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Area Integral Means of Analytic Functions
in the Unit Disk

Xiaohui Cui, Chunjie Wang, and Kehe Zhu

Abstract. For an analytic function f on the unit disk D, we show that the L2 integral mean of f on
c < ∣z∣ < r with respect to the weighted area measure (1 − ∣z∣2)α dA(z) is a logarithmically convex
function of r on (c, 1), where −3 ≤ α ≤ 0 and c ∈ [0, 1). Moreover, the range [−3, 0] for α is best
possible. When c = 0, our arguments here also simplify the proof for several results we obtained in
earlier papers.

1 Introduction

Let H(D) denote the space of all analytic functions in the unit disk D of the complex
plane C. For any f ∈ H(D) and 0 < p < ∞, the classical integral means of f are
deûned by

Mp( f , r) =
1
2π ∫

2π

0
∣ f (re iθ)∣p dθ , 0 ≤ r < 1.

_ese integral means play a prominent role in classical analysis, especially in the the-
ory of Hardy spaces. For example, the well-known Hardy convexity theorem asserts
that Mp( f , r), as a function of r on (0, 1), is logarithmically convex. Logarithmic
convexity here means that the function r ↦ logMp( f , r) is convex in log r. See [1] for
an example.

In [9] Xiao and Zhu initiated the study of area integral means of f with respect to
a family of weighted area measures on the unit disk. More speciûcally, for any real α
we consider the measure

dAα(z) = (1 − ∣z∣2)α dA(z),

where dA is the area measure on D. Such measures are frequently used in the more
recent theory of Bergman spaces; see [2,3]. For f ∈ H(D) and 0 < p < ∞, we consider
the area integral means

Mp,α( f , r) =
∫∣z∣<r ∣ f (z)∣

p dAα(z)

∫∣z∣<r dAα(z)
, 0 < r < 1.
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It was shown in [6, 7] that, just like the classical integral means, Mp,α( f , r) is also
logarithmically convex on (0, 1) when −2 ≤ α ≤ 0. Furthermore, if p = 2, then
M2,α( f , r) is logarithmically convex on (0, 1) when −3 ≤ α ≤ 0, and this range for
α is best possible. Despite the elegance of these results, the proofs in [6, 7] were very
long and laborious. In a few instances we even had to use the computer algebra system
Maple to help us with the computations.

In this paper we will present a new approach to the logarithmic convexity problem
above, which not only yields a much-simpliûed proof for several results in [4–7] but
also generalizes some of these results to the case where the area integral means are
taken over the annuli c < ∣z∣ < r, where c ∈ [0, 1) is ûxed. Our main result is the
following theorem.

Main _eorem Suppose 0 ≤ c < 1, −3 ≤ α ≤ 0, p = 2, and f ∈ H(D). _en the
function

r ↦ Mp,α ,c( f , r) =∶
∫c<∣z∣<r ∣ f (z)∣

p(1 − ∣z∣2)α dA(z)

∫c<∣z∣<r(1 − ∣z∣2)α dA(z)

is logarithmically convex for r ∈ (c, 1). Furthermore, the range [−3, 0] for the weight
parameter α is best possible.

Here we assume that f is analytic in the entire unit disk D, although the integral
means are taken over the annuli c < ∣z∣ < r, r ∈ (c, 1). In fact, we will give an example
to show that the result above is false if the function f is only analytic on the annulus
c < ∣z∣ < 1. See [4, 5, 8] for recent work about integral means of analytic functions on
the complex plane with respect to Gaussian measures.

_roughout the paper we use the symbol =∶ whenever a new notation is being in-
troduced. We will use the notation A ∼ B to mean that A and B have the same sign,
which is diòerent from the meaning of this notation in most papers in the literature.
Since our main concern will be the sign of various quantities, this new use of A ∼ B
will signiûcantly simplify our presentation.

2 Preliminaries

In this section we collect several preliminary results that will be needed for the proof
of our main theorem.

Lemmas 2.1, 2.2, and 2.3 were stated and proved in [6, 7] for the interval (0, 1).
But it is clear that the conclusions still hold if (0, 1) is replaced by any interval (a, b),
where 0 ≤ a < b < ∞.

Lemma 2.1 Suppose that f is positive and twice diòerentiable on (a, b). _en
(i) f (x) is convex in log x if and only if f (x2) is convex in log x;
(ii) log f (x) is convex in log x if and only if

D( f (x)) =∶
f ′(x)
f (x)

+ x
f ′′(x)
f (x)

− x(
f ′(x)
f (x)

)
2
≥ 0

for all x ∈ (a, b).
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Lemma 2.2 Suppose that f = f1/ f2 is a quotient of two positive and twice diòeren-
tiable functions on (a, b). _en

D( f (x)) = D( f1(x)) − D( f2(x))

for x ∈ (a, b). Consequently, log f (x) is convex in log x if and only if

D( f1(x)) − D( f2(x)) ≥ 0

on (a, b).

