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Log pluricanonical representations and the
abundance conjecture

Osamu Fujino and Yoshinori Gongyo

Abstract

We prove the finiteness of log pluricanonical representations for projective log canonical
pairs with semi-ample log canonical divisor. As a corollary, we obtain that the log
canonical divisor of a projective semi log canonical pair is semi-ample if and only if
the log canonical divisor of its normalization is semi-ample. We also treat many other
applications.

1. Introduction

The following theorem is one of the main results of this paper (see Theorem 3.15). It is a solution
of the conjecture raised in [Fuj00a] (cf. [Fuj00a, Conjecture 3.2]). For the definition of the log
pluricanonical representation ρm, see Definitions 2.11 and 2.14 below.

Theorem 1.1 (See [Fuj00a, § 3], [Gon13, Theorem B]). Let (X,∆) be a projective log canonical
pair. Suppose that m(KX + ∆) is Cartier and that KX + ∆ is semi-ample. Then ρm(Bir(X,∆))
is a finite group.

In Theorem 1.1, we do not have to assume that KX + ∆ is semi-ample when KX + ∆ is
big (cf. Theorem 3.11). As a corollary of this fact, we obtain the finiteness of Bir(X,∆) when
KX + ∆ is big. It is an answer to the question raised by Cacciola and Tasin.

Theorem 1.2 (See Corollary 3.13). Let (X,∆) be a projective log canonical pair such that
KX + ∆ is big. Then Bir(X,∆) is a finite group.

In the framework of [Fuj00a], Theorem 1.1 will play an important role in the study of
Conjecture 1.3 (see [AFKM92, Fuj84, Fuj00a, Fuj12b, Gon13, Kaw92, KMM94], for example).

Conjecture 1.3 ((Log) abundance conjecture). Let (X,∆) be a projective semi log canonical
pair such that ∆ is a Q-divisor. Suppose that KX + ∆ is nef. Then KX + ∆ is semi-ample.

Remark 1.4. By the recent result of the first author on Shokurov’s polytopes for semi log
canonical pairs, we can treat Conjecture 1.3 for the case when ∆ is an R-divisor. For the details
and some related topics, see [Fuj12c, § 6.2].

Theorem 1.1 was settled for surfaces in [Fuj00a, § 3] and for the case where KX + ∆ ∼Q 0
by [Gon13, Theorem B]. In this paper, to carry out the proof of Theorem 1.1, we introduce
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the notion of B̃-birational maps and B̃-birational representations for sub Kawamata log terminal

pairs, which is new and is indispensable for generalizing the arguments in [Fuj00a, § 3] for higher-

dimensional log canonical pairs. For the details, see § 3.

By Theorem 1.1, we obtain a key result.

Theorem 1.5 (See Theorem 4.3). Let (X,∆) be a projective semi log canonical pair. Let

ν : Xν → X be the normalization. Assume that KXν + Θ = ν∗(KX + ∆) is semi-ample. Then

KX + ∆ is semi-ample.

By Theorem 1.5, Conjecture 1.3 is reduced to the problem for log canonical pairs. After we

circulated this paper, Hacon and Xu proved a relative version of Theorem 1.5 by using Kollár’s

gluing theory (see [HX11]). For the details, see § 4.1 below. Theorem 1.5 (and its relative version)

is an important ingredient of the results of the papers [Bir12, HX13]. We note that Theorem 1.5

is sufficient for many applications in [Bir12, HX13] since we can reduce them to the projective

case.

Let X be a smooth projective n-fold. By our experience on the low-dimensional abundance

conjecture, we think that we need the abundance theorem for projective semi log canonical pairs

in dimension 6 n− 1 in order to prove the abundance conjecture for X. Therefore, Theorem 1.5

seems to be an important step for an inductive approach to the abundance conjecture. The

general strategy for proving the abundance conjecture is explained in the introduction of [Fuj00a].

Theorem 1.5 is a complete solution of Step (v) in [Fuj00a, 0. Introduction].

As applications of Theorem 1.5 and [Fuj12a, Theorem 1.1], we have the following useful

theorems.

Theorem 1.6 (See Theorem 4.2). Let (X,∆) be a projective log canonical pair such that ∆ is

a Q-divisor. Assume that KX + ∆ is nef and log abundant. Then KX + ∆ is semi-ample.

It is a generalization of the well-known theorem for Kawamata log terminal pairs (see, for

example, [Fuj10, Corollary 2.5]). Theorem 1.7 may be easier to understand than Theorem 1.6.

Theorem 1.7 (See Theorem 4.6). Let (X,∆) be an n-dimensional projective log canonical pair

such that ∆ is a Q-divisor. Assume that the abundance conjecture holds for projective divisorial

log terminal pairs in dimension 6 n − 1. Then KX + ∆ is semi-ample if and only if KX + ∆ is

nef and abundant.

We have many other applications. In this introduction, we explain only one of them. It is a

generalization of [Fuk11, Theorem 0.1] and [CKP12, Corollary 3.5]. It also contains Theorem 1.6.

For a further generalization, see Remark 4.17.

Theorem 1.8 (See Theorem 4.16). Let (X,∆) be a projective log canonical pair and let D be a

Q-Cartier Q-divisor on X such that D is nef and log abundant with respect to (X,∆). Assume

that KX + ∆ ≡ D. Then KX + ∆ is semi-ample.

The reader can find many applications and generalizations in § 4. In § 5, we will discuss the

relationship among the various conjectures in the minimal model program (see also our recent

preprint [FG13]). Let us recall the following two important conjectures.

