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Machine learning frameworks such as genetic programming and reinforcement learning
(RL) are gaining popularity in flow control. This work presents a comparative analysis
of the two, benchmarking some of their most representative algorithms against global
optimization techniques such as Bayesian optimization and Lipschitz global optimization.
First, we review the general framework of the model-free control problem, bringing
together all methods as black-box optimization problems. Then, we test the control
algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical
system featuring frequency cross-talk, (2) the wave cancellation from a Burgers’ flow and
(3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to
illustrate their differences in exploration versus exploitation and their balance between
‘model capacity’ in the control law definition versus ‘required complexity’. Indeed,
we discovered that previous RL control attempts of controlling the cylinder wake
were performing linear control and that the wide observation space was limiting their
performances. We believe that such a comparison paves the way towards the hybridization
of the various methods, and we offer some perspective on their future development in the
literature of flow control problems.

Key words: flow control

1. Introduction

The multidisciplinary nature of active flow control has attracted interests from many
research areas for a long time, (Gad-el Hak 2000; Bewley 2001; Gunzburger 2002; Wang
& Feng 2018) and its scientific and technological relevance have ever-growing proportions
(Bewley 2001; Brunton & Noack 2015; Noack, Cornejo Maceda & Lusseyran 2023).
Indeed, the ability to interact and manipulate a fluid system to improve its engineering
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benefits is essential in countless problems and applications, including laminar to turbulent
transition (Schlichting & Kestin 1961; Lin 2002), drag reduction (Gad-el Hak 2000;
Wang & Feng 2018), stability of combustion systems (Lang, Poinsot & Candel 1987),
flight mechanics (Longuski, Guzmén & Prussing 2014), wind energy (Munters & Meyers
2018; Apata & Oyedokun 2020) and aeroacoustic noise control (Collis, Ghayour &
Heinkenschloss 2002; Kim, Bodony & Freund 2014), to name just a few.

The continuous development of computational and experimental tools, together with the
advent of data-driven methods from the ongoing machine learning revolution, is reshaping
tools and methods in the field (Noack 2019; Noack et al. 2023). Nevertheless, the quest for
reconciling terminology and methods from the machine learning and the control theory
community has a long history (see Sutton, Barton & Williams 1992; Bersini & Gorrini
1996) and it is still ongoing, as described in the recent review by Recht (2019) and
Nian, Liu & Huang (2020). This article aims at reviewing some recent machine learning
algorithms for flow control, presenting a unified framework that highlights differences and
similarities amidst various techniques. We hope that such a generalization opens the path
to hybrid approaches.

In its most abstract formulation, the (flow) control problem is essentially a functional
optimization problem constrained by the (fluid) systems’ dynamics (Stengel 1994; Kirk
2004). As further discussed in § 2, the goal is to find a control function that minimizes
(or maximizes) a cost (or reward) functional that measures the controller performances
(e.g. drag or noise reduction). Following Wiener’s metaphors (Wiener 1948), active
control methods can be classified as white, grey or black depending on how much
knowledge about the system is used to solve the optimization: the whiter the approach,
the more the control relies on the analytical description of the system to be controlled.

Machine-learning-based approaches are ‘black-box’ or ‘model-free’ methods. These
approaches rely only on input—output data, and knowledge of the system is gathered by
interacting with it. Bypassing the need for a model (and underlying simplifications), these
methods are promising tools for solving problems that are not amenable to analytical
treatment or cannot be accurately reproduced in a numerical environment. Machine
learning (Mitchell 1997; Vladimir Cherkassky 2008; Abu-Mostafa, Magdon-Ismail &
Lin 2012; Brunton, Noack & Koumoutsakos 2020) is a subset of artificial intelligence
that combines optimization and statistics to ‘learn’ (i.e. calibrate) models from data
(i.e. experience). These models can be general enough to describe any (nonlinear) function
without requiring prior knowledge and can be encoded in various forms: examples are
parametric models such as radial basis functions (RBFs, see Fasshauer 2007) expansions
or artificial neural networks (ANNSs, see Goodfellow, Bengio & Courville 2016), or tree
structures of analytic expressions such as in genetic programming (GP, developed by Koza
1994). The process by which these models are ‘fitted” to (or ‘learned’ from) data is an
optimization in one of its many forms (Sun ez al. 2019): continuous or discrete, global or
local, stochastic or deterministic. Within the flow control literature, at the time of writing,
the two most prominent model-free control techniques from the machine learning literature
are GP and reinforcement learning (RL) (Sutton & Barto 2018). Both are reviewed in this
article.

Genetic programming is an evolutionary computational technique developed as a
new paradigm for automatic programming and machine learning (Banzhaf er al.
1997; Vanneschi & Poli 2012). Genetic programming optimizes both the structure and
parameters of a model, which is usually constructed as recursive trees of predefined
functions connected through mathematical operations. The use of GP for flow control has
been pioneered and popularized by Noack and coworkers (Duriez, Brunton & Noack 2017;
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Noack 2019). Successful examples on experimental problems include the drag reduction
past bluff bodies (Li et al. 2017), shear flow separation control (Gautier et al. 2015; Benard
et al. 2016; Debien et al. 2016) and many more, as reviewed by Noack (2019). More
recent extensions of this ‘machine learning control’ (MLC) approach, combining genetic
algorithms with the downhill simplex method, have been proposed by Li et al. (2022) and
Cornejo Maceda et al. (2021).

Reinforcement learning is one of the three machine learning paradigms and
encompasses learning algorithms collecting data ‘online’, in a trial and error process.
In deep reinforcement learning (DRL), ANNs are used to parametrize the control law
or to build a surrogate of the Q function, defining the value of an action at a given
state. The use of an ANN to parametrize control laws has a long history (see Lee et al.
1997), but their application to flow control, leveraging on RL algorithms, is in its infancy
(see also Li & Zhang 2021 for a recent review). The landscape of RL is vast and grows
at a remarkable pace, fostered by the recent success in strategy board games (Silver et
al. 2016, 2018), video games (Szita 2012), robotics (Kober & Peters 2014), language
processing (Luketina et al. 2019) and more. In the literature of flow control, RL has been
pioneered by Komoutsakos and coworkers (Gazzola, Hejazialhosseini & Koumoutsakos
2014; Verma, Novati & Koumoutsakos 2018); see also Garnier et al. 2021; Rabault &
Kuhnle 2022 for more literature. The first applications of RL in fluid mechanics were
focused on the study of the collective behaviour of swimmers (Novati et al. 2017; Verma
et al. 2018; Wang & Feng 2018; Novati & Koumoutsakos 2019; Novati, Mahadevan &
Koumoutsakos 2019), while the first applications for flow control were presented by Pivot,
Cordier & Mathelin (2017), Guéniat, Mathelin & Hussaini (2016) and by Rabault et al.
(2019, 2020) and Rabault & Kuhnle (2019). A similar flow control problem has been
solved numerically and experimentally via RL by Fan er al. (2020). Bucci et al. (2019)
showcased the use of RL to control chaotic systems such as the one-dimensional (1-D)
Kuramoto—Sivashinsky equation; Beintema ez al. (2020) used it to control heat transport
in a two-dimensional (2-D) Rayleigh—Bénard system while Belus et al. (2019) used RL to
control the interface of unsteady liquid films. Ongoing efforts in the use of DRL for flow
control are focused with increasing the complexity of the analysed test cases, either by
increasing the Reynolds number in academic test cases (see Ren, Rabault & Tang 2021) or
by considering realistic configurations (Vinuesa et al. 2022).

In this article we consider the deep deterministic policy gradient (DDPG, Lillicrap
et al. 2015) as a representative deterministic RL algorithm. This is introduced in § 3.3,
and the results obtained for one of the investigated test cases are compared with those
obtained by Tang et al. (2020) using a stochastic RL approach, namely the proximal policy
optimization (PPO) Schulman et al. (2017).

This work puts GP and RL in a global control framework and benchmarks their
performances against simpler black-box optimization methods. Within this category,
we include model-free control methods in which the control action is predefined and
prescribed by a few parameters (e.g. a simple linear controller), and the model learning
is driven by global black-box optimization. This approach, using genetic algorithms, has a
long history (Fleming & Fonseca 1993). However, here we focus on more sample efficient
alternatives such as the Bayesian optimization (BO) and the Lipschitz global optimization
(LIPO) technique. Both are described in § 3.1.

The BO is arguably the most popular ‘surrogate-based’, derivative-free, global
optimization tool, popularized by Jones, Schonlau & Welch (1998) and their efficient
global optimization algorithm. In its most classic form (Forrester, S6bester & Keane
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2008; Archetti & Candelieri 2019), the BO uses a Gaussian process (GPr) (Rasmussen
& Williams 2005) for regression of the cost function under evaluation and an acquisition
function to decide where to sample next. This method has been used by Mahfoze et al.
(2019) for reducing the skin-friction drag in a turbulent boundary layer and by Blanchard
et al. (2022) for reducing the drag in the fluidic pinball and for enhancing mixing in a
turbulent jet.

The LIPO algorithm is a more recent global optimization strategy proposed by Malherbe
& Vayatis (2017). This is a sequential procedure to optimize a function under the
only assumption that it has a finite Lipschitz constant. Since this method has virtually
no hyperparameters involved, variants of the LIPO are becoming increasingly popular
in hyperparameter calibration of machine learning algorithms (Ahmed, Vaswani &
Schmidt 2020), but to the authors’ knowledge it has never been tested on flow control
applications.

All the aforementioned algorithms are analysed on three test cases of different
dimensions and complexity. The first test case is the zero-dimensional (0-D) model
proposed by Duriez et al. (2017) as the simplest dynamical system reproducing the
frequency cross-talk encountered in many turbulent flows. The second test case is the
control of nonlinear travelling waves described by the 1-D Burgers’ equation. This test case
is representative of the challenges involved in the control of advection—diffusion problems.
Moreover, recent works on Koopman analysis by Page & Kerswell (2018) and Balabane,
Mendez & Najem (2021) have provided a complete analytical linear decomposition of
the Burgers’ flow and might render this test case more accessible to ‘white-box’ control
methods. Finally, the last selected test case is arguably the most well-known benchmark in
flow control: the drag attenuation in the flow past a cylinder. This problem has been tackled
by nearly the full spectra of control methods in the literature, including reduced-order
models and linear control (Park, Ladd & Hendricks 1994; Bergmann, Cordier & Brancher
2005; Seidel et al. 2008), resolvent-based feedback control (Jin, Illingworth & Sandberg
2020), RL via stochastic (Rabault et al. 2019) and deterministic algorithms (Fan et
al. 2020), RL assisted by stability analysis (i & Zhang 2021) and recently also GP
(Castellanos et al. 2022).

We here benchmark both methods on the same test cases against classic black-box
optimization. Emphasis is given to the different precautions these algorithms require,
the number of necessary interactions with the environment, the different approaches
to balance exploration and exploitation, and the differences (or similarities) in the
derived control laws. The remainder of the article is structured as follows. Section 2
recalls the conceptual transition from optimal control theory to MLC. Section 3 briefly
recalls the machine learning algorithm analysed in this work, while §4 describes the
introduced test cases. Results are collected in § 5 while conclusions and outlooks are given
in § 6.

2. From optimal control to machine learning

An optimal control problem consists in finding a control action a(f) € A, within a feasible
set A C R", which optimizes a functional measuring our ability to keep a plant in control
theory and an environment in RL close to the desired states or conditions. The functional

is usually a cost to minimize in control theory and a payoff to maximize in RL. We follow
the second and denote the reward function as R(a). The optimization is constrained by the
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plant/environment’s dynamic,

T
max, R(a) = ¢(s(T)) +/ L(s(7), a(r), 1) dr,
0

a()e

2.1
5o =rew.aw.n, e,
o {s<0)=so,

where f : R x R" — R’ is the vector field in the phase space of the dynamical system
and s € R™ is the system’s state vector. The action is taken by a controller in optimal
control and an agent in RL.

The functional R(a) comprises a running cost (or Lagrangian) £ : R™ x R"™ — R,
which accounts for the system’s states evolution, and a terminal cost (or Mayer term)
¢ : R — R, which depends on the final state condition. Optimal control problems with
this cost functional form are known as the Bolza problem (Evans 1983; Stengel 1994; Kirk
2004).

