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Abstract

Let J(m) be anm×m Jordan block with eigenvalue 1. For λ∈C \ {0, 1}, we explicitly
construct all rank 2 local systems of geometric origin on P1 \ {0, 1, λ,∞}, with local
monodromy conjugate to J(2) at 0, 1, λ and conjugate to−J(2) at∞. The construction
relies crucially on Katz’s middle convolution operation. We use our construction to
prove two conjectures of Sun, Yang and Zuo (one of which was proven earlier by Lin,
Sheng and Wang; the other was proven independently of us by Yang and Zuo) coming
from the theory of Higgs–de Rham flows, as well as a special case of the periodic Higgs
conjecture of Krishnamoorthy and Sheng.

1. Introduction

It was known (in some sense) to Riemann [Kat96, Introduction], in his work on hypergeometric
functions, that all rank 2 local systems on P1 \ {0, 1,∞} with trivial determinant and quasi-
unipotent local monodromy are of geometric origin, that is, they arise in the cohomology of a
family of varieties over P1 \ {0, 1,∞}. The case of P1 minus four points is more complicated;
Beauville [Bea82] famously classified the D⊂ P1, |D|= 4 such that P1 \D carries a family of
elliptic curves with stable reduction along D, or equivalently, carries a rank 2 Z-local system of
geometric origin with unipotent local monodromy. In general, rank 2 motivic local systems on
P1 minus four points are poorly understood (and the situation when one increases the rank or
the number of points deleted is completely mysterious).

The goal of this paper is to explicitly write down all local systems of geometric origin on
P1 \ {0, 1,∞, λ}, with local monodromies conjugate to(

1 1
0 1

)
at 0, 1, λ and with local monodromy conjugate to(−1 1

0 −1

)
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Geometric local systems on the projective line minus four points

at ∞. In so doing we give short proofs of two conjectures of Sun, Yang and Zuos [SYZ21,
Conjectures 4.8 and 4.10] on motivic local systems on X = P1 \ {0, 1,∞, λ}. [SYZ21, Conjecture
4.8] was earlier proven in [LSW22] by different methods. Our proof of Conjecture 4.10 is con-
ditional on an expected but technical statement about the periodicity of motivic parabolic
bundles under the Higgs–de Rham flow, whose proof does not appear in the literature, but
which we expect to follow without complication from the general approach of [LSZ19]; see, for
example, [LYZ23, Theorem 2.34] for a precise statement (without proof).

Remark 1.1. While this paper was in preparation Yang and Zuo [YZ23] independently claimed
a fascinating proof of [SYZ21, Conjecture 4.10], via completely different techniques from ours.1

Their 128-page proof relies on p-adic Hodge theory and the Langlands correspondence, as well
as crucially a previous conjecture of Sun, Yang and Zuo, proven by Lin, Sheng and Wang
(Theorem 1.11); by contrast our proof is only a few pages and we explicitly write down the
relevant local systems and the families in whose cohomology they appear, and we are also able
to give a new proof of Theorem 1.11. We refer the reader to Remark 1.9 for more comparisons
between the two approaches.

1.1 Main results

Let X be a smooth complex curve, and in the case where X is not proper, we pick a smooth
compactification X of X. Recall that a C-local system V on X is said to be of geometric origin
if there exist a dense open U ⊂X, and a family of smooth proper algebraic varieties π :Y →U
such that V appears as a subquotient of Riπ∗C for some i≥ 0. (The appearance of U in the
definition is a slightly technical point which the reader may ignore at first pass, and indeed it is
unnecessary for the local systems appearing in our main theorems.)

Motivated by the previous work of Faltings [Fal83], Deligne showed that, for a fixed X, there
are only finitely many Q-local systems of fixed rank n which are of geometric origin. One of our
main motivations was whether a strengthened form of Deligne’s theorem [Del87] could hold.

Question 1.2. Can there be infinitely many C-local systems of rank n on X which are of
geometric origin, and moreover whose local monodromies at the boundary X −X are fixed?

Remark 1.3. The condition on local monodromies is certainly necessary for the above question
to be interesting. Indeed, the hypergeometric local systems of rank 2 on X = P1 − {0, 1,∞} are
all of geometric origin with the local monodromies at 0, 1,∞ having eigenvalues mth roots of
unity. The point is that, upon bounding m, there are only finitely many such hypergeometric
local systems of fixed rank. We find the local monodromy condition natural since it implies that
we are considering points of the relative character varieties, which are the natural replacement
of character varieties in the case of non-proper X.

Note that [Lit21] shows that there are only finitely many K-local systems of geometric origin
on X if K embeds in any finite extension of Qp, for any prime p.

We now specialize to our case of interest. For any λ �= 0, 1, letX be the curve P1 − {0, 1, λ,∞}.
We consider rank 2 local systems on X satisfying the following condition (�): namely with local
monodromy conjugate to (

1 1
0 1

)

1Our work began in December 2022, whereas the work in [YZ23] had been ongoing for several years, as we were
informed by the authors.
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at 0, 1, λ and local monodromy conjugate to(−1 1
0 −1

)
at ∞. We recall the following definition.

Definition 1.4. A local system V on a manifold Y is said to be MCG-finite if the set of
isomorphism classes of local systems {f∗V} obtained by acting on V by elements f of the
mapping class group of Y is finite.

We may now state our first result.

Theorem 1.5. For any λ �= 0, 1, there exist infinitely many rank 2 local systems of geometric
origin on X satisfying condition (�). Moreover, a rank 2 local system on X satisfying (�) is of
geometric origin if and only if it is MCG-finite.

Remark 1.6. Theorem 1.5 answers Question 1.2 in the positive. It would be very interesting to
further investigate Question 1.2 in the case of X proper and to understand whether there is a
qualitative difference between the two cases.

This result was claimed independently, though inexplicitly, by Yang and Zuo [YZ23]; they
rephrase MCG-finiteness in terms of algebraic solutions to the Painlevé VI equation. In that
language, these solutions were, we believe, discovered originally by Hitchin [Hit95]; Lysovyy and
Tykhyy [LT14], in their classification of algebraic solutions to Painlevé VI, refer to them as the
‘Cayley solutions’. The reason for this name is that, under condition (�), the equation of the
relative character variety is the Cayley cubic: see [LT14, equation (61)].

In fact, we classify all rank 2 local systems of geometric origin and satisfying (�). The following
is the explicit form of our classification, and says that the local systems of geometric origin
satisfying (�) arise in the cohomology of an explicit family of curves (and therefore abelian
varieties).

Theorem 1.7. Let f :E→ P1 be the 2 : 1 cover branched over {0, 1,∞, λ}. Consider the fiber
square

Z ′
s

��

��W ′

��
E × P1 [s]×id �� E × P1

where W ′ is the double cover of E × P1 branched along the graph of f and E × {∞}, obtained
by normalizing E × P1 in the field

C(E × P1)(
√
f(x)− y)

for x a coordinate on E and y a coordinate on P1. For any rank 2 local system V of geometric
origin on X satisfying (�), V appears as a subquotient of the cohomology of the family

Z ′
s→E × P1 → P1

for some s∈Z>0.