Conjecture 1.9 (Non-vanishing conjecture). Let (X,∆) be a projective log canonical pair such

that ∆ is an R-divisor. Assume that KX + ∆ is pseudo-effective. Then there exists an effective

R-divisor D on X such that KX + ∆ ∼R D.
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By [DHP13, § 8] and [Gon12b], Conjecture 1.9 can be reduced to the case when X is a smooth
projective variety and ∆ = 0 by using the global ACC conjecture and the ACC for log canonical
thresholds (see [DHP13, Theorems 8.2 and 8.4]). Hacon et al. have recently announced that they
have solved both ACC Theorems (see [HMX12, Theorems 1.5, 1.1]).

Conjecture 1.10. (Extension conjecture for divisorial log terminal pairs (see [DHP13,
Conjecture 1.3])). Let (X,∆) be an n-dimensional projective divisorial log terminal pair such
that ∆ is a Q-divisor, b∆c = S, KX + ∆ is nef, and KX + ∆ ∼Q D > 0 where S ⊂ SuppD. Then

H0(X,OX(m(KX + ∆)))→ H0(S,OS(m(KX + ∆)))

is surjective for all sufficiently divisible integers m > 2.

Note that Conjecture 1.10 holds true when KX + ∆ is semi-ample (cf. Proposition 5.12). It
is an easy consequence of a cohomology injectivity theorem. We also note that Conjecture 1.10
is true if (X,∆) is purely log terminal with SuppD ⊂ Supp ∆ (see [DHP13, Corollary 1.8]). The
following theorem is one of the main results of § 5. It is a generalization of [DHP13, Theorem 1.4].

Theorem 1.11 (See [DHP13, Theorem 1.4]). Assume that Conjectures 1.9 and 1.10 hold true in
dimension 6 n. Let (X,∆) be an n-dimensional projective divisorial log terminal pair such that
KX + ∆ is pseudo-effective. Then (X,∆) has a good minimal model. In particular, if KX + ∆ is
nef, then KX + ∆ is semi-ample.

By our inductive treatment of Theorem 1.11, Theorem 1.5 plays a crucial role. Therefore,
Theorem 1.1 is indispensable for Theorem 1.11.

We summarize the contents of this paper. In § 2, we collect some basic notation and results.
Section 3 is the main part of this paper. In this section, we prove Theorem 1.1. We divide the
proof into three steps: sub Kawamata log terminal pairs in § 3.1, log canonical pairs with big
log canonical divisor in § 3.2, and log canonical pairs with semi-ample log canonical divisor in
§ 3.3. Section 4 contains various applications of Theorem 1.1. They are related to the abundance
conjecture: Conjecture 1.3. In § 4.2, we generalize the main theorem in [Fuk11] (cf. [CKP12,
Corollary 3.5]), the second author’s result in [Gon12a], and so on. In § 5, we discuss the
relationship among the various conjectures in the minimal model program.

We will work over C, the complex number field, throughout this paper. We will freely use
the standard notation in [Fuj11b, KM98].

2. Preliminaries

In this section, we collect some basic notation and results.

2.1 (Convention). Let D be a Weil divisor on a normal variety X. We sometimes simply write
H0(X,D) to denote H0(X,OX(D)).

2.2 (Q-divisors). For a Q-divisor D =
∑r

j=1 djDj on a normal variety X such that Dj is a prime
divisor for every j and Di 6= Dj for i 6= j, we define the round-down bDc =

∑r
j=1bdjcDj , where

for every rational number x, bxc is the integer defined by x− 1 < bxc 6 x. We set

D=1 =
∑
dj=1

Dj .

We note that ∼Z (∼, for short) denotes linear equivalence of divisors. We also note that ∼Q
(respectively ≡) denotes Q-linear equivalence (respectively numerical equivalence) of Q-divisors.
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Let f :X → Y be a morphism and letD1 andD2 be Q-Cartier Q-divisors onX. ThenD1 ∼Q,Y D2

means that there is a Q-Cartier Q-divisor B on Y such that D1 ∼Q D2 + f∗B. We can also treat

R-divisors similarly.

2.3 (Log resolution). Let X be a normal variety and let D be an R-divisor on X. A log resolution

f : Y → X means that:

(i) f is a proper birational morphism;

(ii) Y is smooth; and

(iii) Exc(f)∪Supp f−1
∗ D is a simple normal crossing divisor on Y , where Exc(f) is the exceptional

locus of f .

We recall the notion of singularities of pairs.

Definition 2.4 (Singularities of pairs). Let X be a normal variety and let ∆ be an R-divisor

on X such that KX + ∆ is R-Cartier. Let ϕ : Y → X be a log resolution of (X,∆). We set

KY = ϕ∗(KX + ∆) +
∑

aiEi,

where Ei is a prime divisor on Y for every i. The pair (X,∆) is called:

(a) sub Kawamata log terminal (subklt, for short) if ai > −1 for all i; or

(b) sub log canonical (sublc, for short) if ai > −1 for all i.

If ∆ is effective and (X,∆) is subklt (respectively sublc), then we simply call it klt

(respectively lc).

Let (X,∆) be an lc pair. If there is a log resolution ϕ : Y → X of (X,∆) such that Exc(ϕ)

is a divisor and that ai > −1 for every ϕ-exceptional divisor Ei, then the pair (X,∆) is called

divisorial log terminal (dlt, for short).

Let E be a prime divisor over X. Then a(E,X,∆) denotes the discrepancy coefficient of E

with respect to (X,∆).