In closed-loop control, the agent/controller selects the action/actuation from a feedback
control law or policy 7 :R™ — R™ of the kind a(f) = n(s(t)) € R" whereas in
open-loop control the action/actuation is independent from the system states, i.e. a(t) =
1t(¢#) € R". One could opt for a combination of the two and consider a control law/policy
7 : R+ — R of the kind a(f) = n(s(¢), 1) € R".

All model-free methods seek to convert the variational problem in (2.1) into an
optimization problem using function approximators such as tables or parametric models.
Some authors treated the machines learning control as a regression problem (Duriez et al.
2017) and others as a dynamic programming problem (Bucci ez al. 2019). We here consider
the more general framework of black-box optimization, which can be tackled with a direct
or indirect approach (see figure 1).

In the black-box optimization setting, the function to optimize is unknown and the
optimization relies on the sampling of the cost function. Likewise, the equations governing
the environment/plant are unknown in model-free control techniques and the controller
design solely relies on trial and error. We define the discrete version of (2.1) by
considering a uniform time discretization #; = kAt in the interval ¢ € [0, T], leading to
N =T/At+ 1 points indexed as k =0, ...N — 1. Introducing the notation s; = s(f),
we collect a sequence of states S := {s1,s2...sy} while taking a sequence of actions
A" :={aj, ay...ay}. Collecting also the reward L(sy, ai, k), each state-action pair allows
for defining the sampled reward as

N—1

RA™) = ¢(sv) + Y _ Lisk af . k), (2.2)
k=0

where N is the number of interactions with the systems and defines the length of an
episode, within which performances are evaluated. In the RL literature, this is known as
cumulative reward and the Lagrangian takes the form L(s, aj , k) = ykr(sk, ay) = yk w,
where y € [0, 1] is a discount factor to prioritize immediate over future rewards.

The direct approach (figure 1a) consists in learning an approximation of the optimal
policy from the data collected. In the RL literature these methods are referred to as ‘on
policy’ if the samples are collected following the control policy and ‘off policy’ if these
are collected following a behavioural policy that might significantly differ from the control
policy.

958 A39-5


https://doi.org/10.1017/jfm.2023.76

https://doi.org/10.1017/jfm.2023.76 Published online by Cambridge University Press

F. Pino, L. Schena, J. Rabault and M.A. Mendez

(@) Learning | "1 _
method

Controller/agent < -
T(sw,)

States Action

Skl @

Environment
/plant

()

Learning
method

Controller/agent —
7 = arg max Q(s;, a; w,)
a

Action
@

Environment
/plant

Figure 1. General setting for a machine-learning-based control problem: the learning algorithm (optimizer)
improves the agent/control performances while this interacts with the environment/plant. Here k spans the
number of interactions within an episode and n spans the number of episodes during the training. A function
approximator is used for the actuation policy in («) and the state-value function in (). In both cases, the control
problem is an optimization problem for the parameters w.

Focusing on deterministic policies, the function approximation can take the form of a
parametric function a™ = 7t(s; w), where w € R™ is the set of (unknown) weights that
must be learned. On the other hand, in a stochastic policy the parametric function outputs
the parameters of the distribution (e.g. mean and standard deviation in a Gaussian) from
which the actions will be sampled. In either case, the cumulative reward is now a function
of the weights controlling the policy and the learning is the iterative process that leads
to larger R(w,) episode after episode (cf. figure 1a). The update of the weights can be
carried out at each interaction k or at each episode n. Moreover, one might simultaneously
train multiple versions of the same parametrization (i.e. advance multiple candidates at
the same time) and seek to improve the policy by learning from the experience of all
candidates. In multi-agent RL the various agents (candidates) could cooperate or compete
(Busoniu, Babuska & Schutter 2010; Lowe et al. 2017).

In the classic GP approach to model-free control (Duriez et al. 2017), the function
approximation is built via expression trees and w is a collection of strings that define the
operations in the tree. The GP trains a population of agents, selecting the best candidates
following an evolutionary approach. Concerning the BO and LIPO implemented in
this work and described in the following section, it is instructive to interpret these
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as single-agent and ‘on-policy’ RL approaches, with policy embedded in a parametric
function and training governed by a surrogate-based optimizer that updates the parameters
at the end of each episode.

In contrast to direct methods, indirect methods (figure 15) do not use function
approximators for the policy but seek to learn an estimation of the state-value function Q,
also known as the Q function in RL. For a deterministic agent/controller and deterministic
environment/plant, this is defined as

N
Q" (51, a) = ¢r(sn) + r(se.a) + Y Lo(sk, af, k) = riss, a) +yV (s, (2.3)
k=t+1

where

N N
Vi) = ¢(sn) + Y Lrsi af, k) = dsw) + )y il =+ y V(s (24)
k=t k=t

is the value function according to policy T, i.e. the cumulative reward one can get starting
from state s; and then following the policy m. The Q function gives the value of an action
at a given state; if a good approximation of this function is known, the best action is simply
the greedy ax = argmax,, Q(s;, a;). Then, if Q(sk, ax; wn) denotes the parametric function
approximating Q(si, ax), learning is the iterative process by which the approximation
improves, getting closer to the definition in (2.3). The black-box optimization perspective
is thus the minimization of the error in the Q prediction; this could be done with a huge
variety of tools from optimization.

Methods based on the Q function are ‘off policy’ and descend from dynamic
programming (Sutton & Barto 2018). The most classic approach is deep Q learning (DQN,
Mnih et al. 2013). ‘Off-policy’ methods are rather uncommon in the literature of flow
control and are now appearing with the diffusion of RL approaches. While most authors
use ANNs as function approximators for the Q function, alternatives have been explored
in other fields. For example, Kubalik et al. (2021) uses a variant of GP while Kuss &
Rasmussen (2003), Goumiri, Priest & Schneider (2020) and Fan, Chen & Wang (2018) use
Gaussian processes as in classic BO. We also remark that the assumption of a deterministic
system is uncommon in the literature of RL, where the environment is usually treated
as a Markov decision process (MDP). We briefly reconsider the stochastic approach in
the description of the DDPG in §3.3. Like many modern RL algorithms, the DDPG
implemented in this work combines both ‘on-policy’ and ‘off-policy’ approaches.

3. Implemented algorithms
3.1. Optimization via BO and LIPO

We assume that the policy is a predefined parametric function a = nt(s;; w™) € R" with a
small number of parameters (say n,, ~ O(10)). The dimensionality of the problem enables
efficient optimizers such as BO and LIPO; other methods are illustrated by Duriez et al.
(2017).

3.1.1. Bayesian optimization

The classic BO uses a GPr as surrogate model of the function that must be optimized. In
the ‘on-policy’ approach implemented in this work, this is the cumulative reward function
R(w); from (2.3) and (2.4), this is R(w) = V"™ (s0) = Q(s0, a;).
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Let W* := {wy, wy...wp,} be a set of n, tested weights and R* := {Ry, Ry ...R,,} the
associated cumulative rewards. The GPr offers a probabilistic model that computes the
probability of a certain reward given the observations (W*, R*), i.e. p(R(w)|W*, R*). In
a GPr this is

PRW)IR*, W) = N(n, X), (3.1

where A denotes a multivariate Gaussian distribution with mean g and covariance matrix
Y. In a Bayesian framework, (3.1) is interpreted as a posterior distribution, conditioned
to the observations (W™*, R*). A GPr is a distribution over functions whose smoothness is
defined by the covariance function, computed using a kernel function. Given a set of data
(W*, R*), this allows for building a continuous function to estimate both the reward of a
possible candidate and the uncertainties associated with it.

We are interested in evaluating (3.1) on a set of ng new samples W := {w1, wa ... wp,}
and we denote as R:={R;,R>...R,,} the possible outcomes (treated as random
variables). Assuming that the possible candidate solutions belong to the same GPr
(usually assumed to have zero mean (Rasmussen & Williams 2005)) as the observed data

(W*, R*), we have
* K.. K,
()=~ ( %) o

where K. =« (W*, W*) e R=*" K, =k(W,W*) e R"eX K =«(W,W) €
R"EX"E and K a kernel function.

The prediction in (3.1) can be built using standard rules for conditioning multivariate
Gaussian, and the functions g and X in (3.1) become a vector 4 and a matrix X,

ne =K'K;'R*  eR™, (3.3)
Y. =K-K'Ky'K, eR"*"" (3.4)

where Kgp = K. + O'I%I , with 01% the expected variance in the sampled data and I the
identity matrix of appropriate size. The main advantage of BO is that the function
approximation is sequential, and new predictions improve the approximation of the reward
function (i.e. the surrogate model) episode after episode. This makes the GPr-based BO
one of the most popular black-box optimization methods for expensive cost functions.

The BO combines the GPr model with a function suggesting where to sample next.
Many variants exist (Frazier 2018), each providing their exploration/exploitation balance.
The exploration seeks to sample in regions of large uncertainty, while exploitation seeks
to sample at the best location according to the current function approximation. The most
classic function, used in this study, is the expected improvement, defined as (Rasmussen
& Williams 2005)

A -5HP@D) +owe(2) ifow) >0,
El(w) = 0 ifow) =0, (3.5)

with A = u(w) — R(w"™) and w' = arg maxwi?(w) the best sample so far, where @ (Z) is
the cumulative distribution function, ¢ (Z) is the probability density function of a standard
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Gaussian and

z=1omm ifo(w) > 0, (3.6)

0 if o (w) = 0.

Equation (3.5) balances the desire to sample in regions where 1 (w) is larger than R(w™)
(hence, large and positive A) versus sampling in regions where o (w) is large. The
parameter £ sets a threshold over the minimal expected improvement that justifies the
exploration.

Finally, the method requires the definition of the kernel function and its
hyperparameters, as well as an estimate of oy,. In this work the GPr-based BO was
implemented using the Python API scikit-optimize (Head ef al. 2020). The selected kernel
function was a Mater kernel with v = 5/2 (see Chapter 4 from Rasmussen & Williams
2005), which reads

k(x,x)=Kk(r)=1+ @4— S—rZexp—@

' / 32 [’

where r = ||x — x/||, and [ is the length scale of the process. We report a detailed
description of the pseudocode we used in Appendix A.1.

(3.7)

3.1.2. Lipschitz global optimization

Like BO, LIPO relies on a surrogate model to select the next sampling points (Malherbe
& Vayatis 2017). However, LIPO’s surrogate function is the much simpler upper bound
approximation U(w) of the cost function R(w) (Ahmed et al. 2020). In the dlib
implementation by King (2009), used in this work, this is given by

UGw) = min (Row) +Voi + w—w)TK(w =) (3.8)
1=1...t

where w; are the sampled parameters, o; are coefficients that account for discontinuities
and stochasticity in the objective function, and K is a diagonal matrix that contains the
Lipschitz constants k; for the different dimensions of the input vector. We recall that a
function R(w) : YW € R™ — R is a Lipschitz function if there exists a constant C such
that

[Rw1) — Rw2)|| < Cllwi —wall, Vwi,wreW, (3.9)
where ||-|| is the Euclidean norm on R"». The Lipshitz constant k£ of R(w) is the smallest
C that satisfies the above condition (Davidson & Donsig 2009). In other terms, this is an

estimate of the largest possible slope of the function R(w). The values of K and o; are
found by solving the optimization problem

t
min [|K|7 +10°> " of,
K,o —

1=

s.t. Uw;)) > R(w;), Viel[l---1],

(3.10)
0; >0, Vie[l---1],
Kij>0, Vijell---d],
K=1{ki, ko, ... ky,},
where 10° is a penalty factor and | - || is the Frobenius norm.
958 A39-9
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add(mul(sin(x), add(x, x)), add(sin(x), 3))

2 x sin(x) + sin(x) + 3

Figure 2. Syntax tree representation of the function 2x sin(x) + sin(x) + 3. This tree has a root ‘+’ and a
depth of two. The nodes are denoted with orange circles while the last entries are leafs.

To compensate for the poor convergence of LIPO in the area around local optima, the
algorithm alternates between a global and a local search. If the iteration number is even, it
selects the new weights by means of the maximum upper bounding position (MaxLIPO),

Wi+1 = arg max(U(w)), (3.11)
w
otherwise, it relies on a trust region (TR) method (Powell 2006) based on a quadratic
approximation of R(w) around the best weights obtained so far w*, i.e.

m(w;w*)

Wip1 = argmax (W + gw")'w + 3w H(w")w). (3.12)
Stwieprll < dow"),

where g(w*) is the approximation of the gradient at w* (g(w*™) =~ VR(w*)), H(w"*) is
the approximation of the Hessian matrix (H (w*)); ~ ?R(w*)/ dw;ow; and d(w*) is the
radius of the trust region. If the TR-method converges to a local optimum with an accuracy
smaller than €,

[Rwy) — RW*)| <&, Vwy, (3.13)

the optimization goes on with the global search method until it finds a better optimum.
A detailed description of the pseudocode we used can be found in Appendix A.2.

