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We study the underlying physics of cosmic ray (CR)-driven instabilities that play a crucial
role for CR transport across a wide range of scales, from interstellar to galaxy cluster
environments. By examining the linear dispersion relation of CR-driven instabilities in
a magnetised electron–ion background plasma, we establish that both the intermediate
and gyroscale instabilities have a resonant origin, and show that these resonances can
be understood via a simple graphical interpretation. These instabilities destabilise wave
modes parallel to the large-scale background magnetic field at significantly distinct
scales and with very different phase speeds. Furthermore, we show that approximating
the electron–ion background plasma with either magnetohydrodynamics (MHD) or
Hall-MHD fails to capture the fastest-growing instability in the linear regime, namely
the intermediate-scale instability. This finding highlights the importance of accurately
characterising the background plasma for resolving the most unstable wave modes.
Finally, we discuss the implications of the different phase speeds of unstable modes on
particle–wave scattering. Further work is needed to investigate the relative importance
of these two instabilities in the nonlinear, saturated regime and to develop a physical
understanding of the effective CR transport coefficients in large-scale CR hydrodynamics
theories.
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1. Introduction

The majority of astrophysical plasmas are likely to be permeated with cosmic
rays (CRs); these include protoplanetary disks, the interstellar and circumgalactic and
intracluster media. In the Milky Way, the CR energy density (dominated by a CR
population at around GeV energies) is in equipartition with the average thermal and
magnetic energy densities (Boulares & Cox 1990). Hence, these CRs constitute an
essential non-thermal component that provides dynamical feedback to the interstellar
medium (Girichidis et al. 2016, 2018; Simpson et al. 2016, 2023; Farber et al. 2018) and can
launch galaxy-scale outflows, as demonstrated in one-dimensional models (Ipavich 1975;
Breitschwerdt, McKenzie & Voelk 1991; Recchia, Blasi & Morlino 2016; Quataert, Jiang
& Thompson 2022) as well as in three-dimensional simulations of galaxies forming both
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in isolation (Uhlig et al. 2012; Salem & Bryan 2014; Pakmor et al. 2016; Ruszkowski, Yang
& Zweibel 2017; Thomas, Pfrommer & Pakmor 2023) and in cosmological environments
(Salem, Bryan & Hummels 2014; Buck et al. 2020; Hopkins et al. 2020). The propagation
of CRs with energies below 100 GeV is believed to be predominantly governed by
self-generated magnetic perturbations (Blasi, Amato & Serpico 2012; Evoli et al. 2018).
These perturbations efficiently scatter the CRs, resulting in a significant decrease in
their mean transport speed. The interplay of CR-driven growth of plasma waves and
collisionless wave damping processes determines the effective transport speed of CRs,
and hence the coupling strengths to the ambient plasma: strong scattering causes CR
isotropisation in the Alfvén wave frame and forces CRs to stream at mean speeds close
to the Alfvén speed while faster CR diffusion prevails in the case of weak scattering if the
waves are strongly damped (Zweibel 2017).

Most importantly, the strength of CR feedback critically depends on these microscopic
transport properties, including mass and energy loading factors of galactic winds, the wind
speed and the emerging CR pressure support in the circumgalactic medium (Buck et al.
2020; Ji et al. 2020). Likewise, the evolution of gas and chemical compositions in diffusive
regions and dense interstellar clouds are affected by CR ionisation to the extent that
CRs are the fundamental source of residual ionisation inside shielded molecular clouds
(Phan, Morlino & Gabici 2018). Because of the sensitive dependence of the emerging
galaxies and the phase structure of the interstellar medium on CR feedback strength,
the investigation of CR-driven instabilities becomes of paramount importance in order to
attain predictive capabilities in simulation campaigns. Thus, understanding and accurately
modelling these instabilities is crucial for effectively regulating the transport of CRs in
interstellar, circumgalactic and intracluster plasmas.

Our focus here is on instabilities of parallel wave modes along the background magnetic
field. This is for two reasons, which follow for astrophysical plasmas, where the CR density
is much lower compared with the background plasma. First, when considering the full
spectra of CR driven waves, the growth rates due to resonance with hydrodynamical
waves are highest for parallel wave mode, as demonstrated in (4) of Kulsrud & Pearce
(1969). Second, even if oblique waves, which propagate at an angle to the magnetic field,
were to grow, these waves would be strongly Landau damped by thermal background ions,
especially in high plasma beta conditions, i.e., where the thermal energy is greater than
the magnetic energy. Foote & Kulsrud (1979) estimated the damping rate and showed that
it is significantly faster than the typical growth rates of obliquely propagating wave modes
(see (68) of Zweibel (2017) for a concise expression of the damping rate).

