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A CHARACTERIZATION OF THE STRONGLY �-REPRESENTABLE
MANY-ONE DEGREES

JOSIAH JACOBSEN-GROCOTT

Abstract. �-representations are a way of coding sets in computable linear orders that were first
introduced by Fellner in his thesis. Limitwise monotonic functions have been used to characterize the
sets with �-representations, and give characterizations for several variations of �-representations. The one
exception is the class of sets with strong �-representations, the only class where the order type of the
representation is unique.

We introduce the notion of a connected approximation of a set, a variation on Σ0
2 approximations.

We use connected approximations to give a characterization of the many-one degrees of sets with
strong �-representations as well new characterizations of the variations of �-representations with known
characterizations.

§1. Introduction. Coding one type of mathematical object into another is a
common theme throughout mathematics. For instance, every Boolean algebra can
be coded as a ring, and Fourier series are a way of coding periodic functions as
vectors in �2. One of the simplest objects to code are sets of natural numbers. We
can code subsets of � as real numbers using binary expansions. Subsets of � can be
coded as graphs using daisy graph: we create an isolated vertex with n many loops
for each n ∈ A. Using a similar idea we can code a set A ⊆ � as a partial order:
take a chain of length n for each n ∈ A. Encoding sets into fields is not as easy.
One idea is to choose which polynomials are irreducible. This is complicated though
as when adding a root to one polynomial other previously irreducible polynomials
can become reducible, so a careful choice of polynomials that represent the natural
numbers is needed. For linear orders, Fellner [4] came up with the following natural
way of encoding sets.

Definition 1.1. For a set A a linear order L is said to be an �-representation of
A if there is a surjective function F : � → A such that L has order type∑

n∈�
� + F (n),

where � is the order type of Q. We say L is a strong �-representation if the function F
is strictly increasing and an increasing �-representation if F is non-decreasing. If a set
A has a computable (strong, increasing) �-representation then we say A is (strongly,
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1632 JOSIAH JACOBSEN-GROCOTT

increasingly) �-representable. A degree is (strongly, increasingly) �-representable if
it contains a set that is (strongly, increasingly) �-representable.

Note that an �-representation of A cannot tell us if 0 or 1 is in A so we will assume
that 0, 1 /∈ A when we are talking about representations of A.

Computability theory gives us a way of analyzing the effectiveness of such
encodings and how easy it is to go from an encoding of a structure or set back
to the original. For example, in the case of daisy graphs we can characterize the sets
with computable daisy graph as the c.e. sets.

In this context, a natural question to ask is what sets, or degrees, have computable
(strong, increasing) �-representations. In his thesis, Fellner [4] introduced the
notion of a strong �-representation (predating the introduction of general �-
representations) and proved that every set with a computable strong �-representation
is Δ0

3 and that every Σ0
2 and every Π0

2 set is strongly �-representable.
For the case of general �-representations we first look at the following definitions.

Definition 1.2. For any linear order L the successor relation SL on L is defined
by SL(x, y) ⇐⇒ |[x, y]| = 2. The block relation BL is given by BL(x, y) ⇐⇒
[x, y] and [y, x] are finite. A block of size n in L is a collection x0 <L ··· <L xn–1

such that BL(x0, y) →
∨
i<n y = xi .

For any linear order L, one can see that SL is Π0
1 in L and BL is Σ0

2 in L. Feiner
[3] proved the following:

Theorem 1.3. For a linear order L, the set {n : L has a block of size n} is Σ0
3 in L.

For an �-representation L of a set A, we have A = {n : L has a block of size n}.
This gives us the following.

Corollary 1.4. If a set A has a computable �-representation then A is Σ0
3.

Coles et al. [1] show the reverse of theorem 1.3 is true for general linear orders.

Theorem 1.5. For any Σ0
3 set A there is a computable linear order L, such that

A = {n : L has a block of size n}.

Fellner [4] showed that every strongly �-representable set is Δ0
3 and went on to

conjecture that every Δ0
3 set has a strong �-representation. However, Lerman [11]

later showed that this is not the case.