Lemma 2.3 Suppose {hk(x)} is a sequence of positive and twice diòerentiable func-
tions on (a, b) such that the function H(x) = ∑

∞
k=0 hk(x) is also twice diòerentiable

on (a, b). If for each k the function log hk(x) is convex in log x for x ∈ (a, b), then
logH(x) is also convex in log x for x ∈ (a, b).

For the remainder of the paper we will ûx a constant c ∈ [0, 1) and con-
sider weighted area integral means Mp,α ,c( f , r) of analytic functions for r ∈ (c, 1).
Since Mp,α ,c( f , r) is a quotient of two positive and twice-diòerentiable functions,
Lemma 2.2 tells us that the logarithmic convexity ofMp,α ,c( f , r) means the numera-
tor ofMp,α ,c( f , r)must “dominate” the denominator a�er we apply the second-order
(non-linear) diòerential operator D deûned in Lemma 2.1.

We begin with the denominator, which, by polar coordinates, equals

2π∫
r

c
(1 − t2)α t dt = π∫

r2

c2
(1 − t)α dt.

To simplify notation, we let x = r2, x0 = c2, and

φ = φ(x) = ∫
x

x0
φ′(t) dt, φ′ = φ′(x) = (1 − x)α ,

where x0 < x < 1. By Lemma 2.1, we can work with the variable x on the interval
(x0 , 1) instead of r on the interval (c, 1). Let us also write

D = D(φ(x)) =
φ′

φ
( 1 + x

φ′′

φ′
− x

φ′

φ
) ,

and

(2.1) D1 = D(φ′(x)) =
φ′′

φ′
( 1 + x

φ′′′

φ′′
− x

φ′′

φ′
) =

−α
(1 − x)2 .

It is elementary to check that the derivative of D can be written as

D′ = (
φ′′

φ′
−

φ′

φ
)
φ′

φ
⋅ ( 1 + x

φ′′

φ′
− x

φ′

φ
) +

φ′

φ
(D1 − D)(2.2)

=
φ′′

φ′
D +

φ′

φ
(D1 − 2D).

A key step for us in the proof of the main theorem is the following estimates for D
and D1.

Lemma 2.4 For x ∈ (x0 , 1), we have D1 ≥ 2D when −2 ≤ α < 0 and D1 ≥ αD/(α+1)
when α < −2.
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Proof Let σ be a positive constant. _en D1 − σD ≥ 0 is equivalent to g(x) ≥ 0,
where

g(x) =
φ2

φ′
(D1 − σD) =

φ2

φ′
D1 − σφ( 1 + x

φ′′

φ′
) + σxφ′ .

Since D1 and φ are both positive for α < 0, we have

g′(x) = D′1
φ2

φ′
+ 2φD1 − D1

φ2φ′′

(φ′)2 − σφD1 ∼
φ
φ′

(
D′1
D1

−
φ′′

φ′
) + 2 − σ .

From D1 = −α/(1 − x)2 and φ′ = (1 − x)α we deduce that
D′1
D1

−
φ′′

φ′
=
α + 2
1 − x

.

_us,

g′(x) ∼
α + 2
1 − x

φ
φ′
+ 2 − σ ∼ (α + 2)φ + (2 − σ)(1 − x)α+1

= [(α + 2) − (2 − σ)(α + 1)]φ + (2 − σ)(1 − x0)α+1

for α < 0.
If −2 ≤ α < 0 and σ = 2, we clearly have g′(x) ≥ 0. Similarly, if α < −2 and

σ = α/(α + 1), we also have g′(x) ≥ 0. In both cases, we then have g(x) ≥ g(x0) =
σx0(1 − x0)α ≥ 0.

3 Proof of the Main Theorem

By Lemma 2.3, we can reduce the proof of the main theorem to the case of (non-
constant) monomials. _us, we consider the function

M(x) = M2(zn ,
√
x) = xn ,

where n is a positive integer. Mimicking what we did for the denominator of
Mp,α ,c( f , r) in the previous section, we consider the numerator of M2,α ,c( f , r) in
the special case of a monomial and write it as

h = h(x) = ∫
x

x0
M(t)φ′(t)dt, x ∈ (x0 , 1).

We easily verify that
h′ = Mφ′ , h′′ = Mφ′′ +M′φ′ ,

and

(3.1) h′′

h′
=

M′

M
+

φ′′

φ′
.