Let us recall semi log canonical pairs and semi divisorial log terminal pairs (cf. [Fuj00a,

Definition 1.1]). For the details of these pairs, see [Fuj00a, § 1]. Note that the notion of semi

divisorial log terminal pairs in [Kol13, Definition 5.17] is different from ours. We also note that

the first author has recently established the fundamental theorems, that is, various Kodaira type

vanishing theorems, the cone and contraction theorem, and so on, for semi log canonical pairs

in [Fuj12c].

Definition 2.5 (Slc and sdlt). Let X be a reduced S2 scheme. We assume that it is pure

n-dimensional and normal crossing in codimension one. Let ∆ be an effective Q-divisor on X such

that KX + ∆ is Q-Cartier. We assume that ∆ =
∑

i ai∆i where ai ∈ Q and ∆i is an irreducible

codimension one closed subvariety of X such that OX,∆i is a DVR for every i. Let X =
⋃
iXi

be the decomposition into irreducible components and let ν : Xν := qiXν
i → X =

⋃
iXi be the

normalization. A Q-divisor Θ on Xν is defined by KXν + Θ = ν∗(KX + ∆) and a Q-divisor Θi

on Xν
i is defined by Θi := Θ|Xν

i
. We say that (X,∆) is a semi log canonical n-fold (an slc n-fold,

for short) if (Xν ,Θ) is lc. We say that (X,∆) is a semi divisorial log terminal n-fold (an sdlt

n-fold, for short) if Xi is normal, that is, Xν
i is isomorphic to Xi, and (Xν ,Θ) is dlt.
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We recall a very important example of slc pairs.

Example 2.6. Let (X,∆) be a Q-factorial lc pair such that ∆ is a Q-divisor. We set S = b∆c.
Assume that (X,∆ − εS) is klt for some 0 < ε � 1. Then (S,∆S) is slc where KS + ∆S =
(KX + ∆)|S .

Remark 2.7. Let (X,∆) be a dlt pair such that ∆ is a Q-divisor. We set S = b∆c. Then it is
well known that (S,∆S) is sdlt where KS + ∆S = (KX + ∆)|S .

The following theorem was originally proved by Hacon (see, for example, [Fuj11b,
Theorem 10.4] and [KK10, Theorem 3.1]). For a simpler proof, see [Fuj11a, § 4].

Theorem 2.8 (Dlt blow-up). Let X be a normal quasi-projective variety and let ∆ be an
effective R-divisor on X such that KX + ∆ is R-Cartier. Suppose that (X,∆) is lc. Then there
exists a projective birational morphism ϕ : Y → X from a normal quasi-projective variety Y
with the following properties:

(i) Y is Q-factorial;

(ii) a(E,X,∆) = −1 for every ϕ-exceptional divisor E on Y ; and

(iii) for
Γ = ϕ−1

∗ ∆ +
∑

E:ϕ-exceptional

E,

we have (Y,Γ) is dlt and KY + Γ = ϕ∗(KX + ∆).

The above theorem is very useful for the study of log canonical singularities (cf. [Fuj01,
Fuj11b, Fuj11c, FG12a, Gon12a, Gon13, KK10]). We will repeatedly use it in the subsequent
sections.

2.9 (Log pluricanonical representations). Nakamura–Ueno [NU73] and Deligne proved the
following theorem (see [Uen75, Theorem 14.10]).

Theorem 2.10 (Finiteness of pluricanonical representations). Let X be a compact complex
Moishezon manifold. Then the image of the group homomorphism

ρm : Bim(X)→ AutC(H0(X,mKX))

is finite, where Bim(X) is the group of bimeromorphic maps from X to itself.

For considering the logarithmic version of Theorem 2.10, we need the notion of B-birational
maps and B-pluricanonical representations.

Definition 2.11 [Fuj00a, Definition 3.1]. Let (X,∆) (respectively (Y,Γ)) be a pair such that
X (respectively Y ) is a normal scheme with a Q-divisor ∆ (respectively Γ) such that KX + ∆
(respectively KY + Γ) is Q-Cartier. We say that a proper birational map f : (X,∆) 99K (Y,Γ) is
B-birational if there exists a common resolution

W
α

~~

β

  
X

f
// Y

such that
α∗(KX + ∆) = β∗(KY + Γ).

This means that E = F when we set KW = α∗(KX + ∆) + E and KW = β∗(KY + Γ) + F .
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Let D be a Q-Cartier Q-divisor on Y . Then we define

f∗D := α∗β
∗D.

It is easy to see that f∗D is independent of the common resolution α : W → X and β : W → Y .
Finally, we set

Bir(X,∆) = {σ | σ : (X,∆) 99K (X,∆) is B-birational}.

It is obvious that Bir(X,∆) has a natural group structure.

Remark 2.12. In Definition 2.11, let ψ : X ′→ X be a proper birational morphism from a normal
scheme X ′ such that KX′ + ∆′ = ψ∗(KX + ∆). Then we can easily check that Bir(X,∆) '
Bir(X ′,∆′) by g 7→ ψ−1 ◦ g ◦ ψ for g ∈ Bir(X,∆).

We give a basic example of B-birational maps.

Example 2.13 (Quadratic transformation). Let X = P2 and let ∆ be the union of three general
lines on P2. Let α : W → X be the blow-up at the three intersection points of ∆ and let
β : W → X be the blow-down of the strict transform of ∆ on W . Then we obtain the quadratic
transformation ϕ, shown below.

W
α

~~

β

  
X ϕ

// X

For the details, see [Har77, ch. V, Example 4.2.3]. In this situation, it is easy to see that

α∗(KX + ∆) = KW + Θ = β∗(KX + ∆).