Theorem 1.6. (Lerman [11]) There is a Δ0
3 set with no computable �-representation.

Lerman also characterized the m-degrees with computable �-representations
showing that they are the Σ0

3 degrees:

Theorem 1.7. (Lerman [11]) If A is Σ0
3 then A⊕ � has a computable �-

representation.

This leaves open the questions of what are the (strongly) �-representable sets
and what are the strongly �-representable degrees. In the case of �-representations
Harris [6] came up with a characterization involving limitwise monotonic functions.
Limitwise monotonic functions were first introduced by Khoussainov et al. [10].
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THE STRONGLY �-REPRESENTABLE MANY-ONE DEGREES 1633

Definition 1.8. A function F : � → � is limitwise monotonic if there is a
computable function f : �2 → � such that F (n) = lims f(n, s) and for all n, s ,
f(n, s) ≤ f(n, s + 1).

By the limit lemma, if F is limitwise monotonic then F is Δ0
2, and hence if A =

range(F ) then A is Σ0
2.

Limitwise monotonic functions have been used to solve questions computable
model theory [7, 9, 10]. In particular Coles et al. [1] proved that for any computable
�-like linear order (a class that includes computable �-representations) that the
set {n : L has a block of size n} is the range of a 0′-limitwise monotonic function.
Harris [6] showed the reverse direction holds for computable �-representations.

Theorem 1.9. A set A is �-representable if and only if A is the range of a 0′-limitwise
monotonic function.

The construction of the �-representation L is performed uniformly, constructing
linear ordersLn ∼= � + F (n) and takingL =

∑
n Ln. From this it can be seen that if A

is the range of a strictly increasing 0′-limitwise monotonic function then A is strongly
�-representable. However, Harris [6] showed that this is not a characterization of
the strongly �-representable sets.

Harris also showed that the degrees with computable strong �-representations are
not trivial.

Theorem 1.10. (Harris [6]) There is a Δ0
3 degree that does not contain a set with a

computable strong �-representation.

Kach and Turetsky [8] modified the notion of limitwise monotonic to give the
following:

Definition 1.11. A function F : Q → � is support (strictly) increasing limitwise
monotonic function on Q if there is computable f : Q× � → � such that

• F (q) = lims f(q, s).
• For all q, s f(q, s) ≤ f(q, s + 1).
• The set S := {q ∈ Q : F (q) 
= 0} has order type �.
• F � S is (strictly) increasing.

One can relativize this to a degree d by allowing f to be d-computable. They define
SILMd(Q) to be the set of A such that A is the range of a d-support increasing
limitwise monotonic function on Q and SSILMd(Q) to be the set of A such that A
is the range of a d-support strictly increasing limitwise monotonic function on Q.

Kach and Turetsky were able to get the following result about increasing �-
representations.

Theorem 1.12. A set A has a computable increasing �-representation if and only if
A ∈ SILM0′

(Q).

Similarly to the case of �-representable degrees, Kach and Turetsky proved that
every Δ0

3 degree has a computable increasing �-representation (proved earlier in [5]).
Like in the case of Theorem 1.9, the proof of Theorem 1.12 gives us that if

A ∈ SSILM0′
(Q) then A is strongly �-representable. The converse, however, is not

true in general.
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Theorem 1.13. (Turetsky [2]) There is a set A /∈ SSILM0′
(Q) with a computable

strong �-representation.

This is close to a characterization of strongly �-representable sets. In Section 4 we
are able to prove that for dense enough sets this is a characterization.

Corollary 1.14. Suppose g : � → � is a 0′-computable increasing function. If
a set A has a strong �-representation and satisfies |A ∩ g(n)| ≥ n for all n then A ∈
SSILM0′

(Q).

Using this we are then able to characterize the sets with computable strong �-
representations up to many-one degree.

Corollary 1.15. The following coincide.

• The m-degrees of sets with computable strong �-representations.
• The m-degrees of sets in SSILM0′

(Q).
• The m-degrees of sets with Δ0

2 strong �-s-representations.