Lemma 3.1 Suppose α < 0, n > 0, and x ∈ (x0 , 1). _en

x
h′

h
− x

φ′

φ
−

1
2
n ≥ 0.

If we also have −(n + 2) ≤ α < −2, then

x
h′

h
− x

φ′

φ
−
α + 1
α + 2

n ≤ 0.
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Proof Let σ be a positive constant and consider the function

G(x) =
xh′

x φ′
φ + σn

− h.

It follows from direct computations that

G′
(x) =

h′ + xh′′

x φ′
φ + σn

−
xh′D

(x φ′
φ + σn)

2 − h′

∼ ( 1 + x
h′′

h′
)(x

φ′

φ
+ σn) − xD − (x

φ′

φ
+ σn)

2

= ( 1 + x
φ′′

φ′
− x

φ′

φ
+ (1 − σ)n)(x

φ′

φ
+ σn) − xD

∼ 1 + (1 − σ)n + x
φ′′

φ′
+ (

1
σ
− 2)x φ′

φ
=∶ G1(x).

For α < 0 and σ = 1/2, we clearly have

G′
(x) ∼ G1(x) = 1 + n

2
−
αx
1 − x

≥ 0,

which gives G(x) ≥ G(x0) = 0, or

x
h′

h
− x

φ′

φ
−

1
2
n ≥ 0.

If −(n + 2) ≤ α < −2 and σ = (α + 1)/(α + 2), we have

G1(x) =
n + α + 2
α + 2

+ x
φ′′

φ′
−

α
α + 1

x
φ′

φ

≤ x
φ′′

φ′
−

α
α + 1

x
φ′

φ
∼ −(α + 1)φ − (1 − x)α+1

= −(1 − x0)α+1
≤ 0.

_us, G′(x) ≤ 0 and G(x) ≤ G(x0) = 0, or

x
h′

h
− x

φ′

φ
−
α + 1
α + 2

n ≤ 0.

_is completes the proof of the lemma.

We can now prove the main result of the paper, which we restate as follows.

_eorem 3.2 Suppose 0 ≤ c < 1, −3 ≤ α ≤ 0, and f ∈ H(D). _en the function
M2,α ,c( f , r) is logarithmically convex for r ∈ (c, 1). Furthermore, the range [−3, 0] for
the weight parameter α is best possible.

Proof By Lemma 2.3, we just need to consider the case where f (z) = zn is a non-
constant monomial. Also, by Lemma 2.1, we can use the variable x = r2 instead of
r. _us, the proof will be completed if we can prove the logarithmic convexity of the
function h(x)/φ(x), where h and φ are the functions used in Lemmas 2.4 and 3.1.
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_is will be accomplished, according to Lemma 2.2, if we can show that ∆(x) ≥ 0 for
x ∈ (x0 , 1), where

∆(x) = D(h(x)) − D(φ(x))

=
h′

h
+ x

h′′

h
− x(

h′

h
)

2
− [

φ′

φ
+ x

φ′′

φ
− x(

φ′

φ
)

2
]

∼ h( 1 + x
h′′

h′
) − xh′ −

h2

h′
D =∶ δ(x).

It follows from direct computations that

δ′(x) = h(
h′′

h′
+ x

h′′′

h′
− x(

h′′

h′
)

2
) − 2hD − h2

(
D′

h′
−

h′′D
(h′)2 )

= hD(h′) − 2hD − h2
(
D′

h′
−

h′′D
(h′)2 ) .

Since h′ = Mφ′, it follows from Lemma 2.2 that

D(h′) = D(M) + D(φ′).

It is easy to check that D(M) = 0, so D(h′) = D(φ′) = D1. _us,

δ′(x) = h(D1 − 2D) − (
D′

h′
−

h′′D
(h′)2 )h2

∼ x
h′

h
(D1 − 2D) − x(D′ −

h′′

h′
D) .

Combining this with (2.2) and (3.1), we obtain

(3.2) δ′(x) ∼ (x
h′

h
− x

φ′

φ
)(D1 − 2D) + x

M′

M
D.

Since xM′/M = n, we have

δ′(x) ∼ (x
h′

h
− x

φ′

φ
)(D1 − 2D) + nD

= (x
h′

h
− x

φ′

φ
−

1
2
n)(D1 − 2D) +

1
2
nD1 .

By (2.1), D1 > 0 for α < 0. _erefore,

δ′(x) ∼ (x
h′

h
− x

φ′

φ
−

1
2
n)( 1 − 2 D

D1
) +

1
2
n =∶ δ1(x).

It is easy to check that

lim
x→x0

h
φ
= M(x0) = xn

0 .

By the deûnition of δ(x) and D, we have

δ(x) = h( 1 + x
h′′

h′
) − xh′ − (

h
φ
)

2 φ′

h′
(φ +

xφφ′′

φ′
− xφ′) .
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Since

lim
x→x0

h( 1 + x
h′′

h′
) = 0,

lim
x→x0

(
h
φ
)

2 φ′

h′
(φ +

xφφ′′

φ′
) = 0,

we obtain

δ(x0) = lim
x→x0

(−xh′ + (
h
φ
)

2 x(φ′)2

h′
)

= −xn+1
0 (1 − x0)α + x2n

0
x0(1 − x0)2α

xn
0 (1 − x0)α

= 0

whenever x0 = c2 > 0. It is easy to see that δ(x0) = 0 is valid for x0 = 0 as well.
If −2 ≤ α < 0, it follows from Lemmas 2.4 and 3.1 that δ1(x) ≥ 0. So δ′(x) ≥ 0,

δ(x) ≥ δ(x0) = 0, and ∆(x) ≥ 0.
If −3 ≤ α < −2, it follows from Lemmas 2.4 and 3.1 that

δ1 ≥ ( 1 − 2α + 1
α

)(x
h′

h
− x

φ′

φ
−

1
2
n) +

1
2
n

= −
α + 2
α

(x
h′

h
− x

φ′

φ
−
α + 1
α + 2

n) ≥ 0.

Hence δ′(x) ≥ 0, δ(x) ≥ δ(x0) = 0, and ∆(x) ≥ 0.
Finally, suppose that α ∉ [−3, 0]. It follows from the proof in [7] that ∆(x) < 0 for

certain monomial zk and x suõciently close to 1. _is shows that the range [−3, 0]
for α is best possible.

4 Further Remarks

Note that our main theorem is proved under the assumption that the function f is
analytic on the whole unit disk D. It is natural to ask if the result remains true when
the function f is only analytic on the annulus c < ∣z∣ < 1. We show by an example that
the answer is negative.
Consider the case where α = −1, f (z) = 1

z , and c > 0. It follows from a direct
computation that

M2,−1,c(
1
z
, r) =

log 1−c2
1−r2 + log r2

c2

log 1−c2
1−r2

.

As before, we let x0 = c2 and x = r2. _en by Lemma 2.2, we just need to consider the
logarithmical convexity of the function

H(x) =
log 1−x0

1−x + log x
x0

log 1−x0
1−x

.

By direct computations, D(H(x)) is the product of

1

x(1 − x)2( log x
x0
+ log 1−x0

1−x )
2 and (x +

x log x
x0

log 1−x0
1−x

)(x +
x log x

x0

log 1−x0
1−x

− log x
x0

) − 1.
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We denote the last expression above by g(x), which shares the same sign asD(H(x)),
and observe that

lim
x→1

g(x) = − log 1
x0

< 0.

_is implies that logH(x) is not convex in log x for x ∈ (c, 1).
Our analysis in the previous two sections is perfectly ûne if x0 = c2 = 0. _us, we

obtain the main result in [7] as a special case.
Our approach here also yields a new and easier proof for the main result in [6],

although it does not generalize the main theorem in [6] to the case of integral means
over annuli c < ∣z∣ < r when c > 0. In fact, if c = 0 and −2 ≤ α ≤ 0, then D1 − 2D ≥ 0
and

D = D(φ(x)) =
(φ − x)φ′

(1 − x)φ2 ≥ 0.

Furthermore, for the more general

M = M(x) =
1
2π ∫

2π

0
∣ f (

√
x e iθ)∣p dθ

and

h = h(x) = ∫
x

0
M(t)φ′(t) dt,

we have
h′

h
−

φ′

φ
=

φ′

hφ
(Mφ − h) =

φ′

hφ
(∫

x

0
(M(x) −M(t))φ′(t)dt) .

Since M(x) and M′(x) are both positive (so M(x) is increasing on (0, 1)), it follows
from these facts and (3.2) that δ′(x) > 0 on (0, 1). It can be checked that δ(0) = 0
in the general case as well. _us, δ(x) > δ(0) = 0 for all x ∈ (0, 1). _is implies that
∆(x) > 0 on (0, 1), which proves that Mp,α( f , r) = Mp,α ,0( f , r) is logarithmically
convex for all 0 < p < ∞ and −2 ≤ α ≤ 0.
Finally, we mention that the newmethod introduced in the paper can also be used

to simplify some of the arguments in [4, 5]. In particular, the proof of [5, _eorem
1(ii)] can be simpliûed. Details are omitted here.
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