3.2. Genetic programming

In the GP approach to optimal control, the policy a = m(s; w) is encoded in the form
of a syntax tree. The parameters are lists of numbers and functions that can include
arithmetic operations, mathematical functions, Boolean operations, conditional operations
or iterative operations. An example of a syntax tree representation of a function is shown
in figure 2. A tree (or program in GP terminology) is composed of a root that branches out
into nodes (containing functions or operations) throughout various levels. The number of
levels defines the depth of the tree, and the last nodes are called terminals or leaves. These
contain the input variables or constants. Any combination of branches below the root is
called a subtree and can generate a tree if the node becomes a root.

Syntax trees allow encoding complex functions by growing into large structures. The
trees can adapt during the training: the user provides a primitive set, i.e. the pool of allowed
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functions, the maximum depth of the tree and set the parameters of the training algorithm.
Then, the GP operates on a population of possible candidate solutions (individuals) and
evolves it over various steps (generations) using genetic operations in the search for the
optimal tree. Classic operations include elitism, replication, cross-over and mutations, as
in genetic algorithm optimization (Haupt & Ellen Haupt 2004). The implementation of GP
in this work was carried out in the distributed evolutionary algorithms in Python (DEAP)
(Fortin et al. 2012) framework. This is an open-source Python library allowing for the
implementation of various evolutionary strategies.

We used a primitive set of four elementary operations (4, —, /, x) and four functions
(exp, log, sin, cos). In the second test case, as described in §5.2, we also include an
ephemeral random constant. The initial population of individuals varied between n; = 10
and n; = 80 candidates depending on the test case and the maximum depth tree was set to
17. In all test cases the population was initialized using the ‘half-half” approach, whereby
half the population is initialized with the full method and the rest with the growth method.
In the full method trees are generated with a predefined depth and then filled randomly
with nodes and leafs. In the growth method trees are randomly filled from the roots:
because nodes filled with variables or constant are terminals, this approach generates trees
of variable depth.

Among the optimizers available in DEAP, in this work we used the (i« + 1) algorithm
for the first two test cases and eaSimple (Banzhaf et al. 1997; Vanneschi & Poli 2012;
Kober & Peters 2014; Bick, Fogel & Michalewicz 2018) for the third one. These differ
in how the population is updated at each iteration. In the (i 4+ A) both the offsprings and
parents participate to the tournament while in eaSimple no distinction is made between
parents and offsprings and the population is entirely replaced at each iteration.

Details about the algorithmic implementation of this approach can be found in
Appendix A.3.

3.3. Reinforcement learning via DDPG

The DDPG by Lillicrap et al. (2015) is an off-policy actor—critic algorithm using an ANN
to learn the policy (direct approach, figure 1a) and an ANN to learn the Q function (indirect
approach, figure 15). In what follows, we call the IT network the first (i.e. the actor) and
the Q network the second (i.e. the critic).

The DDPG combines the DPG by Silver et al. (2014) and the DQN by Mnih et al.
(2013, 2015). The algorithm has evolved into more complex versions such as the twin
delayed DDPG (Fujimoto, van Hoof & Meger 2018), but in this work we focus on the
basic implementation.

The policy encoded in the /T network is deterministic and acts according to the set of
weights and biases w™, i.e. a = 1(s;, w"). The environment is assumed to be stochastic
and modelled as a MDP. Therefore, (2.3) must be modified to introduce an expectation
operator,

Q7 (s1, ar) = By, \~E [r(st, @) + ¥y Q™ (5141, ] )] . (3.14)

where the policy is intertwined in the action state relation, i.e. Q™ (sty1, ary1) =
O™ (sy+1, @™ (s;+1)) and having used the shorthand notation a;‘+l = 7t(s;+1, w"). Because
the expectation operator in (3.14) solely depends on the environment (£ in the expectation
operator), it is possible to decouple the problem of learning the policy m from the problem
of learning the function Q™ (sy, a;). Concretely, let Q(sy, ay; w?) denote the prediction of
the Q function by the Q network, defined with weights and biases w€ and let 7" denote a

958 A39-11


https://doi.org/10.1017/jfm.2023.76

https://doi.org/10.1017/jfm.2023.76 Published online by Cambridge University Press

F. Pino, L. Schena, J. Rabault and M.A. Mendez

set of N transitions (s, @;, Sr+1, I'1+1) collected through (any) policy. The performances of
the Q network can be measured as

JEW?) =Ky, 4, r~1[(O(s1, ar; w2) — y1)?1, (3.15)

where the term in the squared brackets, called temporal difference (TD), is the difference
between the old Q value and the new one y;, known as the TD target,

yi = (s, a) + Y OQsi41, arp1; w). (3.16)

Equation (3.15) measures how closely the prediction of the QO network satisfies the discrete
Bellman equation (2.3). The training of the Q network can be carried out using standard
stochastic gradient descent methods using the back-propagation algorithm (Kelley 1960)
to evaluate ,,0J<.

The training of the Q network gives the off-policy flavour to the DDPG because it
can be carried out with an exploratory policy that largely differs from the final policy.
Nevertheless, because the training of the Q network is notoriously unstable, Mnih et al.
(2013, 2015) introduced the use of a replay buffer to leverage accumulated experience
(previous transitions) and a target network to under-relax the update of the weights during
the training. Both the computation of the cost function in (3.15) and its gradient are
performed over a random batch of transitions 7 in the replay buffer R.

The DDPG combines the Q network prediction with a policy gradient approach to train
the IT network. This is inherited from the DPG by Silver et al. (2014), who have shown
that, given

J W) = Eg~E a7 [(r(s1, @0))] (3.17)

is the expected return from the initial condition, the gradient with respect to the weights
in the IT network is

A J " = Est~E,a,~n[aaQ(st’ ag, WQ) dyma(s; wh)]. (3.18)

Both 9,0(s;, a;; w€) and dy,~a(s;; w™) can be evaluated via back propagation on the Q
network and the IT network, respectively. The main extension of DDPG over DPG is the
use of DQN for the estimation of the Q function.

In this work we implement the DDPG using Keras API in Python with three minor
modifications to the original algorithm. The first is a clear separation between the
exploration and exploitation phases. In particular, we introduce a number of exploratory
episodes ng, < ngp and the action is computed as

a(s;) = a(s;; w™) + n(ep)&(t; 6, 02), (3.19)

where £(t; 0, o) is an exploratory random process characterized by a mean 6 and variance
o2. This could be the time-correlated (Uhlenbeck & Ornstein 1930) noise or white noise,
depending on the test case at hand (see § 4). The transition from exploration to exploitation
is governed by the parameter 1, which is taken as n(ep) = 1 if ep < ng, where d?~"Ex if
ep > ngy. This decaying term for ep > ng, progressively reduces the exploration and the
coefficient d controls how rapidly this is done.

The second modification is in the selection of the transitions from the replay buffer R
that are used to compute the gradient ,,0J¢. While the original implementation selects
these randomly, we implement a simple version of the prioritized experience replay from
Schaul et al. (2015). The idea is to prioritize, while sampling from the replay buffer, those

958 A39-12


https://doi.org/10.1017/jfm.2023.76

https://doi.org/10.1017/jfm.2023.76 Published online by Cambridge University Press

Comparative study of machine learning for flow control

AN

\

/)
7,
[

—
—

R
rtr/vgr

A

7
2

7

Figure 3. The ANN architecture of the DDPG implementation analysed in this work. The illustrated
architecture is the one used for the test case in §4.3. During the exploration phase, the two networks are
essentially decoupled by the presence of the stochastic term £ that leads to exploration of the action space.

transitions that led to the largest improvement in the network performances. These can be
measured in terms of the TD error

8 =1+ yO@sipr, af s w0 — OGsy, ar; w2). (3.20)

This quantity measures how much a transition was unexpected. The rewards stored in the
replay buffer (rfB ) and used in the TD computation are first scaled using a dynamic vector

rl()g: [r¥B7r§B’ar£€B] as

rRB = Mg 321
T std(rpg) + 1 x 10710 21

where 7, is the mean value and std(ryg) is the standard deviation. The normalization
makes the gradient steeper far from the mean of the sampled rewards, without changing
its sign, and is found to speed-up the learning (see also van Hasselt et al. 2016).

As discussed by Schaul et al. (2015), it can be shown that prioritizing unexpected
transitions leads to the steepest gradients d,,0/¢ and, thus, helps overcome local minima.
The sampling is performed following a triangular distribution that assigns the highest
probability p(n) to the transition with the largest TD error §.

The third modification, extensively discussed in previous works on RL for flow control
(Rabault & Kuhnle 2019; Rabault et al. 2020; Tang et al. 2020), is the implementation
of a sort of moving average of the actions. In other words, an action is performed
for K consecutive interactions with the environment, which in our work occur at every
simulation’s time step.

We illustrate the neural network architecture employed in this work in figure 3. The
scheme in the figure shows how the IT network and the Q network are interconnected:
intermediate layers map the current state and the action (output by the /T network) to the
core of the Q network. For plotting purposes, the number of neurons in the figure is much
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smaller than the one actually used and indicated in the figure. The IT network has two
hidden layers with 128 neurons each, while the input and output depends on the test cases
considered (see § 4). Similarly, the Q network has two hidden layers with 128 neurons each
and intermediate layers as shown in the figure. During the exploration phase, the presence
of the stochastic term in the action selection decouples the two networks.

We detail the main steps of the implemented DDPG algorithm in Appendix A.4. It is
important to note that, by construction, the weights in this algorithm are updated at each
interaction with the system. Hence, k = n and N = 1 in the terminology of § 2. The notion
of an episode remains relevant to control the transition between various phases of the
learning process and to provide comparable metrics between the various algorithms.

4. Test cases
4.1. A 0-D frequency cross-talk problem

The first selected test case is a system of nonlinear ordinary differential equations (ODEs)
reproducing one of the main features of turbulent flows: the frequency cross-talk. This
control problem was proposed and extensively analysed by Duriez et al. (2017). It
essentially consists in stabilizing two coupled oscillators, described by a system of four
ODEs, which describe the time evolution of four leading proper orthogonal decomposition
modes of the flow past a cylinder. The model is known as the generalized mean field model
(Dirk et al. 2009) and was used to describe the stabilizing effect of low frequency forcing
on the wave flow past a bluff body (Pastoor et al. 2008; Aleksic et al. 2010). The set of
ODE:s in the states s(7) = [s1(2), s2(7), s3(2), s4(t)]T, where (51, 52) and (s3, s4) are the first
and second oscillator, reads

§ = F(s)s + Aa, 4.1)

where a is the forcing vector with a single scalar component interacting with the second
oscillator (i.e. @ = [0, 0, 0, a]7) and the matrix F(s) and 4 are given by

o(s) -1 0 0 0 0 0O
Fo=| b o@D 0 | anf0 000w
0 0 10 —0.1 0 0 0 1
The term o (s) models the coupling between the two oscillators:
o(s) =0.1 —E; — Ey, (4.3)
where E1 and E; are the energy of the first and second oscillator given by
E = s% + s% E, = s% + sﬁ. (4.4a,b)

This nonlinear link is the essence of the frequency cross-talk and challenges linear
control methods based on linearization of the dynamical system. To excite the second
oscillator, the actuation must introduce energy to the second oscillator, as one can reveal
from the associated energy equation. This is obtained by multiplying the last two equations
of the system by s3 and s4, respectively, and summing them up to obtain

1E, = —0.2E; + squ, 4.5)

where u s4 is the production term associated to the actuation.
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Figure 4. Evolution of the oscillator (s1, s2) (@) of the variable o (4.3) (b) in the 0-D test case in the absence
of actuation (a = 0). As o =~ 0, the system naturally evolves towards a ‘slow’ limit cycle.

The initial conditions are set to s(0) = [0.01, 0, O, 0]T. Without actuation, the system
reaches a ‘slow’ limit cycle involving the first oscillator (s1, s7), while the second vanishes
((s3, s4) — 0). The evolution of the oscillator (si, s») with no actuation is shown in
figure 4(a); figure 4(b) shows the time evolution of o, which vanishes as the system
naturally reaches the limit cycle. Regardless of the state of the first oscillator, the second
oscillator is essentially a linear second-order system with eigenvalues 11 > = —0.1 & 10i;

hence, a natural frequency w = 10rads™.