Example 1.8. We write down explicitly all representations corresponding to rank 2 motivic local
systems satisfying (�). Our formulas are obtained by plugging in the values of the Cayley solutions
[LT14, p.145] into [Boa05, Equation (24)].2 Since the fundamental group π1(P

1 \ {0, 1, λ,∞})
2In the following, α, β correspond rY , rZ , respectively, of [LT14].
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is the free group generated by loops around 0, 1, λ, it suffices to write down three matrices
M0, M1, Mλ, corresponding to the images of the three generators:

M0 =

(
1 + x2x3/x1 −x22/x1

x23/x1 1− x2x3/x1

)
, M1 =

(
1 −x1
0 1

)
, Mλ =

(
1 0
x1 1

)
,

where

x1 = 2 cos

(
π(α+ β)

2

)
, x2 = 2 sin

(
πα

2

)
, x3 = 2 sin

(
πβ

2

)
for α, β ∈Q.

The idea of the proofs of Theorems 1.5 and 1.7 is to analyze local systems satisfying (�) via
Katz’s middle convolution operation [Kat96]. The key is to observe that local systems of geomet-
ric origin satisfying (�) may be obtained via middle convolution from certain finite monodromy
local systems on X. Namely, we prove that if f :E→ P1 is the double cover of P1 branched
at {0, 1,∞, λ}, then any motivic local system satisfying (�) arises via middle convolution from
f∗L|X , where L is a rank 1 local system on E with finite monodromy; moreover, this construc-
tion produces all local systems of geometric origin satisfying (�). Moreover, since f∗L|X itself is
MCG-finite, the same is true of its middle convolution.

Remark 1.9 (Comparison with the work of Yang and Zuo).

(i) As mentioned above, our main tool is Katz’s middle convolution functor. Our approach
gives new proofs of all the main results of [YZ23]. Indeed, [YZ23, Theorem 1.7] is a
corollary of Theorem 1.7, and [YZ23, Theorem 1.5] follows immediately from Lemma 3.4.

(ii) An important invariant of a local system of geometric origin is the trace field, that is,
the smallest field generated by the traces of elements of π1(X). From the description
as middle convolution of rank 1 torsion local systems on E, it is straightforward to see
that the trace fields of our local systems are Q(ζm + ζ−1

m ) for ζm a primitive mth root
of unity, with m being the order of the rank 1 local system. It does not seem possible
to derive this information with the techniques of [YZ23]; Zuo has informed us that he
conjectured these trace fields in 2018; see also [YZ23, Appendix A], where this conjecture is
alluded to. This also explains a technical point of [YZ23]. Indeed, there, the authors assume
that E has supersingular reduction at p, and crucially use the fact that the trace fields
of all irreducible SL2-local systems on X (satisfying (�)) are unramified at p. The latter
is certainly not true if E has ordinary reduction, in which case there will be rank 2 local
systems with trace field Q(ζpk + ζ−1

pk ) for any k≥ 1, which ramifies at p; correspondingly,
there are pre-periodic Higgs bundles which are not periodic, in contrast to the case where
E has supersingular reduction (cf. [YZ23, Corollary 3.4.1]).

1.2 Higgs bundles and Higgs–de Rham flows

As before, let D= {0, 1,∞, λ} ⊂ P1, X = P1 \D, and let V be a local system of geometric origin
on X of rank 2, satisfying (�). By, for example, [LL24b, Proposition 4.1.4], (V⊗OX , id⊗d)
canonically extends to a filtered flat vector bundle on P1 with logarithmic flat connection,

(F 1, E ,∇ : E → E ⊗Ω1
P1(logD)),

where (E ,∇) is the Deligne canonical extension—that is, the residues of ∇ have eigenvalues with
real parts lying in [0, 1)—and F 1 restricts to the Hodge filtration on X.
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One can show (see Proposition 3.1) that if V satisfies (�), then F 1 
OP1 and E /F 1 
OP1(−1).
The connection ∇ yields a natural map

θ : F 1 → E /F 1 ⊗Ω1
P1(logD), (1.1)

which, being a non-zero map OP1 →OP1(1), vanishes at a unique point w(V)∈ P1. Moreover,
w(V) determines V up to isomorphism (Proposition 3.2).

The following is a simple-to-state variant of a conjecture of Sun, Yang and Zuo.

Conjecture 1.10 (Slight variant of [SYZ21, Conjecture 4.10]). Let f :E→ P1 be the double
cover branched over D, viewed as an elliptic curve with identity the point over ∞. As {V} ranges
over all local systems of geometric origin satisfying (�), the w(V) are precisely the image under
f of the torsion points of E.

We prove this conjecture in Proposition 3.6, and explain how to deduce [SYZ21, Conjecture
4.10] in § 6.2.

The proof has two parts. The first is to show that those V with w(V) = f(x), for x∈E torsion,
are of geometric origin; this will follows from a more precise form of Theorem 1.7.

The second is to show that these are the only points of geometric origin. We give two
approaches, the first in Proposition 3.6, and the latter in § 5. The first approach is to again
use the middle convolution, which preserves the property of geometric origin and sends V with
w(V) not the image of a torsion point to a local system manifestly not of geometric origin.

The second approach proceeds by proving [SYZ21, Conjecture 4.8], a conjecture in the the-
ory of the Higgs–de Rham flows, as we now explain. The theory of Higgs–de Rham flows was
introduced by Lan, Sheng and Zuo [LSZ19], using Ogus and Vologodsky’s work [OV07]. The
details of this theory are rather technical, but as a rough approximation, the reader may regard
it as providing, for each variety X in positive characteristic, a functor from the category of Higgs
bundles on X to itself generalizing the Frobenius pullback on vector bundles.

Krishnamoorthy and Sheng [KS20] showed that, for Higgs bundles associated to motivic local
systems, almost all of their reductions mod p are f -periodic under the Higgs–de Rham flow for
some fixed f , independent of p (following earlier work of [LS22]). They then conjectured the
converse to hold; see, for example, [KS20] or [LSW22, Conjecture 1.7]. This is known as the
periodic Higgs conjecture.

Returning to the situation in this paper, we consider semistable, nilpotent, graded parabolic
Higgs bundles on (P1, D) whose underlying graded vector bundle is OP1 ⊕OP1(−1), as in (1.1).
As discussed above, the moduli of such Higgs bundles is isomorphic to P1, by sending a Higgs
bundle to the vanishing locus of its Higgs field. Sun, Yang and Zuo, using a ‘twisted’ version of
the Higgs–de Rham flow, produce a self-map of this moduli space, ψp : P

1 → P1. In [KS20], this
twisted flow was reinterpreted as a Higgs–de Rham flow for parabolic Higgs bundles.

