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We consider a causal structure with endogeneity, i.e., unobserved confoundedness,
where an instrumental variable is available. In this setting, we show that the mean
social welfare function can be identified and represented via the marginal treatment
effect as the operator kernel. This representation result can be applied to a variety
of statistical decision rules for treatment choice, including plug-in rules, Bayes
rules, and empirical welfare maximization rules. Focusing on the application of the
empirical welfare maximization framework, we provide convergence rates of the
worst-case average welfare loss (regret).

1. INTRODUCTION

One of the most important economists’ goals is to advise policymakers on
assigning heterogeneous individuals to treatment under consideration subject to
budgetary, legal, and ethical constraints, based on evidence from available data.
To achieve this goal, it is crucial to identify the social welfare function in
observational data settings. For many observational datasets used by empirical
researchers, treatments are likely to be endogenously selected by individuals,
rather than randomly assigned. Furthermore, the effects of these treatments are
often heterogeneous across individuals, even after controlling for their observable
attributes. In this light, we propose a novel method to identify the mean social
welfare function in the presence of unobserved heterogeneity in treatment effects
while accounting for endogenous treatment selection in observational data.

It is well known today that the marginal treatment effects (MTEs) can measure
heterogeneous treatment effects (Björklund and Moffitt, 1987), and the MTEs can
be identified with an instrumental variable under endogenous treatment selection
(Heckman and Vytlacil, 2001, 2005, 2007). It is, therefore, a natural idea to use
the MTEs as a building block for the identification of the social welfare function in
the presence of unobserved heterogeneity and endogeneity. In this paper, we show
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that the mean social welfare function can indeed be identified and represented
via the MTEs as the operator kernel. Since the identification and estimation of
the MTEs have been well established in the existing literature (e.g., Heckman
and Vytlacil, 2001, 2005, 2007; Carneiro and Lee, 2009; Carneiro, Heckman, and
Vytlacil, 2010; Brinch, Mogstad, and Wiswall, 2017; Lee and Salanié, 2018), our
result thus paves the way for these existing theories and methods for MTEs to be
directly applied to welfare analysis.

The average treatment effects (ATEs) conditional on observables are the key
components of the social welfare functions. Under endogeneity, however, the ATEs
generally fail to be identified due to a lack of sufficient variations in the treatment
choice probabilities in response to instrumental variations. On the other hand, one
of the main advantages of the MTEs is that the ATEs can be identified via their
functional-form restrictions on the MTEs (e.g., Moffitt, 2008; French and Song,
2014). Consequently, the use of the MTEs facilitates the identification of the social
welfare functions under endogeneity with commonly available instruments.

Once the mean social welfare function has been identified via the MTEs, we
can apply it to a variety of policymakers’ statistical decision problems of treatment
choice, including those based on plug-in rules, Bayes rules, and empirical welfare
maximization rules (see Hirano and Porter, 2020, Sect. 2.3). Focusing on the
empirical welfare maximization rules in particular, we can take advantage of the
technology developed by Kitagawa and Tetenov (2018) to analyze the properties
of the empirical welfare maximization method in the spirit of Manski (2004).
Specifically, under both heterogeneity and endogeneity, we can derive convergence
rates of the worst-case average welfare loss (regret) from the maximum empirical
welfare. As such, our result contributes to the literature by extending the scope
of applicability of the empirical welfare maximization framework of Kitagawa
and Tetenov (2018), which is originally based on the assumption of selection on
observables or unconfoundedness, to the framework that allows for unobserved
confoundedness or endogeneity.

There are a few papers that study policy learning under endogeneity (e.g., Kallus
and Zhou, 2018; Cui and Tchetgen Tchetgen, 2020; Athey and Wager, 2021;
Byambadalai, 2021; Liu, 2022). The most closely related in terms of the empirical
welfare maximization is the recent paper by Athey and Wager (2021). The result
that we propose in this paper neither nests nor is nested by that of Athey and Wager
(2021)—these two papers play rather complementary roles. On the one hand,
Athey and Wager (2021, eqn. (16)) assume homogeneous treatment effects,1 which
implies a constant marginal treatment effect, while our framework can allow for
unobserved heterogeneity in treatment effects. On the other hand, the applicability
of our proposed method hinges on the identification of the MTEs, while Athey and
Wager (2021) do not need to identify the MTEs for their objective. In other words,
our framework can accommodate unobserved heterogeneity but requires the MTEs

1Athey and Wager (2021) identify the mean welfare for compliers. It requires additional assumptions to identify the
mean welfare for the entire population under heterogeneity.
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to be identified. This tradeoff illustrates a complementary relationship between our
result and the result developed by Athey and Wager (2021). Also closely related
is a more recent paper by Liu (2022)—we discuss more details about the relation
later in Section 3.

More broadly, this paper aims to contribute to the literature on statistical
decisions in econometrics—see the recent survey by Hirano and Porter (2020) for
a comprehensive review of this subject. In particular, we focus on an application
of our representation theorem to bounding the worst-case average welfare loss in
the spirit of Manski (2004) with the recent technology developed by Kitagawa and
Tetenov (2018).2 Also closely related is the literature on the MTEs. The applicabil-
ity of our representation theorem relies on the identification and estimation of the
MTEs from the aforementioned papers. Finally, this paper also complements the
literature on policy relevant treatment effects (e.g., Heckman and Vytlacil, 2001,
2005, 2007; Carneiro, Lokshin, and Umapathi, 2017; Mogstad, Santos, and Tor-
govitsky, 2018; Sasaki and Ura, 2023) which develops methods of identification,
estimation, and inference for average welfare gains under counterfactual policies
based on the MTEs.

The rest of this paper is organized as follows. Section 2 introduces the model.
Section 3 presents the main result of representing the mean social welfare via the
MTEs. Section 4 introduces applications to three statistical decision rules. Section
5 demonstrates the use of the representation result in the empirical welfare analysis.
Section 6 presents an empirical application. Section 7 concludes. Appendixes A–C
contain mathematical proofs and additional empirical results.