§2. �-s-Representations. The existing characterizations of sets with computable
�-representations and with computable increasing �-representations both involve
relativizing some construction to 0′ and make use of the fact that 0′ can compute
the successor relation on any computable linear order. For this reason we propose
the following definition.

Definition 2.1. A (strong) �-s-representation of a set A is a computable (strong)
�-representation L where the successor relation SL is also computable.

The hope is that we can find a characterization of strongly �-s-representable sets
and turn it into a characterization of the strongly �-representable sets. Towards this
idea we have the following theorem.

Theorem 2.2. If L is a 0′-computable �-representation of some set A and the block
relation BL ≤T 0′ then there is a computable linear order D such that D ∼= L and
BD ≤T 0′.

Proof. Using that L is Δ0
2 we can approximate L in stages. We keep track of the

blocks that ∅′s thinks are in Ls and build corresponding blocks in Ds . When we see
two blocks inLs change order or merge, we keep the representative of the block with
the smallest member (in the sense of <N) and remove the other one by densifying
(i.e., adding points so that the block becomes part of a copy of Q). Then we add a
new block in the correct place if needed.

More formally, let (Ls,<s , Bs)s be a sequence of linear orders with block relation
that has limit (L,<L,B) where each Ls ⊆ Ls+1 is a subset of �.

Define D0 = ∅. We will keep a follower function fs from the blocks of Ds to a
corresponding element in Ls that represents the block. At stage s, for any bi , bj ∈
dom(fs) if we havefs(bi) <N fs(bj) andfs(bi) <s fs(bj) butfs(bi) >s+1 fs(bj)
then in Ds+1 we will remove bj from dom(fs+1). Similarly if fs(bi) >s fs(bj) but
fs(bi) <s+1 f(bj) or ¬Bs(fs(bi), fs(bj)) but Bs+1(fs(bi), fs(bj)).

Next, for each block b ∈ dom(fs) that has not been removed we make sure it
has the correct size. Let y = minN{x : Bs(x,fs(b)) ∧ ¬Bs+1(x,fs(b))}. If y exists,
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remove points from the end of b so that it has size |{x <N y : Bs(x,fs(b))}|. Now
we add points to the end of the block so that the block of fs(b) in Ls+1 will have
the same size as b does in Ds+1. Then, in case small numbers have been added we
set fs+1(b) = minN{x : Bs+1(x,fs(b))}.

Then for each block c inLs+1 that does not have an element in range(fs) we create
a corresponding block b in Ds+1 of the same size as c and set fs+1(b) = minN(c).
Finally we densify; for all adjacent x, y which are not part of the same block in
dom(fs+1), we add a new point between x and y. We now have Ds+1.

Now the verification. It is clear that D is a computable linear order. We need to
make sure it has the right order type. At each stage we densify around the points
that are not part of a block, so between adjacent blocks we must have order type �.

Claim 2.2.1. For every block c ∈ L there is a unique block b ∈ D that has the same
length as c.

Proof. Let n = maxN(c) + 1. There is a stage t such that for all s ≥ t,Bs � n = B
and <s� n =<L� n. At this stage t there will be a b such that ft(b) = minN(c). By
our choice of t we have fs(b) = minN(c) and |b| ≥ |c| for all s ≥ t as there can be
no reason to destroy b and we will never see any number smaller than n leave c.

Given any s > t and m = minN{x ≥N n : ∃r > s[Br(fr(b), x)]} there is a stage
r > s such that Br(fr(b), x) ∧ ¬Br+1(fr+1(b), x). So at stage r + 1 we will have
|b| = |c| and as s is arbitrary, we have |b| ≤ |c| in D. �

Claim 2.2.2. For every block b ∈ D there is a block c ∈ L and t such that |b| = |c|
and for all s ≥ t,fs(b) = min(c). Furthermore, if bi <D bj then for the corresponding
blocks ci , cj ∈ L we have ci <L cj .

Proof. Consider a block b. Suppose fs(b) = n and ft(b) = m for s < t. Then
it must be that fs(b) ≥ ft(b). So lims fs(b) exists. If x = lims fs(b) and c is the
block of x in L then by the same argument as above we have that |b| = |c|.