Therefore, ϕ is a B-birational map of the pair (X,∆).

Definition 2.14 [Fuj00a, Definition 3.2]. Let X be a pure n-dimensional normal scheme and
let ∆ be a Q-divisor, and let m be a nonnegative integer such that m(KX + ∆) is Cartier. A
B-birational map σ ∈ Bir(X,∆) defines a linear automorphism of H0(X,m(KX + ∆)). Thus we
get a group homomorphism

ρm : Bir(X,∆)→ AutC(H0(X,m(KX + ∆))).

The homomorphism ρm is called the B-pluricanonical representation or log pluricanonical
representation for (X,∆). We sometimes simply denote ρm(g) by g∗ for g ∈ Bir(X,∆) if there is
no danger of confusion.

In § 3.1, we will introduce and consider B̃-birational maps and B̃-pluricanonical representa-
tions for subklt pairs (see Definition 3.1). In some sense, they are generalizations of
Definitions 2.11 and 2.14. We need them for our proof of Theorem 1.1.

Remark 2.15. Let (X,∆) be a projective dlt pair. We note that g ∈ Bir(X,∆) does not necessarily
induce a birational map g|T : T 99K T , where T = b∆c (see Example 2.13). However, g ∈ Bir(X,∆)
induces an automorphism

g∗ : H0(T,OT (m(KT + ∆T )))
∼−→ H0(T,OT (m(KT + ∆T )))
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where (KX + ∆)|T = KT + ∆T and m is a nonnegative integer such that m(KX + ∆) is Cartier
(see the proof of [Fuj00a, Lemma 4.9]). Let

W
α

~~

β

  
X g

// X

be a common log resolution such that

α∗(KX + ∆) = KW + Θ = β∗(KX + ∆).

Then we can easily see that

α∗OS ' OT ' β∗OS ,

where S = Θ=1, by the Kawamata–Viehweg vanishing theorem. More precisely, we can write

KW + S + F = α∗(KX + ∆) + E

where E is an effective Cartier divisor and F is an effective Q-divisor with bF c = 0. Note that
E is α-exceptional. We consider the short exact sequence

0→ OW (E − S)→ OW (E)→ OS(E)→ 0.

By the relative Kawamata–Viehweg vanishing theorem, Riα∗OW (E − S) = 0 for every i > 0.
Therefore,

OX ' α∗OW (E)→ α∗OS(E)

is surjective. Hence we obtain α∗OS(E) ' OT . Thus α∗OS ' OT holds. By the same argument,
we also have β∗OS ' OT . Thus we obtain an automorphism

g∗ : H0(T,OT (m(KT + ∆T )))
β∗−→H0(S,OS(m(KS + ΘS)))

α∗−1

−→H0(T,OT (m(KT + ∆T )))

where (KW + Θ)|S = KS + ΘS .

Let us recall an important lemma on B-birational maps, which will be used in the proof of
the main theorem (see Theorem 3.15).

Lemma 2.16. Let f : (X,∆) 99K (X ′,∆′) be a B-birational map between projective dlt pairs.
Let S be an lc center of (X,∆) such that KS + ∆S = (KX + ∆)|S (see [Fuj07, 3.9 Adjunction
for dlt pairs]). We take a suitable common log resolution as in Definition 2.11, shown below.

(W,Γ)

α

zz

β

%%
(X,∆)

f
// (X ′,∆′)

Then we can find an lc center V of (X,∆) contained in S with KV + ∆V = (KX + ∆)|V ,
an lc center T of (W,Γ) with KT + ΓT = (KW + Γ)|T , and an lc center V ′ of (X ′,∆′) with
KV ′ + ∆′V ′ = (KX′ + ∆′)|V ′ such that the following conditions hold.
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(a) The morphismsα|T and β|T , shown in the following diagram, are B-birational morphisms.

(T,ΓT )
α|T

yy

β|T

%%
(V,∆V ) (V ′,∆′V ′)

Therefore, (β|T ) ◦ (α|T )−1 : (V,∆V ) 99K (V ′,∆′V ′) is a B-birational map.

(b) By the natural restriction map, H0(S,m(KS + ∆S)) ' H0(V,m(KV + ∆V )), where m is
a nonnegative integer such that m(KX + ∆) is Cartier.

Proof. See Claim (An) and Claim (Bn) in the proof of [Fuj00a, Lemma 4.9]. 2

In § 3, we will use Burnside’s theorem (cf. [Uen75, Theorem 14.9]) to prove the finiteness
of ρm(Bir(X,∆)). We restate it here for the reader’s convenience. For the proof, see, for
example, [CR06, (36.1) Theorem].

Theorem 2.17 (Burnside). Let G be a subgroup of GL(n,C). If the order of any element g of
G is uniformly bounded, then G is a finite group.

2.18 (Numerical dimensions). In § 5, we will use the notion of Nakayama’s numerical Kodaira
dimension for pseudo-effective R-Cartier R-divisors on normal projective varieties. For the
details, see [Leh13, Nak04].

Definition 2.19 (Nakayama’s numerical Kodaira dimension (cf. [Nak04, V. 2.5. Definition])).
Let D be a pseudo-effective R-Cartier R-divisor on a normal projective variety X and let A be
a Cartier divisor on X. If H0(X,OX(bmDc + A)) 6= 0 for infinitely many positive integers m,
then we set

σ(D;A) = max

{
k ∈ Z>0

∣∣∣∣ lim sup
m→∞

dimH0(X,OX(bmDc+A))

mk
> 0

}
.

