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Abstract
We find asymptotics of the maximum size of a chordal subgraph in a binomial random graph G(n, p), for
p= const and p= n−α+o(1).
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1. Introduction
A chordal graph is a graph with no induced cycles of length at least 4. Chordal graphs are one of
the most studied classes of perfect graphs and graphs in general due to their beautiful characteri-
sations, useful and diverse properties, and various applications: chordal graphs arise in constraint
programming, relational databases, Bayesian networks for probabilistic reasoning, register alloca-
tion, etc. In particular, chordal completions of graphs are used to characterise some graph classes,
to define the treewidth, and are related to important computational problems (see [17]). Structural
properties of this family of graphs help in solving hard problems (such as proper colouring, max-
imum clique, and independent set) efficiently. Chordal graphs are also used for reconstructing
evolutionary trees [7] and are applied for semidefinite optimisation [31]. We refer the reader to
[20, 21] for comprehensive surveys on chordal graphs.

Given the prominence of chordal graphs, it is natural to expect extremal problems involv-
ing them to be studied. For example, in 1985, Erdős and Laskar [15] posed the question about
the maximum integer �(n,m) such that every graph on [n]:= {1, . . . , n} with m edges contains
a chordal subgraph with at least �(n,m) edges. The question was answered by Gishboliner and
Sudakov in [19] – they determined the value of f (n,m) for allm up to a O(

√
n) additive term and

found the exact value for all m≤ n2
3 + 1. In particular, if m< (1− ε)

(
n

2

)
, then f (n,m)< Cn for

some C = C(ε)> 0, and this is not surprising since a Ks-free graph on n vertices does not contain
a chordal subgraph with more than (s− 2)n edges, and for s large enough, there are Ks-free graphs
withm edges.

In the last decades, there has been a great interest in investigating (or even transferring results
related to) extremal combinatorial questions in random graph settings. Most attention was given
to the Turán’s problem (see, e.g. [6, 9, 11, 22, 25, 30]), and, more generally, to determining the
maximum number of edges in a subgraph of random graph that belongs to a given family of
graphs (see, e.g. [2, 5, 8, 12, 16]).

∗Michael Krivelevich: Research supported in part by USA-Israel BSF grant 2018267.
C© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0963548324000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000154
https://orcid.org/0000-0003-2357-4982
https://orcid.org/0000-0001-8763-9533
mailto:m.zhukovskii@sheffield.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548324000154&domain=pdf
https://doi.org/10.1017/S0963548324000154


612 M. Krivelevich and M. Zhukovskii

Here we consider an extremal question about chordal subgraphs in a random setting.
Gishboliner in his talk [18] asked the following average-case question: what is the size Xn of a
largest chordal subgraph in the binomial random graph G(n, p= const)? In the paper, we answer
this question asymptotically. We also find asymptotics of the maximum size of a chordal subgraph
in G(n, n−α+o(1)) for all α �= 1+k

1+2k , k ∈Z≥0.
We will make use of an equivalent definition of chordal graphs. In particular, it can be used

to get a simple upper bound on the maximum size of a chordal subgraph in a random graph,
as we show below. Let us recall that a perfect elimination ordering v1 ≺ . . . ≺ vn of the vertices
of a graph H satisfies the following requirement: for every i ∈ [n], the set of outgoing neighbours
(i.e. the neighbours of vi among v1, . . . , vi−1) induces a clique in H. It is easy to see that the
existence of a perfect elimination ordering implies that H is chordal. The opposite is also true;
thus, a graph is chordal if and only if it admits a perfect elimination ordering of its vertices [14],
[32, Chapter 5].

Assuming that a chordal graph H on [n] has � edges, we get that for any perfect elimina-
tion ordering, a certain vertex has at least �/n outgoing neighbours; thus H has a clique with
more than �/n vertices. Therefore, bounding the clique number of a graph provides an immediate
upper bound on themaximum size of its chordal subgraph. Let p= const ∈ (0, 1). Let us recall that
whp1 the clique number of Gn ∼G(n, p) equals (2− o(1)) log1/p n, and one can cover n(1− o(1))
vertices by cliques of about this size [23, Theorem 7.1, Lemma 7.13]. On the one hand, it imme-
diately implies that whp Xn ≤ 2n log1/p n. On the other hand, since a disjoint union of cliques
is chordal, we get Xn ≥ (1− o(1))n log1/p n whp. We shall prove that neither of these bounds is
asymptotically tight.

Let γ be the unique solution in ( max{1, 2p}, 2) of the equation

γ ln
2
γ

+ (2− γ ) ln
2

2− γ
= (2− γ ) ln

1
1− p

− (1− γ ) ln
1
p
. (1)

Note that a solution in ( max{1, 2p}, 2) of (1) is indeed unique: denote the difference between the
left-hand side and the right-hand side in (1) by g(γ ). Since g′(γ )= ln (2−γ )p

γ (1−p) , thus g decreases on
(2p, 2). On the other hand, the values of this difference at 2p and 1 equal g(2p)= ln 1

p > 0 and
g(1)= ln (4(1− p)), which is positive whenever p< 3

4 . It remains to observe that max{1, 2p} = 2p
when p≥ 3

4 and that g(2−)= − ln 1
p < 0.