If x = lims fs(bi) and y = lims fs(bj) and bi <D bj then x <L y as otherwise
we would have removed one of the blocks. �

So we can see that there is an order preserving bijection F from the blocks of D
to the blocks of L with |b| = |F (b)|. Hence the order type of D is the same as that
of L.

From the construction, if a point is removed from a block then it is never put
back in a block at a later stage. So 0′ can compute the set of points in D that are
not in blocks. As D is computable, 0′ can also compute the successor relation on D.
From both of these, 0′ can compute the block relation. �

Theorem 2.2 is not quite what we would like as it requires the block relation to
be 0′-computable. However, this is a property that occurs if the blocks are created
in isolation and never merged. This is precisely what happens in the constructions
given in the proofs of the characterizations of �-representable and increasingly �-
representable sets.

Theorem 2.3. A set A is in SSILM(Q) if and only if there is a strong �-s-
representation with computable block relation.
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Proof. For the left to right direction we observe that the usual construction
(unrelativizing the one given in [8]) has computable block relation as the blocks that
are created are never merged.

For the other direction, since we can compute if two blocks are actually the same
block we can make sure we only assign one follower to each block. �

By combining Theorems 2.3 and 2.2 we get a characterization of SSILM0′
(Q) in

terms of computable �-representations:

Corollary 2.4. A set A is in SSILM0′
(Q) if and only if there is a strong �-

representation of A with 0′-computable block relation.

Theorem 1.13 states that there are strongly �-representable sets which are not
in SSILM0′

(Q), so as a result any characterization of the sets with strong �-
representations must involve merging blocks as part of the construction.

§3. Connected approximations. The limit lemma says that we can approximate
any Δ0

2 set A with a computable sequence (An)n such that A(x) = limn An(x).
Limitwise monotonic functions are one way of building on this idea. From what
we have seen, the problem with trying to use these to characterize strongly �-
representable sets is that each limit of a sequence F (q) = lims f(q, s) is taken in
isolation, and there is no natural way of merging sequences. So we propose a different
way of approximating sets that captures the idea of merging sequences.

Definition 3.1. A connected approximation to a set A is a sequence of finite
functions (cn)n with associated sequences of finite sets (An,m)m that satisfy the
following:

1. range(cn) ⊆ dom(cn+1) for all n.
2. An,0 := dom(cn), An,m+1 := cn+m(An,m).
3. The limit An,� := limm An,m always exists.
4. A = ∪nAn,� .

We can assume each cn is coded by a canonical index for the finite set of its
graph {〈x, cn(x)〉 : x ∈ dom(cn)}, so we can say a connected approximation (cn)n
is computable if the corresponding sequence of indices is computable.

We call a connected approximation (cn)n monotonic if cn(x) ≥ x for each n and
x ∈ dom(cn), and order preserving if each cn preserves ≤. We use the acronym MOP
to denote monotonic and order preserving.

We give characterizations of all of the existing classes described so far using
connected approximations.

Theorem 3.2. For a set A we have the following characterizations.

1. A has a computable connected approximation if and only if A is Σ0
2.

2. A has a computable monotonic connected approximation if and only if A is the
range of a computable limitwise monotonic function.

3. A has a computable MOP connected approximation if and only ifA ∈ SILM(Q).
4. A has a computable MOP connected approximation where each cn is injective if

and only if A ∈ SSILM(Q).
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Proof of (1) and (2). We will handle the first two statements together. Given a Σ0
2

set A we can assume A = range(F ) for F (n) = lims f(n, s) where f is computable.
Then we can define a connected approximation of A = range(F ) as follows. Let
dom(cn) = {f(x, n) : x < n} and define cn(y) = f(x, n + 1) where x is least such
that f(x, n) = y. Clearly (cn)n is computable and range(cn) ⊆ dom(cn+1). For each
n,m we have thatAn,m = f(Bn,m, n +m) for someBn,m ⊆ n. We take theBn,m which
minimizes

∑
x∈Bn,m x. By construction

∑
x∈Bn,m x ≥

∑
x∈Bn,m+11

and so the limit

Bn,� := limm Bn,m exists. Hence An,� = F (Bn,�), so we have (cn)n is a connected
approximation of a subset of A. Consider an n ∈ �. Let t > n be a stage after which
f(m, s) = F (m) for all s ≥ t, m ≤ n. Then F [n] ⊆ At,0, so F [n] ⊆ At,� . So (cn)n is
a connected approximation of A. Notice that if f(n, s) is monotonic in s then (cn)n
is also monotonic.