The governing equations (4.1) were solved using scipy’s package odeint with a time step
of At = w/50. This time step is smaller than the one by Duriez et al. (2017) (At = 1t/10),
as we observed this had an impact on the training performances (aliasing in LIPO and BO
optimization).

The actuators’ goal is to bring to rest the first oscillator while exiting the second,
leveraging on the nonlinear connection between the two and using the least possible
actuation. In this respect, the optimal control law, similarly to Duriez et al. (2017), is the
one that minimizes the cost function

J=la+yly =5+ +ad,
607 (4.6)

— 1
where f(f) = — f(&Hdr,
407 207

where a, set to o = 1072, is a coefficient set to penalize large actuations. Like the original
problem in Duriez et al. (2017), the actions are clipped to the range a; € [—1, 1].

The time interval of an episode is set to ¢ € [207, 607]; thus, much shorter than that
used by Duriez et al. (2017). This duration was considered sufficient, as it allows the system
to reach the limit cycle and to observe approximately 20 periods of the slow oscillator. To
reproduce the same cost function in a RL framework, we rewrite (4.6) as a cumulative
reward, replacing the integral mean with the arithmetic average and setting

n—1 ni—1

J:n—Zs%k+s%k+oza,%=—Zrt=—R, “4.7)
' k=0 k=0
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with r; the environment’s reward at each time step. For the BO and LIPO optimizers, the
control law is defined as a quadratic form of the four system’s states,

(s; w) = ggs +s"H,s, (4.8)

with g,, € R* and H,, € R**. The weight vector associated to this policy is thus w € R
and it collects all the entries in g,, and H,. For later reference, the labelling of the weights
is as follows:

w1 ws w9 w13 w17
w W, w w w
g,=|.2| and H,=|"6 MO M4 W (4.9a,b)
w3 w7 Wil wis W9
w4 wg W12 Wie W20

Both LIPO and BO seek for the optimal weights in the range [—3,3]. The BO was
set up with a Matern kernel (see (3.7)) with a smoothness parameter v = 1.5, a length
scale of / =0.01, an acquisition function based on the expected improvement and an
exploitation—exploration (see (3.5)) trade-off parameter £ = 0.1. Regarding the learning,
100 episodes were taken for BO, LIPO and DDPG. For the GP, the upper limit is set
to 1200, considering 20 generations with © = 30 individuals, 4 = 60 offsprings and a
(e + A) approach.

The DDPG experiences are collected with an exploration strategy structured into three
parts. The first part (until episode 30) is mostly explorative. Here the noise is clipped in the
range [—0.8, 0.8] with n = 1 (see (3.19)). The second phase (between episodes 30 and 55)
is an off-policy exploration phase with a noise signal clipped in the range [—0.25, 0.25],
with n = 0.25. The third phase (from episode 55 onwards) is completely exploitative (with
no noise). As an explorative signal, we used a white noise with a standard deviation of 0.5.

4.2. Control of the viscous Burgers’s equation

We consider the Burger’s equation because it offers a simple 1-D problem combining
nonlinear advection and diffusion. The problem set is

ostt + udytt = voyu + f(x, 1) + c(x, 1),
u(x, 0) = uo, (4.10)
oxu(0, ) = ou(L,t) =0,
where (x, ) € (0, L) x (0, T] with L = 20 and T = 15 is the episode length, v = 0.9 is the
kinematic viscosity and uy is the initial condition, defined as the developed velocity field at
t = 2.4 starting from u(x, 0) = 0. The term f (x, 7) represents the disturbance and the term

c(x, 1) is the control actuation, which are both Gaussian functions in space, modulated by
a time-varying amplitude,

f(x, 1) = Agsin Qufyt) - N'(x — x7, 0), 4.11)

cx,t) =a(®A. - N(x — x¢, 0), (4.12)

taking Ay = 100 and f, = 0.5 for the disturbance’s amplitude and frequencies and A, =
300 being the amplitude of the control and a(f) € [—1, 1] the action provided by the
controller. The disturbance and the controller action are centred at x; = 6.6 and x. = 13.2,

respectively, and have o = 0.2. The uncontrolled system produces a set of nonlinear
waves propagating in both directions at approximately constant velocities. The objective
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of the controller is to neutralize the waves downstream of the control location, i.e. for
X > X, using three observations atx = 8, 9, 10. Because the system’s characteristic is such
that perturbations propagate in both directions, the impact of the controller propagates
backwards towards the sensors and risks being retrofitted in the loop.

To analyse how the various agents deal with the retrofitting problem, we consider two
scenarios: a ‘fully closed-loop’ approach and a ‘hybrid’ approach, in which agents are
allowed to produce a constant action. The constant term allows for avoiding (or at least
limiting) the retrofitting problem. For the BO and LIPO controllers, we consider linear
laws; hence, the first approach is

as(t; w) = wou(8, 1) +wiu9, ) +woru(10, t), (4.13)
while the second is
ag(t; w) = wou(8, 1) +wiu9, 1) + wru(10, t) + ws. 4.14)

For the GP, we add the possibility of a constant action using an ephemeral constant,
which is a function with no argument that returns a random value. Similarly, we refer to
‘A’ and ‘B’ as agents that cannot produce a constant and those that do. For the DDPG,
the ANN used to parametrize the policy naturally allows for a constant term; hence, the
associated agent is ‘hybrid’ by default, and there is no distinction between A and B.

One can get more insights into the dynamics of the system and the role of the controller
from the energy equation associated with (4.11). This equation is obtained by multiplying
(4.10) by u,

HE + udE = v[0wE — (0xu)?] + 2uf(x, 1) + 2uc(x, u), (4.15)

where & =u? is the transported energy and wuf(x,f) and wuc(x,u) are the
production/destruction terms associated to the forcing action and the control action.
Because f and ¢ do not act in the same location, the controller cannot act directly on the
source, but must rely either on the advection (mechanism I) or the diffusion (mechanism
II). The first mechanism consists of sending waves towards the disturbing source so that
they are annihilated before reaching the control area. Producing this backward propagation
in a fully closed-loop approach is particularly challenging. This is why we added the
possibility of an open-loop term. The second mechanism generates large wavenumbers,
that is, waves characterized by large slopes so that the viscous term (and precisely the
squared term in the brackets on the right-hand side of (4.15)) provides more considerable
attenuation. This second mechanism cannot be used by a linear controller, whose actions
cannot change the frequency from the sensors’ observation.
The controller’s performance is measured by the reward function

r(t) = —(La(u) g, + a-a(®?), (4.16)

where £»( - )g, is the Euclidean norm of the displacement u; at time step ¢ over a
portion of the domain £2, = {x € R|15.4 < x < 16.4} called the reward area, « is a
penalty coefficient and a; is the value of the control action selected by the controller.
The cumulative reward is computed with a discount factor y = 1 while the penalty in
the actions was set to o« = 100. This penalty gives comparable importance to the two
terms in (4.16) for the level of wave attenuation achieved by all agents. Figure 5 shows the
evolution of the uncontrolled system in a contour plot in the space—time domain, recalling
the location of perturbation, action, observation and reward area.

Equation (4.10) was solved using Crank—Nicolson’s method. The Neumann boundary
conditions are enforced using ghost cells, and the system is solved at each time step via
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Figure 5. Contour plot of the spatio-temporal evolution of normalized & = u/ max(u) in (4.10) for the
uncontrolled problem, i.e. c¢(x,f) =0 in the normalized space-time domain (X =x/L, ?=1/T). The
perturbation is centred at X = 0.33 (red continuous line) while the control law is centred at X = 0.66 (red
dotted line). The dashed black lines visualize the location of the observation points, while the region within the
white dash-dotted line is used to evaluate the controller performance.

the banded matrix solver solve_banded from the python library scipy. The mesh consists
of n, = 1000 points and the time stepping is At = 0.01, thus leading to n, = 1500 steps
per episode.

Both LIPO and BO optimizers operate within the bounds [—0.1, 0.1] for the weights
to avoid saturation in the control action. The overall set-up of these agents is the same
as that used in the 0-D test case. For the GP, the selected evolutionary strategy is (u +
A), with the initial population of 10 individuals ;« = 10 and an offspring A = 20 trained
for 20 generations. The DDPG agent set-up relies on the same reward normalization and
buffer prioritization presented for the previous test case. However, the trade-off between
exploration and exploitation was handled differently: the random noise term in (3.19) is
set to zero every N = 3 episodes to prioritize exploitation. This noise term was taken as
an Ornstein—Uhlenbeck, time-correlated noise with 6 = 0.15 and df = 1 x 1073 and its
contribution was clipped in the range [—0.3, 0.3]. Regarding the learning, the agent was
trained for 30 episodes.

4.3. Control of the von Kdrmdn street behind a 2-D cylinder

The third test case consists in controlling the 2-D viscous and incompressible flow past a
cylinder in a channel. The flow past a cylinder is a classic benchmark for bluff body wakes
(Zhang et al. 1995; Noack et al. 2003), exhibiting a supercritical Hopf bifurcation leading
to the well-known von Kdrmdn vortex street. The cylinder wake configuration within a
narrow channel has been extensively used for computational fluid dynamics benchmark
purposes (Schifer et al. 1996) and as a test case for flow control techniques (Rabault ez al.
2019; Tang et al. 2020; Li & Zhang 2021).

We consider the same control problem as in Tang et al. (2020), sketched in figure 6.
The computational domain is a rectangle of width L and height H, with a cylinder of
diameter D = 0.1 m located slightly off the symmetric plane of the channel (cf. figure 6).
This asymmetry triggers the development of vortex shedding.

The channel confinement potentially leads to different dynamics compared with the
unbounded case. Depending on the blockage ratio (b = D/H), low-frequency modes might
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2.1D
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Figure 6. Geometry and observations probes for the 2-D von Kdrmdn street control test case. The 256
observations used by Tang et al. (2020) are shown with black markers. These are organized in three concentric
circles (diameters 1 4 0.002/D, 1+ 0.02D and 1 + 0.05D) around the cylinder and three grids (horizontal
spacing ¢ = 0.025/D, ¢; = 0.05/D and c3 = 0.1/D). All the grids have the same vertical distance between
adjacent points (c4 = 0.05/D). The five observations used in this work (red markers) have coordinates
s1(0, —1.5), 52(0, 1.5), s3(1, —1), s4(1, 1) and s5(1, 0). Each probe samples the pressure field.

be damped, promoting the development of high frequencies. This leads to lower critical
Reynolds and Strouhal numbers (Kumar & Mittal 2006; Singha & Sinhamahapatra 2010),
the flattening of the recirculation region and different wake lengths (Williamson 1996;
Rehimi et al. 2008). However, Griffith et al. (2011) and Camarri & Giannetti (2010)
showed, through numerical simulations and Floquet stability analysis, that for b = 0.2
(b = 0.24 in our case), the shedding properties are similar to those of the unconfined case.
Moreover, it is worth stressing that the flow is expected to be fully three dimensional for
the set of parameters considered here Kanaris, Grigoriadis & Kassinos (2011); Mathupriya
et al. (2018). Therefore, the 2-D test case considered in this work is a rather academic
benchmark, yet characterized by rich and complex dynamics (Sahin & Owens 2004)
reproducible at a moderate computational cost.

The reference system is located at the centre of the cylinder. At the inlet (x = —2D), as
in Schifer et al. (1996), a parabolic velocity profile is imposed,
—4U,
Uinlet = Hzm (y2 —0.1Dy — 4.2D2), 4.17)

where Uy, = 1.5m s__l. This leads to a Reynolds number of Re = UD/v = 400 using the
mean inlet velocity U = 2/3U,, as a reference and taking a kinematic viscosity of v =
2.5 x 10~*m? s~ It is worth noting that this is much higher than Re = 100 considered
by Jin et al. (2020), who defines the Reynolds number based on the maximum velocity.

The computational domain is discretized with an unstructured mesh refined around the
cylinder, and the incompressible Navier—Stokes equations are solved using the incremental
pressure correction scheme method in the FEniCS platform (Alnzs et al. 2015). The mesh
consists of 25 865 elements and the simulation time step is set to At = le — 4[s] to respect
the Courant—Friedrichs—Lewy condition. The reader is referred to Tang et al. (2020) for
more details on the numerical set-up and the mesh convergence analysis.