The following theorem was conjectured in [SYZ21], and was proved very recently by Lin,
Sheng and Wang; we will give a more precise statement in § 4.
Theorem 1.11 ([SYZ21, Conjecture 4.8], [LSW22, Theorem 1.6]). Viewing P1 as the mod-
uli of graded nilpotent Higgs bundles as above, the map ψp : P

1 → P1 fits into the following
commutative diagram.

E
[p] ��

f
��

E

f
��

P1 ψp �� P1
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Combining with the periodicity of motivic Higgs bundles mentioned above, it immediately
implies that motivic Higgs bundles are images of torsion points of E, and hence finishes the
second proof of Conjecture 1.10. We will give a simple new proof of Theorem 1.11: see the end
of § 5.

Finally, we give a sketch of our proof of Theorem 1.11. We view E as the moduli space of
rank 1, degree 0 Higgs bundles with zero Higgs field on E. The middle convolution functor, on
the level of moduli spaces, is then represented by the map f :E→ P1; where we view the source
as a moduli of rank 1 Higgs bundles as above, and the target as a moduli of rank 2 Higgs bundles
on (P1, D). We then prove, in this case, that middle convolution commutes with the Higgs–de
Rham flow. On the other hand, the Higgs–de Rham flow for Higgs bundles of rank 1 with zero
Higgs field on E is simply represented by the map [p] (as it is simply the Frobenius pullback on
line bundles), and we therefore conclude. The detailed proof is given at the end of § 5, where we
use a trick to show the commutation between middle convolution and Higgs–de Rham flow.

Remark 1.12. Our proof of Theorem 1.11 is also significantly different than that of [LSW22]:
indeed, in [LSW22] the theorem is proved by using a relation to rank 2 Higgs bundles on E with
non-trivial Higgs field, while we do so by exhibiting a relation, via middle convolution, to rank
1 Higgs bundles on E with trivial Higgs field.

2. Preliminaries on convolution in the Betti and �-adic settings

2.1 Definitions

Let k be a field and let D⊂ P1
k be a reduced effective divisor containing ∞. Let X = P1 \D.

There are natural projection maps

πi :X ×X \Δ→X,

for i= 1, 2 as well as a map

m :X ×X \Δ→Gm

given by

m : (x, y) �→ x− y.

Let

j :X ×X \Δ ↪→ P1
k ×X

be the evident inclusion.

Definition 2.1. Let χ be a rank 1 local system on Gm, and let V be a local system on X. The
middle convolution MCχ(V) is defined to be

MCχ(V) =R1(π2)∗j∗(π∗1V⊗m∗χ).

This definition is an unwinding of [Kat96, § 2.8], without the use of the language of perverse
sheaves. For a proof that these two definitions agree, see, for example, [Kat96, § 5.1]. An alter-
native description well adapted to explicit computation is given by Dettweiler and Reiter; see
[DR03, Theorem 1.1].

Remark 2.2. In the �-adic or Betti setting, the middle convolution has a nice geometric inter-
pretation. Indeed, if V is pure of weight zero and χ has finite order, then MCχ(V) is precisely
the weight 1 part of R1(π2)∗(π∗1V⊗m∗χ).
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We will also make use of the following variant of middle convolution. Let Y be a smooth
proper curve, and let f : Y → P1 be a finite, generically étale map, with branch divisor contained
in D. Let I = f−1(∞). Let Γ be the graph of f . Then again there are natural projections

π1 : Y ×X \ (Γ∪ I ×X)→ Y, π2 : Y ×X \ (Γ∪ I ×X)→X

and a natural map

m : Y ×X \ (Γ∪ I ×X)→Gm

(y, x) �→ f(y)− x.

Let

i : Y ×X \ (Γ∪ I ×X) ↪→ Y ×X

be the evident inclusion.

Definition 2.3. Let χ be a rank 1 local system on Gm, and let V be a local system on Y . The
middle convolution MCχ(f,V) is defined to be

MCχ(f,V) =R1(π2)∗i∗(π∗1V⊗m∗χ).

The next proposition follows from, for example, proper base change.

Proposition 2.4. There is a natural isomorphism MCχ(f,V)
MCχ(f∗V|X).
The definitions as above are convenient for computing in the Betti and �-adic settings; in the

positive characteristic de Rham and Higgs settings we will use a slightly different formalism.

2.2 Betti and �-adic computations

In this section we work over an algebraically closed field k of characteristic different from 2.
Suppose D has even degree with deg(D)≥ 4 (with the case deg(D) = 2 being uninteresting) and
let f : Y → P1 be the double cover branched over D. Let L be a rank 1 local system on Y . Let
χ be the unique non-trivial rank 1 local system on Gm with χ2 = triv. We write MC−1 instead
of MCχ to emphasize this particular choice of χ.

Proposition 2.5. The rank of MC−1(f,L) is deg(D)− 2. For L non-trivial, the local mono-
dromies of MC−1(f,L) are given by the following. Let J(α, �) denote the Jordan block given by
a matrix of size � and generalized eigenvalues α.

– At a point P �=∞, there is a Jordan block J(1, 2), and all other Jordan blocks are J(1, 1).
– At P =∞, there is a Jordan block J(−1, 2), and all other Jordan blocks are J(−1, 1).

Proof. Given x∈X, the fiber Ux of π2 : Y ×X \ (Γ∪ I ×X)→X over x is isomorphic to Y \
f−1({x∪∞}), which has Euler characteristic 1− deg(D). The restriction π∗1L⊗m∗χ|Ux

has non-
trivial monodromy at the two points of f−1(x) and trivial monodromy at f−1(∞). Hence, the
Grothendieck–Ogg–Shafarevich formula yields

χ(j∗(π∗1L⊗m∗χ|Ux
)) = 2− deg(D).

As π∗1L⊗m∗χ|Ux
is a non-trivial rank 1 local system, H0(π∗1L⊗m∗χ|Ux

) =H2(π∗1L⊗
m∗χ|Ux

) = 0. Hence, MC−1(f,L) has rank equal to deg(D)− 2.
For the computation of local monodromies, we refer the reader to [DR07, Lemma 5.1]. Indeed,

MC−1(f,L) is equivalent to the standard middle convolution applied to (the restriction to X
of) f∗L, and the latter satisfies the conditions of [DR07, Lemma 5.1] by our assumptions that L
is non-trivial.
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The upshot of this proposition is that ifD= (0) + (1) + (λ) + (∞), so that Y =E is an elliptic
curve, and L is a rank 1 local system on E, then MC−1(f,L) has rank 2 and satisfies (�). In
the complex setting, if L is unitary (hence underlies a complex variation of Hodge structure,
henceforth abbreviated as C-VHS), then MC−1(f,L) underlies a C-VHS as well.