Now consider a computable connected approximation (cn)n of a set A. We
define a computable function f : �2 → � as follows. f(n, 0) = 0, t0 = 0. Define
f(n, s + 1) as follows: f(n, s + 1) = cs(f(n, s)) if n < ts . Let m0, ... , mk–1 list
range(cs) \ range(cs ◦ cs–1) in order. Definef(ts + i, s + 1) = mi and ts+1 = ts + k.
For n ≥ ts+1 let f(n, s + 1) = 0. We have that An,m = {f(x, n +m) : x ≤ tn} and
so range(F � tn) = An,� and hence range(F ) = A. Notice that if (cn)n is monotonic
then F is limitwise monotonic. �

A similar idea works for characterizations (3) and (4), but when going from a
connected approximation we need to choose rationals so that the order is preserved.

Now we give a characterization of strongly �-s-representable sets using connected
approximations. In a construction of a strong �-s-representation, blocks can do two
things: they can grow and they can merge. Eventually they must stop doing either of
these things, but we cannot put a computable bound of how late these actions take
place. However, if two blocks are, in fact, different then we will see infinitely many
points go in between them. Thus, if blocks merge at a late stage then the size of the
resulting block should be very large. This is the main idea behind the formula in the
following characterization and the proof.

Theorem 3.3. A set A has a strong �-s-representation if and only if it has a
computable MOP connected approximation where each cn satisfies

�(n) = ∀x ∈ range(cn)

⎡
⎣ ∑
m∈c–1

n ({x})

(m + n) ≤ x + n

⎤
⎦ .

Proof. Suppose we have a strong �-s-representation L of A. We can assume that
L has domain� and let Ls = L � s . Let Bs be the blocks of Ls according to SL. For
blocks b, c ∈ Bs and t ≥ s we use |b|t to denote the size the block has in Lt , and we
use b <t c and b =t c to denote the order of the, possibly merged, blocks in Lt .

We start with c0 = ∅, t0 = 0. At stage s we assume we are given dom(cs), ts and
a block bs ∈ Bts . We assume that for any c, d ∈ Bts with c <ts d ≤ts b we have
|c|ts < |d |ts and there are at least s many points between c and d in Lts . We also
assume dom(cs) = {|b|ts : b ∈ Bts ∧ b ≤ts bs}.

We let bs+1 = max<ts Bts . Search for a t > ts such that for every c, d ∈ Bt with
c <t d ≤t bs+1 we have |c|t < |d |t and there are at least s + 1 many points between
c and d in Lts . The fact that L is a strong �-s-representation guarantees that we will
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find such a t. We let ts+1 = t and dom(cs+1) = {|b|t : b ∈ Bt ∧ b ≤t bs+1}. We define
cs as follows. For d ≤ts bs we set cs(|d |ts ) = |d |t . This clearly gives range(cs) ⊆
dom(cs+1). This completes the construction.

Now we need to check that cs is MOP and meets the condition�. If |d |ts < |c|ts for
d, c <ts bs then we have that d <ts c, so d ≤t c and |d |t ≤ |c|t . Thus cs preserves ≤.
Since L is a strong �-s-representation, we have that |d |n ≤ |d |m for n ≤ m, and so cs
is monotonic. If we combine this with the fact that there are s many points between
relevant blocks in Bts we have that if d1 <ts ··· <ts dn ≤ts bs but d1 =t ··· =t dn
then we have |di |t + s ≥

∑n
i=1(|di |ts + s). So we can conclude that cn meets the

condition �.
All that is left to check is that the limits exist and that they give us A. We have

that An,m = {|d |tn+m : d ∈ Btn , d ≤ bn}. Since Btn is a finite set and each block in
Btn only changes size finitely often, we have that the limit An,� exists and An,� ⊆ A.
On the other hand, every d ∈ BL is in some Bn, so the there is a stage s such that
ts > n and then we have |d |ts+1 ∈ dom(cs+1). Thus |d | ∈ As+1,� . So we have that
A = ∪nAn,� and (cn)n is a connected approximation of A as desired.