In CR-driven instabilities, CR ions represent the primary source of free energy. This
energy is channelled through these instabilities into unstable electromagnetic wave modes
of the background plasma. This is in contrast to beam-plasma instabilities (Breı̌zman,
Ryutov & Chebotaev 1972; Bret, Gremillet & Dieckmann 2010b; Chang et al. 2014;
Shalaby et al. 2017b), where the source of free energy is an electron–positron beam
that drives wave modes on the electron skin depth scale or shorter unstable. By contrast,
CR-driven instabilities excite unstable electromagnetic wave modes on scales much larger
than the electron skin depth. These instabilities can be classified generally as follows.
First, there are non-resonant instabilities, such as the Bell instability (Bell 2004), which
occur when the CR current is very high. These instabilities are highly relevant for studying
the escape of CR ions after acceleration at supernova remnant shocks. Second, there are
resonant instabilities, which occur when the CR current is low but the CR mean drift is
faster compared with the local ion Alfvén speed. Within galactic and stellar environments,
CR transport (with energies below 100 GeV) is believed to be primarily regulated by
two dominant resonant instabilities: the gyro-resonant instability (Kulsrud & Pearce 1969;
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Lebiga, Santos-Lima & Yan 2018; Bai et al. 2019; Holcomb & Spitkovsky 2019; Bai 2021;
Bambic, Bai & Ostriker 2021; Plotnikov, Ostriker & Bai 2021) and the recently discussed
intermediate-scale instability (Shalaby, Thomas & Pfrommer 2021; Lemmerz et al. 2023).
Provided CRs propagate with a finite pitch angle relative to the large-scale magnetic field,
they induce an instability in electromagnetic waves (propagating along the background
magnetic field) on scales intermediate between the gyroradii of ions and electrons. This
instability occurs as long as CRs drift at velocities less than half of the Alfvén speed of the
electrons. The emerging unstable modes are identified as background ion-cyclotron modes
in the reference frame co-moving with the CRs. Interestingly, this newly found instability
typically exhibits significantly faster growth, exceeding the growth rate of the commonly
discussed resonant instability at the ion gyroscale by more than an order of magnitude
(Shalaby et al. 2021).

We focus, moreover, on instabilities in the cold limit for background plasma species.
While it remains to be shown analytically and numerically that this assumption does not
impact the nature of the instabilities we study in this paper, the unstable wave modes are
typically present at scales much larger than the electron skin depth (which is typically
larger than both ion and electron Debye lengths) and of an electromagnetic nature. Thus,
background temperatures are typically argued to have no impact on such long-wavelength
unstable wave modes (Zweibel 2003; Bell 2004; Shalaby et al. 2021). This is in contrast to
beam-plasma instabilities that can be greatly impacted by thermal effects (Bret, Gremillet
& Bénisti 2010a; Chang et al. 2016; Shalaby 2017) or structures (Krafft, Volokitin &
Krasnoselskikh 2013; Shalaby et al. 2018, 2020) in the background plasma on scales
close to the electron skin depth. The intermediate-scale instability can also play a
significant role in electron acceleration within non-relativistic shocks (Shalaby et al.
2022). This study focuses on unravelling the physical origins of these resonant instabilities,
particularly in the context of CRs with a gyrotropic momentum distribution. Through a
transparent visualisation of the fundamental mechanisms, we gain a deeper understanding
of the behaviour and characteristics of these instabilities and their influence on CR
transport.

The structure of the paper is as follows. First, in § 2, we analyse the normal modes
supported by a magnetised electron–ion plasma system and investigate how these wave
modes are affected when an additional population of electron–ion CRs, characterised by
a relative drift speed, is included. This inclusion leads to the emergence of additional
Doppler-shifted CR wave modes, and the interaction between the background and CR ion
wave modes gives rise to resonant instabilities, with the maximum growth rate occurring
at the wavelengths where these modes resonantly interact. Next, in § 3, we demonstrate
that approximating the background plasma using either magnetohydrodynamics (MHD)
or Hall-MHD erroneously overlooks the fastest-growing modes in the linear regime.
This highlights the importance of considering the full dynamics of the system down
to the electron scale. Furthermore, in § 4, we explore the impact of the driven wave
modes on particle–wave scattering and how the presence of these wave modes influences
the particle trajectories. Finally, in § 5 we summarise our findings and present an
outlook for potential implications in § 6. Throughout this work, we use the SI system of
units.

2. Electromagnetic linear dispersion relation

In a magnetised plasma with various species s, the linear dispersion relation for
electromagnetic wave modes of (complex) frequency ω and wave mode k that propagate
parallel to a constant background magnetic field (here taken to be B0 = B0x̂) is given by
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FIGURE 1. Schematic representation of the velocity distributions adopted for our analytical
calculation in this paper. We chose a cold distribution for background electrons and ions, and a
gyrotropic distribution for CR electrons and ions. While a gyrotropic CR distribution is adopted
here for analytical tractability, the nature of resonances that lead to the instabilities discussed in
this work is independent of such a choice.