If H0(X,OX(bmDc+ A)) 6= 0 for only finitely many m ∈ Z>0, then we set σ(D;A) = −∞. We
define Nakayama’s numerical Kodaira dimension κσ by

κσ(X,D) = max{σ(D;A) | A is a Cartier divisor on X}.

If D is a nef R-Cartier R-divisor on a normal projective variety X, then it is well known that D
is pseudo-effective and

κσ(X,D) = ν(X,D)

where ν(X,D) is the numerical Kodaira dimension of D.

We close this section with a remark on the minimal model program with scaling. For the
details, see [BCHM10, Bir11].

2.20 (Minimal model program with ample scaling). Let f : X → Z be a projective morphism
between quasi-projective varieties and let (X,B) be a Q-factorial dlt pair. Let H be an effective
f -ample Q-divisor on X such that (X,B +H) is lc and that KX +B +H is f -nef. Under these
assumptions, we can run the minimal model program for KX +B with scaling of H over Z. We
call it the minimal model program with ample scaling.

Assume that KX +B is not pseudo-effective over Z. We note that the above minimal model
program always terminates at a Mori fiber space structure over Z. By this observation, the results
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in [Fuj00a, § 2] hold in every dimension. Therefore, we will freely use the results in [Fuj00a, § 2]
for any dimensional varieties.

From now on, we assume that KX +B is pseudo-effective and dimX = n. We further assume
that the weak non-vanishing conjecture (see Conjecture 5.1) for projective Q-factorial dlt pairs
holds in dimension 6 n. Then the minimal model program for KX + B with scaling of H over
Z terminates with a minimal model of (X,B) over Z by [Bir11, Theorems 1.4, 1.5].

3. Finiteness of log pluricanonical representations

In this section, we give the proof of Theorem 1.1. All the divisors in this section are Q-divisors.
We do not use R-divisors throughout this section. We divide the proof into the three steps: subklt
pairs in § 3.1, lc pairs with big log canonical divisor in § 3.2, and lc pairs with semi-ample log
canonical divisor in § 3.3.

3.1 Klt pairs
In this subsection, we prove Theorem 1.1 for klt pairs. More precisely, we prove Theorem 1.1 for
B̃-pluricanonical representations for projective subklt pairs without assuming the semi-ampleness
of log canonical divisors. This formulation is indispensable for the proof of Theorem 1.1 for lc
pairs.

First, let us introduce the notion of B̃-pluricanonical representations for subklt pairs.

Definition 3.1 (B̃-pluricanonical representations for subklt pairs). Let (X,∆) be an n-
dimensional projective subklt pair such that X is smooth and that ∆ has simple normal crossing
support. We write ∆ = ∆+−∆− where ∆+ and ∆− are effective and have no common irreducible
components. Let m be a positive integer such that m(KX + ∆) is Cartier. In this subsection, we
always think of

ω ∈ H0(X,m(KX + ∆))

as a meromorphic m-ple n-form on X which vanishes along m∆− and has poles at most m∆+.
By Bir(X), we mean the group of all the birational mappings of X onto itself. It has a natural
group structure induced by the composition of birational maps. We define

B̃irm(X,∆) =

{
g ∈ Bir(X)

∣∣∣∣ g∗ω ∈ H0(X,m(KX + ∆)) for

every ω ∈ H0(X,m(KX + ∆))

}
.

Then it is easy to see that B̃irm(X,∆) is a subgroup of Bir(X). An element g ∈ B̃irm(X,∆)
is called a B̃-birational map of (X,∆). By the definition of B̃irm(X,∆), we get a group
homomorphism

ρ̃m : B̃irm(X,∆)→ AutC(H0(X,m(KX + ∆))).

The homomorphism ρ̃m is called the B̃-pluricanonical representation of B̃irm(X,∆). We
sometimes simply denote ρ̃m(g) by g∗ for g ∈ B̃irm(X,∆) if there is no danger of confusion.
There exists a natural inclusion Bir(X,∆) ⊂ B̃irm(X,∆) by definition.

Next, let us recall the notion of L2/m-integrable m-ple n-forms.

Definition 3.2. Let X be an n-dimensional connected complex manifold and let ω be a
meromorphic m-ple n-form. Let {Uα} be an open covering of X with holomorphic coordinates

(z1
α, z

2
α, . . . , z

n
α).
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We can write
ω|Uα = ϕα(dz1

α ∧ · · · ∧ dznα)m,

where ϕα is a meromorphic function on Uα. We define (ω ∧ ω̄)1/m by

(ω ∧ ω̄)1/m|Uα =

(√
−1

2π

)n
|ϕα|2/mdz1

α ∧ dz̄1
α · · · ∧ dznα ∧ dz̄nα.

We say that a meromorphic m-ple n-form ω is L2/m-integrable if∫
X

(ω ∧ ω̄)1/m <∞.

We can easily check the following two lemmas. The first one is a special case of [Sak77,
Theorem 2.1].

Lemma 3.3. Let X be an n-dimensional compact connected complex manifold and let D be a
reduced normal crossing divisor on X. Set U = X\D. If ω is a meromorphic n-form such that
ω|U is holomorphic and L2-integrable, then ω is a holomorphic n-form.

The second one is essentially the same as [Sak77, Theorem 2.1].

Lemma 3.4 (See [Gon13, Lemma 4.8]). Let (X,∆) be an n-dimensional projective subklt pair
such that X is smooth and ∆ has simple normal crossing support. Furthermore, let m be a
positive integer such that m∆ is Cartier and let ω ∈ H0(X,OX(m(KX +∆))) be a meromorphic
m-ple n-form. Then ω is L2/m-integrable.