2. MODEL

We first set up the model and notations. Consider the model

Y = DY1 + (1−D)Y0, (1)

D = 1{ν̃(Z)− Ũ ≥ 0}, (2)

where Y denotes an observed outcome variable, D denotes an observed binary
treatment variable, Z denotes a vector of observed exogenous variables, Y0 and
Y1 denote unobserved potential outcomes under no treatment and under treatment,
respectively, and Ũ denotes an unobserved factor of the treatment selection. The
first equation (1) models the outcome production through the potential outcome

2Although the literature on policy choices and welfare analysis is quickly growing, the use of instrumental variables is
still scarce when identifying the average welfare loss. Many of the existing papers (e.g., Kitagawa and Tetenov, 2018)
use an experimental or observational dataset in which the unconfoundedness assumption holds (i.e., the counterfactual
outcomes are mean independent of the treatment variable given the covariates). The welfare analysis based on other
identifying assumptions than the instrumental variables are found in Manski (2004, 2009), Dehejia (2005), Schlag
(2007), Bhattacharya (2009, 2013), Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain (2011), Bhattacharya
and Dupas (2012), Tetenov (2012), Armstrong and Shen (2015), Kock and Thyrsgaard (2017), Kitagawa and Tetenov
(2018, 2021), Rai (2018), Viviano (2019, 2022), Han (2023, 2020), Qiu et al. (2020), Sun (2020), Mbakop and Tabord-
Meehan (2021), and Sakaguchi (2021).
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framework, and the second equation (2) models the treatment selection via a
threshold-crossing model. The function ν̃ in this threshold-crossing treatment
assignment model (2) is nonparametric and is unknown to the econometrician.

This model allows for endogeneity (unobserved confoundedness) in the sense
that (Y0,Y1) and Ũ may be statistically dependent even conditional on Z. For the
purpose of identification, therefore, we require the vector Z to contain excluded
exogenous variables (i.e., excluded instruments) as well as included exogenous
variables, as formally stated in Assumption 1 below. The next assumption is
standard in the recent literature on MTEs (e.g., Brinch et al., 2017; Mogstad et al.,
2018).3

Assumption 1 (Model restrictions). (1) and (2) hold, and the random vector Z
can be written as (Z′

0,X
′)′, where:

(i) Ũ and Z0 are independent given X;
(ii) E[Yd | Z,Ũ] = E[Yd | X,Ũ] and E[Y2

d ] < ∞;
(iii) Ũ is continuously distributed with a convex support conditional on X.

Part (i) concerns the treatment assignment model (2) solely, and this is the only
independence assumption to be imposed on the model, implying that we can allow
for an arbitrary statistical dependence between the potential outcomes (Y0,Y1) and
Ũ, even conditional on Z. Part (ii) states the exclusion restriction of the random sub-
vector Z0 of Z, and bounded second moments of the potential outcomes (Y0,Y1).
Part (iii) rules out point masses and holes in the conditional distribution of Ũ
given X.

For ease of analysis, by following the literature on the MTEs, we apply nor-
malizing transformations, U ≡ FŨ|X(Ũ) and ν(Z) ≡ FŨ|X(ν̃(Z)), in the threshold
crossing model (2). The following lemma confirms convenient properties to be
used throughout the rest of the paper, as a result of these normalizing transforma-
tions under Assumption 1.

Lemma 1 (Normalization). Suppose that Assumption 1(i) and (iii) hold. Then
(i) D = 1{ν(Z)−U ≥ 0}, and (ii) U is distributed uniformly over [0,1] conditional
on Z.

A proof of this lemma is provided in Appendix A.1. Consequently, we can
rewrite the threshold-crossing treatment selection model (2) without loss of
generality as

D = 1{ν(Z)−U ≥ 0} with U|Z ∼ Uniform(0,1). (3)

We will hereafter consider the model (3) in place of the original model (2) by
Assumption 1.

3We do not require the support condition for Z at the moment in this section. See the discussions in Section 5.2.2.
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3. MAIN RESULT

In this section, we show that the social welfare function can be identified and
represented via the MTEs as the operator kernel. To this end, we first introduce
and define the two key ingredients of this result, namely the social welfare function
and the MTEs.

A policymaker assigns individuals with certain observed attributes Z to a
treatment D = 1. Thus, a treatment assignment rule is represented by a decision set
G ⊂ Z , where Z is a set of values that Z may take. Specifically, the decision set G
represents the policy in which individuals with Z ∈ G are assigned to treatment
D = 1, while those with Z 	∈ G are not. Let G denote the collection of all the
decision sets G under consideration subject to the policymakers’ constraints. It
is worthwhile mentioning that, in many cases, the policymakers cannot, or do not
want to, use all the variables in Z, particularly the excluded instrument Z0. We can
incorporate these policymakers’ constraints in our framework by making G to be
a proper subset of the powerset of Z .

With these notations, the social welfare function W : G → R is defined by

W(G) = E[1{Z ∈ G}Y1 +1{Z /∈ G}Y0].

It represents the value of the mean welfare for each possible treatment assignment
rule indexed by G. We can also define the MTE (Björklund and Moffitt, 1987) by

MTE(u,x) = E[Y1 −Y0 | U = u,X = x].

Recall that X is the included sub-vector of the random vector Z of exogenous
variables that affect the treatment assignment (Assumption 1) and that U is the
normalized unobserved factor of the treatment selection (Lemma 1 or Equation
(3)). With these definitions of the social welfare function and the MTE, we now
state the following theorem as the main result of this paper.

Theorem 1 (Representation). Under Assumption 1,

W(G) = E[Y0]+E

[
1{Z ∈ G}

∫ 1

0
MTE(u,X)du

]
for every G ∈ G. (4)

Proof. Since Y1 and Y0 are integrable under Assumption 1(ii), we have

W(G) = E[1{Z ∈ G}Y1 +1{Z /∈ G}Y0] = E[1{Z ∈ G}(Y1 −Y0)]+E[Y0].