Theorem 1. Let p= const ∈ (0, 1). Then whp
∣∣∣Xn − γ n log1/p n

∣∣∣≤ 10n log1/p log n.

Note that γ > 1, so a union of disjoint cliques of size (2− o(1)) log1/p n is indeed not an asymp-
totically optimal choice of a chordal subgraph. In particular, when p= 1/2, then γ = 1.7799 . . .

satisfies γ ln 2
γ

+ (2− γ ) ln 2
2−γ

= ln 2. We prove Theorem 1 in Section 2. Note that γ is chosen
so thatP(Bin(k, p)= s)= n−1+o(1) for k∼ 2 log1/p n and s∼ γ log1/p n – see Claim 2.2. This equal-
ity is crucial for both the upper and the lower bounds on Xn that are proven in Sections 2.2 and
2.3, respectively. In particular, it guarantees that, for an appropriately chosen k and s as above, whp
every vertex of [n] \ [n/ ln n] has s neighbours in some k-clique which is entirely inside [n/ ln n].
This observation facilitates proving the lower bound – see Section 2.2 for details.

We then investigate the problem of tractability of searching for large chordal subgraphs in
random graphs. In Section 3, we show that there is a polynomial-time algorithm that finds in Gn
a chordal subgraph with (1− o(1))n log1/p n edges whp and that a further improvement of this
result is quite unlikely.

1With high probability, that is, with probability tending to 1 as n→ ∞.
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We also study maximum sizes of chordal subgraphs in sparse random graphs. Note that, when
p< n−ε for some constant ε > 0, whp Gn ∼G(n, p) does not contain cliques of size �2/ε� + 1
implying that whp Gn does not contain chordal graphs with at least �2/ε�n edges. We found
asymptotics of the maximum size of a chordal subgraph ofG(n, n−α+o(1)) for all positive constants
α �= 1+k

1+2k , k ∈Z≥0.
First of all, for the very sparse case p≤ c/n, for some constant 0< c< 1, recall that whp all (for

p= o(1/n)) or nearly all (for p= �(1/n)) edges of Gn lie in tree components. Thus, by taking F
to be a maximal spanning forest of Gn, we conclude that in this regime whp Xn = (n

2
)
p(1+ o(1))

(unless p= �(n−2) – in that case the number of edges is not concentrated, and Xn equals the
number of edges, which is bounded in probability).

The following theorem establishes the limit in probability of Xn/n when p= n−α+o(1), for
α ∈ (0, 1] such that α �= 1+k

1+2k , for all k ∈Z≥0.

Theorem 2. Let p= n−α+o(1), for a constant α > 0.

1. If α ∈ (1/2, 1] and α /∈
{

1+k
1+2k : k ∈Z≥0

}
, then Xn/n

P→ 1+2kα

1+kα
, where kα is the largest integer

such that α < 1+kα

1+2kα
.

2. For any α ∈ (0, 1/2], we have that Xn/n
P→ 1/α.

The proof of Theorem 2 appears in Section 4. In Section 5, we pose several further questions.

2. Dense random graphs: proof of Theorem 1
2.1. Preliminaries
Let p= const ∈ (0, 1),

k+ = k+(n, p)= �2 log1/p n�, k− = k−(n, p)= �2 log1/p n− 9 log1/p log1/p n�.

We will use the following well-known bounds on the maximum size of a clique inGn (see, e.g. [23,
Theorem 7.1, Lemma 7.13]).

Claim 2.1. Whp in Gn

1. there are no cliques of size k+;
2. every set of vertices of size at least n

ln2 n contains a clique of size k−.

Also, for technical reasons, we need to estimate the probability that a fixed vertex sends s=
(γ + o(1)) log1/p n edges to a fixed set of size about (2+ o(1)) log1/p n. Note that, as follows from
the claim below, γ is defined in (1) in such a way that P[Bin(k, p)= s]= n−1+o(1).

Claim 2.2. Let x �= 1
2(1−log1/p 2/γ )

be an arbitrary (not necessarily positive) real number,

k= 2 log1/p n− x log1/p log n+O(1), s= γ log1/p n− x log1/p log n+O(1)

be integers. Then

P[Bin(k, p)= s]= 1
n
exp

[
ln ln n

(
x
(
1− log1/p

2
γ

)
− 1

2

)
(1+ o(1))

]
.
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Proof. Set ε = x ln ln nln n . Then
(

k

s

)
= �

(
1√
ln n

(
kk

ss(k− s)k−s

))
= �

(
1√
ln n

(
k
s

)s ( k
k− s

)k−s
)

= �

(
1√
ln n

(
2− ε

γ − ε

)(γ−ε) log1/p n ( 2− ε

2− γ

)(2−γ ) log1/p n
)

= exp
[
log1/p n

(
(γ − ε) ln

2− ε

γ − ε
+ (2− γ ) ln

2− ε

2− γ

)
− 1

2
ln ln n(1+ o(1)))

]
.