(Schlickeiser 2002)

D± = ω2 − k2c2 +
∑

s

χ±
s = 0, where (2.1)

χ±
s = q2

s

ms

∫
d3u

fs,0(u‖, u⊥)

γ

[
ω − kυ‖

kυ‖ − ω ± Ωs
− υ2

⊥c−2(k2c2 − ω2)

2(kυ‖ − ω ± Ωs)2

]
. (2.2)

Here, χ±
s is the linear response for species s, which is characterised by charge qs, mass ms

and the equilibrium gyrotropic phase-space distribution, fs,0. The light speed in vacuum
is denoted by c and the spatial part of the 4-velocity is u = γυ, where u‖ and u⊥ are the
parallel and perpendicular velocities, respectively, which are defined with respect to the
direction of the uniform background magnetic field B0. The magnitude of the velocity
is defined such that u2 = u2

‖ + u2
⊥ and γ = √

1 + u2/c2. The non-relativistic cyclotron
frequency of species s is Ωs,0 = qsB0/ms, and the relativistic one is Ωs = Ωs,0/γ .

For simplicity, we take fs,0 to be a gyrotropic ring distribution with fixed parallel
and perpendicular velocities for all particles of species s, i.e. fs,0(u‖, u⊥) = nsδ(u‖ −
γ υdr)δ(u⊥ − γ υ⊥)/(2πu⊥), where ns is a uniform density of the plasma species s, and
all of its particles are drifting along B0 with constant speed υdr,s and have the same
perpendicular velocity υ⊥,s. In this case, the linear response reduces to ζ±

s given by
(Holcomb & Spitkovsky 2019; Weidl, Winske & Niemann 2019; Shalaby et al. 2021)

χ±
s → ζ±

s (υdr,s, υ⊥,s, ns) = ω2
s

γ

[
ω − kυdr,s

kυdr,s − ω ± Ωs
− υ⊥,sc−2(k2c2 − ω2)

2(kυdr,s − ω ± Ωs)2

]
. (2.3)

Here, ωs = √
nsq2

s/(msε0) is the plasma frequency of species s and ε0 is the permittivity
of free space. The solutions of D± = 0 correspond to right/left polarisation states, and
the corresponding first-order perturbed electric and magnetic fields obey Ey,1(k, ω) ±
iEz,1(k, ω) = 0 and By,1(k, ω) ± iBz,1(k, ω) = 0, respectively. In the analysis below, the
velocity distributions for both the background plasma and CR species are graphically
illustrated in figure 1; a cold distribution for background electrons and ions and a
gyrotropic distribution for CRs.
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2.1. Normal modes of electron–ion plasma
The normal modes of an electron–ion plasma are well known and extensively studied
in the literature (see, e.g. Boyd & Sanderson 2003). In the cold limit (also called the
cold-hydrodynamic (HD) limit), one can obtain the plasma rest-frame wave modes by
solving the following dispersion relation:

ω2 − k2c2 + ζ−
e (0, 0, n0) + ζ−

i (0, 0, n0) = 0, (2.4)

where ζi(e) denotes the contribution of the cold stationary ion (electron) species with a
fixed uniform number density n0. Therefore, for k > 0, the real part of the solutions,
ωr = Re(ω) > 0 (< 0), indicate that the sense of rotation of the magnetic eigenmodes
is the same as that of electrons (ions) around the constant background magnetic field
B0. The normal modes for such a case include light characteristics (ωr = kc) in the
short-wavelength regime, which turn into ωr ∼ ωp for small values of k, where ωp =√

ω2
i + ω2

e is the total plasma frequency.
The other set of wave modes is the electron- and ion-cyclotron waves in the

short-wavelength regime, kdi � 1, where di = c/ωi is the ion skin depth. More precisely,
the electron-cyclotron branch includes the forward-propagating Alfvén waves (ωr = kυA)
for kdi � 1, where υA = B0/

√
μ0nimi = Ωi,0c/ωi is the Alfvén speed for ions. This

branch turns into whistler waves for shorter wavelengths at around kdi > 1, which become
electron-cyclotron waves with ωr = |Ωe| for kde = kdi/

√
mr > 1, where de = c/ωe is the

electron skin depth. The ion-cyclotron branch is conceptually simpler: it includes the
backward-propagating Alfvén waves for kdi � 1 and the ion-cyclotron wave modes with
ωr = −Ωi for kdi ≥ 1. An example for the electron- and ion-cyclotron branches is depicted
by the black solid lines in the top panel of figure 2.

2.2. Resonances in the presence of drifting low-density CRs
Whether a drifting electron–ion plasma population (CR population) can excite resonant
plasma instabilities is most easily seen by identifying the intersection points of background
and CR wave modes in the ω-k plane: this yields solutions of wave modes for which the
rotation rate of both background and CRs are in resonance. Thus, it is for these wave
modes that we expect the largest energy exchange between CRs and the background
plasma populations. In the following, we take a closer look at these resonant interactions
in the case of CRs with a low number density, ncr, in comparison with the density of
the background plasma n0. We characterise this by the CR-to-background number density
ratio1 α ≡ ncr/n0 � 1 and adopt a mean relative drift speed vdr of the CR population
along the large-scale background magnetic field. In the background frame, one can derive
the expected CR modes by solving the dispersion relation

ω2 − k2c2 + ζ−
e (vdr, 0, αn0) + ζ−

i (vdr, 0, αn0) = 0. (2.5)