Now for the other direction. Suppose we have a connected approximation (cn)n
of A satisfying the conditions of the theorem. We construct an �-s-representation as
follows. The main idea is that at stage s we will have a linear order Ls with successor
relation and blocks Bs strictly ordered by size with s many points in between, and
the sizes of blocks of Bs are the members of dom(cs).

We define a computable functionH (L, c,m) that takes a finite linear order L with
successor, a finite function c and a number m, and outputs a finite linear order D
with successor extending L if it can. We assume that the blocks BL are ordered by
size the same way they are by <L. We assume that {|b| : b ∈ BL} ⊆ dom(c). We
build D in steps as follows. If c(|b|) = c(|d |) then we merge blocks b and d and all
the points in between into one large block. This gives us a D0 that differs from L
only in the successor. We then go through each block b of D0, and if d was a block
of L and d ⊆ b then we possibly add points to the end of b so that |b| = c(|d |). If
we have |b| > c(|d |) already then H fails. If H does not fail then this gives us D1.
Now, for each n ∈ range(c) \ {|b| : b ∈ BD1}, we add a new block of length n toD1,
keeping the ordering of blocks by size. This gives us aD2. Finally, between each pair
of adjacent blocks in D2, we add points in a dense way so that there are exactly m
many points between them. This is D. If one of the assumptions was wrong then H
fails, otherwise it succeeds, and D is a linear order with blocks ordered by size the
sizes of which are range(c), and there are exactly m many points between adjacent
blocks.

We define our strong �-s-representation to be L =
⋃
s Ls where L0 = ∅ and

Ls+1 = H (Ls, cs , s + 1). From the definition of H and the fact that each cn preserves
≤ and satisfies�we can see, using an induction argument, that H will always succeed,
so the Ls are all well-defined. From the definition of H we can see that if two points
are never part of the same block for some Ls then there is a point in between them.
So we have that the successor relation on L is SL =

⋃
n SLn . So L is a computable

linear with c.e. successor relation. As the successor relation of a computable linear
order is always co-c.e. we have that SL is computable.

By construction we have thatAn,m = {|b|n+m : b is a block in Ln+1}, and for every
block b in Ln, cm(|b|m) = |b|m+1. So we have that An,� = {|b|L : b is a block in Ln}
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and L is an �-s-representation of A. As the blocks of Ln are ordered by increasing
size so too are the blocks of L, so L is a strong �-s-representation of A. �

Note that if we replace �(n) by the condition ∀x ∈ dom(cn)[(
∑
m∈c–1

n ({x})m +
f(n) ≤ x + f(n)] for any computable non-decreasing f with limn f(n) = � then
a slight modification of the arguments above should still work and we get another
characterization. The relativized version of the proof with 0′-computable connected
approximation, does not necessarily build us a computable strong �-representation,
so we do not have a characterization of the strongly �-representable sets.

§4. The many-one degrees of �-representable sets. We know from Kach and
Turetsky [8] that if S ∈ SSILM(Q) then S has a strong �-s-representation. The
following is a condition on S under which the converse holds.

Theorem 4.1. Suppose g : � → � is a computable increasing function. If a
set A has a strong �-s-representation and satisfies |A ∩ g(n)| ≥ n for all n then
A ∈ SSILM(Q).

Proof. The construction goes as follows. We use an enumeration of L = {xi :
i ∈ �}, and at stage s we look at the maximal blocks of Ls . We pick rationals to
represent the blocks with the idea that F (r) is the size of the block represented by
r, but the block that r represents may change when blocks change. To keep track of
what blocks rationals follow we will use a sequence of helper functions hs : Q → Bts
with dom(hs) = {r : f(r, s) > 0}. Once we see a block b appear in Ls it can only
grow, so it will remain a block in Lt for t > s . Like we did in the proof of Theorem
3.3 we will use |b|t , b =t c and b <t c to denote the size and order of the blocks
from Ls according to Lt . We let Bt be the set of blocks from Lt .