3. Proofs of the main theorems in characteristic zero

We may now give a short proof of some of our main theorems. We assume standard material
about complex variations of Hodge structure; for a brief primer see [LL24a, § 3] and [LL24b, § 4].
Before giving proofs we need some brief preliminaries.

3.1 Preliminaries

Proposition 3.1. Let X = P1 \ {0, 1,∞, λ} and let V be an irreducible complex local system
on X satisfying (�) and underlying a C-VHS. Then the Deligne canonical extension (E , F 1,∇)
of (V⊗OX , id⊗d) satisfies E 
OP1 ⊕OP1(−1), with F 1 =OP1 .

Proof. From (�), the residue matrices of ∇ at {0, 1, λ} have trace 0, and the residue matrix at
∞ has trace 1. This means that E and hence F 1 ⊕ E /F 1 has degree −1, by [EV86, B.3], for
example. Let

θ : F 1 → E /F 1 ⊗Ω1
P1(logD)

be the non-zero O-linear map obtained from ∇. As in the introduction we consider the Higgs
bundle

F 1 ⊕ E /F 1

with the Higgs field

(
0 θ
0 0

)
.

By Simpson’s theory [Sim90, Theorem 8], this Higgs bundle is parabolically stable of
parabolic degree 0. Parabolic stability implies the parabolic degree of F 1 is positive, and hence
the honest degree satisfies deg F 1 >−1. The fact that θ is non-zero implies that deg F 1 ≤
deg E /F 1 +deg Ω1

P1(logD), and hence that 2 deg F 1 ≤ deg E + 2= 1. Hence, deg F 1 = 0, and
deg E /F 1 =−1. Finally, we must have that the extension

0→ F 1 → E → E /F 1 → 0

splits as Ext1(OP1(−1),OP1) = 0.

Let D= {0, 1,∞, λ}. Given V an irreducible local system satisfying (�) and underlying a
(necessarily unique, by irreducibility) C-VHS, the above proposition shows that we may canoni-
cally associate to V a non-zero map θ :OP1 →OP1(−1)⊗Ω1

P1(logD) =OP1(1), which vanishes at
a unique point w(V) of P1, as in the introduction.

Proposition 3.2. With assumptions as in Proposition 3.1, the point w(V) determines V up to
isomorphism.

Proof. The point w(V) determines θ up to multiplication by a non-zero scalar, which by
Proposition 3.1 above determines the stable parabolic Higgs bundle associated to V up to iso-
morphism. Now Simpson’s theory [Sim90, Theorem 8] tells us that this parabolic Higgs bundle
determines V.
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3.2 De Rham and Higgs computations

As before, let f :E→ P1 denote the double cover ramified D= 0+ 1+ λ+∞, viewed as an
elliptic curve with origin e= f−1(∞). Let (L ,∇) be a locally free sheaf on E of rank 1 and
degree 0 with integrable unitary connection. If k=C, the Riemann–Hilbert correspondence gives
L := ker(∇) a rank 1 unitary local system on E. We may write L =OE(e− q) for some q ∈E.
In this section we compute the parabolic Higgs bundle on (P1, D) obtained from (L ,∇) via
middle convolution. That is, MC−1(f,L) (as defined in § 2.2) underlies a complex variation of
Hodge structure (E , F,∇) of rank 2, where (E ,∇) is a logarithmic flat vector bundle on (P1, D)
obtained as the Deligne canonical extension of MC−1(f,L), and F is the non-trivial piece of the
Hodge filtration; we will compute the natural map

θ : F → E /F ⊗Ω1
P1(logD)

obtained from ∇. More precisely, we will compute the fiber θx of θ, at each point x∈ P1 \D.
Let x1, x2 ∈E be the preimages of x. Consider the rank 1 locally free sheaf with flat connection

on (E − {x1} − {x2})× {x} corresponding to the character m∗χ under the Riemann–Hilbert
correspondence (with notation as in § 2), and let (M0,∇) denote its Deligne canonical extension
to E. The bundle M0 naturally obtains the structure of a parabolic bundle M� as in [LL24b,
Definition 3.3.1]. (See [LL24b, § 2] or § 4 in this paper for a brief recollection on parabolic
bundles.)

We claim that M0 
OE(−e). Indeed, we have the double cover (by abusing notation) m :
E→ P1 ramified at −x, 1− x, λ− x,∞, and a parabolic line bundle on P1 with parabolic weights
1/2 at 0,∞. [AB23, Equation (3.4)] shows that the underlying bundle for the parabolic pullback
is OE(−e), as claimed.

We recall the following proposition, obtained by specializing [LL24a, Theorem 5.1.6] to our
setting:3

Proposition 3.3. The fiber θx of the Higgs field associated to the complex variation of Hodge
structure MC−1(f,L) at x is computed via the map

H0(E,L ⊗M0 ⊗ ωE(x1 + x2))→H1(E,L ⊗M0)⊗ T ∗
xX

given as adjoint (via Serre duality) to the multiplication map

H0(E,L ⊗M0 ⊗ ωE(x1 + x2))⊗H0(E,L ∨ ⊗M ∨
0 ⊗ ωE)→H0(ω⊗2

E (x1 + x2))→ T ∗
xX,

where the map H0(ω⊗2
E (x1 + x2))→ T ∗

xX is the one given by pullback on cotangent spaces along
the map E→M1,2 given by

x1 �→ (E, x1,−x1).
The following is the key computation required for our proofs.

Lemma 3.4. The Higgs bundle corresponding to MC−1(f,L) has Higgs field vanishing at f(q).
That is, θf(q) = 0.

Proof. As above, we let {x1, x2}= f−1(x), and assume x1 = q. By Proposition 3.3, the Higgs
field factors through

H0(ωE(−q+ x1 + x2))⊗H0(ωE(q))→H0(ω⊗2
E (x1 + x2)).

3We match up the notation with [LL24a, Theorem 5.1.6] for the reader’s convenience. Let E◦ denote E −E[2].
We set B ⊂E◦ to be a contractible neighborhood of x1, C the constant family E ×B, s1 :B =E −E[2]→ C the
diagonal map and s2 =−s1, and V the unitary local system on C whose restriction to each fiber Cy is L⊗ (m∗χ)|Cy
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Since x1 = q, there is a natural inclusion ωE ↪→ ωE(x2) = ωE(−q+ x1 + x2), so we have the
following commutative diagram.

(3.1)

Indeed, the natural map H0(ωE)→H0(ω(−q+ x1 + x2)) is an isomorphism, and the same is
true of the mapH0(ωE)→H0(ωE(q)). Finally, the compositionH0(ω⊗2

E )→H0(ω⊗2(x1 + x2))→
T ∗
xX is zero, since this is the map induced by pullback of differentials along the composite map

E
x �→(E,x,−x)−−−−−−−−→M1,2 →M1,1,

which is constant; here, the map M1,2 →M1,1 is given by forgetting the second marked point.
This implies θf(q) = 0, as required.

3.3 Proofs

We now begin with the proofs of our main theorems in characteristic 0.