As anticipated, one solution of (2.5) is the CR ion-cyclotron branch, which is comparable
to that of the background, albeit with a Doppler-shifted rotation frequency, that is
ω → ω + kυdr. Additionally, in the ion-cyclotron branch, the backward-propagating
Alfvén waves start to rotate at the Doppler-shifted ion-cyclotron frequency at kdcr,i =

1The low values of α are motivated by the physical conditions in various astrophysical plasmas relevant for CR
transport. For instance, GeV protons, which carry the majority of CR energy in our Galaxy, are characterised by α ∼ 10−7

in the hot phase of the interstellar medium. A detailed discussion of how these estimates are obtained in various contexts
is given in Appendix A and figure 13 of Shalaby et al. (2021). The dependence of the growth rate of various CR-driven
instabilities on α (in the limit of α � 1) is also studied in detail by Shalaby et al. (2021), and a summary of the growth
rates of these instabilities is provided in table 1 of Shalaby et al. (2021).
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FIGURE 2. Solutions of the dispersion relation with low-density drifting CRs in the rest frame
of the background plasma ((2.6)). We use the following parameters: υA = 10−4c, α = ncr/n0 =
10−6, mi/me = 36, v⊥,e = 0 and υ⊥,i = υA. The solutions are, in general, eight complex values
of ω at each wave mode k. In the top panel, we show the real values, ωr, of three solutions: the
CR ion cyclotron (coloured lines with different line styles, for three different parameter choices)
as well as the background ion- and electron-cyclotron waves (black solid lines). We choose three
values for the CR drift speed along B0 and indicate each case with a different colour and line
style. In the bottom panel, we show the growth rate of the CR ion-cyclotron solution, which is
also the fastest growth rate, Γ , at each k, i.e. it has the largest imaginary part of ω of all solutions.
In the top panel, ωr represents the rate by which the electric and magnetic field perturbation
vectors rotate. Here, ωr > 0 (ωr < 0) indicates the same sense of rotation as the gyro-motion of
electrons (ions) around the large-scale background magnetic field B0. Vertical dashed lines are
solutions of (2.7) and indicate values of the wave mode for which the CR ion-cyclotron wave in
the background plasma rest frame is in exact resonance with the background cyclotron waves.
These points exactly correspond to the locations of the peaks in the growth rate.

kdi/
√

α ∼ 1. In other words, within the ion-cyclotron branch, wave modes rotate with
the Doppler-shifted ion-cyclotron frequency at kdi � √

α, which is much less than unity.
This means that, as observed from the background, this branch mainly produces waves
rotating with Doppler-shifted ion-cyclotron frequency ωr = −Ωi + kυdr. We refer to this
mode as the CR ion-cyclotron wave mode.

To verify that the individual wave modes of CRs and those of the background plasma are
indeed the sum of the background and CR wave modes as seen in the background frame,
we solve the full dispersion relation

ω2 − k2c2 + ζ−
e (0, 0, n0) + ζ−

i (0, 0, n0) + ζ−
e (υdr, υ⊥,e, αn0) + ζ−

i (υdr, υ⊥,i, αn0) = 0.
(2.6)
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Note that, in our set-up, the zeroth-order current due to CR ions is compensated by
CR electrons drifting at the same speed. Here, we have added the possibility for CR
populations to have a non-zero perpendicular velocity. That is, CRs are distributed
uniformly on a ring in the perpendicular velocity space, characterised by a radius of
υ⊥. Solutions for the full dispersion relation are shown in figure 2, where we use a
reduced mass ratio mr = mi/me = 36 for visual purposes to reduce the separation between
electron- and ion-cyclotron frequencies;

√
mr/2 = 3. We also adopt an ion Alfvén speed

υA at 10−4c, the density ratio α = ncr/n0 = 10−6, υ⊥,e = 0 and υ⊥,i = υA. We use different
values of υdr/υA ≈ {3.7, 3, 2.7}, such that various interesting types of resonances are
expected in the solutions of the dispersion relation. We note that this choice of parameters
enables us to show the physics of resonance on a linear scale in the background plasma
frame. In § 2.3, we adopt more physically motivated parameters and show the resulting
solutions of the dispersion relation in the CR drift frame.

For all values of υdr, we obtain the same exact background wave modes as described in
the previous section, which are shown as black lines in the top panel of figure 2. Differing
values of υdr result in various CR ion-cyclotron wave modes, which are shown as different
colours and which exactly agree with ωr = −Ωi + kυdr expected for the various cases.
In the bottom panel of figure 2, we show the fastest growth rate obtained by solving the
full dispersion relation in (2.6). The real part of the most unstable modes are the CR
ion-cyclotron waves that we show with different colours and line styles in the top panel of
figure 2. That is, in the unstable regions, only the rotating and propagating electromagnetic
waves that are supported by the gyrating and drifting CRs are exponentially growing. We
note that in regions where the fastest growth rate is zero, any branch can be chosen, and
we select the CR ion-cyclotron wave mode in this case.