Now, the statement of this theorem follows from

E[1{Z ∈ G}(Y1 −Y0)] = E[1{Z ∈ G}E[Y1 −Y0 | Z,U]]

= E[1{Z ∈ G}MTE(U,X)]

= E[1{Z ∈ G}E[MTE(U,X) | Z]]

= E

[
1{Z ∈ G}

∫ 1

0
MTE(u,X)du

]
,
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where the first equality follows from the law of iterated expectations, the second
equality follows from Assumption 1(ii) and the definition of MTE(u,x), the third
equality follows from another application of the law of iterated expectations, and
the fourth equality follows from Lemma 1 under Assumption 1(i) and (iii). �

The representation (4) of the mean social welfare via the MTEs is the key result
of this paper. Because there is an existing literature on identification and estimation
for the MTEs (e.g., Heckman and Vytlacil, 2001, 2005, 2007; Carneiro and Lee,
2009; Carneiro et al., 2010), our result (4) paves the way for empirical welfare
analysis under the potential endogeneity or unobserved confoundedness based on
the existing identification and estimation methods of the MTEs. We present a few
examples of such applications in Sections 4 and 5.

There are a few remarks in order. First, we want to emphasize the distinctive
roles played by X and Z that can be observed in (4). Note that only X affects the
social welfare function through the heterogeneity of the MTEs. On the other hand,
Z affects the social welfare function only through the proportion of treatment but
not through the heterogeneity of the MTEs.

Second, we remark on relations to and differences from Kitagawa and Tetenov
(2018), who use the representation

W(G) = E[Y0]+E [1{Z ∈ G}τ(X)] with τ(x) ≡ E[Y1 −Y0|X = x].

Our representation (4) is closely related to this representation. Under the uncon-
foundedness assumption, Kitagawa and Tetenov (2018) use the identification of
τ(x) by E[Y|D = 1,X = x] − E[Y|D = 0,X = x]. On the other hand, under the
unobserved confoundedness in our setup, the corresponding operator kernel τ(x)
is not identified by E[Y|D = 1,X = x]−E[Y|D = 0,X = x] in general. Instead, we
propose to take advantage of the identification and estimation of MTE(u,x) from
the literature on the MTEs.

Third, our definition of W measures the welfare that will be achieved when
almost all the individuals with Z ∈ G are assigned to the treatment. This welfare
measure presumes full compliance under the treatment assignment which will
be rationalized by strong legal power or a large amount of resources held by
policymakers. Relaxing this requirement, a more recent paper by Liu (2022)
studies the social welfare that will be realized by “encouragement” as opposed
to assignment.

Finally, we close this section with a discussion on a generalization of the above
identification result. While we focus on the case of binary treatments, our argument
straightforwardly extends to the cases of multivalued treatments. Suppose that
there are d + 1 treatment options indexed by d ∈ {0,1, . . . ,d}. Let Yd denote the
potential outcome under treatment d. With d = 0 taken as the default option, one
can define the social welfare function of assigning individuals with Z ∈ Gd to
treatment d for each d ∈ {1, . . . ,d} by

W(G1, . . . ,Gd) = E

⎡⎣ d∑
d=1

1{Z ∈ Gd}Yd +1

⎧⎨⎩Z /∈
d⋃

d=1

Gd

⎫⎬⎭Y0

⎤⎦ .
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Using the same argument as in the proof of Theorem 1, we can rewrite it into

W(G1, . . . ,Gd) =
d∑

d=1

E[1{Z ∈ Gd}(Yd −Y0)]+E[Y0].

Using the same argument as in the proof of Theorem 1 again, each summand in
the above expression can be written in turn as

E[1{Z ∈ Gd}(Yd −Y0)] = E

[
1{Z ∈ Gd}

∫
[0,1]d

MTE(0,d)(u,X)du

]
,

where MTE(0,d)(u,X) = E[Yd − Y0|U = u,X] denotes the MTE identified by Lee
and Salanié (2018).

4. APPLICATIONS TO STATISTICAL DECISION RULES

Once we obtain the representation (4) of the mean social welfare via MTE(u,x),
we may apply it to a variety of policymakers’ statistical decision problems for
treatment choice. In this section, following Hirano and Porter (2020, Sect. 2.3),
we introduce applications to the three popular statistical decision rules: plug-in
rules, Bayes rules, and empirical welfare maximization rules. In Section 5, we
discuss the empirical welfare maximization rules in further detail based on recent
technologies.

4.1. Plug-in Rules

Suppose that the distribution of Z is parametrized by δ and we have an estimator
(δ̂,M̂TE) for (δ,MTE). In this case, we can estimate the maximizer for the
population social welfare by maximizing∫

1{z ∈ G}
∫ 1

0
M̂TE(u,x)dudμδ̂(z)

over G ∈ G, where μδ(·) is the probability measure of Z indexed by δ.4 Here, we
may ignore the term E[Y0] in (4) since it does not affect the maximization problem
over G ∈ G. Note that (δ̂,M̂TE) is an estimator, and so a maximizer of the above
objective function is a statistical decision rule, i.e., it is a function of the observed
data.

4.2. Bayes Rules

Suppose that the distribution of Z is parametrized by δ and MTE is parametrized
by η, and that we have a prior probability measure of (δ,η). We can construct

4When G is the power set of Z , the plug-in rule is a set G such that {x :
∫ 1

0
̂MTE(u,x)du > 0} ⊂ G and {x :∫ 1

0
̂MTE(u,x)du < 0} ∩ G = ∅. In other words, the plug-in rule is basically the set {x :

∫ 1
0

̂MTE(u,x)du ≥ 0} as in
Kitagawa and Tetenov (2018, eqn. (1.13)). When G is a proper subset of the power set of Z , however, the plug-in

rule is not equal to the set {x :
∫ 1

0
̂MTE(u,x)du ≥ 0} in general.
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the posterior distribution, denoted by πposterior, of (δ,η) by Bayesian updating.
Given the posterior probability measure of (δ,η) and our representation (4), we
can construct the Bayes welfare∫ (∫

1{z ∈ G}
∫ 1

0
MTEη(u,x)dudμδ(z)

)
dπposterior(δ,η).

The Bayes rule is the maximizer of the Bayes welfare over G ∈ G.

