distorts the spherical particles into an ellipsoid. 
Even if the particles are assumed to be rigid, virtual 
deformations are hypothetical motions and can be 
imposed (Kanatani, 1981). The virtual work done by 
the contact forces on the representative particle is equated 
to the virtual work per unit volume done on the virtual 
strain due to the applied stress tij' After some algebra, this 
yields 

(4) 

where a is the particle radius and 'Y is solid volume 
fraction. We see here that the stress tensor tij is 
determined only in terms of the symmetric part of finj, 
where we have dropped the n in these terms for the sake 
of brevity. The contact-force density fiD can be 
expanded into a series of spherical harmonics and 
truncated to the first two terms since Inil ~ 1: 

(5) 

The term Blill is just the skew part of the matrix B ij . 
Substitution of this form into Equations (2) and (3) 
results with 

Ai = 0 and BliJl = 0 , (6) 

and Equation (5) reduces to 

fiD = Bijnj. (7) 

Substituting Equation (7) into Equation (4), one obtains 

a2 

Bij = -tij, 
'Y 

(8) 

(9) 

Here fi is the force per contact on the contact with 
normal ni. In the development presented later this is 
replaced by (lTi' AT / N) where lTi is the stress vector 
acting on a grain at the contacts, AT is the total area of 
the necks or contacts, and N is the coordination number. 
AT! N is therefore the average neck cross-sectional area. 
In the above the superscript "n" is used to denote the 
stress vector acting on a grain surface with a unit outward 
normal vector n. Subscripts are used to denote coordinate 
components of vectors and tensors. 

The distribution function, D, can also be written as 
D = p. N, where P is the probability that two adjacent 
particles will form a contact. For the isotropic case, P is 
independent of Cl! and (3 and therefore has the value 
P = 1/47r. Substituting this into Equation (9), we get in 
vector notation (lTin = aij ni ,tin = tijni): 

a2 
~ATP=-tn. 

'Y 
(10) 
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This relates the stress vector on the ice grains to the 
macroscopic stress vector in the snow. 

A local coordinate system, x/, can be set up at the 
contact point and the stress vector at the contact point or 
the ice neck can be resolved into three components along 
the coordinate axis of this local coordinate system. This 
coordinate system is illustrated in Figure I. The unit 
vectors Vi are defined relative to the spherical coordinates 
as shown if Figure 1. The vector V3 is the same vector as 
n. 

We now denote the components of stress on the face 
with normal n 

Cli3 = Vi . (TD; i = 1,2,3. (11) 

These components act in the directions of Vi, i.e. the 
directions of the x/ coordinates. The component Cl33, for 
instance, is the normal stress acting perpendicular to the 
grain surface and in the direction parallel to the neck 
cen ter line. The average value of Cl33 over a section of the 
grain surface between the angles a and (3 to a + Lla and 
(3 + Llf3 can be shown to be 

rP+jjP ra+ jja t D a2
• fJ d dfJ J P J a . V3 -;y SIn a 

(
Cl

33)av = Jrjjp .r:+ jja ATPsinfJdadfJ 
(12) 

Similar expressions can be found for the other two 
components, Cl13 and Cl23. 

In Equation (12) the factor a2 hAT reflects the 
influence of the radius of the neck, density ratio and 
area of the ice particle. Rather than treating all of these as 
separate variables, this equation shows that they can be 
grouped as one parameter. Snow samples having different 
densities, grain and neck radii can still end up having the 
same stress at the contact point, provided a2/ , AT is the 
same for the different samples. This term is a fundamental 
dimensionless parameter relating the microstructure to 
many properties of the material. 

The strain in snow is primarily due either to the strain 
in the necks or to relative sliding of particles with respect 
to each other once the necks have been broken. 
Experiments (Kry, 1975; Brown, 1980) show that snow 
does not collapse even when the stresses are high enough 
to cause fracture of some of the necks and subsequent 
intergranular sliding. From this it was concluded that 
even when sliding of necks is taking place, the original 
skeletal structure still remains largely intact. We now 
determine the difT'erent deformation mechanisms taking 
place in the necks under varying load conditions in order 
to incorporate the mechanisms into a constitutive 
formulation for snow. 