To find the locations where the CR ion-cyclotron wave modes are in resonance with the
background wave modes, we solve

[ω2 − k2c2 + ζ−
e (0, 0, n0) + ζ−

i (0, 0, n0)]ω=−Ωi+kυdr = 0, (2.7)

for wave mode k. That is, the solutions are those wave modes for which the CR
ion-cyclotron branch intersects the background wave modes in the cold-HD limit. This
gives a fourth-order polynomial which, in general, has four solutions for k for any value
υdr/υA, albeit these solutions may be degenerate.

For the case of υdr/υA = 2.7 <
√

mr/2 (solid-red curves in figure 2), there exist four
locations where the CR ion-cyclotron wave modes are in resonance with the background
wave modes, i.e. (2.7) has four distinct roots. These expected locations for resonances are
indicated with red-dashed vertical lines in the top and bottom panels of figure 2: there are
two resonances for kdi < 1 and two resonances for kdi > 1. The two solutions for kdi < 1
represent the intersections of the CR ion-cyclotron wave mode with both forward- and
backward-propagating Alfvén waves, and thus resonance occurs approximately at kdi =
υA/(υdr ± υA). This corresponds to the two resonant peaks in the growth rate due to the
gyro-resonant (streaming) instability (Kulsrud & Pearce 1969). The other two resonances
at smaller scales at kdi > 1 correspond to the two peaks in the growth rate due to the
intermediate-scale instability (Shalaby et al. 2021). In the next section, we show the growth
rates when using realistic values of the mass ratio, for which the fastest growth rate due to
the intermediate-scale instability is more than an order of magnitude greater than that at
the gyroscales.

In figure 2, the purple dash-dotted curves represent the case of υdr/υA ∼ √
mr/2. We

see that the two resonant peaks of the intermediate-scale instability at kdi > 1 merge into
a single resonance. As in the previous case, the two peaks of the gyroscale instability
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for kdi < 1 remain, but move closer together. As υdr/υA grows larger than
√

mr/2, the
resonances at kdi > 1 disappear, and thus, the intermediate-scale instability is no longer
able to drive wave modes with kdi > 1 unstable (blue dashed curves in figure 2). That is,
υdr/υA ≤ √

mr/2 is a condition for the possibility of resonance between CR ion-cyclotron
wave modes and background wave modes at kdi > 1, which is also the condition for the
intermediate-scale instability.2 The numerical identification of this instability condition
was previously conducted by Shalaby et al. (2021).

It is important to acknowledge that, in a realistic environment, background plasmas
possess a finite temperature. Consequently, when incorporating this into the dispersion
relation, it can influence wave modes occurring on scales smaller than the ion Debye
length, which is much smaller in comparison with the ion skin depth for non-relativistic
plasmas (Reville et al. 2008; Zweibel & Everett 2010). Thus, it does not have any impact
on the instabilities discussed in this paper. Furthermore, discussions and analysis of
simulations in Shalaby et al. (2021) and Lemmerz et al. (2023) reveal that ion-cyclotron
thermal damping has negligible effects on the driven wave modes.

2.3. Instabilities in the rest frame of the CRs
In this section, we demonstrate that the intermediate-scale instability indeed drives CR
comoving ion-cyclotron wave modes as found in Shalaby et al. (2021). To this end, we
present the solution of the dispersion relation in the CR rest frame, where the background
plasma is drifting with velocity −υdr and hence drifting anti-parallel with respect to the
background magnetic field B0. The dispersion relation that we solve is given by

ω2− k2c2+ ζ−
e (−υdr, 0, n0) + ζ−

i (−υdr, 0, n0) + ζ−
e (0, υ⊥,e, αn0) + ζ−

i (0, υ⊥,i, αn0) = 0.
(2.8)

Figure 3 shows some solutions of (2.8) for υA = 10−4c, α = ncr/n0 = 10−6,3 mr =
mi/me = 1836, v⊥,e = 0 and υ⊥,i = υA, along with various background plasma drift
speeds such that υdr/υA ∼ {22.28, 21.45, 19.281} ∼ {1.05, 1, 0.9}√mr/2. In the top panel
of that figure, the CR ion-cyclotron wave modes are shown as a black line for different
values of υdr. Meanwhile, the background cyclotron wave modes are rotated differently
depending on the drift speed, leading to intersections at both long (kdi < 1) and short
(kdi > 1) wavelengths for υdr/υA ≤ √

mr/2. These intersections lead to instabilities
at these wave modes. The bottom panel of figure 3 shows the growth rates of the
ion-cyclotron wave modes, which are also the fastest-growing modes. This demonstrates
that the driven modes are ion-cyclotron waves at all wavelengths in the rest frame of CRs.
If the condition for the intermediate-scale instability is not fulfilled (υdr/υA >

√
mr/2),

the instability no longer operates and short-wavelengths modes are stable.
The solutions in figure 3 show that, for realistic values of mr, the intermediate-scale

instability growth rates significantly dominate over gyroscale growth rates. This
dominance is even more pronounced at larger pitch angles because the growth rate at the
peaks of the intermediate-scale instability is proportional to (υ⊥,i/υA)2/3 (Shalaby et al.
2021). Additionally, it is important to note that the growth rate is higher for the resonance
with forward-propagating Alfvén waves at the gyroscale (kdi < 1) compared with that
with the backward-propagating waves.