By Lemmas 3.3, 3.4, we obtain the following result. We note that the proof of [Gon13,
Proposition 4.9] works without any changes in our setting.

Proposition 3.5. Let (X,∆) be an n-dimensional projective subklt pair such that X is smooth,
irreducible, and ∆ has simple normal crossing support. Let

ω ∈ H0(X,m(KX + ∆))

be a nonzero meromorphic m-ple n-form on X where m is a positive integer such that m∆ is
Cartier. Then there exists a positive integer Nm,ω with the following properties.

Let g ∈ B̃irm(X,∆) be a B̃-birational map. Suppose that g∗ω = λω for some λ ∈ C. Then
λNm,ω = 1.

Note that Nm,ω does not depend on g.

Remark 3.6. By the proof of [Gon13, Proposition 4.9] and [Uen75, Theorem 14.10], we know
that ϕ(Nm,ω) 6 bn(Y ′), where bn(Y ′) is the nth Betti number of Y ′, which is in the proof of
[Gon13, Proposition 4.9], and ϕ is the Euler function.

Proposition 3.7 (See [Uen75, Proposition 14.7]). Let (X,∆) be a projective subklt pair such
that X is smooth, irreducible, and ∆ has simple normal crossing support, and let

ρ̃m : B̃irm(X,∆)→ AutC(H0(X,m(KX + ∆)))

be the B̃-pluricanonical representation of B̃irm(X,∆) where m is a positive integer such that
m∆ is Cartier. Then ρ̃m(g) is semi-simple for every g ∈ B̃irm(X,∆).

Proof. If ρ̃m(g) is not semi-simple, there exist two linearly independent elements ϕ1, ϕ2 ∈
H0(X,m(KX + ∆)) and nonzero α ∈ C such that

g∗ϕ1 = αϕ1 + ϕ2, g∗ϕ2 = αϕ2,
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by considering Jordan’s decomposition of g∗. Here, we denote ρ̃m(g) by g∗ for simplicity. By
Proposition 3.5, we see that α is a root of unity. Let l be a positive integer. Then we have

(gl)∗ϕ1 = αlϕ1 + lαl−1ϕ2.

Since g is a birational map, we have∫
X

(ϕ1 ∧ ϕ̄1)1/m =

∫
X

((gl)∗ϕ1 ∧ (gl)∗ϕ̄1)1/m.

On the other hand, we have

lim
l→∞

∫
X

((gl)∗ϕ1 ∧ (gl)∗ϕ̄1)1/m =∞.

For details, see the proof of [Uen75, Proposition 14.7]. However, we know
∫
X(ϕ1 ∧ ϕ̄1)1/m <∞

by Lemma 3.4. This is a contradiction. 2

Proposition 3.8. The number Nm,ω in Proposition 3.5 is uniformly bounded for every ω ∈
H0(X,m(KX + ∆)). Therefore, we can take a positive integer Nm such that Nm is divisible by
Nm,ω for every ω.

Proof. We consider the projective space bundle

π : M := PX(OX(−KX)⊕OX)→ X

and

V :=M × P(H0(X,OX(m(KX + ∆))))

→ X × P(H0(X,OX(m(KX + ∆)))).

We fix a basis {ω0, ω1, . . . , ωN} of H0(X,OX(m(KX + ∆))). By using this basis, we can identify
P(H0(X,OX(m(KX + ∆)))) with PN . We write the coordinates of PN as (a0 : · · · : aN )
under this identification. Set ∆ = ∆+ − ∆−, where ∆+ and ∆− are effective and have no
common irreducible components. Let {Uα} be coordinate neighborhoods of X with holomorphic
coordinates (z1

α, z
2
α, . . . , z

n
α). For any i, we can write ωi locally as

ωi|Uα =
ϕi,α
δi,α

(dz1
α ∧ · · · ∧ dznα)m,

where ϕi,α and δi,α are holomorphic with no common factors, and

ϕi,α
δi,α

has poles at most m∆+. We may assume that {Uα} gives a local trivialization of M , that
is, M |Uα := π−1Uα ' Uα × P1. We pick coordinates (z1

α, z
2
α, . . . , z

n
α, ξ

0
α : ξ1

α) on Uα × P1 with
homogeneous coordinates (ξ0

α : ξ1
α) on P1. Note that

ξ0
α

ξ1
α

= kαβ
ξ0
β

ξ1
β

in M |Uα⋂
Uβ ,

where kαβ = det(∂ziβ/∂z
j
α)16i,j6n. Set

YUα =

{
(ξ0
α)m

N∏
i=0

δi,α − (ξ1
α)m

N∑
i=0

δ̂i,αaiϕi,α = 0

}
⊂ Uα × P1 × PN ,
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where δ̂i,α = δ0,α · · · δi−1,α ·δi+1,α · · · δN,α. By easy calculations, we see that {YUα} can be patched
and we obtain Y . We note that Y may have singularities and be reducible. The induced
projection f : Y → PN is surjective and equi-dimensional. Let q : Y → X be the natural
projection. By the same arguments as in the proof of [Uen75, Theorem 14.10], we have a suitable
stratification PN = qiSi, where Si is smooth and locally closed in PN for every i, such that
f−1(Si)→ Si has a simultaneous resolution with good properties for every i. Therefore, we may
assume that there is a positive constant b such that for every p ∈ PN we have a resolution
µp : Ỹp → Yp := f−1(p) with the properties that bn(Ỹp) 6 b and that µ̃∗p∆ ∪ Exc(µ̃p) has
simple normal crossing support, where µ̃p : Ỹp

µp→ Yp
q→ X. Thus, by Remark 3.6, we obtain

Proposition 3.8. 2

Now we have the main theorem of this subsection. We will use it in the following subsections.