In the control problem every episode is initialized from a snapshot that has reached
a developed shedding condition. This was computed by running the simulation without
control for T =0.91s = 3T*, where T* = 0.303s is the vortex shedding period. We
computed T* by analysing the period between consecutive pressure peaks observed by
probe ss5 in an uncontrolled simulation. The result is the same as that found by Tang et al.
(2020), who performed a discrete Fourier transform of the drag coefficient.
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Figure 7. Location of the four control jets for the 2-D von Karman street control test case. These are located
at 0 = 75°,105°, 255°, 285° and have width A6 = 15°. The velocity profile is defined as in (4.19), with flow
rate defined by the controller and shifted to have zero-net mass flow.

The instantaneous drag and lift on the cylinder are calculated via the surface integrals:

Fp = /(a-n) cexdS, Fr = / (o-n) - eydsS, (4.18a,b)

where S is the cylinder surface, o is the Cauchy stress tensor, 7 is the unit vector normal
to the cylinder surface, e, and e, are the unit vectors of the x and y axes, respectively. The

drag and lift coefficient are calculated as Cp = 2Fp/(pU*D) and C; = 2F; /(pU*D),
respectively.

The control action consists in injecting/removing fluid from four synthetic jets
positioned on the cylinder boundary as shown in figure 7. The jets are symmetric with
respect to the horizontal and vertical axes. These are located at 6 = 75°, 105°, 255°, 285°
and have the same width A6 = 15°. The velocity profile in each of the jets is taken as

T
AOD
where 6; is the radial position of the ith jet and Q7 is the imposed flow rate. Equation (4.19)
respects the non-slip boundary conditions at the walls. To ensure a zero-net mass injection
at every time step, the flow rates are mean shifted as Q7 = Q; — O with 0 = le Z;‘ Q; the
mean value of the four flow rates.

The flow rates in the four nozzles constitute the action vector, i.e.a = [Q1, 02, O3, Q4]T
in the formalism of § 2. To avoid abrupt changes in the boundary conditions, the control
action is kept constant for a period of T, = 100Ar = 1 x 10~%s. This is thus equivalent
to having a moving average filtering of the controller actions with an impulse response of
length N = 10. The frequency modulation of such a filter is

B i sin(Sw)
"~ 10 [sin(w/2) |’

with @ = 2nf/f;. The first zero of the filter is located at w = 27t/5, thus f = f;/5 =
2000 Hz, while the attenuation at the shedding frequency is negligible. Therefore, this
filtering allows the controller to act freely within the range of frequencies of interest to
the control problem, while preventing abrupt changes that might compromise the stability
of the numerical solver. Each episode has a duration of 7 = 0.91 s, corresponding to 2.73
shedding periods in uncontrolled conditions. This allows for having 91 interactions per
episode (i.e. 33 interactions per vortex shedding period).

The actions are linked to the pressure measurements (observations of the flow) in
various locations. In the original environment by Tang et al. (2020), 256 probes were used,
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similarly to Rabault er al. (2019). The locations of these probes are shown in figure 6 using
black markers. In this work we reduce the set of probes to n; = 5. A similar configuration
was analysed by Rabault et al. (2019) although using different locations. In particular, we
kept the probes s1 and s> at the same x coordinate, but we moved them further away from
the cylinder wall to reduce the impact of the injection on the sensing area. Moreover, we
slightly moved the sensors s3, 54, s5 downstream to regions where the vortex shedding was
stronger. The chosen configuration has no guarantee of optimality and was heuristically
defined by analysing the flow field in the uncontrolled configuration. Optimal sensor
placement for this configuration is discussed by Paris, Beneddine & Dandois (2021).

The locations used in this work are recalled in figure 6. The state vector, in the formalism
of § 2, is thus the set of pressure at the probe locations, i.e. s = [p1, p2, p3, P4, p5]T. For the
optimal control strategy identified via the BO and LIPO algorithms in §§ 3.1.1 and 3.1.2, a
linear control law is assumed, hence a = Ws, with the 20 weight coefficients labelled as

01 Wi w2 W3 w4 Ws 2;

Qo _ | we w7 wsg  wo w7 421)
03 Wi W2 WI3 W4 Wis D ’ ’
04 Wie W17 Wig WI9 W20

5

It is worth noting the zero-net mass condition enforced by removing the average flow
rate from each action could be easily imposed by constraining all columns of W to add
up to zero. For example, setting the symmetry wi = —wjy, wg = —wjie, etc.(leading to
Q1 = —03 and Q> = —Q4) allows for halving the dimensionality of the problem and,
thus, considerably simplifying the optimization. Nevertheless, one has infinite ways of
embedding the zero-net mass condition and we do not impose any, letting the control
problem act in R?.

Finally, the instantaneous reward 7; is defined as

re = (F3*)1. — (Fp)r, — «l(FL)7. |, (4.22)

where ()7, is the moving average over 7. = 10A¢, « is the usual penalization parameter
set to 0.2 and F bD‘”e is the averaged drag due to the steady and symmetric flow.
This penalization term prevents the control strategies from relying on the high lift
flow configurations Rabault et al. (2019) and simply blocking the incoming flow. The
cumulative reward was given with y = 1. According to Bergmann et al. (2005), the active
flow control cannot reduce the drag due to the steady flow, but only the one due to the
vortex shedding. Hence, in the best case scenario, the cumulative reward is the sum of the
averaged steady state drag contributions:

R*:Zrtz

=1 t

T

(Fhasey, = 14.5. (4.23)
=1

The search space for the optimal weights in LIPO and BO was bounded to [—1, 1].
Moreover, the action resulting from the linear combination of such weights with the
states collected in the ith interaction was multiplied by a factor 2 x 1073, to avoid
numerical instabilities. The BO settings are the same as in the previous test cases,
except for the smoothness parameter that was reduced to v = 1.5. On the GP side,
the evolutionary strategy applied was the eaSimple’s (Bick et al. 2018) implementation
in DEAP — with hard-coded elitism to preserve the best individuals. To allow the GP
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to provide multi-outputs, four populations of individuals were trained simultaneously
(one for each control jet). Each population evolves independently (with no genetic
operations allowed between them), although the driving reward function (4.23) values their
collective performance. This is an example of multi-agent RL. Alternative configurations,
to be investigated in future works, are the definition of a multiple-output trees or
cross-population genetic operations.

Finally, the DDPG agent was trained using the same exploration policy of the Burgers’
test case, alternating 20 exploratory episodes with n = 1 and 45 exploitative episodes
with n = 0 (cf. (4.22)). During the exploratory phase, an episode with n = 0 is taken
every N = 4 episodes and the policy weights are saved. We used the Ornstein—Uhlenbeck
time correlated noise with & = 0.1 and dr = 1 x 1072 in (3.19), clipped in the range
[—0.5, 0.5].

5. Results and discussions

We present here the outcomes of the different control algorithms in terms of learning
curves and control actions for the three investigated test cases. Given the heuristic nature
of these control strategies, we ran several training sessions for each, using different seeding
values for the random number generator. We define the learning curve as the upper bound
of the cumulative reward R(w) in (2.2) obtained at each episode within the various training
sessions. Moreover, we define the learning variance as the variance of the global reward
between the various training sessions at each episode. We considered ten training sessions
for all environments and for all control strategies. In the episode counting shown in
the learning curves and the learning variance, it is worth recalling that the BO initially
performs 10 explorative iterations. For the DDPG, since the policy is continuously updated
at each time step, the global reward is not representative of the performances of a specific
policy but is used here to provide an indication of the learning behaviour.

For the GP, each iteration involves 7, episodes, with n, the number of individuals in the
population (in a jet actuation). The optimal weights found by the optimizers and the best
trees found by the GP are reported in the appendix.

Finally, for all test cases, we perform a robustness analysis for the derived policies. This
analysis consists in testing all agents in a set of 100 episodes with random initial conditions
and comparing the distribution of performances with those obtained during the training
(where the initial condition was always the same). It is worth noting that different initial
conditions could be considered during the training, as done by Castellanos et al. (2022),
to derive the most robust control law for each method. However, in this work we were
interested in the best possible control law (at the cost of risking overfitting) for each agent
and their ability to generalize in settings that differ from the training conditions.

5.1. The 0-D frequency cross-talk problem

We here report on the results for the four algorithms for the 0-D problem in §4.1. All
implemented methods found strategies capable of solving the control problem, bringing to
rest the first oscillator (s1, s2) while exiting the second (s3, s4). Table 1 collects the final
best cumulative reward for each control method together with the confidence interval,
defined as 1.96 times the standard deviation within the various training sessions.

The control law found by the GP yields the highest reward and the highest variance.
Figure 8(a,b) shows the learning curve and learning variance for the various methods.

The learning curve for the GP is initially flat because the best reward from the
best individuals of each generation is taken after all individuals have been tested.
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x1073 LIPO BO GP DDPG
Bestreward —8.96+0.75 —9.41+1.33 —2.77+149 —2.98+1.37

Table 1. Mean optimal cost function (bold) and confidence interval (over 10 training sessions with different
random number generator seeds) obtained at the end of the training for the 0-D frequency cross-talk control
problem.

(a) (b)

—8x1072 !
il
: -+~ BO  -~GP
3 —e LIPO —=-DDPG
~1.1x107!
100 10! 102 103 10° 10! 102 103

ep €p

Figure 8. Comparison of the learning curves (a) and their variances (b) for different machine learning
methods for the 0-D test case (§ 4.1). (@) Learning curve. (b) Learning curve variance.

Considering that the starting population consists of 30 individuals, this shows that
approximately three generations are needed before significant improvements are evident.
In its simple implementation considered here, the distinctive feature of the GP is
the lack of a programmatic explorative phase: exploration proceeds only through the
genetic operations, and their repartition does not change over the episodes. This leads
to a relatively constant (and significant) reward variance over the episodes. Possible
variants to the implemented algorithms could be the reduction of the explorative
operations (e.g. mutation) after various iterations (see, for example, Mendez et al. 2021).
Nevertheless, the extensive exploration of the function space, aided by the large room for
manoeuvre provided by the tree formalism, is arguably the main reason for the success of
the method, which indeed finds the control law with the best cumulative reward (at the
expense of a much larger number of episodes).

In the case of the DDPG, the steep improvement in the learning curve in the first
30 episodes might be surprising, recalling that in this phase the algorithm is still in
its heavy exploratory phase (see § 3.3). This trend is explained by the interplay of two
factors: (1) we are showing the upper bound of the cumulative reward; and (2) the random
search is effective in the early training phase since improvements over a (bad) initial
choice are easily achieved by the stochastic search, but smarter updates are needed as the
performances improve. This result highlights the importance of the stochastic contribution
in (3.19), and its adaptation during the training to balance exploration and exploitation.

The learning behaviour of BO and LIPO is similar. Both have high variance in the early
stages, as the surrogate model of the reward function is inaccurate. But both manage to
obtain non-negligible improvements over the initial choice while acting randomly. The
reader should note that the variance of the LIPO at the first episode is O for all trainings
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Figure 9. Evolution of the states s; and s, associated with the unstable oscillator, obtained using the optimal
control action provided by the different machine learning methods.

because the initial points are always taken in the middle of the parameter space, as reported
in algorithm 2 (in Appendix A). Hence, the data at ep = 0 is not shown for the LIPO.
For both methods, the learning curve steepens once the surrogate models become more
accurate, but reach a plateau that has surprisingly low variance after the tenth episode.
This behaviour could be explained by the difficulty of both the LIPO and GPr models in
representing the reward function.

Comparing the different control strategies identified by the four methods, the main
difference resides in the settling times and energy consumption. Figure 9 shows the
evolution of s; and s> from the initial conditions to the controlled configuration for each
method.