2The condition for the intermediate-scale instability υdr/υA ≤ √
mr/2 attains a small correction, i.e. growth may

occur for slightly larger values of υdr/υA. However, this correction approaches zero for realistic values of υA � 1 and
mr � 1. An analytical derivation of this correction can be obtained via (2.7).

3The low values of α are motivated by the physical conditions in various astrophysical plasmas relevant for CR
transport as discussed in Appendix A of Shalaby et al. (2021).
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FIGURE 3. Solutions of the dispersion relation of low-density CRs in the rest frame of the CRs,
i.e. using (2.8), with the following parameters: υA = 10−4c, α = ncr/n0 = 10−6, mi/me = 1836,
v⊥,e = 0 and υ⊥,i = υA. We vary the relative drift speed (the background plasma is drifting with
υdr anti-parallel to background magnetic field B0) to obtain similar cases as in figure 2 but with
a realistic ion-to-electron mass ratio. In the top panel, we show the rotation rate of wave modes,
with the solid-black line representing the CR ion-cyclotron wave mode which is the same for
all cases. The background wave modes are the same in the background rest frame, however, as
seen in the rest frame of the CRs, the rotation and growth rates of the background waves are
different and are thus indicated with various colours and line styles. In the bottom panel, we
show the growth rates of the CR ion-cyclotron waves in all cases, and we find that these are,
also, the fastest-growing rates for the instability. This shows that, in the case of realistic mr, the
dominance of intermediate-scale growth rate compared with that at the gyroscale (kdi < 1) is
much more pronounced and that the growth rate for the forward-propagating Alfvén waves is
also larger in comparison with the backward-propagating wave.

3. Instabilities with approximate background plasma descriptions

In this section, we revisit the dispersion relation in the background plasma rest frame to
investigate the effect of approximating the background plasma description on the nature of
the emerging instabilities. One commonly used approximation for the background plasma
dispersion assumes the MHD dispersion relation, where it is assumed that ω � Ωi �
|Ωe|. In this limit, the third and fourth terms in (2.6) are reduced to ω2c2/υ2

A and the first
term (ω2) is neglected, due to the fact that υ2

A � c2 ⇒ ω2 � ω2c2/υ2
A . The dispersion

relation is for

MHD :
ω2c2

υ2
A

− k2c2 + ζ−
e (υdr, υ⊥,e, αn0) + ζ−

i (υdr, υ⊥,i, αn0) = 0. (3.1)

This approximation is typical in works aiming at computing various types of CR-driven
instabilities (see, e.g. Zweibel 2003; Bell 2004; Amato & Blasi 2009; Bai et al. 2019).
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Another possible approximation involves considering the impact of finite but small values
of kdi, which are wave modes comparable to the ion skin depth, as is typically done
in the Hall-MHD approximation. In this case, the dispersion relation approximates the
behaviour of Alfvén and whistler waves found in the cold HD dispersion relation. Within
the Hall-MHD approximation, the background plasma contributions (see, e.g. § 14.4.4 of
Goedbloed, Keppens & Poedts 2010) are reduced to ω2c2/[υ2

A(1 + kdi)
2], leading to the

following modified dispersion relation:

Hall-MHD:
ω2c2

υ2
A(1 + kdi)2

− k2c2 + ζ−
e (υdr, υ⊥,e, αn0) + ζ−

i (υdr, υ⊥,i, αn0) = 0. (3.2)

In figure 4, we show the solutions of the dispersion relations with various background
plasma assumptions, i.e. the solutions for ((2.6), (3.1) and (3.2)) using the following
parameters: υA = 10−4c, α = ncr/n0 = 10−6, mi/me = 1836, v⊥,e = 0, υ⊥,i = υA and
υdr/υA = 0.98

√
mr/2 ≈ 20.99. In all cases, we fix the CR drift speed, resulting in the

same CR ion-cyclotron wave mode (shown as a black line in the top panel) that follows
the expected dispersion relation ωr = kυA − Ωi. When using the MHD background
approximation, the background wave modes follow the expected dispersion relation ωr =
±kυA (shown as orange dash-dotted curves in the top panel). In the case of Hall-MHD, the
dispersion of background wave modes, as expected, follows ωr = ±kυA(1 + kdi); shown
as green dashed curves in the top panel.