4.3. Empirical Welfare Maximization Rules

The empirical welfare maximization rule uses the empirical distribution of Z and
an estimator M̂TE for MTE. Namely, with a random sample {Z1, . . . ,Zn} of size n,
we can define the empirical welfare by

En

[
1{Z ∈ G}

∫ 1

0
M̂TE(u,X)du

]
,

where En denotes the sample average operator, i.e., Enf (Y,D,Z) = n−1∑n
i=1 f (Yi,Di,Zi) for any measurable function f. The empirical welfare maximiza-

tion rule selects the maximizer of this empirical welfare over G ∈ G. Section 5
presents more detailed analyses of the asymptotic properties of the maximum of
this empirical welfare relative to the population mean welfare under the oracle
action.

Remark 1. In the plug-in rule and the empirical welfare maximization rule,
one may use an estimator M̂TE for MTE based on observations from a different
population from the policy target population, as long as this estimator needs to
satisfy external validity. In other words, we can use observations from a different
population to obtain M̂TE provided that the two populations share the same MTEs.

Remark 2. The three rules are not mutually exclusive. The empirical welfare
maximization rule can be a special case of the plug-in rule where an empirical
distribution of Z is used as μδ̂ . The plug-in rule is a Bayes rule where the posterior

distribution πposterior(δ,η) is degenerate at (δ̂,η̂) with M̂TE = MTEη̂. When the
posterior distribution πposterior(δ,η) satisfies the independence between δ and η,
the Bayes rule can be interpreted as a plug-in rule where the posterior means for
(MTEη,μδ) are used as an estimator for (δ,MTE).

5. APPLICATIONS TO EMPIRICAL WELFARE MAXIMIZATION

We demonstrate applications of the representation result (4) to empirical welfare
maximization in this section. For the purpose of exposition of the core idea, we first
focus on the case where the mapping (u,x) 
→ MTE(u,x) is known by a researcher
in Section 5.1. We then present the case where the mapping (u,x) 
→ MTE(u,x) is
unknown by a researcher and thus needs to be estimated in Section 5.2.
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5.1. Empirical Welfare Maximization with Known Marginal Treatment
Effects

In this section, we assume that we know the mapping (u,x) 
→ MTE(u,x). The
empirical welfare maximizer in this setting is given by

ĜEWM ∈ argmax
G∈G

En

[
1{Z ∈ G}

∫ 1

0
MTE(u,X)du

]
.

The population mean social welfare under this ĜEWM is W(ĜEWM). We present
a uniform asymptotic analysis of W(ĜEWM) relative to supG∈G W(G), i.e., the
population mean social welfare under the oracle action. To this end, consider the
following assumption.

Assumption 2. (i) |∫ 1
0 MTE(u,X)du| ≤ M̄ < ∞ a.s. for the class P(M̄) of

distributions of (Y0,Y1,D,Z). (ii) G has a finite VC-dimension v < ∞ and is
countable.

The above assumption is a modification of Assumption 2.1(BO)–(VC) in Kita-
gawa and Tetenov (2018) tailored to our framework with the MTEs.5 Assumption
2(i) requires a bounded integral of the marginal treatment effect function. As a
sufficient condition, it holds when the outcome variable is bounded by some con-
stant which is naturally satisfied in some applications. Assumption 2(ii) restricts
the complexity of the class of treatment functions Z 
→ 1{Z ∈ G}. As a sufficient
condition, when X has a finite support, this assumption will automatically hold
where v is the cardinality of the power set for the support of X. Kitagawa and
Tetenov (2018, p. 598) collects a few examples of G with finite VC dimensions.

The following corollary to Theorem 1 provides a convergence rate of the worst-
case average welfare loss (regret) by the empirical welfare maximization.

Corollary 1. Under Assumptions 1 and 2, one has

sup
P∈P(M̄)

EPn

[
sup
G∈G

W(G)−W(ĜEWM)

]
≤ 2C1M̄

√
v

n
,

where C1 is a universal constant.

A proof is provided in Appendix A.2. Corollary 1 shows that the worst-case
average welfare loss (regret) by the empirical welfare maximization converges to
zero at rates no slower than n−1/2 uniformly over data generating processes. This
corollary extends and is a counterpart of Theorem 2.1 of Kitagawa and Tetenov
(2018).

5For the countability assumption, see (cf. Kitagawa and Tetenov, 2018, fn 4).
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5.2. Empirical Welfare Maximization with Unknown Marginal
Treatment Effects

In this section, we consider the case where the mapping (u,x) 
→ MTE(u,x) is
unknown by a researcher and thus needs to be estimated from empirical data. The
empirical welfare maximizer in this setting is given by

Ĝhybrid ∈ argmax
G∈G

En

[
1{Z ∈ G}

∫ 1

0
M̂TE(u,X)du

]
,

where M̂TE is an estimator for MTE. The existing literature on MTEs provides a
list of alternative estimators M̂TE for MTE. We therefore first provide a general
sufficient condition in terms of M̂TE that accommodates a wide range of possible
estimators in Section 5.2.1. This will be followed up by a specific estimator M̂TE
with lower-level primitive conditions tailored to it in Section 5.2.2.

5.2.1. A Sufficient Condition. We consider the following general high-level
assumption about an estimator M̂TE for MTE.

Assumption 3. For a class of data generating processes Pm, there exists a
sequence ψn → ∞ such that

limsup
n→∞

sup
P∈Pm

ψnEPn

[
En

[∣∣∣∣∫ 1

0
(M̂TE(u,X)−MTE(u,X))du

∣∣∣∣]]< ∞.

We can interpret the above condition as the ψ−1
n -consistency of the estimator

M̂TE, where ψ−1
n can be slower than the parametric convergence rate of n−1/2. This

condition leads to the rate, ψ−1
n ∨n−1/2, of convergence for the worst-case average

welfare loss (regret), as formally stated as a corollary to Theorem 1 below.

Corollary 2. Under Assumptions 1–3,

sup
P∈Pm∩P(M̄)

EPn

[
sup
G∈G

W(G)−W(Ĝhybrid)

]
= O(ψ−1

n ∨n−1/2).

A proof of this corollary is provided in Appendix A.3. It serves as a counterpart
of Theorem 2.5 of Kitagawa and Tetenov (2018). Different estimators M̂TE for
MTE in general entail different convergence rates. We next present a concrete
estimator with lower-level sufficient conditions for the high-level condition in
Assumption 3.

5.2.2. Parametric Estimation for the Marginal Treatment Effects. By Heck-
man and Vytlacil (1999, 2001, 2005), the MTEs can be identified from data via

MTE(u,x) = ∂E[Y | ν(Z) = u,X = x]

∂u
.
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As mentioned in the introductory section, one of the main advantages of the
MTEs is that the ATEs and thus the social welfare functions can be identified via
functional-form restrictions on the MTEs even if instruments induce insufficient
variations in the treatment choice probabilities. In this light, we consider a
parametric model for E[Y | ν(Z) = u,X = x]:

E[Y | ν(Z) = u,X = x] = ξ(x)′β0 + ξ(x)′(β1 −β0)u+
K∑

k=1

αkφk(u), (5)

where ξ(x) is a vector-valued function of x (e.g., ξ(x) = (1,x,x2,x3)′ for a cubic
specification in scalar x), K is a fixed integer, and φ1, . . . ,φK are functions that a
researcher chooses. Let ν̂(Z) denote some estimator of the propensity score ν(Z),
and define

X = ((1−ν(Z))ξ(X)′,ν(Z)ξ(X)′,φ1(ν(Z)), . . . ,φK(ν(Z)))′,

X̂ = ((1− ν̂(Z))ξ(X)′,ν̂(Z)ξ(X)′,φ1(ν̂(Z)), . . . ,φK(ν̂(Z)))′,
θ = (β ′

0,β
′
1,α1, . . . ,αK).

Let θ̂ = (β̂ ′
0,β̂

′
1,α̂1, . . . ,α̂K)′ be the OLS estimator for θ by regressing Y on X̂ , that

is,

θ̂ = En

[
X̂ X̂ ′

]−1
En

[
X̂Y

]
.

Then, the MTEs can be simply estimated by the following linear functional of θ̂ :

M̂TE(u,x) = ξ(x)′(β̂1 − β̂0)+
K∑

k=1

α̂k
d

du
φk(u).

Therefore, the operator kernel in our representation (4) can be estimated by the
simple linear expression∫ 1

0
M̂TE(u,x)du = ξ(x)′(β̂1 − β̂0)+

K∑
k=1

α̂k(φk(1)−φk(0)).

For this concrete estimator, we provide a set of lower-level conditions in the
proposition below that guarantee the aforementioned high-level condition in
Assumption 3 to be satisfied.

Proposition 1. Let C and c be positive constants, and let ψn be a sequence with
ψn ≤ n1/2. Suppose that φk is differentiable with supu∈[0,1]

∣∣ d
duφk(u)

∣∣≤ C, for every
k = 1, . . . ,K, and that the parameter space for θ is compact so that for sufficiently
large n,

‖θ̂‖+‖θ‖ ≤ C almost surely. (6)
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Furthermore, suppose that Pm is a class of data generating processes such that

limsup
n→∞

sup
P∈Pm

ψnEPn

[
max

i=1,...,n
|ν̂(Zi)−ν(Zi)|2

]1/2

< ∞, (7)

max{E [‖ξ(X)‖4
]
,E
[|Y|4]} < C, (8)

λmin
(
E
[
XX ′])≥ c. (9)

Then, Assumption 3 is satisfied.

A proof is provided in Appendix A.4. The condition in (7) requires a conver-
gence rate for an estimator ν̂(z) of the propensity score ν(z) uniformly over the
data generating processes. This condition can be checked with specific propensity
score estimators. For example, we can use the local polynomial estimator ν̂(z)
for ν(z), for which Kitagawa and Tetenov (2018, Appendix H) derive a uniform
convergence rate. Specifically, the convergence in (7) follows directly from their
Lemma E.4(ii). For another example, one could consider a linear propensity score
model ν̂(z) = p(z)′γ̂ and its least squares estimator ν̂(z) = p(z)′γ̂ . In this case,
(7) can be satisfied with ψn = √

n, so that the convergence rate for the worst-case
average welfare loss (regret) in (2) holds with the parametric root n rate.

The condition in (9) is the standard identification condition to rule out the
multicollinearity among the elements in X . Nonparametric global identification
of the MTEs over the entire domain requires a continuous instrument Z with the
full support of the distribution of ν(Z), i.e., identification at infinity. With the
parametric specification (5), on the other hand, the MTEs are globally identified
via the parametric extrapolation along with the identification condition (9) to rule
out the collinearity. In light of the rare availability of continuous instruments with
full support, this approach is suggested by Cornelissen et al. (2016, Sect. 4.3) in
their survey article for labor economists.

6. EMPIRICAL ILLUSTRATION

We present an empirical application of our proposed method to data from the
National Job Training Partnership Act Study. In this experimental study, applicants
were randomly assigned to treatment and control groups, where those individuals
assigned to the treatment group were eligible to receive job training programs
for 18 months. Through this experiment along with information about observed
attributes of the individuals, researchers can evaluate the benefits and costs of this
job training program in terms of labor market outcomes. We refer readers to Bloom
et al. (1997) for details of this dataset, as well as Heckman, Ichimura, and Todd
(1997) and Abadie, Angrist, and Imbens (2002) for program evaluation studies
using this dataset.

It is generally infeasible to identify and estimate the ATEs when a binary
instrument induces only partial variations in the treatment choice probabilities.
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If one employs the MTE with parametric functional-form restrictions, however, we
can identify and estimate the ATEs and thus the social welfare as well. We motivate
our framework with the practical advantage of the MTEs in the Introduction and in
Section 5.2.2 where we focus on a parametric model of the MTEs. The current real
data example with a binary instrument of eligibility illustrates this case in point.

Kitagawa and Tetenov (2018) and Byambadalai (2021) conduct welfare analy-
ses using the same data set. Kitagawa and Tetenov (2018) consider the empirical
welfare maximization with the 30-month earnings after the random assignment as
the outcome, the random assignment as the treatment, and years of education and
pre-program annual earnings as two controls. Since some individuals assigned to
the treatment group did not participate in the training program, the welfare measure
of Kitagawa and Tetenov (2018) is defined and interpreted from the intention-
to-treat perspective. Using an instrumental variable, Byambadalai (2021) studies
welfare gains and losses based on the actual exposure to the training program as
the treatment, where the random assignment in turn plays the role of an instrument.
Following up with these papers, we consider the empirical welfare maximization
(as in Kitagawa and Tetenov, 2018) but with the treatment defined by the actual
exposure to the training program for which we use the random assignment as an
instrument (as in Byambadalai, 2021).

Following these two benchmark studies, we focus on the subsample of adults
for whom information about the 30-month earnings after the random assignment
(Y), the actual exposure to the training program (D), the random assignment
to treatment and control groups (Z0), years of education (X1), and pre-program
annual earnings (X2) are available. We thus obtain a sample of 9,223, exactly as in
Kitagawa and Tetenov (2018) and Byambadalai (2021). Our summary statistics
including the instrument also coincide with those presented in Byambadalai
(2021).

We estimate the propensity score by

ν̂(Z) =
{

0, if Z0 = 0,

Ê[D|X,Z0 = 1], if Z0 = 1,

where Ê[D|X,Z0 = 1] is the least squares predictor of the projection of D on the
pre-program annual earnings and L powers of the years of education (cf., Kitagawa
and Tetenov, 2018). We will compute the empirical welfare maximizing policies
and welfare gains under various values of L, and will demonstrate that the results
are insensitive to the choice of L. Note that we set ν̂(Z) = 0 when Z0 = 0, because
those individuals assigned to the control group have no eligibility to participate in
the training program according to the rule of the experiment.

We estimate the marginal treatment effect using the procedure introduced in
Section 5.2.2. Specifically, we consider

E[Y | ν(Z) = u,X = x] = ξ(x)′β0 + ξ(x)′(β1 −β0)u+
K∑

k=1

αkφk(u),
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Figure 1. Empirical welfare maximization rule with no treatment cost. The area of black circles
represents the density of the data at the location of the shape. We use K = 10 for the degree of
nonlinearity in estimating the marginal treatment effects, and L = 10 for the degree of the years of
education in estimating the propensity score.

where ξ(X) = (1,X1,X2
1,X

3
1,X2)

′, {φk}K
k=1 consists of a finite subset of the Fourier

basis, i.e., φ1(u) = sin(2πu), φ2(u) = cos(2πu), φ3(u) = sin(πu), φ4(u) =
cos(πu), φ5(u) = sin(2πu/3), φ6(u) = cos(2πu/3), and so on. We will compute
the empirical welfare maximizing policies and welfare gains under various values
of K, and will demonstrate that the results are insensitive to the choice of K as well
as that of L.

The gray shade in Figure 1 represents the empirical welfare maximization rule
Ĝhybrid over the power set G of {7,...,18}×{0,...,25,000} based on the full sample.6

The area of a black circle represents the density of the data at the location of the
shape. We use K = 10 and L = 10 to generate this particular graph, but the results
are insensitive to the choice of K and L—see Appendix C for sensitivity analyses.
Since the training program costs $774 for each participant, we also repeat the same
computational procedure with the outcome variable Y defined as the 30-month
earnings after the random assignment subtracted by this cost, $774. The gray shade

6In this problem, we do not need to search for all the 2275,000 subsets. Note that, without a constraint, a maximizing
set can be characterized by the set of all the positive points. The gray shade represents this set.
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Figure 2. Empirical welfare maximization rule with the treatment cost of $774 per assignee. The
area of black circles represents the density of the data at the location of the shape. We use K = 10 for
the degree of nonlinearity in estimating the marginal treatment effects, and L = 10 for the degree of
the years of education in estimating the propensity score.

in Figure 2 illustrates the empirical welfare maximization rule accounting for these
program costs.

In each of Figures 1 and 2, observations in the top-left part of the figure are
selected by the empirical welfare maximizing treatment assignment rule. These
results are analogous to those of Kitagawa and Tetenov (2018), and thus reinforce
their conclusions even if we consider the actual exposure to the training program as
the outcome based on which to measure the welfare. These results are intuitive,
as adults in this part of the graph tend to have higher levels of unobserved abilities
as reflected by the pre-program annual earnings despite not having received higher
levels of education.

Table 1 summarizes the estimated welfare gains from empirical welfare maxi-
mization treatment assignment rules.7 As a benchmark, we also display the results
under the simplistic policy of treating everybody. Under this benchmark policy,
the estimated welfare gains per population member are $1,857–$1,875 without
accounting for the training costs, and $1,121–$1,239 after accounting for the

7Using the full sample to estimate both the policy and the welfare gains will incur over-fitting biases. To avoid such
biases, we use the twofold sample splitting with a fixed seed.
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Table 1. Estimated welfare gains from empirical welfare maximization (EWM)
with assignment policies based on years of education and pre-program annual
earnings. K denotes the degree of nonlinearity in estimating the marginal treatment
effects, and L denotes the degree of the years of education in estimating the
propensity score.

Outcome variable: 30-month post-program earnings 30-month post-program earnings

No treatment cost $774 cost for each assigned treatment

Share of Estimated welfare Share of Estimated welfare

Treatment population gain per population gain per

rule: K L to be treated population member to be treated population member

Treat everyone 5 5 1.00 $1,861 1.00 $1,125

Treat everyone 5 10 1.00 $1,875 1.00 $1,139

Treat everyone 10 5 1.00 $1,857 1.00 $1,121

Treat everyone 10 10 1.00 $1,871 1.00 $1,135

EWM 5 5 0.91 $1,996 0.85 $1,339

EWM 5 10 0.91 $1,996 0.85 $1,339

EWM 10 5 0.91 $1,992 0.85 $1,336

EWM 10 10 0.91 $1,992 0.85 $1,336

training costs. On the other hand, the empirical welfare maximizing treatment
assignment rule would engender the estimated welfare gains per population of
$1,992–$1,996 without accounting for the training costs, and $1,336–$1,339 after
accounting for the training costs.

A few remarks are in order regarding these estimation results. First, these
welfare gains are larger than those reported by Kitagawa and Tetenov (2018).
It is probably because we analyze welfare gains as a consequence of assigning
individuals to actual training, whereas Kitagawa and Tetenov (2018) analyze
welfare gains as a consequence of granting eligibility to participate in the training
program. Second, the results are insensitive to the choice of K and L in terms
of both the shares of population to be treated and the estimated welfare gains.
This feature demonstrates the robustness of the results against choices of specific
estimation procedures in this particular application. Third, we use the power set
for G of feasible decision rules G for this illustration. In general, however, we may
also incorporate policy-relevant constraints in G. One may also use regularizing
constraints, such as the set of linear eligibility score rules considered by Kitagawa
and Tetenov (2018).

7. CONCLUSION

An important research goal for empirical economists is to provide policymakers
with guidance on how heterogeneous individuals can be assigned to a treatment
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under consideration based on evidence from empirical data. To this goal, it is
essential to identify a social welfare function from observational data. For many
observational datasets used in empirical economic research, treatments are likely
to be endogenously selected by rational agents. Furthermore, the effects of these
treatments can be heterogeneous even after controlling for observed attributes. In
this light, given the abilities of the MTEs to measure heterogeneous treatment
effects, we propose the usage of the MTEs for identifying the mean social welfare
function in the presence of unobserved heterogeneity in treatment effects while
accounting for endogenous treatment selection in the empirical data.

Our main result, Theorem 1, establishes that the mean social welfare can be
represented via the MTEs as the operator kernel. We apply this main result to
a few of policymakers’ statistical decision problems, such as the plug-in rule,
the Bayes rule, and the empirical welfare maximization rule. Focusing on the
empirical welfare maximization in particular, we derive convergence rates of the
worst-case average welfare loss (regret) from the maximum empirical welfare
under alternative scenarios. The proposed representation in Theorem 1 has an
immediate benefit for empirical welfare analyses, because we can apply the
existing machinery developed for the MTEs to the variety of empirical welfare
analysis.

Our theoretical results in Section 5 focus on the empirical welfare maximization
rules. We do not have results for a general class of plug-in rules or a general class
of Bayes rules, which we left for future research.

APPENDICES

A. PROOFS

A.1. Proof of Lemma 1

Proof. The first statement of this lemma follows because Assumption 1(iii) implies that
FŨ|X=x is strictly increasing and therefore

D = 1{ν̃(Z)− Ũ ≥ 0} = 1{FŨ|X(ν̃(Z))−FŨ|X(Ũ) ≥ 0} = 1{ν(Z)−U ≥ 0}.
The second statement follows because Assumption 1(i) and (iii) implies

P(U ≤ u | Z) = P(FŨ|X(Ũ) ≤ u | Z) = P(Ũ ≤ F−1
Ũ|X(u) | Z) = P(Ũ ≤ F−1

Ũ|X(u) | X) = u. �

A.2. Proof of Corollary 1

Proof. Define the function f by

f (Z;G) = 1{Z ∈ G}
∫ 1

0
MTE(u,X)du.

Let F = {f ( · ;G) : G ∈ G}. Then, F is a class of uniformly bounded functions with ‖f‖∞ ≤
M̄ for all f ∈ F . From Assumption 2, it follows that F is of a VC subgraph class with VC
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dimension v < ∞. By Kitagawa and Tetenov (2018, Lem. A.4),

EPn

[
sup
f ∈F

|En[f ]−EP[f ]|
]

≤ C1M̄

√
v

n
,

where C1 is a universal constant defined in Kitagawa and Tetenov (2018, Lem. A.4).
Defining

Wn(G) = E[Y0]+En

[
1{Z ∈ G}

∫ 1

0
MTE(u,X)du

]
,

we have

sup
P∈P(M̄)

EPn

[
sup
G∈G

|Wn(G)−W(G)|
]

= sup
P∈P(M̄)

EPn

[
sup
f ∈F

|En[f ]−EP[f ]|
]

≤ C1M̄

√
v

n
. (A.1)

Following the derivations in Kitagawa and Tetenov (2018, eqn. (2.2)), we have, for any
G̃ ∈ G, that

W(G̃)−W(ĜEWM) = W(G̃)−Wn(ĜEWM)+Wn(ĜEWM)−W(ĜEWM)

≤ W(G̃)−Wn(G̃)+Wn(ĜEWM)−W(ĜEWM)

≤ 2 sup
G∈G

|Wn(G)−W(G)|, (A.2)

where the first inequality uses Wn(ĜEWM) ≥ Wn(G̃). Therefore,

sup
P∈P(M̄)

EPn

[
sup
G∈G

W(G)−W(ĜEWM)

]
≤ 2C1M̄

√
v

n

follows from (A.1) and (A.2). �

A.3. Proof of Corollary 2

Proof. Define

Ŵn(G) = E[Y0]+En

[
1{Z ∈ G}

∫ 1

0
M̂TE(u,X)du

]
.

Following the derivations in Kitagawa and Tetenov (2018, eqn. (A.29)), we obtain, for any
G̃ ∈ G, that

W(G̃)−W(Ĝhybrid) = Wn(G̃)− Ŵn(G̃)−Wn(Ĝhybrid)+ Ŵn(Ĝhybrid)

+W(G̃)−Wn(G̃)+Wn(Ĝhybrid)−W(Ĝhybrid)

+ Ŵn(G̃)− Ŵn(Ĝhybrid)

≤ Wn(G̃)− Ŵn(G̃)−Wn(Ĝhybrid)+ Ŵn(Ĝhybrid)

+W(G̃)−Wn(G̃)+Wn(Ĝhybrid)−W(Ĝhybrid)
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≤ En

[
(1{Z ∈ Ĝhybrid}−1{Z ∈ G̃})

∫ 1

0
(M̂TE(u,X)−MTE(u,X))du

]
+2 sup

G∈G
|Wn(G)−W(G)|, (A.3)

where the first inequality uses Ŵn(G̃) ≤ Ŵn(Ĝhybrid). By Assumption 3, we have

sup
P∈Pm∩P(M̄)

EPn

[
En

[
(1{Z ∈ Ĝhybrid}−1{Z ∈ G̃})

∫ 1

0
(M̂TE(u,X)−MTE(u,X))du

]]
= O(ψ−1

n ).
(A.4)

By (A.1) in the proof of Theorem 1, we have

sup
P∈Pm∩P(M̄)

EPn

[
sup
G∈G

|Wn(G)−W(G)|
]

= O(n−1/2). (A.5)

The claim of the theorem now follows from (A.3)–(A.5). �

A.4. Proof of Proposition 1

Proof. From on the structure of MTE(u,x), we have

EPn

[
En

[∣∣∣∣∣
∫ 1

0
(M̂TE(u,X)−MTE(u,X))du

∣∣∣∣∣
]]

= EPn

⎡⎣En

⎡⎣∣∣∣∣∣∣ξ(X)′(β̂1 −β1)− ξ(X)′(β̂0 −β0)+
K∑

k=1

(α̂k −αk)(φk(1)−φk(0))

∣∣∣∣∣∣
⎤⎦⎤⎦

≤ EPn

[
En [‖ξ(X)‖](‖β̂1 −β1‖+‖β̂0 −β0‖)

]
+C

K∑
k=1

EPn
[∣∣α̂k −αk

∣∣]
≤ EPn

[
(En −E) [‖ξ(X)‖](‖β̂1 −β1‖+‖β̂0 −β0‖)

]
+E [‖ξ(X)‖]EPn

[
(‖β̂1 −β1‖+‖β̂0 −β0‖)

]
+C

K∑
k=1

EPn
[∣∣α̂k −αk

∣∣],
where C is used to bound |φk(1)−φk(0)|. By (6) and (8), it suffices to show

limsup
n→∞

sup
P∈Pm

ψnEPn

[∥∥∥θ̂ − θ

∥∥∥]< ∞.

Since En

[
X̂ (Y − X̂ ′θ̂ )

]
= 0 and E

[
X (Y −X ′θ)

]= 0, we can write

E
[
XX ′](θ̂ − θ) = −(En −E)

[
XX ′] θ̂ + (En −E) [XY]−En

[
X̂ X̂ ′ −XX ′] θ̂ +En

[
(X̂ −X )Y

]
.
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Therefore,∥∥∥θ̂ − θ

∥∥∥≤ λmin(E
[
XX ′])−1 ∥∥(En −E)

[
XX ′]∥∥

2

∥∥∥θ̂∥∥∥
+λmin(E

[
XX ′])−1 ‖(En −E) [XY]‖

+λmin(E
[
XX ′])−1

∥∥∥En

[
X̂ X̂ ′ −XX ′]∥∥∥

2

∥∥∥θ̂∥∥∥
+λmin(E

[
XX ′])−1

∥∥∥En

[
(X̂ −X )Y

]∥∥∥ .

Therefore, the statement of this theorem follows from (6), (9), Lemma 2, and Lemma 3,
where the last two lemmas are stated and proved in Appendix B. �

B. AUXILIARY LEMMAS FOR THE PROOF OF PROPOSITION 1

Lemma 2. Under the assumptions of Proposition 1, one has

limsup
n→∞

sup
P∈Pm

n1/2EPn [(En −E) [‖ξ(X)‖]] <∞,

limsup
n→∞

sup
P∈Pm

n1/2EPn [‖(En −E) [XY]‖] <∞,

limsup
n→∞

sup
P∈Pm

n1/2EPn
[∥∥(En −E)

[
XX ′]∥∥

2

]
<∞,

limsup
n→∞

sup
P∈Pm

n1/2EPn

[∣∣∣(En −E)
[
‖ξ(X)‖2

]∣∣∣]<∞,

limsup
n→∞

sup
P∈Pm

n1/2EPn

[∣∣∣(En −E)
[
|Y|2

]∣∣∣]<∞.

Proof. The statements follow from evaluating the second moment for En − E for each
random variable. The second moments for these variables are bounded uniformly over P ∈
Pm by (8). �

Lemma 3. Under the assumptions of Proposition 1, one has

limsup
n→∞

sup
P∈Pm

ψnEPn

[∥∥∥En

[
X̂ X̂ ′ −XX ′]∥∥∥

2

]
<∞,

limsup
n→∞

sup
P∈Pm

ψnEPn

[∥∥∥En

[
(X̂ −X )Y

]∥∥∥]<∞.

Proof. By definition of X and X̂ , we have

‖X̂ X̂ ′ −XX ′‖2 ≤ C2(‖ξ(X)‖2 +1)|ν̂(Z)−ν(Z)|
for a positive constant C2 < ∞. Moreover, we have∥∥∥X̂ −X

∥∥∥≤ C3|ν̂(Z)−ν(Z)|(2‖ξ(X)‖+K −1)

for a positive constant C3 < ∞, and therefore
∥∥∥(X̂ −X )Y

∥∥∥≤ C3|ν̂(Z)−ν(Z)|(2‖ξ(X)‖+
K −1)|Y|. By (7) and Lemma 2, the statement of this lemma holds. �
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C. ADDITIONAL EMPIRICAL RESULTS

In this appendix, we present additional empirical results that are not presented in Section 6
in the main text. The empirical welfare maximization rules depicted by Figures 1 and 2 in the
main text are based on the choice of K = 10 and L = 10 in the estimation procedure. In this
appendix, we demonstrate that the results are insensitive to the choice of these parameters,
K and L.

Figure C1 illustrates the empirical welfare maximization rules with no treatment cost
based on K ∈ {5,10} and L ∈ {5,10}. Figure C2 illustrates the empirical welfare maximiza-
tion rules with the treatment cost of $774 per assignee based on K ∈ {5,10} and L ∈ {5,10}.
Observe that the shaded areas are fairly insensitive to the choice of K and L in each of these
two figures. The estimated welfare gains reported for various choices of K and L in Table 1

Figure C1. Empirical welfare maximization rule with no treatment cost. The area of black circles
represents the density of the data at the location of the shape. We use K ∈ {5,10} for the degree of
nonlinearity in estimating the marginal treatment effects and L ∈ {5,10} for the degree of the years of
education in estimating the propensity score.
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Figure C2. Empirical welfare maximization rule with the treatment cost of $774 per assignee. The
area of black circles represents the density of the data at the location of the shape. We use K ∈ {5,10}
for the degree of nonlinearity in estimating the marginal treatment effects and L ∈ {5,10} for the degree
of the years of education in estimating the propensity score.

in the main text are computed based on the empirical welfare maximization rules presented
in Figures C1 and C2.
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