As shown in (4.6), the cost function accounts mainly for the stabilization of the first
oscillator and the penalization of too strong actions. In this respect, the better overall
performance of the GP is also visible in the transitory phase of the first oscillator, shown
in figure 9, and in the evolution of the control action. These are shown in table 2 for all
the investigated algorithms. For each algorithm, the figure on the left-hand side shows the
action policy and the energy E1 (continuous red line with triangles) and E> (dashed red
line) (see (4.4a,b)) of the two oscillators in the time span t = 62 — 82, i.e. during the early
stages of the control. The figure on the right-hand side shows a zoom in the time span
t = 194-200, once the system has reached a steady (controlled) state. The control actions
by LIPO and BO are qualitatively similar and results in small oscillations in the energy
of the oscillator. Both sustain the second oscillator with periodic actions that saturate.
The periodicity is in this case enforced by the simple quadratic law that these algorithms
are called to optimize. The differences in the two strategies can be well visualized by the
different choice of weights (cf. (4.9a,b)), which are shown in figure 10 (see table 7 in
Appendix B for the mean value and half-standard deviation of the various coefficients).
While the LIPO systematically gives considerable importance to the weight wjo, which
governs the quadratic response to the state s», the BO favours a more uniform choice
of weights, resulting in a limited saturation of the action and less variance. The action
saturation clearly highlights the limits of the proposed quadratic control law. Both LIPO
and BO give large importance to the weight w4 because this is useful in the initial transitory
to quickly energize the second oscillator. However, this term becomes a burden once the
first oscillator is stabilized and forces the controller to overreact.
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Table 2. Evolution of the best control function @ (continuous blue line with squares), the energy of the first
oscillator (continuous red line with triangles) and the energy of the second one (dashed red line), for the
different control methods. The figures on the left-hand side report the early stage of the simulation, until the
onset of a limit cycle condition, and those on the right-hand side the final time steps.
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Figure 10. Weights of the control action for the 0-D control problem in (4.9). The coloured bars represent a
standard deviation around the mean value found by LIPO and BO.
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Figure 11. Eigenvalues of the linearized second oscillator around its mean values in the developed case,
controlled with linear combination (blue diamonds), with the nonlinear combination (green triangles) and with
both linear and nonlinear terms (black squares) (4.8) for LIPO and BO. The coefficient of the control function
are those of the best solution found by (a) LIPO, () BO and (¢) DDPG.

To have a better insight into this behaviour, we analyse the linear stability of the second
oscillator. We linearize s; around its mean value s(l) = 51 averaged over ¢ € [70, 60m]. We
then obtain the linearized equation in terms of the small perturbation, i.e. s/2 = K/, with
52 =[5, 541

Figure 11 shows the effect of the linear (blue diamonds), nonlinear (green triangles) and
combined terms (black squares) over the eigenvalue of K of the best solution found by
LIPO, BO and DDPG. It stands out that an interplay between the linear (destabilizing) and
nonlinear (stabilizing) terms results in the oscillatory behaviour of s3 and s4 around their
mean value sg (averaged over ¢ € [70, 607t]) for the optimizers, whereas DDPG is capable
of keeping the system stable using only its linearized part.

Another interesting aspect is that simplifying the control law (4.9a,b) to the essential
terms

a = S\W1 + sawo + S154W3 .
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% LIPO - BO - GP —= DDPG

Figure 12. Orbit of the second oscillator (s3, s4) in the 0-D control problem governed by (4.1) (right-hand side
column of table 2) in the last part of the episode (from 194 s to 2005s). The coloured curves correspond to the
four control methods.

allows the LIPO to identify a control law with comparable performances in less than five
iterations.

It is worth noting that the cost function in (4.7) places no emphasis on the states of
the oscillator s3, s4. Although the performances of LIPO and BO are similar according
to this metric, the orbits in figure 12 show that the BO keeps the second oscillator
at unnecessarily larger amplitudes. This also shows that the problem is not sensitive
to the amount of energy in the second oscillator once this has passed a certain value.
Another interesting aspect is the role of nonlinearities in the actions of the DDPG agent.
Thanks to its nonlinear policy, the DDPG immediately excites the second oscillator with
strong actions around 10rads™!, i.e. close to the oscillator’s resonance frequency, even
if, in the beginning, the first oscillator is moving at approximately 1rads~!. On the
other hand, the LIPO agent requires more time to achieve the same stabilization and
mostly relies on its linear terms (linked to s; and s») because the quadratic ones are
of no use in achieving the necessary change of frequency from sensor observation to
actions.

The GP and the DDPG use their larger model capacity to propose laws that are far
more complex and more effective. The GP selects an impulsive control (also reported by
Duriez et al. 2017) while the DDPG proposes a periodic forcing. The impulsive strategy
of the GP performs better than the DDPG (according to the metrics in (4.6)) because
it exchanges more energy with the second oscillator with a smaller control effort. This
is evident considering the total energy passes to the system through the actuation term
in (4.5) (vaz o lus4]). The DDPG agent has exchanged 187 energy units, whereas the

GP agent exchanged 329. In terms of control cost, defined as Zf\lzl |u|, the GP has a
larger efficiency with 348 units against more than 420 for the DDPG. Moreover, this can
also be shown by plotting the orbits of the second oscillator under the action of the four
controllers, as done in figure 12. Indeed, an impulsive control is hardly described by a
continuous function and this is evident from the complexity of the policy found by the GP,
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Figure 13. Robustness analysis of the optimal control methods with randomized initial conditions for the 0-D
test case. The violin plots represent the distribution of cumulative rewards obtained, whereas the black crosses
show the best result of each controller at the end of the training phase.

which reads

a= (log (s2 4+ s4) + ee(w)

sin (log(s2))

sin (sin (tanh (10g (_e<S§—s§) _ s3> . (tanh(sin (s1) — s5) — szs4)))> . (5.2)

+

The best GP control strategy consists of two main terms. The first depends on s, and s4
and the second takes all the states at the denominator and only s, at the numerator. This
allows us to moderate the control efforts once the first oscillator is stabilized.

Finally, the results from the robustness study are collected in figure 13. This figure shows
the distribution of the global rewards obtained for each agent while randomly changing the
initial conditions 100 times. These instances were obtained by taking as an initial condition
for the evaluation a random state in the range ¢ € [60, 66]. The cross-markers indicate
the results obtained by the best agent for each method, trained while keeping the same
initial condition. These violin plots can be used to provide a qualitative overview of the
agents robustness and generalization. We consider an agent ‘robust’ if its performances
are independent of the initial conditions; thus, if the distribution in figure 13 is narrow.
We consider an agent ‘general’ if its performance on the training conditions is compatible
with the unseen conditions; thus, if the cross in figure 13 falls within the distribution
of cumulative rewards. In this sense, the DDPG agent excels in both robustness and
generalization, while the GP agent, which achieves the best performances on some initial
conditions, is less robust. On the other hand, the linear agents generalize well but have a
worse control performance with a robustness comparable to the GP agent.

5.2. Viscous Burgers’ equation test case

We here present the results of the viscous Burgers’ test case (cf. § 4.2) focusing first on
the cases for which neither the linear controllers BO and LIPO nor the GP can produce a
constant action (laws A in § 4.2). As for the previous test case, table 3 collects the final best
cumulative reward for each control method together with the confidence interval, while
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x103 LIPO BO GP DDPG
Bestreward —7.26+0.93 —7.10+032 —12.06+12.25 —6.88+0.58

Table 3. Same as table 1 but for the control of nonlinear waves in the viscous Burger’s equation.
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Figure 14. Comparison of the learning curves (a) and their variances (b) for different machine learning
methods for the 1-D Burgers equation test case (§ 4.2). (a) Learning curve. (b) Learning curve variance.

figure 14(a,b) shows the learning curve and learning variance over ten training sessions.
The DDPG achieved the best performance, with low variance, whereas the GP performed
worse in both maximum reward and variance. The LIPO and BO give comparable results.
For the LIPO, the learning variance grows initially, as the algorithm randomly selects the
second and third episodes’ weights.

For this test case, the GPr-based surrogate model of the reward function used by the BO
proves to be particularly successful in approximating the expected cumulative reward. This
yields steep improvements of the controller from the first iterations (recalling that the BO
runs ten exploratory iterations to build its first surrogate model, which are not included in
the learning curve). On the other hand, the GP does not profit from the relatively simple
functional at hand and exhibits the usual stair-like learning curve since 20 iterations were
run with an initial population of 10 individuals.

The control laws found by BO and LIPO have similar weights (with differences of the
order O(1072)) (see table 8 in Appendix B for the mean value and half-standard deviation
of the various coefficients), although the BO has much lower variance among the training
sessions. Figure 15 shows the best control law derived by the four controllers, together with
the forcing term. These figures should be analysed together with figure 16, which shows
the spatio-temporal evolution of the variable u(x, #) under the action of the best control
law derived by the four algorithms.

The linear control laws of BO and LIPO are characterized by two main periods: one that
seeks to cancel the incoming wave and the second that seeks to compensate for the control
action’s upward propagation. This upward propagation is revealed in the spatio-temporal
plots in figure 16 for the BO and LIPO while it is moderate in the problem controlled via
GP and absent in the case of the DDPG control. The advective retrofitting (mechanism I
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Figure 16. Contour plot of the spatio-temporal evolution of u governed by (4.10) using the best control action
of the different methods. The perturbation is centred at x = 6.6 (red continuous line) while the control law is
centred at x = 13.2 (red dotted line). The dashed black lines visualize the location of the observation points,
while the region within the white dash-dotted line is used to evaluate the controller performance.
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Figure 17. Robustness analysis of the optimal control methods with randomized initial conditions for the
Burgers equation test case. The violin plots represent the distribution of cumulative rewards obtained, whereas
the black crosses show the best result of each controller at the end of the training phase.

An open-loop strategy such as a constant term in the policy appears useful in
this problem, and the average action produced by the DDPG, as shown in figure 15,
demonstrates that this agent is indeed taking advantage of it. This is why we also
analysed the problem in mixed conditions, giving all agents the possibility to provide a
constant term. The BO, LIPO and GP results in this variant are analysed together with the
robustness study, in which 100 randomly selected initial conditions are considered. The
results are collected in figure 17, where A refers to agents that do not have the constant
term and B to agents that do have it.

Overall, the possibility of acting with a constant contribution is well appreciated by all
agents, although none reach the performances of the DDPG. This shows that the success
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Figure 18. Comparison of the action and observation evolution along an episode for DDPG (a,c) and LIPO
(b,d) in the second test case (§ 4.2).

in the DDPG is not solely due to this term but also to the ability of the DDPG to generate
high frequencies. This is better highlighted in figure 18, which shows a zoom on the action
and the observations for the DDPG and the BO. While both agents opt for an action whose
mean is different from zero, the frequency content of the action is clearly different and,
once again, the available nonlinearities play an important role.

5.3. von Kdrmdn street control test case

We begin the analysis of this test case with an investigation on the performances of the RL
agent trained by Tang et al. (2020) using the PPO on the same control problem. As recalled
in § 4.3, these authors used 236 probes, located as shown in figure 6, and a policy a =
f(s; w) represented by an ANN with three layers with 256 neurons each. Such a complex
parametric function gives a large model capacity, and it is thus natural to analyse whether
the trained agent leverage this potential model complexity. To this end, we perform a linear
regression of the policy identified by the ANN. Given a € R* the action vector and s €
R%3 the state vector collecting information from all probes, we seek the best linear law
of the form a = Ws, with W € R**?3 the matrix of weights of the linear policy. Let wj

denote the jth raw of W; hence, the set of weights that linearly map the state s to the action
aj, i.e. the flow rate in the one of the fourth injections. One thus has a; = ijs.

To perform the regression, we produce a dataset of n, = 400 samples of the control law,
by interrogating the ANN agent trained by Tang et al. (2020). Denoting as s? the evolution
of the state i and as a the vector of actions proposed by the agent at the 400 samples, the

linear fit of the control action is the solution of a linear least square problem, which using
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Figure 19. Scatter plot of the sensor locations, coloured by the norm of the weights wy;, wy;, w3j, wa; that link

the observation at state j with the action vector a = [a1, a2, a3, a4] in the linear regression of the policy by
Tang et al. (2020).

Ridge regression yields

ai =Swj > w;=(S"S+an”'s"ar, (5.3)

where S = [5], 55, ...555] € R400x236 j5 the matrix collecting the 400 samples for the
236 observations along its columns, 7 is the identity matrix of appropriate size and « is
a regularization term. In this regression the parameter « is taken running a K = 5 fold
validation and looking for the minima of the out-of-sample error.

The result of this exercise is illuminating for two reasons. The first is that the residuals
in the solution of (5.3) have a norm of ||aj’." —Swjl| =1 x 107>. This means that despite

the large model capacity available to the ANN, the RL by Tang et al. (2020) is de facto
producing a linear policy.

The second reason is that analysing the weights w; ; € W in the linearized policy a; =
W, allows for quickly identifying which of the sensors is more important in the action
selection process. The result, in the form of a coloured scatter plot, is shown in figure 19.

The markers are placed at the sensor location and coloured by the sum ), wi2 i for each of

the jth sensors. This result shows that only a tiny fraction of the sensors play a role in the
action selection. In particular, the two most important ones are placed on the rear part of
the cylinder and have much larger weights than all the others.

In light of this result with the benchmark RL agent, it becomes particularly interesting
to perform the same analysis of the control action proposed by DDPG and GP, since BO
and the LIPO use a linear law by construction. Figure 20(a,b) shows the learning curves
and learning variance as a function of the episodes, while table 4 collects the results for the
four methods in terms of the best reward and confidence interval as done for the previous
test cases.

The BO and the LIPO reached an average reward of 6.43 (with the best performances
of the BO hitting 7.07) (see table 9 in Appendix B for the mean value and half-standard
deviation of the various coefficients) in 80 episodes while the PPO agent trained by Tang
et al. (2020) required 800 to reach a reward of 6.21. While Tang et al. (2020)’s agent aimed
at achieving a robust policy across a wide range of Reynolds numbers, it appears that, for
this specific problem, the use of an ANN-based policy with more than 65000 parameters

958 A39-33


https://doi.org/10.1017/jfm.2023.76

https://doi.org/10.1017/jfm.2023.76 Published online by Cambridge University Press

F. Pino, L. Schena, J. Rabault and M.A. Mendez

—+-BO  =%-LIPO - GP  —=—DDPG —e-BO == LIPO —=DDPG  --*-GP
(@) )
7 e
6 /’1
100
5
R(W) 4 GR
T—V
3 !
.ﬂ':
2 ¥
1 el
10° 10! 102 103 10° 10! 102 103
€p cp

Figure 20. Comparison of the learning curves (a) and their variances (b) for different machine learning
methods for the von Karman street control problem (§ 4.3).

LIPO BO GP DDPG
Best reward 6.53 £0.34 6.41 £0.89 7.14 £0.86 5.66 = 2.64

Table 4. Same as table 1 but for the von Kdrman street control problem.

and 236 probes drastically penalize the sample efficiency of the learning if compared with
a linear policy with five sensors and 20 parameters.

Genetic programming had the best mean control performance, with 33 % reduction of
the average drag coefficient compared with the uncontrolled case and remarkably small
variance. Lipschitz global optimization had the lowest standard deviation due to its mainly
deterministic research strategy, which selects only two random coefficients at the second
and third optimization steps.

On the other hand, the large exploration by the GP requires more than 300 episodes
to outperform the other methods. The LIPO and BO had similar trends, with an almost
constant rate of improvement. This suggests that the surrogate models used in the
regression are particularly effective in approximating the expected cumulative reward.

The DDPG follows a similar trend, but slightly worse performances and larger variance.
The large model capacity of the ANN, combined with the initial exploratory phase, tend to
set the DDPG on a bad initial condition. The exploratory phase is only partially responsible
for the large variance, as one can see from the learning curve variance for ep > 20 (see
(3.3)), when the exploitation begins, although a step is visible, the variance remains high.

Despite the low variance in the reward, the BO and LIPO finds largely different weights
for the linear control functions, as shown in figure 21. This implies that fairly different
strategies lead to comparable rewards and, hence, the problem admits multiple optima. In
general, the identified linear law seeks to compensate the momentum deficit due to the
vortex shedding by injecting momentum with the jets on the opposite side. For example,
in the case of BO, the injection g4 is strongly linked to the states s, $2, §5, laying on the
lower half-plane. In the case of LIPO, both ejections g1 and g4 are consistently linked
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Figure 21. Weights of control action for the von Kdrman street control problem, given by a linear combination
of the system’s states for the four flow rates. The coloured bars represent a standard deviation around the mean
value found by LIPO and BO with ten random number generator seeds.

to the observation in ss, on the back of the cylinder, with the negligible uncertainty and
highest possible weight.

Figure 22 shows the time evolution of the four actions (flow rates) and the evolution
of the instantaneous drag coefficient (red lines). Probably due to the short duration of the
episode, none of the controllers identifies a symmetric control law. The LIPO and BO,
despite the different weights’ distribution, find an almost identical linear combination.
They both produce a small flow rate for the second jet and larger flow rates for the first,
both in the initial transitory and in the final stages. As the shedding is reduced and the drag
coefficient drops, all flow rates tend to a constant injection for both BO and LIPO, while
the GP keep continuous pulsations in both g4 and g3 (with opposite signs).

All the control methods lead to satisfactory performances, with a mitigation of the von
Kdarman street and a reduction of the drag coefficient, also visible by the increased size
of the recirculation bubble in the wake. The evolution of the drag and lift coefficients
are shown in figure 23 for the uncontrolled and the controlled test cases. The mean flow
and standard deviation for the baseline and for the best strategy identified by the four
techniques is shown in table 5, which also reports the average drag and lift coefficients
along with their standard deviation across various episodes.

To analyse the degree of nonlinearity in the control laws derived by the GP and the
DDPG, we perform a linear regression with respect to the evolution of the states as
performed for the PPO agent by Tang er al. (2020) at the opening of this section. The
results are shown in table 6, which compares the action taken by the DDPG (first row)
and the GP (second row), in the abscissa, with the linearized actions, in the ordinate,
for the four injections. None of the four injections produced by the DDPG agent can be
linearized and the open-loop behaviour (constant action regardless of the states) is visible.
Interestingly, the action taken by the GP on the fourth jet is almost linear.

Finally, we close this section with the results of the robustness analysis tested on 100
randomly chosen initial conditions over one vortex shedding period. As for the previous
test cases, these are collected in reward distribution for each agent in figure 24. The mean
results align with the learning performances (black crosses), but significantly differ in
terms of variability.
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Figure 22. Evolution of the jets’ flow rates (left) and the drag around the cylinder (right) for the best control
action found by the different machine learning methods.
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Figure 23. Comparison between the controlled and uncontrolled Cp and Cr, evolutions using the best
policies found by the different methods.

Although the GP achieves the best control performances for some initial conditions,
the large distribution is a sign of overfitting, and multiple initial conditions should be
included at the training stage to derive more robust controllers as done by Castellanos et
al. (2022). While this lack of robustness might be due to the specific implementation of
the multiple-output control, these results show that agents with higher model capacity in
the policy are more prone to overfitting and require a broader range of scenarios during the
training. As for the comparison between DDPG, BO and LIPO, who have run for the same
number of episodes, it appears that the linear controller outperforms the DDPG agent both
in performance and robustness. This opens the question of the effectiveness of complex
policy approximators on relatively simple test cases and on whether this test case, despite
its popularity, is well suited to showcase sophisticated MLC methods.

6. Conclusions and outlooks

We presented a general mathematical framework linking machine-learning-based control
techniques and optimal control. The first category comprises methods based on ‘black-box
optimization’ such as BO and LIPO, methods based on tree expression programming such
as GP, and methods from RL such as DDPG.

We introduced the mathematical background for each method, in addition we illustrated
their algorithmic implementation, in Appendix A. Following the definition by Mitchell
(1997), the investigated approaches are machine learning algorithms because they are
designed to automatically improve at a task (controlling a system) according to a
performance measure (a reward function) with experience (i.e. data, collected via trial and
errors from the environment). In its most classic formulation, the ‘data-driven’ approach
to a control problem is black-box optimization. The function to optimize measures the
controller performance over a set of iterations that we call episodes. Therefore, training
a controller algorithm requires (1) a function approximation to express the ‘policy’ or
‘actuation law’ linking the current state of the system to the action to take, and (2) an
optimizer that improves the function approximation episode after episode.
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Mean value Standard deviation

Baseline

(Cp=3.2,CL=-0.02) (0¢c, =0.2,0¢, =2)

Mean velocity magnitude Standard deviation velocity magnitude

0 0.2030.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.1 2.3x10° 0 01 02 03 04 05 06 07 08 09 10 1.1 12 1314x10°
——— L — I ————————iei—
LIPO
(Cp =2.1,Cr = 0.9) (6cp = 02,00, = 1.1)

BO
(Cp=2.1,CL =1.13) (oc, =0.2,0¢, =0.9)
GP
(Cp=1.9,CL =0.6) (0c, =02, 00, = 0.6)
DDPG
(Cp =2.34,Cp = —1.44) (oc, = 0.29, 0¢, = 1.54)

Table 5. Mean flow (left-hand side) and standard deviation (right-hand side) using the best control action
found by the different methods. The mean lift (Cz) and drag (Cp) are averaged over the last two uncontrolled
vortex shedding periods.

In BO and LIPO the function approximator for the policy is defined a priori. In this
work we consider linear or quadratic controllers, but any function approximator could
have been used instead (e.g. RBF or ANN). These optimizers build a surrogate model of
the performance measure and adapt this model episode by episode. In GP the function
approximator is an expression tree, and the optimization is carried out using classic
evolutionary algorithms. In DRL, particularly in the DDPG algorithm implemented in
this work, the function approximation is an ANN, and the optimizer is a stochastic (batch)
gradient-based optimization. In this optimization the gradient of the cumulative reward is
computed using a surrogate model of the Q function, i.e. the function mapping the value
of each state-action pair, using a second ANN.
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Figure 24. Robustness analysis of the optimal control methods with randomized initial conditions for the von
Karman street control problem. The violin plots represent the distribution of cumulative rewards obtained,
whereas the black crosses show the best result of each controller at the end of the training phase.

In the machine learning terminology, we say that the function approximators available
to the GP and the DDPG have a larger ‘model capacity’ than those we used for the BO and
the LIPO (linear or quadratics). This allows these algorithms to identify nonlinear control
laws that are difficult to cast in the form of prescribed parametric functions. On the other
hand, the larger capacity requires many learning parameters (branches and leaves in the
tree expressions of the GP and weights in the ANN of the DDPG), leading to optimization
challenges and possible local minima. Although it is well known that large model capacity
is a key enabler in complex problems, this study shows that it might be harmful in problems
where a simple control law suffices. This statement does not claim to be a general rule but
rather a warning in the approach to complex flow control problems. Indeed, the larger
model capacity proved particularly useful in the first two test cases but not in the third, for
which a linear law proved more effective, more robust and considerably easier to identify.
In this respect, our work stresses the importance of better defining the notion of complexity
of a flow control problem and the need to continue establishing reference benchmark cases
of increasing complexity.

We compared the ‘learning’ performances of these four algorithms on three control
problems of growing complexity and dimensionality: (1) the stabilization of a nonlinear
0-D oscillator, (2) the cancellation of nonlinear waves in the burgers’ equation in 1-D, and
(3) the drag reduction in the flow past a cylinder in laminar conditions. The successful
control of these systems highlighted the strengths and weaknesses of each method,
although all algorithms identify valuable control laws in the three systems.

The GP achieves the best performances on both the stabilization of the 0-D system
and the control of the cylinder wake, while the DDPG gives the best performances
on the control of nonlinear waves in the Burgers’ equation. However, the GP has the
poorest sample efficiency in all the investigated problems, thus requiring a larger number
of interactions with the system, and has the highest learning variance, meaning that
repeating the training leads to vastly different results. This behaviour is inherent to the
population-based and evolutionary optimization algorithm, which has the main merit of
escaping local minima in problems characterized by complex functionals. These features
paid off in the 0-D problem, for which the GP derives an effective impulsive policy, but
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are ineffective in the control of nonlinear waves in the Burgers’ equation, characterized by
a much simpler reward functional.

On the other side of the scale, in terms of sample efficiency, are the black-box optimizers
such as LIPO and BO. Their performance is strictly dependent on the effectiveness of the
predetermined policy parametrization to optimize. In the case of the 0-D control problem,
the quadratic policy is, in its simplicity, less effective than the complex policy derived by
GP and DDPG. For the problem of drag reduction in the cylinder flow, the linear policy
was rather satisfactory. To the point that it was shown that the PPO policy by Tang et al.
(2020) has, in fact, derived a linear policy. The DDPG implementation was trained using
five sensors (instead of 236) and reached a performance comparable to the PPO by Tang
et al. (2020) in 80 episodes (instead of 800). Nevertheless, although the policy derived
by our DDPG is nonlinear, its performances is worse than the linear laws derived by BO
and LIPO. Yet, the policy by the DDPG is based on an ANN parametrized by 68 361
parameters (4 fully connected layers with 5 neurons in the first, 256 in the second and
third and 4 in the output) while the linear laws used by BO and LIPO only depend on 20
parameters.