Since

(γ − ε) ln
2− ε

γ − ε
+ (2− γ ) ln

2− ε

2− γ
= (γ − ε) ln

2
γ

+ (γ − ε) ln
(
1− ε

2

)

− (γ − ε) ln
(
1− ε

γ

)
+ (2− γ ) ln

2
2− γ

+ (2− γ ) ln
(
1− ε

2

)

= γ ln
2
γ

+ (2− γ ) ln
2

2− γ
− ε ln

2
γ

+O(ε2),

we get that(
k

s

)
= exp

[
log1/p n

(
γ ln

2
γ

+ (2− γ ) ln
2

2− γ
− ε ln

2
γ

)
− 1

2
ln ln n(1+ o(1))

]

(1)= exp
[
log1/p n

(
(2− γ ) ln

1
1− p

− (1− γ ) ln
1
p

− ε ln
2
γ

)
− 1

2
ln ln n(1+ o(1))

]
.

Thus,

P[Bin(k, p)= s]=
(

k

s

)
ps(1− p)k−s

= exp
[
ln n

(
(2− γ ) log1/p

1
1− p

+ γ − ε log1/p
2
γ

− 1
)

− s ln
1
p

− (k− s) ln
1

1− p
−
(
1
2

+ o(1)
)
ln ln n

]

= 1
n
exp

[
ε

(
1− log1/p

2
γ

)
ln n− 1

2
ln ln n(1+ o(1))

]
,

as needed. �
Remark 2.1. In order to justify the choice of the constant factor in the second-order term in the
definition of k−, let us observe that (1) implies

log1/p
2
γ

= 1− 1
γ

− 2− γ

γ
log1/p

2(1− p)
2− γ

<
1
2

since γ < 2 and 2(1−p)
2−γ

> 1. Thus, we get that there exists ε = ε(p)> 0 such that

P[Bin(k, p)= s]≥ 1
n
exp [ ln ln n(x+ ε − 1− o(1))/2], if x> 0,

P[Bin(k, p)= s]≤ 1
n
exp [ ln ln n(x− ε − 1− o(1))/2], if x< 0.
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2.2. Lower bound
We let n′ = �n/ ln n� and k= k−(n′, p). Note that k= (2− o(1)) log1/p n. We then divide [n] into
two partsV �U, whereV has size n′. Expose first the edges ofGn spanned byV . Due to Claim 2.1,
whp there exists a set V0 ⊂V of size at most n/ ln2 n such that G(n, p)[V \V0] can be partitioned
into cliques of size k. Let K1, . . . ,Km be such cliques, where

m= (1+ o(1))
n

2 ln n log1/p n
.

Let us now expose edges of Gn between V and U. Let s be the maximum integer such that

P[Bin(k, p)≥ s]≥ P[Bin(k, p)= s]≥ ln4 n
n

.

Then a vertex u ∈U has at least s neighbours in some Kj, j ∈ [m], with probability at least

1−
(
1− ln4 n

n

)m

= 1− e−�( ln2 n) = 1− o(1/n).

By the union bound, whp, for every vertex u ∈U, there is j ∈ [m] such that u has at least s
neighbours in Kj.

Consider a subgraph H of Gn obtained from the disjoint union of cliques K1, . . . ,Km with
vertices from U, each sending s edges to exactly one of the cliques. This graph has

m
(

k

2

)
+ s|U| ≥ γ n log1/p n− 9n log1/p log n+O(n)

edges due to Claim 2.2. Indeed, letting x= 9, we get fromClaim 2.2, Remark 2.1, and the definition
of s that s> γ log1/p n− 9 log1/p log n+O(1).

It remains to prove thatH is chordal. Consider any ordering of vertices ofH, where each vertex
of V precedes any vertex of U. Obviously, this is a perfect elimination ordering implying thatH is
chordal.

2.3. Upper bound
Let k= k+(n, p). Letting

s= γ log1/p n+ 3 log1/p log n+O(1)

to be an integer, we get that

P[Bin(k, p)= s]≤ P[Bin(�k+ 3 log1/p log n�, p)= s]≤ 1
n
exp [− 2 ln ln n]. (2)

The first inequality holds true since γ > 2p and thus P[Bin(y, p)= s] increases in y on [s, k+ δ(k)]
for any choice of δ(k)= o(k): indeed

P[Bin(y+ 1, p)= s]
P[Bin(y, p)= s]

= (y+ 1)(1− p)
y+ 1− s

>
k(1+ o(1))(1− p)
k(1+ o(1))− s

= 2(1− p)+ o(1)
2− γ

> 1.

The second inequality in (2) holds true due to Claim 2.2 and Remark 2.1. Let
� = sn= γ n log1/p n+ 3n log1/p log n+O(n).

We will prove that whp the maximum number of edges in a chordal subgraph of Gn is less than �,
and this immediately implies the desired upper bound.

LetH be a chordal graph, and assume we are given a perfect elimination ordering v1 ≺ . . . ≺ vn
of the vertices of H. For every vertex vi, let d(vi) be the outdegree of vi, that is, the number of out-
going neighbours of vi, and let Kvi be the clique induced by vi and its outgoing neighbours. For
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Figure 1. Reconstruction of H from T.

every i such that d(vi)> 0, let ν(vi) be the last outgoing neighbour of vi in the given perfect elimi-
nation ordering. Consider a graph T≺(H) on the vertex set V(H) consisting of all edges {vi, ν(vi)}.
Note that T≺(H) is 1-degenerate; thus it is a forest.