In the bottom panel of figure 4, we show the growth rates of the CR ion-cyclotron waves
(which are the fastest growth rates) for different approximations of the background plasma.
At large (gyro) scales, all approximations produce similar growth rates peaking at the same
wave modes, indicating that using any of these approximations for the background plasma
leads to correctly capturing the gyroscale instability. However, at smaller scales, i.e. scales
where the intermediate-scale instability operates (kdi > 1), the MHD approximation of
the background plasma dispersion wrongly predicts complete stability at these scales. In
the case of Hall-MHD, the growth of the first peak of the intermediate-scale instability
is approximately reproduced but at a longer wavelength. For shorter wavelengths, the
use of the Hall-MHD approximation predicts completely wrong growth rates compared
with those found when using the cold-HD dispersion for the background plasma. An
additional worrisome implication arising from the use of the Hall-MHD approximation
is its incorrect prediction that shorter-wavelength modes are universally unstable, even in
cases where the condition for driving the intermediate-scale instability is not satisfied.

4. Nature of CR scattering at different resonant scales

So far, we have focused on the influence of gyrotropic CR populations in driving
perpendicular electromagnetic perturbations. In the absence of such perturbations,
particles follow trajectories characterised by a constant drift speed along the direction
of the magnetic field vector, while simultaneously gyrating at their gyrofrequency. In
this section, our goal is to evaluate the effects of these perturbations on the particle
trajectories, specifically how particles are scattered by the induced parallel electromagnetic
perturbations. To accomplish this, we examine the Lorentz force acting on a particle with
velocity υ = {υx, υy, υz}, charge qs and mass ms caused by these perturbations. In Fourier
space, along the particle trajectory, the momentum equation is

dγυ

dt
= qs

ms
(δEk + υ × δBk) = qs

ms

⎡
⎣ υyδBk

z − υzδBk
y

−(υx − υph)δBk
z

(υx − υph)δBk
y

⎤
⎦ . (4.1)
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FIGURE 4. Solutions of the dispersion relation for various approximations of the background
plasma using the following parameters: υA = 10−4c, α = ncr/n0 = 10−6, mi/me = 1836,
v⊥,e = 0, υ⊥,i = υA and υdr/υA = 0.98

√
mr/2 ∼ 20.99. The top panel shows the rotation rate

of various wave modes, while the bottom panel shows the growth rate of the corresponding
unstable CR ion-cyclotron wave mode, which has the fastest growth rate. The black line in
the top panel represents the CR ion-cyclotron wave mode, which follows the same dispersion
in all cases, namely ωr = kυdr − Ωi. In the MHD case, the background wave modes follow a
dispersion relation of ω = ±kυA (orange curves in the top panel), while in the Hall-MHD case,
the background waves follow a dispersion relation of ω = ±kυA(1 + kdi). The bottom panel
reveals that the growth rates of the CR ion-cyclotron wave mode at the gyroscale (kdi < 1) are
almost identical for different approximations of the background plasma. However, at intermediate
scales where kdi > 1, the MHD background approximation fails to capture the fastest-growing
instability, namely the intermediate-scale instability with growth rates shown by the red curve.
In contrast, the Hall-MHD approximation reproduces the first peak of the dominant instability
growth rate, although at a reduced rate and at a larger wavelength. For all wavelengths shorter
than this peak, the use Hall-MHD approximation leads to wrong growth rates. Vertical lines
indicate the predicted intersection points of CR ion-cyclotron waves and background wave modes
for the different approximations.

Here, we use the fact that k ‖ B0 and both vectors are aligned with x̂. Furthermore,
we utilise the relation k × δEk = ωδBk to find δEk = −υph × δBk. This indicates
that particle scattering in the parallel direction is significantly influenced by the
phase difference between the particle’s perpendicular velocities and the magnetic field
perturbations. On the other hand, scattering of particles in the perpendicular direction
crucially depends on the difference between the relative drift speed of the particles and
the waves.

In previous sections, we found that the propagation of CRs destabilise waves at different
wavelengths. The real frequency of the unstable wave modes, in the rest frame of the
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background, is always given by ωr = kυdr − Ωi. Consequently, the phase velocity of the
unstable waves can be expressed as υph = υdr − υA/(kdi). At the gyroscale (kdi < 1), wave
growth peaks at wave modes where kdi ≈ υA/(υdr ∓ υA). This leads to a phase velocity of
approximately υph ≈ ±υA for forward (+) and backward (−) propagating Alfvén waves.
On the other hand, the fastest growth due to the intermediate-scale instability occurs for
kdi > 1. Since typically υdr � υA, the phase velocity of the driven unstable modes is
approximately υph ≈ υdr. To summarise, the phase speed of the growing wave modes can
be expressed as follows:

υph =
{ ±υA, kdi � 1,

υdr, kdi > 1.
(4.2)

Therefore, although both the gyro and intermediate-scale instabilities are resonant
instabilities, they lead to perturbations with distinct phase speeds. Due to the significant
disparity in phase velocity between these two scales, the scattering of CR ions by these
electromagnetic perturbations exhibits notable differences, as can be seen from (4.1).
The wave modes driven by the intermediate-scale instability scatter particles that drive
them only in the direction parallel to B0, since υx = υdr ∼ υph. However, particles with
different parallel drift speeds can be scattered both in parallel and perpendicular directions
due to wave modes driven by the intermediate-scale instability. On the other hand,
scattering occurs in both parallel and perpendicular directions at the gyroscale. It can be
demonstrated from (4.1) that the gyroscale waves result in energy-conserving scattering in
the frame of the driven Alfvén waves (Shalaby et al. 2021).