Theorem 3.9. Let (X,∆) be a projective subklt pair such that X is smooth, ∆ has simple
normal crossing support, and m(KX + ∆) is Cartier where m is a positive integer. Then
ρ̃m(B̃irm(X,∆)) is a finite group.

Proof. By Proposition 3.7, we see that ρ̃m(g) is diagonalizable. Moreover, Proposition 3.8 implies
that the order of ρ̃m(g) is bounded by a positive constant Nm which is independent of g. Thus
ρ̃m(B̃irm(X,∆)) is a finite group by Burnside’s theorem: Theorem 2.17. 2

As a corollary, we obtain Theorem 1.1 (stated as Corollary 3.10 below) for klt pairs without
assuming the semi-ampleness of log canonical divisors.

Corollary 3.10. Let (X,∆) be a projective klt pair such that m(KX + ∆) is Cartier where m
is a positive integer. Then ρm(Bir(X,∆)) is a finite group.

Proof. Let f : Y → X be a log resolution of (X,∆) such that KY + ∆Y = f∗(KX + ∆). Since

ρm(Bir(Y,∆Y )) ⊂ ρ̃m(B̃irm(Y,∆Y )),

by Theorem 3.9 ρm(Bir(Y,∆Y )) is a finite group. Therefore, we obtain that ρm(Bir(X,∆)) '
ρm(Bir(Y,∆Y )) is a finite group. 2

3.2 Lc pairs with big log canonical divisor
In this subsection, we prove the following theorem. The proof is essentially the same as that of
Case 1 in [Fuj00a, Theorem 3.5].

Theorem 3.11. Let (X,∆) be a projective sublc pair such that KX + ∆ is big. Let m be a
positive integer such that m(KX + ∆) is Cartier. Then ρm(Bir(X,∆)) is a finite group.

Before we start the proof of Theorem 3.11, we give a remark.

Remark 3.12. By Theorem 3.11, when KX + ∆ is big, Theorem 1.1, the main theorem of this
paper, holds true without assuming that KX+∆ is semi-ample. Therefore, we state Theorem 3.11
separately for some future usage (see, for example, Corollary 3.13). In Case 2 in the proof of
Theorem 3.15, which is a restatement of Theorem 1.1, we will use the arguments in the proof of
Theorem 3.11.

Proof. By taking a log resolution, we may assume that X is smooth and ∆ has simple normal
crossing support. By Theorem 3.9, we can also assume that ∆=1 6= 0. Since KX + ∆ is big, for
a sufficiently large and divisible positive integer m′, we obtain an effective Cartier divisor Dm′
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such that
m′(KX + ∆) ∼Z ∆=1 +Dm′

by Kodaira’s lemma. It is easy to see that Supp g∗∆=1 ⊃ Supp ∆=1 for every g ∈ Bir(X,∆). This
implies that g∗∆=1 > ∆=1. Thus, we have a natural inclusion

Bir(X,∆) ⊂ B̃irm′

(
X,∆− 1

m′
∆=1

)
.

We consider the B̃-birational representation

ρ̃m′ : B̃irm′

(
X,∆− 1

m′
∆=1

)
→ AutCH

0(X,m′(KX + ∆)−∆=1).

Then, by Theorem 3.9,

ρ̃m′

(
B̃irm′

(
X,∆− 1

m′
∆=1

))
is a finite group. Therefore, ρ̃m′(Bir(X,∆)) is also a finite group. We set a = |ρ̃m′(Bir(X,∆))| <
∞. In this situation, we can find a Bir(X,∆)-invariant nonzero section

s ∈ H0(X, a(m′(KX + ∆)−∆=1)).

By multiplication with s, we have a natural inclusion

H0(X,m(KX + ∆)) ⊆ H0(X, (m+m′a)(KX + ∆)− a∆=1). (♠)

By construction, Bir(X,∆) acts on both vector spaces compatibly. We consider the B̃-pluri-
canonical representation

ρ̃m+m′a : B̃irm+m′a

(
X,∆− a

m+m′a
∆=1

)
→ AutCH

0(X, (m+m′a)(KX + ∆)− a∆=1).

Since (
X,∆− a

m+m′a
∆=1

)
is subklt, we have that

ρ̃m+m′a

(
B̃irm+m′a

(
X,∆− a

m+m′a
∆=1

))
is a finite group by Theorem 3.9. Therefore, ρ̃m+m′a(Bir(X,∆)) is also a finite group. Thus, we
obtain that ρm(Bir(X,∆)) is a finite group by the Bir(X,∆)-equivariant embedding (♠). 2

The following corollary is an answer to the question raised by Cacciola and Tasin. It is a
generalization of the well-known finiteness of birational automorphisms of varieties of general
type (cf. [Uen75, Corollary 14.3]).

Corollary 3.13. Let (X,∆) be a projective sublc pair such that KX+∆ is big. Then Bir(X,∆)
is a finite group.

Proof. We consider the rational map

Φm := Φ|m(KX+∆)| : X 99K P(H0(X,m(KX + ∆)))

associated to the complete linear system |m(KX + ∆)|, where m is a positive integer such that
m(KX+∆) is Cartier. By taking m� 0, we may assume that Φm : X 99K V is birational because
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KX + ∆ is big, where V is the image of X by Φm. The log pluricanonical representation

ρm : Bir(X,∆)→ AutC(H0(X,m(KX + ∆)))

induces the group homomorphism

ρ̄m : Bir(X,∆)→ Aut(P(H0(X,m(KX + ∆)))).