At stage 0 we start with f(r, 0) = 0 for all r ∈ Q and t0 = 0. At stage s let
b = max(Bts ). Let ts+1 = t be the least stage t > ts such that for each c <t d ≤t b
in Bt we have that |c|t < |d |t and there are at least g(|c|t + |d |t) many points
between c and d in Lt , and furthermore for all n such that g(n) ≤ |b|t + 1 we have
|{c ∈ Bt : c ≤t b ∧ |c| < g(n)}| ≥ n. As L is an �-s-representation of A there must
be such a t.

Let r0 < ··· < rn–1 be the domain of hs ; we begin defining hs+1 as follows. Let
hs+1(r0) be the smallest block c0 ∈ Bt such that c0 ≤t hs(r0) ∧ |c0|t ≥ f(r0, s). Let
hs+1(ri) be the smallest block ci ∈ Bt such that hs+1(ri–1) <t ci ≤t hs(ri) ∧ |ci |t ≥
f(ri , s).

For each block c ≤t b that is not in range(hs+1) we pick a rational rc and set
hs+1(rc) = c so that hs+1 is order preserving and has image {c ∈ B : c ≤t b}. We
define

f(r, s + 1) =

{
|hs+1(r)|t , r ∈ dom(hs+1),
0, otherwise.

Now for the verification: first we need to show that the recursive definition of
hs+1(ri) actually works. Suppose it does not. Then let i be least such that we
cannot find a block for ri . |hs(ri)|t ≥ |hs(ri)|ts ≥ f(ri , s) so if hs(ri) does not
work then there must be some smaller rj with hs+1(rj) = hs(ri). So i > 0. We have
hs+1(ri–1) ≤t hs(ri–1) <ts hs(ri), so it must be that hs(ri–1) and hs(ri) have merged.
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So |hs(ri)|t > g(|hs(ri–1)|ts + |hs(ri)|ts ). So by our choice of ts we have at least
|hs(ri–1)|ts + |hs(ri)|ts many blocks before hs(ri) and at least |hs(ri)|ts have size at
least |hs(ri–1)|ts . But i ≤ |hs(ri)|ts , so we would have chosen hs+1(ri–1) to be one of
these, a contradiction.

From the definition of hs we can see that hs+1(r) ≤L hs(r) for each r and s, so as
the blocks of L are well ordered, lims hs(r) exists. From the definition of f we have
that it is limitwise monotonic and F (r) = | lims hs(r)|L. So range(F ) ⊆ S. If b is a
block of L then after some stage t, all of b is in Lt as well as all smaller blocks. So
at some stage s, ts > t, so at stage s + 1 we have an r such that hs+1(r) = b and for
any n > s we have hn(r) = b as the blocks in that part of the linear order no longer
change.

So S = range(F ) as desired. �

Relativizing we get the following:

Corollary 1.14. Suppose g : � → � is a 0′-computable increasing function. If
a set A has a strong �-representation and satisfies |A ∩ g(n)| ≥ n for all n then A ∈
SSILM0′

(Q).

This means that for dense enough sets, the notions of Δ0
2 strong �-s-representation,

strong �-representation and support strictly increasing limitwise monotonic on Q

all coincide.
Note that we cannot use Theorem 4.1 to give a characterization of SSILM(Q)

as there are sparse sets in SSILM(Q). For instance consider the function F (n) =
n +

∑
e∈∅′∩n h(e) where h(e) is the least s such that ϕe,s(e)↓. Then as F cannot be

computably bounded, S = range(F ) would not meet the condition |S ∩ g(n)| ≥ n
for all n for any computable g, but by definition it is clearly limitwise monotonic and
increasing, so S ∈ SSILM(Q).

We can, however, use Theorem 4.1 to characterize the degrees of sets with
computable strong �-representations.