5. Summary

This paper examines the physics of resonant instabilities driven by CR ions with
a gyrotropic momentum distribution. These instabilities occur most rapidly when
a resonance between the Doppler-shifted background and CR wave modes occurs.
The Doppler shift arises from the relative drift between the background and CR
plasma. The relative drift sets the location of resonances and hence the most unstable
wavelengths of various instabilities. It leads to two important resonant instabilities: the
gyroscale instability at large scales (Kulsrud & Pearce 1969) and the recently found
intermediate-scale instability (Shalaby et al. 2021).

The gyroscale instability has peak growth rates when the CR ion-cyclotron wave mode
resonates with both, forward- and backward-propagating Alfvén waves of the background
plasma. In the background frame, the resonances occur when −Ωi + kυdr → ±kυA, which
results in the most unstable wave modes at k±

g,idi = υA/(υdr ∓ υA). From figure 3, it is
evident that resonance with the forward-propagating Alfvén wave leads to faster growth
at larger wave modes k+

g,i, thus it is called the ion gyroscale. Since υdr � υA, both growth
peaks at the gyroscales occur for wavelengths larger than the ion skin depth, i.e. k±

g,idi <

1. Therefore, in the linear regime, the gyroscale instability can be accurately described
when approximating the electron–ion background plasma using either MHD or Hall-MHD
approximations (see figure 4).

For an electron–ion background plasma, additional resonances occur at shorter
wavelengths, where kdi > 1. These resonances give rise to the intermediate-scale
instability that destabilise wave modes between the ion gyroscale, k+

g,i and the electron
gyroscale, kg,e = mrk+

g,i, where mr represents the ion-to-electron mass ratio. At these
resonant scales, the peak growth rates of the intermediate-scale modes are significantly
larger compared with those at the gyroscales. This establishes the intermediate-scale
instability as the fastest instability in the linear regime of the resonant CR-driven
instabilities. Moreover, the dominance of the peak growth of the intermediate-scale
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instability is further amplified when CR ions possess larger pitch angles, corresponding to
a larger perpendicular velocity (υ⊥) (see table 1 of Shalaby et al. 2021).

As depicted in figure 4, the utilisation of the MHD approximation for describing
the linear response of the background plasma hinders the occurrence of resonances
at short wavelengths. Consequently, such an approximation suppresses the dominant,
intermediate-scale instability. Conversely, employing the Hall-MHD approximation for
the background plasma captures a resonance at kdi > 1, and, while the fastest growth
rate associated with the intermediate-scale instability is approximately captured, it is
associated with a wrong wavenumber. Additionally, this approximation erroneously
predicts the presence of intermediate-scale instability even when the conditions for the
instability are not met.

We argue in § 1 that background temperatures are unlikely to impact the growth of the
instabilities addressed in this paper. Supporting evidence for this assertion can be found
in the simulations conducted by Shalaby et al. (2021), where the background plasma was
characterised by high temperatures, yet exhibited excellent agreement with the growth
rates predicted from the dispersion relation assuming a cold background plasma. On
the other hand, it is natural to contemplate whether these instabilities, particularly the
newly discovered intermediate-scale instability, persist under different and potentially
more realistic velocity distributions for CR ions. The fundamental explanation for the
origin of these instabilities lies in the resonance between the ion-cyclotron wave modes
of CR ions and the background wave modes. Consequently, any velocity distribution that
supports CR ion-cyclotron modes while adhering to the instability conditions will excite
this instability. This argument is supported by circumstantial evidence from particle-in-cell
simulations of shocks conducted by Shalaby et al. (2022), where the instability is clearly
driven by CRs with a thermal velocity distribution.

Thus, while our choice of the CR ion distribution ensures the ease of repeatability in our
analytical calculations, it does not imply that the instability is exclusively associated with
such a choice of CR ion velocity distribution. The choice of a particular CR ion velocity
distribution could impact the growth rates of different instabilities. However, qualitative
considerations show that it is highly likely that the intermediate-scale instabilities will
remain dominant even in these cases. An analytical demonstration of this is, however,
deferred to future studies.

6. Outlook

The presence of the intermediate-scale instability is vital for the efficiency of electron
acceleration in parallel electron–ion non-relativistic shocks as seen in fully kinetic
particle-in-cell simulations (Shalaby et al. 2017a, 2021). Moreover, when the condition
for the instability is not met in simulations, a notable decrease in the efficiency of electron
acceleration is observed (Shalaby et al. 2022). That is, the significance of this instability
extends beyond its potential to regulate the transport of CRs in various astrophysical
scenarios. It could substantially influence particle injection and acceleration processes
occurring at shocks, the escape of CRs from their sources into the interstellar medium and
CR-driven galactic winds. This novel understanding of the fundamental physics underlying
CR-driven resonant plasma instabilities will contribute to elucidate the critical role played
by CRs in many astrophysical environments.
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