Inelastic deforntation of necks 

At stresses lower than 0.004 MPa, insignificant neck 
fracturing can be assumed. In this case the deformation 
of snow can be attributed to deformation of inter granular 
necks, as has been suggested earlier. For a stress of 
0.004 MPa applied to snow, the principal stresses in the 
necks are less than 0.7 MPa, as can be shown by using 
Equation (12). In ice it has been observed that crack 
nucleation does not take place until the stress has 
exceeded a limiting value of 0.5 MPa (Gold, 1972). 
Smha (1984) cited the experimental results in which 

specimens were seen to last for 4 d without fracturing. He 
has conjectured the possibility of existence of super­
plasticity in ice due to favorable conditions such as high 
temperature, low stress and fine grain-size. 

If the stresses in the neck are of a moderate value, 
superplastic deformation is not significant, and ordinary 
constitutive laws should be applicable for modeling both 
steady-state and transient deformation of ice. Deform­
ation at this intermediate stress level is due primarily to 
dislocation processes. When strains in the neck reach a 
critical value, fracturing can begin to occur. Thus, in a 
snow sample subjected to high stress levels there may be 
necks which are oriented such that they are subjected to 
high stresses and undergo fracturing and subsequent 
sliding. On the other hand, there may be suitably 
oriented necks which are subjected to a low stress and 
therefore undergo either superplastic deformation or 
dislocation-dominated creep. 

To describe the behavior of ice necks under combined 
compressive and shear stress, a multi-axial constitutive 
law is required. A number of models exist to describe this 
behavior. The model used in this paper is based on work 
ofSzyszkowski and Glockner (1986,1987). In this model 
ice is treated as an isotropic, non-linear viscoelastic 
material. The heredity effects have been included with 
the use of a Volterra integral in the following equation of 
Szyszkowski and Glockner: 

. (1 + 11) • 11 . 
eij = --E-- Clij - E Clkk Oij 

1 d lot - n . iJi/ + -- [Clij(r)] J(t - r)dr +-
VI dt 0 V2 

(13) 

where 

{ I
s In-l}t 

iJij = Sij 1.5 Sij and S2 = 1.5sij sij' (14) 

11 is Poisson's ratio, E is Young's modulus, j is the creep 
compliance, and VI and V2 are material constants. Sij is 
the deviatoric stress given by the relation Sij = 
CI;j - Clkk 8;j. The stress components shown above are all 
taken relative to the coordinate directions, x/, of the 
neck. 

Instead of directly solving the integral in Equation 
(13), Szyszkowski and Glockner have approximated the 
strain ei/ represented by the integral in Equation (13) by 
a nonlinear viscoelastic model of a generalized Kelvin 
body in series with a nonlinear potentiometer. This is 
shown in Figure 2. The equations for the Kelvin body are 
written as 

( - ')n - '(- )n-l E C Uij + CUij Uij = 1 eij 

- 1- 11 -
Clij Clij = Clij . 

(15) 

(no summation), (16) 

(17) 

aij is the effective viscous stress tensor defined above, a;/ 
is the component of efT'ective stress in the spring and ail' is 
the component of efT'ective stress in the potentiometer. 
The second term involving the constant C on the lefthand 
side in Equation (16) is included to lend numerical 
stability to the constitutive equation at low stresses. 
Without it, the ail - ei/ curve becomes infinitely steep as 
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Fig. 2. Spring potentiometer model for constitutive relation 
of ice. 

ad approaches zero, and this produces stability problems 
and computational difficulties in numerical schemes. 
Szyszkowski and Glockner avoided this problem by 
adding the second term to Equation (16). The value of 
c was generally between 0.1 and 0.3 and it had little effect 
on the stress behavior at intermediate to high stress levels. 
Accordingly, since this term is a computational conven­
ience, a physical meaning cannot be attached to it. With 
this second term added to Equation (16) the strain ei/ 
associated with the integral term was accurately 
represented. For a more detailed discussion the reader is 
referred to Szyszkowski and Glockner (1986, 1987). 

Equations (15)-( 17) are solved to find the strain rate 
ei'c to replace the integral term in Equation (13), which 
c~n then be integrated to determine the strains in the 

. necks. 
As indicated earlier, the strain tensor components eij 

are defined relative to the x/ coordinates of the neck. The 
components Eij relative to the global coordinates can be 
calculated by using the usual equation for transforming a 
second-order tensor from one coordinate system to 
another. This equation is 

(18) 

where Q is an orthogonal transformation matrix carrying 
the local coordinate system xi' centered at the neck to the 
global coordinate system Xi centered at the ice-particle 
center. 

Interparticle sliding 

For an ice specimen in tension, failure is often defined as 
the instant when nucleation of micro cracks is initiated. In 
compression, on the other hand, it is the stress required 
for the propagation of micro cracks. The prediction of first 
crack occurrence (crack nucleation) under uniaxial 
compressive loading is based on the hypothesis that the 
crack nucleates due to lateral tensile strain resulting from 
the Poisson effect of elasticity and material incompress­
ibility. The first crack in a neck is postulated to occur 
when the lateral tensile strain equals the strain for tensile 
fracture at the same instantaneous strain rate. If this 
limiting strain is reached, the material can still continue 
to sustain a compressive load but loses its ability to take 
any lateral tensile loads. The failure strain thus depends 
on the strain rate and a graphical relation between the 
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two has been given by !sir:.~ and Su~e!l (1985). F.or 
strain rates between 10 sand 10 s the tensIle 
fracture strain varies from 3 x 10-3 to 6 X 10-3

• In a 
neck there are both shear and compressive stresses. To 
determine when failure takes place, we calculate the 
principal tensile strain and, if this exceeds 5 x 10-3

, we 
assume the neck has lost the ability to carry load 
(principal tensile stress) and therefore f~actures. Aft~r 
the occurrence of fracture, deformation m the neck IS 

primarily due to intergranula.r sliding. The tangential 
and normal velocities, iJ and ~, and the displacement d 
across a neck are calculated using the equation 

and 

(19) 

where ~ and a, are respectively, the velocity and the 
component of traction in the direction normal to the 
grain surface at the neck. iJ is the tangential velocity, T is 
the component of traction in the shearing direction and 8 
is the relative displacement between the grains. The 
expression 1/ fi"' appears because the sliding displacement 
increases as the particles begin to form new contacts with 
other particles, and this impedes further relative 
displacement. The constants Cl, C2, n and m are 
determined from the experimental data with a single 
experiment. An unconfined compression test was used for 
this purpose. These constants are adjusted to provide a 
best least-squares fit to the data after the necks are 
calculated to begin fracturing in the materials determined 
by the above fracture criterion. This formulation was 
found to provide a very good agreement with the data. It 
should be noted that other material constants such as 
Young's modulus, E, were also determined from the same 
test data. 

If iJ and e are the components of slip velocity in the 
neck coordinate system, Xi, then the components lij of the 
velocity gradient, L, relative to the global coordinate 
system Xi are 

1 . 
Lij = - (rysinj + ~ninj) 

a 
(20) 

where 8 is the unit vector directed normal to n and in the 
sliding direction and a is the radius of the ice particle. The 
symmetric part gives us the rate-of-deformation tensor 
which for small strain theory is the same as strain-rate 
tensor. The unsymmetrical part gives the spin tensor. The 
strain rate is 

(21) 

The above equation can be integrated with respect to 
time to give the strains. On multiplying both sides of 
Equation (21) (after time integration) with sin,8dod,8 
and integrating over 0 and ,8, we obtain 

1
211'111' 1211'111' (E;-)· sin j3 do dj3 = Eij sin j3 do dj3 , 

J av 0 0 0 0 

(22) 

where Eij on the righthand side IS obtained from 
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Equation (21) or (18), depending on whether intergran­
ular sliding or plastic deformation is taking place. 

NUDlerical scheDle for calculating strains 

For calculation purposes Equation (22) must be in­
tegrated numerically. The representative particle is 
divided into 72 regions so that the angles Q and f3 vary 
by 1r/6. Increasing the number of divisions improves the 
results, although at the expense of increased computa­
tional time. To solve the non-linear Equation (18), 
Brent's method (Press and others, 1988) is used. Eu1er's 
method was used for integrating differential Equation 
(13). In calculating the average stress in Equation (12), a 
concentration factor of l.75 has been used to take into 
account the effect of sudden changes in cross-section at 
points of contact between grains. This number is 
consistent with such factors found in the theory of plane 
elasticity and also was found to provide good results in 
this study. 

Very little data for values of coordination number or 
neck and grain radii are available. For snow of density 
270-350 kg m -3, Hansen and Brown (1986) and Edens 
and Brown (1991) cited values of coordination number 
between 2 and 3. Values consistent with their numbers 
were used. The radius of the ice particles and necks was 
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taken from Kry (1975) and Edens and Brown (1991). In 
order to obtain realistic values for strains in snow from 
those of necks, we have to scale the neck strains (to take 
into account the ice particle which is being treated as 
undeformed). The scaling factor is approximately 
(L/(2a + L» where a is the particle radius and L is the 
length of the neck. 