Theorem 4.2. If a is the m-degree of a set with a strong �-s-representation then
there is S ∈ a such that S ∈ SSILM(Q).

To prove this we use the following lemma.

Lemma 4.3. If A is a set with a strong �-s-representation then A⊕ � also has a
strong �-s-representation.

Proof. Suppose that A is a set with a strong �-s-representation. Let (cn)n be a
computable MOP connected approximation of A satisfying condition� of Theorem
3.3. We build an connected approximation (dn)n of A⊕ � satisfying � as follows.
The first idea is to use cm with m much larger than n to build dn. We want m to
be large enough that when we see cm(x) = cm(y) we can merge the corresponding
numbers 2x, 2y ∈ dom(dn) without violating �. The second idea is that when we
see cm(x) > x without any merging, we shift the representative of x in dom(dn) to
a lager number so that we can handle the case where the gaps between numbers
shrink, i.e., when cm(y) – cm(x) < y – x for y > x.

To start let d0 = ∅ andm0 = 0. We will ensure thatmn >
∑
x∈dom(dn)(x + n), and

if 2x ∈ range(dn) then x ∈ range(cmn ). Given dn and mn, let N > mn be the least
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number such that if x = max(Amn,N+1) then N > 2x(2x + n + 1). Let mn+1 = N .
This will ensure that mn+1 >

∑
x∈dom(dn+1)(x + n + 1). There must be such an N

as (cn)n is a valid connected approximation, so eventually x will stabilize. Let c =
cN ◦ ··· ◦ cmn+1.

Let z ∈ dom(c) be the least such that there is y > z, c(z) = c(y). For y ≥ 2z ∈
range(dn) we define dn+1(y) = 2c(z). By assumption on mn, this will not violate
condition �. If there is no such z then set z = max(dom(c)) + 1. Now we define
dn+1 on values smaller than 2z.

Let a0, ... , as–1 list the elements of (dom(c) ⊕ �) ∩ 2z – 1. Let b0, ... , bs–1 list the
first s elements of range(c) ⊕ �. Note that bs–1 < 2c(z) if c(z) is defined. We define
dn+1(ai) = bi . This is definitely order preserving, and it is monotonic because c is
injective and monotonic on dom(c) ∩ z. This completes the construction of (dn)n.

Verification: By construction we can see that (dn)n is MOP and satisfies�; all that
is left to check is that it is a connected approximation of A⊕ �. Let x ∈ dom(dn)
and let 2y be the least even number in dom(dn) \ x. Following the construction we
can see that dn(x) ≤ dn(2y) ≤ 2(cmn ◦ ··· ◦ cmn–1+1)(y). So if we repeat this then we
can see that the limit of x, dn(x), dn+1(dn(x)), ... if it exists is less than the limit of
2y, 2cmn (y), 2cmn+1(cmn (y)), ... , so by monotonicity it exists. Thus (dn)n is a valid
connected approximation.

Fix x. Let s be a stage at which cn � x = cs � x for all n ≥ s . Then by the
construction we have that dn � 2x = ds � 2x for all n ≥ s and dom(dn) ∩ 2x =
(dom(cn) ∩ x) ⊕ x. So (dn)n is a connected approximation of A⊕ �. �

This allows us to characterize the m-degrees of sets with strong �-representations.

Corollary 1.15. The following coincide.
• The m-degrees of sets with computable strong �-representations.
• The m-degrees of sets in SSILM0′

(Q).
• The m-degrees of sets with Δ0

2 strong �-s-representations.

§5. Open questions. We can characterize the m-degrees of sets with strong �-
representations, but we leave open the following.

Question 5.1. Is there a characterization of the sets with strong �-representations
that is not in terms of linear orders?

A related question is in regards to the sets with Δ0
2 strong �-s-representations.

Question 5.2. Is there a set with a Δ0
2 strong �-s-representation, but no computable

strong �-s-representation?

A negative answer to Question 5.2 would give us an answer to Question 5.1,
using the connected approximation characterization of sets with computable strong
�-s-representations.
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