Note that ρ̄m(g) leaves V invariant for every g ∈ Bir(X,∆) by the construction. Since Φm :
X 99K V is birational, ρ̄m is injective. On the other hand, we see that ρ̄m(Bir(X,∆)) is finite by
Theorem 3.11. Therefore, Bir(X,∆) is a finite group. 2

Remark 3.14. By the proof of Corollary 3.13 and Theorem 3.9, we obtain the following finiteness
of B̃irm(X,∆).

Let (X,∆) be a projective subklt pair such that X is smooth and that ∆ has simple normal
crossing support. Let m be a positive integer such that m(KX +∆) is Cartier and that |m(KX +
∆)| defines a birational map. Then B̃irm(X,∆) is a finite group.

3.3 Lc pairs with semi-ample log canonical divisor
Theorem 3.15 is one of the main results of this paper (see Theorem 1.1). We will treat many
applications of Theorem 3.15 in § 4.

Theorem 3.15. Let (X,∆) be an n-dimensional projective lc pair such that KX + ∆ is
semi-ample. Let m be a positive integer such that m(KX + ∆) is Cartier. Then ρm(Bir(X,∆))
is a finite group.

Proof. We show the statement by induction on n. By taking a dlt blow-up (see Theorem 2.8),
we may assume that (X,∆) is a Q-factorial dlt pair. Let f : X → Y be a projective surjective
morphism associated to k(KX + ∆) for a sufficiently large and divisible positive integer k. By
Corollary 3.10, we may assume that b∆c 6= 0.

Case 1. b∆hc 6= 0, where ∆h is the horizontal part of ∆ with respect to f .

In this case, we set T = b∆c. Since m(KX + ∆) ∼Q,Y 0, we see that

H0(X,OX(m(KX + ∆)− T )) = 0.

Thus the restricted map

H0(X,OX(m(KX + ∆)))→ H0(T,OT (m(KT + ∆T )))

is injective, where KT + ∆T = (KX + ∆)|T . Let (Vi,∆Vi) be the disjoint union of all the
i-dimensional lc centers of (X,∆) for 0 6 i 6 n−1. We note that ρm(Bir(Vi,∆Vi)) is a finite group
for every i by induction on dimension. We set ki = |ρm(Bir(Vi,∆Vi))| <∞ for 0 6 i 6 n− 1. Let
l be the least common multiple of ki for 0 6 i 6 n− 1. Let T =

⋃
j Tj be the decomposition into

irreducible components. Let g be an element of Bir(X,∆). By repeatedly using Lemma 2.16, for
every Tj , we can find lc centers Sij of (X,∆)

X
g

99K X
g

99K X
g

99K · · ·
g

99K X 99K
∪ ∪ ∪ ∪
S0
j S1

j S2
j Skj

such that S0
j ⊂ Tj , Sij 99K S

i+1
j is a B-birational map for every i, and

H0(Tj ,m(KTj + ∆Tj )) ' H0(S0
j ,m(KS0

j
+ ∆S0

j
))
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by the natural restriction map, where KTj + ∆Tj = (KX + ∆)|Tj and KS0
j

+ ∆S0
j

= (KX + ∆)|S0
j
.

Since there are only finitely many lc centers of (X,∆), we can find pj < qj such that S
pj
j = S

qj
j

and that S
pj
j 6= Srj for r = pj + 1, . . . , qj − 1. Therefore, g induces a B-birational map

g̃ :
∐

pj6r6qj−1

Srj 99K
∐

pj6r6qj−1

Srj

for every j. We have an embedding

H0(T,OT (m(KT + ∆T ))) ⊂
⊕
j

H0(S
pj
j ,m(K

S
pj
j

+ ∆
S
pj
j

)),

where K
S
pj
j

+ ∆
S
pj
j

= (KX + ∆)|
S
pj
j

for every j. First, by the following commutative diagram
(cf. Remark 2.15)

0 // H0(T,OT (m(KT + ∆T )))

(g∗)l

��

//
⊕

j H
0(S

pj
j ,m(K

S
pj
j

+ ∆
S
pj
j

))

(g̃∗)l=id

��
0 // H0(T,OT (m(KT + ∆T ))) //

⊕
j H

0(S
pj
j ,m(K

S
pj
j

+ ∆
S
pj
j

))

we obtain (g∗)l = id on H0(T,m(KT + ∆T )). Next, by the following commutative diagram
(cf. Remark 2.15)

0 // H0(X,OX(m(KX + ∆)))

(g∗)l

��

// H0(T,OT (m(KT + ∆T )))

(g∗)l=id
��

0 // H0(X,OX(m(KX + ∆))) // H0(T,OT (m(KT + ∆T )))

we have that (g∗)l = id on H0(X,OX(m(KX + ∆))). Thus we obtain that ρm(Bir(X,∆)) is a
finite group by Burnside’s theorem: Theorem 2.17.

Case 2. b∆hc = 0.

We can construct a commutative diagram

X ′

f ′

��

ϕ // X

f
��

Y ′
ψ
// Y

with the following properties:

(a) ϕ : X ′ → X is a log resolution of (X,∆);

(b) ψ : Y ′ → Y is a resolution of Y ;

(c) there is a simple normal crossing divisor Σ on Y ′ such that f ′ is smooth and Suppϕ−1
∗ ∆ ∪

Exc(ϕ) is relatively normal crossing over Y ′\Σ;

(d) Supp f ′∗Σ ∪ Exc(ϕ) ∪ Suppