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Mathematical modelling has several valuable properties that address a
number of pedagogical issues. As such, it makes for an excellent classroom
exercise. First and foremost, it reinforces the insight that mathematics is
nearly ubiquitous. It is all around us, hiding in plain sight. Secondly, in
contrast to textbook problems which are often highly artificial, mathematical
modelling is decidedly real. Next, it serves to un-silo the curriculum. As
mathematics students advance, they populate their toolbox with more and
more tools. However, these tools are generally course specific. Algebra tools
in algebra class, calculus tools in calculus class, and so on. In attacking a
modelling problem, the student needs to decide what tool to pick up and
how to apply it. Finally, modelling is empowering in that it allows, indeed it
requires, the student to decide for herself what the salient features of a
problem are and which features are extraneous and can safely be suppressed.

These last two characteristics are interrelated, of course. A student's
mathematical limitations might require the suppression of certain details.
Conversely, if the student feels that this suppression renders the model
unrealistic, she might feel compelled to learn some mathematics with which
she had previously been unfamiliar.

Below, we present an example that illustrates each of these
characteristics.

Consider the tennis serve. The server stands just behind the baseline and
slightly to one side of its midpoint and attempts to hit the ball into the
service box on the other side of the net and diagonally opposite her position.
There are two main decisions that the server must make: in what direction
should she aim the ball and with how much force should she hit it. For any
choice of direction, there are two extremes regarding force. The minimal
amount of force that produces a legal serve has the ball just clear the net and
land in the service box. We shall call this the short serve. The maximal
amount of force will have the ball just make it into the service box without
going past the far boundary of the box. We shall call this the long serve. For
any given direction, we examine the distance between the points of landfall
for the short serve and the long serve. The greater this distance is, the more
leeway the server has between hitting the ball with too much force or too
little. It is a measure of how forgiving the serve is. Below, we find the
direction for which this distance is maximal and we deem it the optimal
serve.

We begin by giving the dimensions of the regulation tennis court for
singles and establishing the coordinate system that we shall be using. The
court is 78 feet long and 27 feet wide. The net straddles the width of the
court and at its midpoint is 3 feet high. The service box is 13.5 feet wide
(half the width of the court) and 21 feet deep (see [1]). In Figure 1, below,
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we have labelled points and assigned them coordinates. We have also added
the server, represented here by the thick black line, orthogonal to the plane
of the court, with her outstretched arm holding her racquet directly above
her head. We are taking the top of this line to be  feet above the ground. It
is the point where the racquet hits the ball. The service box is outlined in
bold.

H

A

B

C

D

E
F

G

K

I

J

FIGURE 1

Here are the coordinates of the labelled points:
; ; ; ; ;

 ; ; ; .
A (0, 0, 0) B (0, 13.5, 0) C (0, −13.5, 0) D (78, 13.5, 0) E (78, −13.5, 0)
F (39, 13.5, 0) ; G (39, −13.5, 0) K (60, 13.5, 0) I = (60, 0, 0) J (0, 0, H)

The four corners of the court are labelled , ,  and , ,  and
represent three of the four corners of the service box.

B D E C F K I

Now that we have established dimensions and coordinates, let us create
our model. We make several simplifying assumptions. First and foremost,
we are eliminating the opponent. Our focus is entirely on the serve. Next,
there is no friction. Consequently, the trajectory of the ball, which is acted
upon solely by the initial impetus and gravity, will be a parabolic arc. We
take the point of impact of the ball and the racquet to be the vertex of this
parabola. Next, we shall view the ball as a single point and the lines that
bound regions on the court will be considered to have no thickness. This last
assumption makes the ball hitting a line and being within bounds a
distinction without a difference. Likewise, the requirement that the server’s
feet be just behind the baseline and slightly to one side of the midpoint is
ignored by making this assumption. As such, we are placing the server’s feet
at the origin, the point labelled  in Figure 1. The point of impact will be

.
A

(0, 0, H)
Some remarks regarding these choices are in order. Considering the

high speed with which the served ball is travelling, one might consider
removing gravity from the model and taking our trajectories to be straight
lines. Doing so would simplify matters considerably. With linear
trajectories, one could compute the distance from the server's feet to the
point of landfall for the short serve directly from similar triangles.
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On the other hand, we might want to consider both gravity and friction.
This would complicate matters considerably. First, we would need to use the
real dimensions of the ball, instead of taking it to be a point. (Regulations
require its diameter to be between 2.57 and 2.70 inches.) Next, we would
have to consider the drag coefficient of the fuzzy exterior in the atmosphere
whose viscosity is affected by temperature, humidity and altitude. Lastly, a
truly realistic model would necessitate considering the direction and velocity
of the wind.

All things considered, we have chosen the middle ground which
includes gravity but suppresses friction. Such trade-offs between
verisimilitude and simplicity are the hallmarks of mathematical modelling. 

As we stated at the outset, our goal is to find the direction in which the
distance between the points of landfall for the short and long serves is
maximal. This distance is depicted by the dotted line in Figure 2, below. It
connects the two points of landfall rendered as spheres. The short serve is
rendered by a solid line and the long serve is depicted by a dashed line. The
server with outstretched arm is shown as a thick vertical line, as it was in
Figure 1.

FIGURE 2

Let us now determine the point of landfall for the short serve in a given
direction. Let us suppose that our server rotates her body through angle  in
the anti-clockwise direction with . The
reason for this upper bound for  is evident from Figure 3.

t
0 < t < arctan (13.5

60 ) ≈ 12.68°
t
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FIGURE 3
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Here we are viewing the court from above. The point labelled  is the
origin in the -plane. This is where the server's feet are located. The service
box is outlined in bold. The distance from  to  is 60 feet and the distance
from  to  is 13.5 feet.

A
xy
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Having rotated through , the distance from the server's feet to the base
of the net is  in this direction. Now let us return to the -plane and
imagine that a ‘phantom net’ was  feet away. We seek the equation for
the parabolic arc in the -plane that passes through the points  and

. Ordinarily, one would need three points to determine the
coefficients of  but, as we have taken the point  to
be the vertex of the parabola, these two points are sufficient. We get

t°
39

cos t° xz
39

cos t°
xz (0, H)

( 39
cos t°, 3)

z = ax2 + bx + c (0, H)

z =
cos2 t° (3 − H)

392
x2 + H.

This is the equation for the trajectory of the ball in the -plane. However,
we want the trajectory in the plane, , that is orthogonal to the -plane
and makes an angle of  with the -plane. To this end, we rotate the
parabola computed above about the -axis, generating a paraboloid. The
intersection of this paraboloid and the plane, , will be the curve we seek.
We do this as follows:

xz
P (t) xy

t° xz
z

P (t)

We solve the quadratic equation for the trajectory for  in terms of  to
get

x z

x =
(z − H) 392

cos2 t° (3 − H)
.

This will serve as our radius function allowing us to rotate our parabola
about the -axis, generating a paraboloid with the equation:z

x2 + y2 =
(z − H) 392

cos2 t° (3 − H)
.

The plane, , will have equation: . This
is equivalent to  which simplifies to .

P (t) cos(t + 90)°x + sin (t + 90)°y = 0
(− sin t°)x + (cost°)y = 0 y = (tan t°) x

Finally, we intersect the plane, , with the paraboloid by solving for
 in terms of  and  in terms of  to yield a parametric representation of the

ball's trajectory in this plane. We get

P (t)
x z y z

x = 39
z − H
3 − H

;  y = 39 tan t°
z − H
3 − H

;  z = z.

The point of landfall of the short serve in the direction of angle  is
obtained by taking . This point will have coordinates: 

t°
z = 0

(39
−H

3 − H
,  39 tan t°

−H
3 − H

, 0) .
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The distance from this point to the server's feet (the origin) is:

39
cos t°

H
H − 3

.

(As an aside, we note that this value would have been  had we

chosen to use linear trajectories.)

39H
cos t° (H − 3)

The paraboloid, the plane, , and the curve of intersection, which is
the trajectory of the ball of the short serve in the chosen direction, are all
depicted in Figure 4, below. Here, we have distorted the scale in the interest
of clarity. 

P (t)

FIGURE 4

We now turn our attention to the point of landfall of the long serve.
Unlike the case of the short serve, these calculations are trivial. For  in the
range , the coordinates of the point of landfall will be

 and the distance of this point to the origin is . We note
that this is entirely independent of the ball's trajectory.

t°
0 < t° < arctan 13,5

60
(60, 60 tan t°, 0) 60

cos t°

Subtracting the distance from the origin to the point of landfall of the
short serve from the distance we have just computed yields

D =
1

cos t° (60 − 39
H

H − 3) .

This distance is clearly minimal when  and increases as  increases.
The maximal value that  can take on and still yield a legal serve is the
arctangent of (13.5/60), as we saw from Figure 3. Consequently, the server
should rotate her body through  (approximately ) to
achieve the most forgiving and, hence, optimal serve. In short, she must aim
for the far corner of the service box.

t = 0 t
t

t° = arctan 13,5
60 12.68°
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One final observation: We have intentionally kept , the height above
the court where the ball is hit by the racquet, as a parameter to gauge its
effect on the results. For a fixed value of ,  is an increasing function of .
Therefore, the taller the player, the more leeway she will have in the degree
of force she uses in her serve.

H

t D H
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