We further assume that H is connected. In this case, for any perfect elimination ordering ≺,
we have that T = T≺(H) is a tree. Indeed, it is sufficient to show that, for every pair of vertices
vj ≺ vi forming an edge of H, there is a path in T from vi to vj. If ν(vi)= vj, then {vj, vi} is an edge
of T itself. Otherwise, vj ≺ ν(vi)≺ vi, {vi, ν(vi)} is an edge of both T and H, and thus {vj, ν(vi)} is
an edge of H. By induction, we eventually will get a path from vi to vj in T. Let us call T a perfect
elimination tree of H, and let v1 be the root of T. Note that any layer-preserving ordering of the
vertices of T (i.e. vertices that are further from the root in T occur later in this ordering) is a perfect
elimination ordering of H.

For any rooted tree T on [n], there is at least one connected chordal graph H such that T is its
perfect elimination tree (actually we may take H = T). In order to recover an H (uniquely) from
T, we also equip T with additional data: assume that v1 ≺ . . . ≺ vn is a layer-preserving ordering of
the vertices of T and assign to each vertex vi, i≥ 2, a vector ei ∈ {0, 1}ki that encodes the outgoing
neighbourhood of the vertex i in H, where ki = |Kν(vi)| − 1 (see Fig. 1). Thus, in H, the vertex i is
adjacent to a vertex j< ν(vi) if and only if j ∈Kν(vi) and the respective coordinate of ei equals 1.
Note that k2 = 0, and for every i≥ 3, vectors ej, j≤ i− 1, define ki uniquely.

We can now estimate the expected number of rooted trees T on [n] such that in Gn there exists
a connected chordal subgraph H with the following properties:

• H has at least � edges,
• H does not have cliques of size k,
• T is a perfect elimination tree of H.

For our goal, it is sufficient to prove that this expectation approaches 0 due to Claim 2.1.1.
In particular, since whp Gn is connected, a chordal subgraph with the maximum number of edges
is also connected (any disconnected chordal subgraph on [n] can be supplemented by an edge
between any pair of connected components); thus the connectivity assumption does not cause
a loss of generality. There are nn−1 ways to construct a rooted tree T. Take a rooted tree T and
consider any layer-preserving ordering ≺. Without loss of generality, we assume that this order-
ing is defined by the identity permutation on [n]. Thus, the desired expectation is bounded from
above by ρnn−1, where ρ is the maximum (over T) probability that Gn has a chordal subgraph
H with T = T≺(H), at least � edges, and without cliques of size k. Let us expose the edges of Gn
in the following order that ≺ induces on the pairs u< v of vertices in [n]: (u, v)< (u′, v+ 1) for
any u′, and (u, v)< (u+ 1, v). For any v≥ 2, as soon as Gn[≤ v− 1] is exposed, the outdegree of

https://doi.org/10.1017/S0963548324000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000154


Combinatorics, Probability and Computing 617

v to the clique Kν(v) (note that ν(v) is defined by T) has binomial distribution with kν(v)+ 1 tri-
als, and kν(v)+ 1 is uniquely defined by Gn[≤ v− 1]. Let us also recall that each kν(v) + 1 should
be at most k. We then get that d(2)+ . . . + d(n) is stochastically dominated by the sum of n− 1
independent Bin(k, p) random variables implying

ρ ≤ P[d(2)+ . . . + d(n)≥ �]≤ P[Bin(kn, p)≥ �]
(∗)≤ knP[Bin(kn, p)= �]

= kn
(

kn

�

)
p�(1− p)kn−�.

The inequality (∗) holds since � > (1+ ε)knp for a sufficiently small constant ε > 0 (that follows
immediately from p< γ/2), and so

(
kn

x

) (
p

1−p

)x
decreases on [�, kn] (see, e.g. [4, Chapter 1.2]).

Let us note that, for all n large enough,(
kn

�

)
=
(

kn

sn

)
= (1+ o(1))

√
k√

2πs(k− s)n
· (kn)kn

(sn)sn(kn− sn)n(k−s)

≤
(

kk

ss(k− s)k−s

)n

=
(
(1+ o(1))

√
2πs(k− s)√

k

(
k

s

))n

≤
((

k

s

)
ln n

)n
implying that

ρ ≤ kn( ln n)n
(
P[Bin(k, p)= s]

)n
.

Thus, the desired expectation is upper bounded by

k(n ln n)n
(
P[Bin(k, p)= s]

)n
≤ k exp [− n ln ln n]= o(1).

The last inequality follows from (2), completing the proof.

3. Efficient search for large chordal graphs
Chordality of graphs can be efficiently tested, and a perfect elimination ordering of vertices of a
chordal graph can be found in linear time [28]. Thus, if with bounded away from 0 probability it is
possible to find in Gn a chordal graph of size at least (1+ ε)n log1/p n in polynomial time, then it
is also possible to find a clique of size (1+ ε) log1/p n in polynomial time, but the latter is an open
problem that has received a lot of attention in the past (see, e.g. [3, 10, 24, 26]). We show that a
chordal graph of size (1+ o(1))n log1/p n can be found in Gn in polynomial time whp which is, as
observed, asymptotically tight unless the mentioned large clique search problem can be efficiently
solved.

Let m= �ln2 n�, k= �log1/p n− 4 log1/p ln n�. For brevity, we call a path consisting of m
vertices, anm-path.

Claim 3.1. There is a polynomial-time algorithm that finds in Gn a union of �n/m� disjoint k-th
powers of m-paths whp.

Proof. We use an algorithm proposed by Alon and Füredi [1]. Let n′ = �n/m�. Consider any bal-
anced partition [mn′]=V1 � . . . �Vm. We will order the vertices in every Vi sequentially starting
fromV1. The first set is ordered arbitrarily:V1 = {v11, . . . , v1n′ }. Let i ∈ {2, . . . ,m}, and assume that,
for every i′ ≤ i− 1, Vi′ = {vi′1 , . . . , vi

′
n′ } is already ordered in such a way that, for every j ∈ [n′], the
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vertex vi′j is adjacent to each of v
max{1,i′−k}
j , . . . , vi

′−1
j . Consider an auxiliary bipartite graphHi with

equal parts Vi = {v1, . . . , vn′ } (the order is initially arbitrary), Ui, where the j-th vertex of Ui is

uij =
{
vmax{1,i−k}
j , . . . , vi−1

j

}
.

We draw an edge between vj′ and uij if and only if vj′ is adjacent to each of vmax{1,i−k}
j , . . . , vi−1

j in
Gn. Note that, if we find a perfect matchingMi (which is known to be solvable in polynomial time
[27]) in Hi, then we get the desired ordering of Vi, and, eventually, ∪iMi corresponds to a union
of k-th powers ofm-paths in Gn as needed.

Observe that Hi is a binomial bipartite graph with edges appearing with probability at least
pk ≥ ln4 n

n . Thus, with probability 1− o(1/n), it has a perfect matching (see, e.g. [4, Corollary
7.13]). By the union bound, every Hi, i ∈ [m], contains a perfect matching Mi, and we can order
every Vi in the desired way. �

It remains to notice that a union of �n/m� disjoint k-th powers of m-paths is a chordal graph
with more than �n/m� (m− k

)
k= kn(1− o(1)) edges.

4. Sparse random graphs: proof of Theorem 2
For a sequence of graphs Gn on [n] and a fixed graph F, an almost F-tiling of Gn is a sequence of
subgraph Hn ⊂Gn on n(1− o(1)) vertices formed by disjoint unions of graphs isomorphic to F.
We need to recall the result of Ruciński [29] about the threshold for the existence of almost tilings
in the random graph. Let us recall that the 1-density of F is ρ(F)= |E(F)|

|V(F)|−1 . Let us call F strictly
1-balanced, if every proper subgraph of F has 1-density strictly less than ρ(F). The maximum
1-density of a graph F is the maximum 1-density over all its subgraphs: ρ∗(F)=maxH⊆F ρ(H).

Theorem 4.1 THEOREM 4.1(Ruciński [29]).Let F be a graph with a maximum 1-density ρ∗ and
p� n−1/ρ∗ . Then whp G(n, p) has an almost F-tiling.

Let p= n−α+o(1), for a constant α > 0.We consider two cases from the statement of Theorem 2
separately: in Section 4.1, we denote by k:= kα the largest integer such that α < 1+k

1+2k and prove
the theorem for α ∈ (1/2, 1]; in Section 4.2, we address the case α ∈ (0, 1/2].

4.1. α > 1/2
If 1

n � p� n−2/3, then whp Gn has a connected component of size n(1− o(1)) (see, e.g. [4, 23])
implying that whp Xn ≥ n− o(n) (a tree that covers almost all vertices of Gn is chordal). On the
other hand, the expected number of triangles is o(n), and the expected number of 4-cliques is o(1)
implying that whp there are o(n) triangles and no 4-cliques by Markov’s inequality. Then, whp for
any chordal graph H ⊂Gn and its perfect elimination ordering, no vertices have outdegree 3, and
o(n) vertices have outdegree 2. Thus, whp Xn ≤ n+ o(n). We eventually get that Xn/n

P→ 1.
Other α > 1

2 can be handled similarly: let n− 1+k
1+2k � p� n− 2+k

3+2k for some integer k≥ 1. Let H
be the square of a path of length k+ 1. Consider a graph F = F(M) obtained by gluing sequentially
M copies of H: the first vertex of the i-th copy is glued with the last vertex of the (i− 1)-th copy.
Note that F is chordal and its maximum 1-density equals ρ∗(F)= ρ∗(H)= 1+2k

1+k . By Theorem 4.1,
whp there exists an almost F-tiling inGn. In other words, whp there is a disjoint union of copies of
F (which is chordal) that cover n(1− o(1)) vertices of Gn. Clearly, for every ε > 0, there exists M
such that an almost F-tiling has at least ( 1+2k

1+k − ε)n edges for n large enough. Thus, whp Xn/n≥
1+2k
1+k − o(1).
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It remains to show that whp Xn/n≤ 1+2k
1+k + o(1). For every positive integer i, let Hi be the

family of all chordal graphs on 0 � [i] that can be obtained in the following way:

• 0 and 1 are adjacent,
• for every j ∈ [i− 1], the vertex j+ 1 is adjacent to at least 2 vertices in 0 � [j],
• for every j ∈ [i− 1], the neighbours of j+ 1 in 0 � [j], form a clique.

Note that each graph fromHi has i+ 1 vertices and at least 2i− 1 edges. SetH= �i≥1Hi.

Claim 4.2. Every 2-connected chordal graph H is isomorphic to a graph fromH.

Proof. Assume that H does not have a copy in H. Let ≺ be a perfect elimination ordering of
H, and let T be the respective perfect elimination tree of H (see Section 2.3 for the definition
of a perfect elimination tree). Without loss of generality, assume that V(H)= {0, 1, . . . , i}, and
0≺ 1≺ . . . ≺ i. We then get that there exists a vertex j ∈ {2, . . . , i} such that its outdegree is at
most 1. Let ν(j) be the parent of j in T. Let us consider a subtree T′ of T that is induced by ν(j), j,
and all descendants of j. We get that there are no edges betweenV(T) \V(T′) andV(T′) \ {ν(j)} in
H. Indeed, otherwise, let j′ be the minimum vertex from V(T′) \ {ν(j)} that is adjacent to a vertex
u from V(T) \V(T′). We have j′ �= j, and the parent ν(j′) of j′ in T′ is smaller than j′ and should
be adjacent to u as well due to chordality – a contradiction. �

Note that, for i> i′, if H ∈Hi, then H[≤ i′] ∈Hi′ . Recall that every graph fromHi has at least
2i− 1 edges. Thus, by Markov’s inequality, there existsM =M(k) such that whpGn does not have
a copy of any graph from HM , and, therefore, whp Gn does not have a copy of any graph from
H≥M . Let H′ ⊂ �k+1

i=1Hi be the set of all graphs H from �k+1
i=1Hi that have at least 2|V(H)| edges

(i.e. H ∈Hi belongs to H′ if and only if there exists j≤ i sending at least 3 edges to 0 � [j− 1] in
H). LetH′′ = �M−1

i=k+2Hi. We then observe that, for every graphH ∈H′ �H′′, the expected number
of subgraphs isomorphic to H in Gn is o(n): a graph H ∈H′ on i+ 1 vertices has at least 2i edges,
and thus the expected number of copies ofH inGn isO(ni+1n−2iα)=O(n1+i(1−2α))= o(n). In the
same way, a graph H ∈H′′ on i+ 1 vertices has at least 2i− 1 edges; thus the expected number of
copies of H in Gn is O(ni+1n−(2i−1)α)=O(n1+(k+2)−(2k+3)α)= o(n). By Markov’s inequality, whp
there are o(n) subgraphs isomorphic to a graph from H ∈H′ �H′′ in Gn.

Now, let us consider an arbitrary chordal subgraph F ⊂Gn, and let � be the set of all its non-
empty blocks (i.e. inclusion-maximal 2-connected subgraphs and edges that do not belong to any
cycle, see [13, Chapter 3.1]). Without loss of generality, we may assume that F is connected (in
particular, there are no empty blocks) since whp Gn is connected, and so the same is true for
any its inclusion-maximal chordal subgraph. Note that every edge of F belongs to some graph
in �. By Claim 4.2, we get that whp all graphs from � have copies in �M−1

i=1 Hi. Moreover, whp
the total number of edges in the graphs from � that have copies in H′ �H′′ is o(n). For every
H ∈ � that has a copy in �k+1

i=1Hi \H′, we get that H has at most k+ 2 vertices, and |E(Hi)| =
2|V(Hi)| − 3. Since the block-cutpoint graph is a tree, we get that there is an ordering of graphs
from � = {H1, . . . ,HK} such that, for every i, Hi has at most 1 common vertex with H1 ∪ . . . ∪
Hi−1. So, |E(Hi) \ E(H1 ∪ . . . ∪Hi−1)| = |E(Hi)| while |V(Hi) \V(H1 ∪ . . . ∪Hi−1)| ≥ |V(Hi)| −
1= i. Letting xH be the number of graphs from � isomorphic to H, we get that whp

ρ(F)≤ o(n)+∑k+1
i=1

∑
H∈Hi\H′ (2i− 1)xH∑k+1

i=1
∑

H∈Hi\H′ ixH
≤ 1+ 2k

1+ k
+ o(1).

The latter inequality hods true since F is connected implying that the denominator in the left-hand
side fraction is linear in n. Thus, the number of edges in F is at most 1+2k

1+k n+ o(n), completing the
proof.

https://doi.org/10.1017/S0963548324000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000154


620 M. Krivelevich and M. Zhukovskii

4.2. α ≤ 1/2
We first prove the upper bound: let us fix ε > 0 and prove that whp Xn ≤ (1/α + ε)n. Since whp
Gn does not have (�2/α� + 1)-cliques, whp in a chordal subgraph ofGn every vertex has outdegree
at most �2/α�. Moreover, arguing similarly to the proof of the upper bound of Theorem 1 from
Section 2.3, we see that the expected number of chordal subgraphs of Gn with at least (1/α +
ε)n edges and outdegrees at most �2/α� (for some perfect elimination ordering) can be upper
bounded by

nn−1Anp(1/α+ε)n ≤ (An1−1−αε+o(1))n = o(1)

for some constant A> 0. Here, nn−1 is the number of rooted trees that can play a role of a perfect
elimination tree and An is the bound for the number of ways to choose vectors ei (see Section 2.3).
Thus, by Markov’s inequality, we get that whp Xn/n≤ 1/α + o(1) as needed.

We then prove the lower bound. Let us first assume that 1/α = � ≥ 2 is an integer. For every
j ∈N, consider the following chordal graph Fj on {0} � [j]: the vertex i ∈ [j] is adjacent to its
min{j− 1, �} predecessors, that is, Fj is the �-th power of a path of length �. Note that Fj is a
strictly 1-balanced graph with 1-density strictly less than � and approaching � with growing j. By
Theorem 4.1, for every j, whp Gn has an almost Fj-tiling, implying that Xn/n≥ (1/α − o(1)) whp.

Now, let 1/α /∈Z. Let � be the minimum positive integer greater than 1/α. Note that � ≥ 3. Let
us consider the (unique) sequence xi, i ∈N, satisfying the following conditions:

• (x1, . . . , x�)= (1, 2, . . . , �);
• for every i≥ � + 1, we define recursively xi to be the maximum integer in [2, �] such that

ρi:= x1 + . . . + xi
i

<
1
α
.

Let us consider the sequence (sj)j∈N of all s such that

• ρs > � − 1,
• ρs > ρi for all i< s.

Since ρi ↑ 1/α > � − 1, there are infinitely many such s. For every j, set xj = (x1, . . . , xsj). Consider
the following graph Fj on {0} � [sj]: the vertex i ∈ [sj] is adjacent to its xi immediate predecessors.
Note that ρsj is the 1-density of Fj. Let us prove that Fj is chordal. It is sufficient to show that
the natural order of integers is perfect elimination. We first observe that, for every i> �, we have
xi ∈ {� − 1, �}. Indeed, the inequality x1 + . . . + xi−1 < 1

α
(i− 1) that holds for all i> �, implies

x1 + . . . + xi−1 + � − 1< 1
α
i since � − 1≤ 1

α
. Also, the first � + 1 vertices of Fj compose a clique.

Proceeding by induction, we get that any set of � consecutive vertices in Fj induces a clique. Thus,
every i≥ � + 1 is adjacent to at most its � predecessors, and these predecessors induce a clique. So
the considered order is indeed perfect elimination.

Since the 1-density of Fj approaches 1/α as j grows, then, for every ε > 0 and large enough j, an
almost Fj-tiling has at least (1/α − ε)n edges. Therefore, we conclude that Xn/n≥ (1/α − o(1))
by applying Theorem 4.1 which is possible since all Fj are strictly 1-balanced due to the following
claim. This completes the proof of Theorem 2.

Claim 4.3. All graphs Fj are strictly 1-balanced.

Proof. Fix j and assume that Fj is not strictly 1-balanced. Let F̃ be a proper subgraph of Fj that has
1-density ρ(F̃)≥ ρsj . First of all, let us note that without loss of generality F̃ is connected since the
1-density of F̃ does not exceed 1-densities of all its connected components. Also, we may assume
that F̃ is an induced subgraph.
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Let us assume that in F̃ some intermediate vertices are missing, that is, there exist i−, i, i+ ∈
V(Fj) such that i− < i< i+ and i−, i+ ∈V(F̃), while i /∈V(F̃). Note that the number of consecutive
missing vertices could not be bigger than � − 1 since otherwise F̃ is not connected. Let i≥ 1 be the
minimum number such that, for some μ ∈ [� − 1],

i, i+ μ + 1 ∈V(F̃), while i+ 1, . . . , i+ μ /∈V(F̃).

If i≥ � − 1, then the missing vertices from [i+ 1, i+ μ] add at least μ� > μ/α edges to F̃. Indeed,
everymissing vertex sends at least � − 1 edges to its immediate predecessors in Fj and is adjacent to
i+ μ + 1. Thus, the inequality ρ(Fj)≤ ρ(F̃) implies ρ(Fj)< ρ(F̃′), where the graph F̃′ is obtained
from F̃ by adding back the vertices i+ 1, . . . , i+ μ. If i< � − 1, then i+ 1 vertices i′ ≤ i contribute
at most (� − 1)(i+ 1) edges to E(F̃). Indeed, every vertex i′ ≤ i is adjacent to at most � and at least
� − 1 its immediate successors in Fj. Since the missing vertex i+ 1 is adjacent to all i′ ≤ i in Fj, we
get that every i′ ≤ i is adjacent to at most � − 1 its successors in F̃. Thus, the deletion of vertices
i′ ≤ i from F̃ leads to the graph F̃′ with ρ(F̃′)> ρ(Fj). We conclude that there is a proper subgraph
in Fj with the 1-density at least ρ(Fj) and without missing intermediate vertices. Thus, without
loss of generality, we may assume that F̃ is induced by [i−, i+] for certain 0< i− < i+ ≤ sj. Note
that the first inequality is strict since otherwise we get a contradiction with the definition of Fj.

Let ν > � be the minimum number such that xν = � − 1. We have that, among the first ν − 1
elements of the sequence xj, there are exactly ν − � numbers equal to �. Assume first that ν − � +
1≤ i− ≤ ν − 1. Then the missing vertices 0, 1, . . . , i−1 add at least (� − 1)(i−(ν − �))+ �(ν − �)
edges to F̃. Note that (�−1)(i−(ν−�))+�(ν−�)

i− is minimised at i− = ν − 1:

(� − 1)(i−(ν − �))+ �(ν − �)
i−

≥ (� − 1)2 + �(ν − �)
ν − 1

.

We also recall that
|E(Fj[≤ ν − 1])| + �

(|V(Fj[≤ ν − 1])| − 1)+ 1
= �(� − 1)/2+ (ν − � + 1)�

ν
≥ 1

α
,

implying that

(� − 1)2 + �(ν − �)= ν� − 2� + 1≥ ν

α
+ �2 − �

2
− 2� + 1

>
1
α
(ν − 1)+ (� − 1)+ �2 − �

2
− 2� + 1

= ν − 1
α

+ �2 − 3�
2

≥ ν − 1
α

,

since 1
α

> � − 1 and � ≥ 3. So, the “additional density” recovered by the vertices 0, 1, . . . , i−1
equals

(� − 1)(i−(ν − �))+ �(ν − �)
i−

>
1
α
.

If i− ≤ ν − �, then themissing vertices 0, 1, . . . , i−1 add at least i−� edges to F̃. Thus, in both cases,
the addition of vertices 0, 1, . . . , i−1 leads to the graph F̃′ satisfying the inequality ρ(F̃′)> ρ(Fj) –
contradiction with the property of Fj that all Fj[≤ s], s< sj, have smaller 1-densities.

It remains to consider the case i− ≥ ν. Clearly, we may assume that F̃ has at least � + 1 vertices
since otherwise ρ(F̃)≤ �

2 < � − 1< ρsj due to the fact that � ≥ 3 and the choice of sj. Due to the
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definition of xj, we have that, for every i≥ ν,
i
α

− 1≤ x1 + . . . + xi <
i
α
.

Let δi:= i
α

− (x1 + . . . + xi). We then get
i+ − i−

α
− (xi−+1 + . . . + xi+)=

i+
α

− (x1 + . . . + xi+)−
(
i−
α

− (x1 + . . . + xi−)
)

≥ δi+ − 1. (3)

On the other hand, the vertex xi−+1 sends 1≤ (xi−+1 − (� − 2)) edge to xi− in F̃, the vertex xi−+2
sends 2≤ (xi−+2 − (� − 3)) edges to {xi− , xi+} in F̃, etc., implying

ρ(F̃)≤ xi−+1 + . . . + xi+ − (1+ . . . + � − 2)
i+ − i−

≤ xi−+1 + . . . + xi+ − 1
i+ − i−

.

Therefore, due to (3), we get

ρ(F̃)≤ xi−+1 + . . . + xi+ − 1
i+ − i−

≤ (i+ − i−)/α − δi+ + 1− 1
i+ − i−

= 1
α

− δi+
i+ − i−

<
1
α

− δi+
i+

= ρ(Fj[{0, 1, . . . , i+}])≤ ρ(Fj)
by the definition of Fj – a contradiction. �

5. Concluding remarks
In this paper, we study maximum chordal subgraphs in random graphs. We have found asymp-
totics of maximum sizes of chordal subgraphs in dense and sparse random graphs.

We believe that the concentration interval in Theorem 1 is not optimal, and in particular, there
exist c ∈R and C > 0 such that whp∣∣∣Xn − γ n log1/p n− cn log1/p log n

∣∣∣≤ Cn.

Unfortunately, our techniques do not seem sufficient even to achieve the constant factor in the
second-order term. Also, we are inclined to believe that Xn is not concentrated in any interval of
length o(n).

Note that whp the maximum size of a chordal subgraph of G(n, c/n), c> 0, is n− Yn + o(n),
where Yn is the number of connected components since whp G(n, c/n) has o(n) triangles. Thus
Xn/n

P→ 1− γ (c) ∈ (0, 1), where γ (c) is the limit in probability of Yn/n, which is well known
[4, Theorem 6.12]:

γ (c)= 1
c

∞∑
i=1

ii−2

i! (ce−c)i.

In the same way, we believe that, for every k ∈N and α = 1+k
1+2k , letting p= cn−α , we would get

Xn/n
P→ γk(c) ∈

(
2k− 1

k
,
2k+ 1
k+ 1

)
, (4)

where γk(c) increases in c, and limc→0 γk(c)= 2k−1
k , limc→∞ γk(c)= 2k+1

k+1 . A possible approach
for proving (4) is to analyse the behaviour of inclusion-maximal subgraphs in G(n, p) consisting
of blocks of chordal graphs with the outdegree sequence 0, 1, 2, . . . , 2 of length k+ 3.
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It would be interesting to study maximum sizes of subgraphs of the random graphs that belong
to other families of perfect graphs (interval graphs, strongly chordal graphs, co-graphs, etc.). Note
that the maximum size of a perfect graph in G(n, p= const) equals (1/4+ o(1))pn2 whp, and the
same is true for any hereditary family that contains all bipartite graphs but does not contain at
least one 3-colourable graph [2].
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