Lemma 3.5. Let X be a smooth variety. A rank 1 local system L on X is of geometric origin if
and only if it is torsion.

Proof. Torsion evidently implies geometric origin, as all torsion rank 1 local systems arise as
summands of π∗C for π : Y →X some cyclic étale cover, so we prove the converse.

Suppose L is rank 1 and of geometric origin. Then the monodromy representation of L is
defined over the ring of integers OK of some number field K. Moreover, for each embedding
OK ↪→C, L⊗OK

C is unitary, as it underlies a polarizable C-VHS of rank 1. Hence, if γ ∈ π1(X)
is a loop, the scalar in O×

K given by the monodromy of γ is an algebraic integer all of whose
Galois conjugates have absolute value 1, hence a root of unity.

Proposition 3.6 (Conjecture 1.10). Suppose V is an irreducible rank 2 local system on X
satisfying (�). V is of geometric origin if and only if V underlies a C-VHS with w(V) = f(x), for
x a torsion point of E.

Proof. Let q be a point of E. Then as the Narasimhan–Seshadri correspondence [NS65] is a
tensor functor, the unique unitary connection ∇ on L =O(q− e) has torsion monodromy if and
only if q itself is torsion; in particular, the sheaf L of flat sections of (L ,∇) is of geometric origin
if and only if q is torsion, by Lemma 3.5.

Suppose q, and hence L, is torsion. Now V=MC−1(f,L) =MC−1(f∗L|X) is evidently of
geometric origin (as middle convolution preserves the property of being of geometric origin), is
irreducible [Kat96, Theorem 2.9.8(2)], and w(V) = q by Lemma 3.4. As w(V) uniquely determines
V by Proposition 3.2, we have shown that if w(V) is torsion, then V is of geometric origin.

Conversely, suppose V is of geometric origin and w(V) = q is not torsion; we have that V=
MC−1(f,L) =MC−1(f∗L|X) for L the sheaf of flat sections to the unitary flat line bundle
(O(q− e),∇) as above, by Lemma 3.4 and Proposition 3.2. Hence, as [Kat96, Theorem 2.9.8(1)]
shows that MC−1 is involutive, we have f∗L|X =MC−1(V). So if V was of geometric origin, the
same would be true for f∗L|X , and hence for f∗f∗L|X = (L⊕L∨)|f−1(X). Hence, L itself would
be of geometric origin, and so have finite monodromy, by Lemma 3.5. But this contradicts our
assumption that q is not torsion.
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Proof of Theorems 1.5 and 1.7. Theorem 1.5 is immediate from what we have proven above;
we may simply consider MC−1(f,L) as L varies over all rank 1 local systems on E. These are
of geometric origin if and only if L has finite monodromy, and there are infinitely many such,
in which case MCG-finiteness follows from the fact that the middle convolution is equivariant
for the action of the mapping class group [DR00, Theorem 5.1], and local systems with finite
monodromy are evidently MCG-finite. On the other hand, again by the equivariance of middle
convolution for the action of the mapping class group, MC−1(f,L) is MCG-finite if and only if
the same is true for L, which happens if and only if L has finite image, by [BGMW22, Lemma 3.2],
for example.

To prove Theorem 1.7, note that the proof above tells us that each V of geometric origin
satisfying (�) is of the form R1(π2)∗i∗(π∗1L⊗m∗χ) for χ of order 2 and L a finite order rank
1 local system on E, say of order s. But the local system π∗1L⊗m∗χ on U =E × P1 \ (Γf ∪
E × {∞}) is trivialized on the preimage of U in the variety Z ′

s defined in the statement of
Theorem 1.7, by construction. Hence, its cohomology appears in the cohomology of Z ′

s→ P1, as
desired.

4. Recollections on parabolic bundles and Higgs–de Rham flows

For the rest of the paper we will not in general be working over C. We prepare to state and
prove a precise form of [SYZ21, Conjecture 4.8], stated earlier as Theorem 1.11.

4.1 Parabolic de Rham and Higgs bundles

Let C/k be a smooth proper curve over a field k, and D=
∑Di ⊂C a reduced effective divisor of

degree l; we denote by (C,D) the logarithmic curve with log structure specified by D. We refer the
reader to [KS20, Definition 2.3] for the definition of parabolic (respectively de Rham, respectively
Higgs) bundles on (C,D); roughly this consists of bundles (Vα)α indexed by (α1, . . . , αl) with
αi ∈R, such that:

– each Vα is itself a (respectively de Rham, respectively Higgs) bundle; and
– they are equipped with maps of (respectively de Rham, respectively Higgs) bundles Vα ↪−→ Vβ
for all α≥ β (where we write α≥ β whenever αi ≥ βi for all i).

The bundles (Vα)α are required to satisfy several more conditions, and the parabolic weights of
(Vα)α at Di are, roughly, the values αi such that the bundle changes at αi: see [KS20, Definition
2.3] for details.

Following [KS20, Example 2.5], we have the following construction of parabolic bundles.

Definition 4.1. Let V be an arbitrary vector bundle on C. For (α1, . . . , αl)∈Ql, we define the
parabolic bundle V (−∑l

i=1 αiDi) by

V

(
−

l∑
i=1

αiDi

)
β

= V

( l∑
i=1

−�αi + βi�Di

)
,

for any β = (β1, . . . , βl)∈Rl.

Remark 4.2. When αi = 0, the above is referred to as the trivial parabolic structure along Di.

The following relates parabolic objects on a curve with those on a cover; see [Bis97] for the
analogous result in characteristic 0.
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Proposition 4.3 [KS20, Proposition 2.14]. Suppose C′ and C are smooth curves over Fq and
π : C′ →C is a Z/N -covering, branched at the divisor D⊂C; denote by D′ the reduced divi-
sor of π∗(D). Then there is an equivalence of categories between Z/N -equivariant de Rham
(respectively, Higgs) bundles on (C′,D′) (i.e., de Rham (respectively, Higgs) bundles with triv-
ial parabolic structure along D′) and the category of parabolic de Rham (respectively, Higgs)
bundles on (C,D) whose parabolic structure is supported on D with weights in 1

NZ.

4.2 Conjecture of Sun, Yang and Zuo

We now recall the statement of [SYZ21, Conjecture 4.8]. We consider logarithmic graded
semistable Higgs bundles on (P1, D= 0+ 1+ λ+∞) such that the underlying graded vector
bundle is isomorphic to O ⊕O(−1). By [SYZ21], the moduli space MHIG of such is isomorphic
to P1, by taking the unique zero of the Higgs field; they then consider the twisted Higgs–de
Rham flow on MHIG, which in general depends on a lift of (P1, D) to W2, inducing a self-map
ψp : P

1 → P1.

Conjecture 4.4 (Sun, Yang and Zuo). For p �= 2 and any lifting of (P1, D) toW2, the following
diagram commutes

(4.1)

where f :E→ P1 is the elliptic curve double cover branched over D, with f−1(∞) being the
identity.

4.3 Translation to parabolic Higgs bundles

Following [KS20, LSW22], we translate Conjecture 4.4 into the language of parabolic Higgs–de
Rham flows, which is more natural for our purposes. Let k denote an algebraic closure of Fp,
with p different from 2, and let Fk : Spec(k)→ Spec(k) denote absolute Frobenius.

Definition 4.5.

(i) Let HIGpar
p−1,N (C,D) denote the category of parabolic logarithmic Higgs bundles on (C,D)

which are nilpotent of exponent ≤ p− 1, whose parabolic structures are supported on D,
with weights lying in 1

NZ.

(ii) Let MICpar
p−1,N (C,D) be the category of adjusted (see [KS20, Definition 2.9]) logarithmic

parabolic flat bundles on (C,D), whose p-curvatures and nilpotent part of the residues are
nilpotent of exponent ≤ p− 1, and whose parabolic structures are supported on D with
weights lying in 1

NZ.

From [KS20, Theorem 2.10], we have the parabolic version of the inverse Cartier transform:

C−1
par :HIG

par
p−1,N (C,D)→MICpar

p−1,N (C,D).

This in general depends on a chosen lift of (C,D) to W2. Note that if (E�,∇) is an object of
MICpar

p−1,N (C,D) of rank 2, the bundle Gr(E ) obtained by taking the associated graded with

respect to the Harder–Narasimhan filtration on E0 has a nilpotent Higgs field θ induced by ∇
and hence gives rise to an object Gr(E ,∇)∈HIGpar

p−1,N (C,D).

Definition 4.6. Let M 1

2
∞ denote the moduli of graded semistable parabolic Higgs bundles

on (P1, D), with underlying graded parabolic bundle (O ⊕O(−1))(−1
2∞) in the notation of

Definition 4.1.
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Proposition 4.7 [LSW22, Proposition 2.7]. The operation Gr ◦ C−1
par induces a self-map on

M 1

2
∞. Moreover, there is a natural isomorphism MHIG 
M 1

2
∞, identifying ψp with Gr ◦ C−1

par.

5. Proof of theorems in positive characteristic

We now let λ∈ Fq be distinct from 0 and 1, and denote by X the curve P1 \ {0, 1, λ,∞}. As
before, let f :E→ P1 be the elliptic curve double cover branched at 0, 1, λ,∞, and let E◦ denote
the curve E −E[2].

5.1 Middle convolution, again

We now reinterpret the constructions of § 2 to define de Rham and Higgs analogues of the local
systems MC−1(f∗L) constructed earlier, in positive characteristic.

We fix for the rest of this section a cyclic étale cover η : Ẽ→E of degree m, for some m
odd. We denote by S the surface E × P1, and by p1, p2 the projection from S to E and P1,
respectively. Let DS be the divisor Γ+E ×∞ on S, where Γ denotes the graph of f :E→ P1.

Definition 5.1. Let w :W ′ → S be the double cover branched over DS , as specified in
Theorem 1.7 (replacing C by Fq). Define the fiber product Z ′ := (Ẽ × P1)×E×P1 W ′.

We now give a more concrete description of the families of curves defined above. For x∈X,
let Zx, Wx denote the fibers of Z ′, W ′ at x; these fit into the Cartesian square.

(5.1)

Then the map Wx→E is branched over f−1(x)⊂E.

Notation 5.2. Denote by ZX , WX the fiber products Z ′ ⊗P1 X,W ′ ⊗P1 X, respectively; these are
families of curves over X, and we denote by JZ,X , JW,X the relative Jacobians of ZX , WX over
X. Also we write zX :ZX →X, wX :WX →X for the natural maps.

Proposition 5.3. The pullbacks WE◦ :=W ′ ×P1 E◦, ZE◦ :=Z ′ ×P1 E◦, equipped with maps
wE◦ :WE◦ →E◦, zE◦ :ZE◦ →E◦, may be compactified to semistable families of curves wE :
WE →E, zE :ZE →E over E. Furthermore, we may choose ZE and WE such that:

– the natural (Z/m×Z/2)×Z/2-action4 on ZE◦ extends to ZE ;
– the natural Z/2×Z/2-action on WE◦ extends to WE ; and
– there is a commutative diagram

(5.2)

extending the natural one with ZE◦ , WE◦ , E◦, and such that θ is equivariant for the first
Z/2-action, and the entire diagram is equivariant for the second Z/2-action.

Proof. The desired compactifications are obtained by normalizing W ′, Z ′ in the function fields
of WE◦ , ZE◦ . The three bullets are clear. One may prove semistability in a number of ways,

4The Z/m× Z/2-action comes from the construction of Z′ as a fiber product in Definition 5.1, whereas the
Z/2-action acting on ZE◦ =Z ×P1 E

◦ is via the −1-map on the second factor.
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for example by computing with local models; we give a proof by analyzing the monodromies
of the local systems R1wE◦,∗Q�, R

1zE◦,∗Q� about the points of E[2]. As a curve has semistable
reduction if and only if its Jacobian does, it suffices to show, by the Néron–Ogg–Shafarevich
criterion, that these local monodromies are unipotent.

Recall that we have the map zX :ZX →X. It suffices to show (as E→ P1 is ramified to order
2 at 0, 1,∞, λ) that the local monodromies of R1zX,∗Q� around all punctures have generalized
eigenvalues 1 or −1. This is true for R1zX,∗Q�/R

1wX,∗Q�, since this is a sum of middle convolu-
tions as in Theorem 1.7, and the claim about local monodromies follows from Proposition 2.5.
It remains to show the same for R1wX,∗Q�.

Denote the map E◦ →X by π◦, and let τ denote a rank 1 local system onX, given by the non-
trivial summand of π◦∗Q�. Then R

1wX∗Q� is a direct sum of the local system associated to the
constant family E ×X, and MC−1(τ). For MC−1(τ), the local monodromies at the punctures
satisfy (�), again by [DR07, Lemma 5.1].

Definition 5.4.

(i) For each character χ :Z/m→ (Fp)
×, we define M̃C

dR

−1(χ) to be the χ⊗ (−1)-isotypic5 part
of the relative log-de Rham cohomology of (ZE , z

−1
E (E[2])) over (E, E[2]). This is locally

free since zE :ZE →E is log smooth of relative dimension 1 by Proposition 5.3.6

(ii) Moreover, the additional Z/2-action in Proposition 5.3 implies that each M̃C
dR

−1(χ) has
a Z/2-equivariant structure with respect to the covering E→ P1, and so descends to a
parabolic logarithmic de Rham bundle on (P1, D) by Proposition 4.3, which we denote
by MCdR−1 (χ); moreover, the latter is equipped with a Hodge filtration descended from E.
Finally, letMCHIG−1 (χ) denote the parabolic, graded, logarithmic, Higgs bundle on (P1, D)
given by the associated graded of MCdR−1 (χ) with respect to the Hodge filtration. This
Higgs bundle is meant to be the Higgs avatar of the middle convolution applied to the de
Rham local system associated to χ.

Remark 5.5. One could construct the functors MCdR−1 and MCHIG−1 by imitating Definition 2.1
or Definition 2.3 in the de Rham and Higgs settings, respectively. We have opted for a more
geometric construction to reduce the heavy notation that would be required to execute this
strategy.

Remark 5.6. As in the proofs of Theorems 1.5 and 1.7, we will prove our main results in
characteristic p by reducing statements about Higgs bundles and flat bundles of rank 2 on the
projective line to statements about rank 1 objects on an elliptic curve. The primary issue in
proving, for example, Theorem 1.11 will be to show that the middle convolution functors we
have just constructed commute with the Higgs–de Rham flow.

As before, for x∈X, letWx be the fiber ofW
′ above x;Wx is a smooth curve and is moreover

equipped with a Z/2-covering map hW,x :Wx→Ex =E × {x}.

5Here χ⊗ (−1) denotes the character of (Z/m×Z/2), the first factor of the group (Z/m× Z/2)× Z/2 from
Proposition 5.3, given by tensoring χ with the −1-character of Z/2.
6One many argue here for local freeness as follows. The formation of log-de Rham cohomology commutes with
base change and has constant rank, as may be verified by backwards induction on the degree combined with
standard computations for log-smooth curves. The referee suggests the following perhaps more direct argument:
by [Ill90, Corollaire 2.4], it suffices to verify that, for an étale open U of (E, E[2]), the Frobenius twist of ZE lifts
to a W2-lift of U ; this follows from the smoothness of Mg,n.
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By Proposition 4.3, the Z/2-equivariant bundle with connection OWx
descends to a parabolic

logarithmic connection Jx on Ex. Let Lχ,x denote the χ-isotypic component of η∗OẼ . Note that
the isomorphism classes of Ex and Lχ,x are independent of the choice of x, and we simply denote
them by E, Lχ, respectively. The line bundle Lχ has degree 0, and so is isomorphic to OE(e− ỹ)
for a unique ỹ ∈E; we say that y := f(ỹ) is the point corresponding to Lχ.

Proposition 5.7. The fiber of MCHIG−1 (χ) at x is given by

H1(Lχ ⊗ Jx)⊕H0(Lχ ⊗ Jx ⊗Ω1
E(f

−1(x))), (5.3)

with the first (respectively, second) factor being the degree 1 (0) piece.
The Higgs field vanishes only at the point y corresponding to Lχ. Moreover, the graded vector

bundle underlying MCHIG−1 (χ) is isomorphic to O ⊕O(−1).

Proof. Since the maps ZX , WX →X are smooth, the restriction MCdR−1 (χ)|X is given by the
quotient of the relative de Rham cohomologies of ZX and WX over X. Therefore, the fiber
MCdR−1 (χ)|x is canonically identified with the χ⊗ (−1)-isotypic component of H1

dR(Zx).
Let hZ,x :Zx→E be the natural map. To take the χ⊗ (−1) isotypic component, we can first

take the χ⊗ (−1)-component of hdRZ,x,∗OZx
; the latter is a logarithmic connection on the line

bundle Lχ ⊗ Jx, with poles along f−1(x). The fiber of MCdR−1 (χ) at x is then given by taking H1

of the associated de Rham complex

Lχ ⊗ Jx→Lχ ⊗ Jx ⊗Ω1
E(f

−1(x)),

with the Hodge filtration given by the naive filtration. Therefore, the fiber of the Higgs
cohomology is given by (5.3).

Denote the graded vector bundle underlying MCHIG−1 (χ) by F ; we now prove that F 
O ⊕
O(−1) as a graded bundle.

Suppose λW ∈W (Fq) is a lift of λ, so that the divisor D lifts canonically to a divisor
DW ⊂ P1

W , and we also have the pair (EW , EW [2]) lifting (E, E[2]), as well as the cyclic étale
covering ẼW →EW . Fixing a lift χW :Z/m→W (Fp)

× of χ, we can then define a graded log-
arithmic Higgs bundle MCHIG

−1,P1
W
(χW ) on (P1

W , DW ) exactly as in Definition 5.4, which lifts

MCHIG−1 (χ).
Let us write the generic fiber MCHIG

−1,P1
W
(χW )[1/p] as M ⊕N , with M (respectively, N)

being the degree 1 (respectively, 0) piece for the Hodge grading; this is a stable Higgs
bundle of degree 0 on P1

W [1/p], with non-vanishing Higgs field. By our geometric construc-
tion, under the usual Simpson correspondence, this Higgs bundle corresponds to the local
system MC−1(f,L) in the notation of Definition 2.3, with L being a rank 1 local system
on EW (which is in turn specified by the cover ẼW →EW and χ :Z/m→W (Fp)

×). Now
MC−1(f,L) has monodromy (�) around by Proposition 2.5, and therefore the parabolic weights
of MCHIG

−1,P1
W
(χW )[1/p] are zero at 0, 1, λW and 1/2 at ∞. This forces deg(M) = 0, deg(N) =−1

by Proposition 3.1; since Chern classes are invariant under specialization, the same is true of F , as
required.

Finally, let LχW
denote the χW -isotypic component of η∗OẼW

, which is a line bundle lifting

Lχ. By Lemma 3.4, θ vanishes at the point x̃∈ P1
W [1/p] corresponding to LχW

, and hence the

Higgs field of MCHIG−1 (χ) vanishes at the point x corresponding to Lχ, as claimed.

Corollary 5.8. For all choices of η : Ẽ→E and χ, MCHIG−1 (χ) corresponds to a point in
MHIG 
M 1

2
∞, where these spaces are defined in §§ 4.2 and 4.3.
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5.2 Proof of Conjecture 4.4

Since zE :ZE →E and wE :WE →E are semistable families of curves, we may define their rela-
tive log-Higgs cohomologies (i.e., the associated graded of relative log-de Rham cohomology with
respect to the Hodge filtration), and by Proposition 4.3 we may descend to obtain parabolic log-
arithmic Higgs bundles on P1, which we denote by R1zHIG∗ OZ and R1wHIG∗ OW , respectively.
Let (E , θ) denote the quotient Higgs bundle R1zHIG∗ OZ/R

1wHIG∗ OW . Similarly, we have the
logarithmic flat bundles R1zdR∗ OZ , R

1wdR∗ OW , (EdR,∇) :=R1zdR∗ OZ/R
1wdR∗ OW .

Proposition 5.9. C−1(E , θ)|X 
 (EdR,∇)|X , and therefore Gr ◦ C−1(E , θ)|X 
 (E , θ)|X . Here
C−1 denotes the usual inverse Cartier transform, and Gr the associated graded with respect to
the Hodge filtration on de Rham cohomology.

Proof. We have (E , θ)|X 
R1zHIG
X∗ OZX

/R1wHIG
X∗ OWX

; here R1zHIG
X∗ denotes the pushforward in

the category of Higgs bundles, along zX :ZX →X, defined for example in [OV07, Definition
3.2, Remark 3.3], and similarly for R1wHIG

X∗ . The first statement now follows from [OV07,
Theorem 3.8] since for any lift X̃ of X to W2, we have corresponding lifts of ZX , WX to W2, by
repeating Definition 5.1. The second statement is immediate.

Proof of Conjecture 4.4. Let g : P1 → P1 be the map making (4.1) commute. Then g has degree
p2, and the same is true of Gr ◦ C−1

par by [SYZ21, § 4.3]; therefore it suffices to show that Gr ◦ C−1
par

and g agree on infinitely many closed points. For any m≥ 1 odd, let Ẽ→E be a non-trivial
étale Z/m-covering, and for any character χ :Z/m→ Fp we have the Higgs bundles MCHIG−1 (χ)
on (P1, D), defined in Definition 5.4. By Lemma 5.8, these Higgs bundles correspond to points
in MHIG 
 P1 and we will show that g and Gr ◦ C−1

par agree on all of these points.
Recall that Fk : k→ k denotes absolute Frobenius. The Higgs–de Rham functor Gr ◦ C−1

is Fk-linear, and by Proposition 5.97 Gr ◦ C−1(E , θ)|X 
 (E , θ)|X . Now MCHIG−1 (χ)|X is the χ-
isotypic component for the Z/m-action on (E , θ)|X , and therefore Gr ◦ C−1(MCHIG−1 (χ))|X is
the χp-isotypic component. On the other hand, by definition of the MCHIG−1 (χ) the χp-isotypic
component is given byMCHIG−1 (χp)|X . Therefore, Gr ◦ C−1(MCHIG−1 (χ))|X 
MCHIG−1 (χp)|X , and
hence Gr ◦ C−1

par(MCHIG−1 (χ))
MCHIG−1 (χp) since they are both isomorphic to O ⊕O(−1) as
graded bundles and hence are determined by the vanishing locus of the Higgs field, which is
a reduced point of X. By the explicit description of MCHIG−1 (χ) given in Proposition 5.7, in
particular the claim about the vanishing locus of the Higgs field, we may conclude.

6. Some loose ends

6.1 Motivicity

A well-known consequence of the Langlands correspondence is that all semisimple local systems
(with finite order determinant, say) on curves over finite fields are of geometric origin. However,
one expects there to be far fewer geometric local systems in characteristic 0, and that the local
systems in characteristic p will not in general lift ‘motivically’ to characteristic 0. We show that
the case studied in this paper is an exception to this expectation.

For each λ∈ Fq, suppose we have a rank 2 tame Q�-local system V on X = P1 − {0, 1, λ,∞}
satisfying (�). Let λW ∈W (Fq) be a lift of λ, and letXW = P1 − {0, 1, λW ,∞} be the correspond-
ing lift of X, and f̃ the lift of f . By definition V corresponds to a representation of the tame

7Note that Gr in the statement of Proposition 5.9, which is a priori the Hodge filtration restricted to MCHIG
−1 (χ),

is also the Harder–Narasimhan filtration, which is what Sun, Yang and Zuo use to formulate their conjecture; we
refer to these unambiguously as Gr.
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fundamental group πt1(X); the specialization map sp : πt1(XW )→ πt1(X) gives a local system on
XW , which we denote by VW .

Proposition 6.1. The local system VW is motivic, that is, there exists an abelian scheme
π :A→XW such that VW appears as a direct summand of R1π∗Q�.

Proof. Note that, by using the Weil restriction of abelian schemes [BLR12, § 7.6], it suffices
to show that the pullback of VW to XW ⊗ Spec(W (Fq2)) appears as a direct summand of an
abelian scheme. This now follows by applying MC−1 to V. Indeed, by Proposition 2.5 and
invertibility of middle convolution,MC−1(V) has rank 2, and the local monodromies at 0, 1, λ,∞
are each semisimple with eigenvalues 1 and −1. As in the rest of the paper, let f :E→ P1 be
the elliptic curve branched at 0, 1, λ,∞, and let f◦ :E◦ =E −E[2]→X denote the restriction to
X. Therefore, f◦∗MC−1(V) extends to a local system on E, and let us denote this by W. Then
either W is reducible, and W
L⊕ [−1]∗L for a rank 1 local system L on E, or it is irreducible
and of the form h∗L for a rank 1 local system L on EFq2

, and h the natural map EFq2
→E. Now

let f̃ :EW → P1 denote the elliptic curve branched at 0, 1, λW ,∞. In the first case above, L lifts
canonically to a rank 1 local system L̃ on EW , and we have MC−1(f̃ , L̃)
VW , and therefore
the latter appears in an abelian scheme. In the second case, the same argument applies after we
pull VW back to XW ⊗W (Fq2).

Remark 6.2. We knew a priori that V was motivic, as it is an arithmetic local system on a curve
over a finite field [Laf02, § 6]. The Higgs field of the associated Higgs bundle vanishes at a point
of X, which is necessarily the image of a torsion point of E (as every closed point of an elliptic
curve over a finite field is torsion). That the local system lifts to a motivic local system should
perhaps be unsurprising, as we may lift the torsion point above to characteristic 0.

6.2 Lifting to motivic Higgs bundles over W

Fix λ∈ Fq, λW ∈W (Fq) lifting λ, and set X = P1 \ {0, 1, λ,∞}, XW = P1 \ {0, 1, λW ,∞}.
We remark that each parabolic Higgs bundle MCHIG−1 (χ), as constructed in Definition 5.4,

lifts toW motivically. In fact, this was used in the proof of Proposition 5.7. More precisely, there
is a parabolic Higgs bundle MCHIG

−1,P1
W
(χW ) on P1, with:

– logarithmic poles along the divisor (0) + (1) + (λW ) + (∞) whose reduction mod p is
MCHIG−1 (χ);

– and which comes from an abelian scheme, in the sense that, after pulling back along the
double cover EW → P1

W , this Higgs bundle occurs in the Higgs cohomology of a semistable
family of abelian varieties (i.e., with semistable reduction at 0, 1, λW ,∞).

Assuming that the parabolic Higgs bundles for a semistable family of abelian varieties are
periodic for the parabolic Higgs–de Rham flow over W , and that the twisted Higgs–de Rham
flow of [SYZ21] can be identified with the parabolic Higgs–de Rham flow, this proves [SYZ21,
Conjecture 4.10]. Note that the mod p version of these statements has been worked out; see, for
example, [KS20, Proposition 5.6] and [LSW22, Proposition 2.7]. The statements over W seem
not to have been written down, but see [LYZ23, Lemma 2.35], which indicates that they follow
by the methods developed in [LSZ19].
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