Szyszkowski and Glockner (1987) suggest a value 168 
for Vl and 5040 for V2, which appear in Equation (13). At 
a stress of 0.004 MPa, these values of constants Vl and V2 

when used in Equation (13) give strains in snow much 
smaller than those from our experimental data. To obtain 
results which match experimental results for very low 
stresses, Vl and V2 had to be determined experimentally. 
From experimental data at 0.004 MPa, Vl and V2 were 
found to have values of 10.8 and 235, respectively. At 
these low stress levels, superplastic deformation is 
predominant rather than the dislocation plastic deforma­
tion which predominates at intermediate stress levels. 
Therefore the values of 10.8 and 235 for Vl and V2 allow 
us to model superplastic deformation in the necks. In 
cases where the principal tensile stress in the neck is equal 
to or exceeds 0.7 MPa, we take V2 equal to 5040, as no 
superplastic deformation takes place prior to fracturing at 
high stresses. 

8 
0 

x 
.S 
e 

r:;; 

The constan t Cl in Equation (19) has a value of 

100 .00 

10 .00 

1.00 

0 .10 

001 

Q 0 0
0 

0 0 

o 0 ··~··~·~i:·l~~ ·:·:r:;n·.Ot~e;r: 0 

"" ""\ Axial strain. expo 
Lateral strain. theory 
Lateral strain. expo 

OOO-+--~-~--~--~-~--~-~ 

000 10 .00 2000 30 .00 40 .00 50 .00 60 .00 70 .00 

Time. hours 

Fig. 4. Strain vs time for a uniaxial compressive stress of 
0.008 MPa. Test temperature = -10o e; a = 

0.254 mm; AT = 0.022mm2; , = 2.75. 

1 00 .00 I---==:=~~::::;::::::;;:::::;;::::::;=;:::::::;::~:::::o"= 

10 .00 

1.00 

0 . 10 

.. ...... ............ !I ·····o·······'O ·····o .... ····"' ···· o· ........ (\ · .. . 

•.. 0' ..• ." •.. ., . ." ~ Axial strain, theory 

\ '\ Axial strain, expo 
Lateral strain. theory 
Lateral strain, expo 

0.01 +------..----,.-----,------1 
0.00 10 .00 20 .00 3000 40.00 50 .00 0 .00 10 .00 20.00 30.00 40 .00 

Time. hours 

Fig. 5. Strain vs time for a uniaxial compressive stress of 
0.012 MPa. Test temperature = -10 o e; a = 

0.254 mm; AT = 0.028mm2; , = 2.62. 

Time. hours 

Fig. 6. Strain vs time for a uniaxial compressive stress of 
0.028 MPa. Test temperature = -lOoe; a = 

0.254 mm; AT = 0.024 mm2; , = 2.67. 

291 
https://doi.org/10.3189/S0260305500011666 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500011666


Mahajan and Brown: Microstructure-based constitutive law for snow 

10000 T------==:=:=~~~=;==~~<>~ <> <> 

10 .00 

>< 100 

010 

0.01 +----,-------,----,---r---,-----j 

000 500 10 .00 15 .00 20 .00 2500 3000 

Time, hours 

Fig. 7. Strain vs time for a uniaxial compressive stress of 
0.012 MPa. Test temperature = -10 o e; a = 

0.225 mm; AT = 0.020 mm2
; 'Y = 2.67. 

3.906 X 10-3 . The constant C2 depends on the ratio of 
shear to compressive stress at the point of contact and is 
chosen to give the experimentally observed Poissonic 
effect. If the absolute value of the ratio of shear to 
compressive stress is less than 0.5, then C2 is equal to 0.3. 
Otherwise it has a value of 0.40. The constant n has a 
value of 1.8. The constant m varies with displacement of 
particles. As the strain increases, particles develop more 
contacts and an increasing resistance to further move­
ment. This seems to account for the strain hardening in 
snow. The constant m was obtained, using a regression fit, 
as a function of effective strain in snow. 

COMPARISON WITH DATA 

For the uniaxial compressive-stress case, the results for 
various values of axial stresses are shown in Figures 3-6 
and compared to creep data from experiments run at 
Montana State University. Figure 7 illustrates a com­
parison of theory and data for uniaxial creep deformation 
of snow. For a grain radius of 0.508 mm, neck radius of 
0.053 mm, coordination number equal to 2.5 and density 
ratio equal to 2.75, a Young's modulus of270.63 MPa was 
found to give good agreement with the data. For the same 
density ratio, Mellor (1974) gave Young's modulus of 
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snow obtained from dynamical testing to range in value 
from 100 to 225 MPa. 

The ratio of lateral strains to axial strains, in most of 
the experimental data, varies from 0.15 to 0.2 for uniaxial 
compression tests and from 0.2 to 0.3 for uniaxial tension 
tests. The theoretical results give the value of ratio of 
lateral strain to axial strain as approximately 0.18 for 
compression and 0.23 for tension. An interesting feature of 
the lateral-to-axial strain ratio is that it does not change 
much even when the underlying deformation phenomen­
on is entirely different. At a compressive stress of 
0.004 MPa when superplastic deformation of necks is 
the sole deforming mechanism, we have almost the same 
lateral-to-axial strain ratio as for a snow sample subjected 
to 0.028 MPa with interparticle sliding as the only 
deformation mechanism. This is because at low stresses 
the lateral deformation of the necks is into the pore space 
and does not contribute to the snow strains. For sliding 
particles there are no such lateral strains, and therefore 
the value of lateral-to-axial strain in this case is also 
almost the same. A better understanding about this ratio 
could be obtained if information were available about the 
plane of fracturing of ice under multi-axial loading. 

The major advantage of this formulation is its ability 
to calculate strains under multi-axial loading without 
requiring any additional constants other than the ones 
used for uniaxial tests. This reduces the need to perform 
extensive experiments normally required to find ad­
ditional constants arising in multi-axial constitutive laws. 

For multi-axial loading, the constants used were those 
used in uniaxial compression tests. The results from these 
are plotted in Figures 8-10. Unfortunately no exper­
imental data were available to compare with the theory. 
In Figure 8 the results from hydrostatic state of stress are 
shown. A 5.65% change in volume occurs over 30 h. This 
is in accordance with the compressible nature of snow. 
Figure 9 shows results from a test in which the stresses are 
very low and strains are due to superplastic deformation 
of necks rather than sliding of broken necks. 

At very low stresses (0.004 MPa) the strain rates vary 
almost linearly with stress. Even at higher stresses (0.008-
0.028 MPa) the non-linearity is not large as long as the 
coordination number, density, grain and neck size remain 
nearly constant. 
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Fig. 9. Strain vs time for tu = -0.004 MPa; 
tl2 = 0.028 MPa. Test temperature -10oe; a = 
0.254 mm; AT = 0.022 mm2

; 'Y = 2.72. 
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Fig. 10. Strain vs time for tll = -0.008 MPa, 
t12 = t21 = 0.008 MPa . e33 differs significantly from 
e22. Test temperature = - loce; a = 0.254 mm; AT = 
0.022 mm2

; I = 2.72. 

In Figure 10, where tu = -0.008 MPa and t12 = t21 

0.008 MPa, the strains e22 and e33 are no longer equal. 
Although not shown here, when shear stresses t13 and t23 

are applied along with a normal stress t33, the shear strain 
el2 is observed although no shear stress was applied in this 
direction. The value of this shear strain is one order of 
magnitude smaller than the strains in the directions in 
which stress was applied. In multi-axial tests when both 
shear stress and normal compressive stress are applied, the 
relation between deformation rate and stress is of the form 

Since the dependence on the third term on the 
righthand side is rather small, as is apparent from 
relatively small value of e12 in the test mentioned 
above, the relation between deformation rate and stress 
can be approximated by 

In the above equation Co is a function of first and second 
principal invariant of stress tensor and second invariant of 
strain tensor. Cl is a function of second principal 
invariant of stress and second invariant of strain tensor. 
For both Co and Cl the dependence on second invariant 
of strain tensor can be represented quite accurately by a 
second-order polynomial. However, no simple depen­
dence could be found with respect to the other two 
variables. 