We believe that this work has shed some light (or opened some paths) on two main
aspects of the machine-learning-based control problem: (1) the contrast between the
generality of the function approximator for the policy and the number of episodes required
to obtain good control actions; and (2) the need for tailoring the model complexity
to control the task at hand and the possibility of having a modular approach in the
construction of the optimal control law. The resolution of both aspects resides in the
hybridization of the investigated methods.

Concerning the choice of the function approximator (policy parametrization or the
“hypothesis set” in the machine learning terminology), both ANN and expression
trees offer large modelling capacities, with the latter often outperforming the
former in the authors’ experience. Intermediate solutions such as RBFs or Gaussian
processes can provide a valid compromise between model capacity and dimensionality
of their parameter space. They should be explored more in the field of flow
control.

Finally, concerning the dilemma ‘model complexity versus task complexity’, a possible
solution could be increasing the complexity modularly. For example, one could limit the
function space in the GP by first taking linear functions and then enlarging it modularly,
adding more primitives. Alternatively, in a hybrid formalism, one could first train a linear
or polynomial controller (e.g. via LIPO or BO) and then use it to pre-train models of
larger complexity (e.g. ANNSs or expression trees) in a supervised fashion, or to assist their
training with the environment (for instance, by inflating the replay buffer of the DDPG
with transitions learned by the BO/LIPO models).

This is the essence of ‘behavioural cloning’, in which a first agent (called
‘demonstrator’) trains a second one (called ‘imitator’) offline so that the second does not
start from scratch. This is unexplored territory in flow control and, of course, opens the
question of how much the supervised training phase should last and whether the pupil
could ever surpass the master.
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Appendix A. Algorithms’ pseudocodes
A.l. The BO pseudocode

Algorithm 1 reports the main steps of the BO through GPr. Lines (1-9) define the GPr
predictor function, which takes in input the sampled points W™, the associated cumulative
rewards R*, the testing points W and the Kernel function « in (3.7). This outputs the mean
value of the prediction g, and its variance X. The algorithm starts with the initialization
of the simulated weights W* and rewards R* buffers (lines 10 and 11). Prior to starting the
optimization, 10 random weights W are tested (lines 12 and 13). Within the optimization
loop, at each iteration, 1000 random points are passed to the GPr predictor, which is also
fed with the weight and rewards buffers (lines 16 and 17) to predict the associated expected
reward and variance for each weight combination. This information is then passed to an
acquisition function (line 17) that outputs a set of values 4 associated to the weights W,
The acquisition function is then optimized to identify the next set of weights (line 19).
Finally, the best weights are tested in the environment (line 20) and the buffers updated
(lines 21 and 22).

Algorithm 1 Bayesian Optimization using GPr, adapted from Rasmussen & Williams
(2005) and Pedregosa et al. (2011)

1: function PREDICTOR(W™, R*, W, k)
2: Compute K < « (W, W)
3 Compute K,y < x(W*, W*)
4: Compute Kg < K + 0oy 1
5: Compute Cholesky decomposition L < Kpg
6 Compute @ <— LTL~'R*
7 Compute v < LK™!
8 return mean ., < Ko and variance X, < K — vy
9: end function
10: Initialize weight buffer W* as null
11: Initialize function buffer R* as null
12: Initialize a set of 10 random weights W°
13: Collect reward from simulation R® < R(W?)
14: Add rewards and weights to buffers R* < R® and W* < w?
15: for kin (1,N) do
16: Select 1000 random points W+
17: Evaluate points (jt4, Xy) < PREDICTOR(W*, R*, W, k)
18: Compute (A, WT)<—ACQFUNCTION((ftx, X))
190wk < argmin ACQFUNCTION(w")
wh
20: Collect reward from simulation R* < R(wk)
21: Add result to buffers R* < RK and W* « wk
22: end for
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Algorithm 2 MaxLIPO + TR (Adapted from King 2009)

function GLOABALSEARCH
if x ~U(S) > p then
Select weights w based on MaxLIPO (3.11)

else

end if

Evaluate reward function R(w)
return (w, R(w))
: end function
10: Define upper U and lower L weights’ bounds
11: Initialize buffer structure W as empty
12: Initialize weights as wy = (U + L) /2
13: Evaluate reward function R(wg)
14: Initialize the best weight and reward (w*, R*) < (wg, R(wy))
15: Add weights and reward to the buffer W (wg, R(wp))
16: Initialize flag < False
17 for kin (1,N,.-1) do

1:
2
3
4
5: Select weights w randomly
6
7
8
9

18: if k < 3 then

19: Select weights wy randomly

20: Evaluate reward function R(wy)

21: else

22: if flag = True then

23: Wk, R(wy) < GLOABALSEARCH()

24:; if R(wy) > R* then

25: Set flag < False

26: end if

27: else

28: if k mod 2 = 0 then

29: Wk, R(wr) < GLOABALSEARCH()
30: else

31: Select weights wy based on TR (3.12)
32: Evaluate reward function R(wy)

33: if [R(wy) — R*| < € (3.13) then
34: Set flag < True

35: continue

36: end if

37 end if

38: Update upper bound U (w) with wy, (3.8)
39: Update TR (m(w; w*) (3.12))

40: end if

41: end if

42: if R(wy) > R* then

43: Update (w*, R*) < (wg, R(wy))

44: end if

45:

46: end for

47 EndFor
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A.2. The LIPO pseudocode

Algorithm 2 reports the key steps of the MaxLLIPO+TR method. First, a GLOBALSEARCH
function is defined (line 1). This performs a random global search of the parametric space
if the random number selected from § = {x € R| 0 < x < 1} is smaller than p (line 3),
otherwise it proceeds with MaxLIPO. In our case p = 0.02; hence, the random search is
almost negligible. The upper and lower bounds (U, L) of the search space are defined in
line 10. A buffer object, initialized as empty in line 11, logs the weights w; and their relative
reward R(w;) along the optimization. Within the learning loop (line 17), the second and
third weights are selected randomly (line 19). Then, if the iteration number £ is even, the
algorithm selects the next weights via GLOBALSEARCH (line 23), otherwise it relies on the
local optimization method (line 31). If the local optimizer reaches an optimum within an
accuracy of € (line 33), the algorithm continues exclusively with GLOBALSEARCH. At the
end of each iteration, both the local and global models are updated with the new weights

Wwi+1 (lines 38 and 39).

A.3. The GP pseudocode

Algorithm 3 shows the relevant steps of the learning process. First, an initial population
of random individuals (i.e. candidate control policies) is generated and evaluated (lines
1 and 2) individually. An episode is run for each different tree structure. The population,
with their respective rewards (according to (2.2)), is used to generate a set of A offspring
individuals. The potential parents are selected via tournament, where new individuals
are generated cross-over (line 9), mutation (line 12) and replication (line 15): each new
member of the population has a probability p., p, and p, to arise from any of these three
operations, hence p. + p;, + pr = 1.

Algorithm 3 GP (i, 1)-ES (Adapted from Beyer & Schwefel 2002)

1: Initialize population B with ;1 random individuals a;.

2: Evaluate fitness a; <— (w;, R(w;))

3: foriin (1,N,) do .

4: Initialize offspring population B with A individuals as empty.
5 for tin (1,1) do

6: Select random number ¢ € (0, 1)

7: if ¢ <p, then

8: Random sample two individuals (a;;,a;,) from BU=D
9 Compute offspring individual a; < Mate(a,,,a;)

10: else if ¢ < (p. + pm) then

11: Random sample an individual (a,,) from BG=D
12: Compute offspring individual a; <— Mutate(a,,)
13: else

14: Random sample an individual (a,,) from B(=D
15: Compute offspring individual a; < a,,

16: end if

17: end for

18: Evaluate fitness of mated and mutated a; < (w;, R(w;))
19: Update population B®) < Select(B?”),B, 1)

20: end for
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Algorithm 4 DDPG (Adapted from Lillicrap et al. 2015)

. Initialize Q(s, a; w?) and t(s; w™) w1th random w? and w™.
2: Initialize targets w2 «— wland w" « wT
3. Initialize replay Buffer R as empty.
4: for epin (1,ng) do
Observe initial state sq

6 for tin (1,T) do

7 if t = 1 or mod(t, K) = 0 then

8: a; = a(s;; w") + nep)N(t; 0, 0)

9: else

10: a; = a;—|

11: end if

12: Execute a;, get r; and observe s, 1

13: Store the transitions (s;, a;, 7, $¢4+1) in R

14: Rank the transition by TD error §

15: Select N transitions in R, favouring the highest §
16: Compute y; = r; + y Q' (s, (s, w))

17: Compute J2 = E(y; — O(ss, m(s;, w™))) and 8wQJQ
18: Update w? < w@ + aqanJQ

19: Compute J™ (w“/) and 9, J™
20: Update w™ <« w™ + aqawﬂ/J“

21: Update targets in Q: w? «— tw? + (1 — ‘L’)WQ/
22: Update targets in : w7 — w4+ (1 —1)w"
23: end for
24: end for

The implemented cross-over strategy is the one-point cross-over: two randomly chosen
parents are first broken around one randomly selected cross-over point, generating two
trees and two subtrees. Then, the offspring is created by replacing the subtree rooted in
the first parent with the subtree rooted at the cross-over point of the second parent. Of
the two offsprings, only one is considered in the offspring and the other is discarded.
The mutation strategy is a one-point mutation, in which a random node (sampled with a
uniform distribution) is replaced with any other possible node from the primitive set. The
replication strategy consists in the direct cloning of one randomly selected parent to the
next generation.

The tournament was implemented using the (u + A) approach, in which both parents
and offsprings are involved; this is in contrast with the (i, 1), in which only the offsprings
are involved in the process. The new population is created by selecting the best individuals,
based on the obtained reward, among the old population BY~! and the offspring B (line
19).

A.4. The DDPG pseudocode

We recall the main steps of the DDPG algorithm in algorithm 4. After random
initialization of the weights in both network and the initialization of the replay buffer
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wi w2 w3
LIPO —0.02(%0.01) 0.03(40.03) —0.03(%0.02)
BO —0.02(%0.00) 0.02(+0.01) —0.03(%0.00)

Table 8. Mean value and half-standard deviation of the Burgers’ feedback control law coefficients.

(lines 1-3), the loop over episodes and time steps proceeds as follows. The agent begins
from an initial state (line 5), which is simply the final state of the system from the
previous episode or the last state from the uncontrolled dynamics. In other words,
none of the investigated environments has a terminal state and no re-initialization is
performed.

Within each episode, at each time step, the DDPG takes actions (lines 7-12) following
(3.19) (line 8) or repeating the previous action (line 10). After storing the transition in the
replay buffer (line 13), these are ranked based on the associated TD error § (line 14). This
is used to sample a batch of N transitions following a triangular distribution favouring
the transitions with the highest §. The transitions are used to compute the cost functions
J2w?) and J™(w™) and their gradients d,,0J(w") and 9y=J(w™) and, thus, update the
weights following a gradient ascent (lines 17 and 19). This operation is performed on the
‘current networks’ (defined by the weights w™ and w<). However, the computation of the
critic losses J€ is performed with the prediction y, from the target networks (defined by

the weights w™ and w?). The targets are under-relaxed updates of the network weights
computed at the end of each episode (lines 21-22).

The reader should note that, differently from the other optimization-based approaches,
the update of the policy is performed at each time step and not at the end of the
episode.

In our implementation we used the Adam optimizer for training the ANN’s with
a learning rate of 10~ and 2 x 10~ for the actor and the critic, respectively. The
discount factor was set to y = 0.99 and the soft-target update parameter was T =
5 x 1073, For what concerns the neural networks’ architecture, the hidden layers
used the rectified nonlinear activation function, while the actor output was bounded
relying on a hyperbolic tangent (tanh). The actor’s network was ng; x 256 x 256 x
ng, where ng is the number of states and n, is the number of actions expected
by the environment. Finally, the critic’s network concatenates two networks. The
first, from the action taken by the agent composed as n, x 64. The states are
elaborated in two layers of size ny; x 32 x 64. These are concatenated and expanded
by means of two layers with 256 x 256 x 1 neurons, where the output is the value
estimated.

Appendix B. Weights identified by the BO and LTPO

Tables 7, 8 and 9 collect the weights for the linear and nonlinear policies identified by
LIPO and BO for the three investigated control problems. The reported value represents
the mean of ten optimizations with different random conditions and the uncertainty is
taken as the standard deviation.
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