DISCUSSION 

A theory has been proposed to explain the multi-axial 
deformation of snow. The theory is limited to small 
strains, and much more experimental work needs to be 
done before it can be extended to large strains. The major 
advantage of this formulation is its ability to calculate 
strains under multi-axial loading without requiring any 
additional constants other than those obtained from one 
uniaxial test. This is accomplished by means of defining 
the multi-axial deformation in terms of microstructural 

processes, i.e. the deformation taking place within the 
necks connecting the ice grains. This eliminates the 
necessity of performing extensive sets of experiments to 
evaluate highly empirical constitutive relations. This 
formulation is also capable of transcending those regions 
where different deformation mechanisms are dominant. 
Of course, significant disadvantages of this formulation 
are: (I) the need to describe accurately the various 
deformation mechanisms, (2) the need to define how these 
microstructural processes can be extrapolated to observed 
macroscopic results and (3) the complexity of these types 
of relations. The above work does represent one of the first 
attempts to rely heavily on processes at the microstruc­
turallevel to define in detail the properties of snow with 
as little gross empiricism as possible. The work reported 
here is far from ideal but it does demonstrate that much 
can be accomplished with this approach. 
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NOTATION 

N 
n, 1I3 

dn 
J;(n) 
tij 

8ij 

aij 

O"i/ 
- 11 
O'ij 

T 

Si 

Coordination number 
Normal at the point of contact 
Differential solid angle 
Contact force per contact 
Components of stress on the snow sample 
(glo bal coordinate) 
Contact force per unit contact area 
Components of stress tensor at the neck due 
to O'\n) • 
Small strain tensor in the ice neck 
coordinate system (primed coordinate in 
Fig. I) 
Deviatoric stress 
Components of effective stress 
Components of effective stress in the spring 
Com ponen ts of effective stress in the 
pot en tiometer 
Constant for delayed elasticity in ice 
Constant for viscous creep in ice 
Strain in global coordinate system (un­
primed coordinate in Fig. I ) 
Rotation tensor 
In Equation (19), component of traction in 
normal direction 
In Equation (19), component of traction in 
shearing direction 
Components of unit vector in direction of 
sliding of necks . 
Empirical constants 
Tangential component of sliding (tangent 
to the grain) 
Normal component of sliding 

293 
https://doi.org/10.3189/S0260305500011666 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500011666


Mahajan and Brown: Microstructure-based constitutive law for snow 

REFERENCES 

Brown, R. L. 1980. A volumetric constitutive law for snow 
based on a neck growth model. ]. Appl. Phys., 51(1), 
161-165. 

Edens, M. Q and R. L. Brown. 1991. Changes III 

microstructure of snow under large deformations. ]. 
Glaciol., 37(126), 193- 202. 

Gold, L. W. 1972. The process of failure of columnar­
grained ice. Philos. Mag. A, 26(2), 311- 328. 

Hansen, A. C. and R. L. Brown. 1987. A new constitutive 
theory for snow based on a micromechanical approach. 
International Association of Hydrological Sciences Publication 
162 (Symposium at Davos 1986 - Avalanche Formation, 
Movement and Effects), 87- 104. 

Kanatani, K. 1983. Mechanical properties of ideal 
granular materials. In Jenkins, J. T. and M . Satake, 
eds. Mechanics of granular materials: new models and 
constitutive relations. Amsterdam, Elsevier. 

Kry, P. R. 1975. The relationship between the visco­
elastic and structural properties of fine-grained snow. 
]. Glaciol., 14(72),479- 500. 

Maeno, N. and T. Ebinuma. 1983. Pressure sintering of 
ice and its implication to the densification of snow at 
polar glaciers and ice sheets. ]. Phys. Chem., 87 (21), 
4103-4110. 

294 

Od a, M. 1974. A mechanical and statistical model of 
granular material. Soils and Foundations, 14(1), 13-27. 

Press, W. H ., B. P. Flannery, S. A. Teukolsky and W . T. 
Vetterling. 1988. Numerical recipes in C; the art of scientific 
computing. Cambridge, Cambridge University Press. 

Sinha, N. K. 1984. Intercrystalline cracking, grain­
boundary sliding and delayed elasticity at high 
temperature. ]. Mater. Sci., 19(2), 359-376. 

Szyszkowski, W. and P. G. Glockner. 1986. On a 
multiaxial constitutive law for ice. Mechanics of 
Materials, 5, 49-71. 

Szyszkowski, W . and P. G. Glockner. 1987. On a 
multiaxial non-linear hereditary constitutive law for 
non-aging materials with fading memory. Int. ]. Solids 
Struct., 23 (2), 305-324. 

Ting, S. -K. and S. S. Sunder. 1985. Constitutive modeling of 
sea ice with applications to indentation problems. Cambridge, 
MA, Massachusetts Institute of Technology. Center for 
Scientific Excellence in Offshore Engineering. 
(CSEOE Research Report 3.) 

The accuracy of references in the text and in this list is the 
responsibility of the authors, to whom queries should be addressed. 

https://doi.org/10.3189/S0260305500011666 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500011666

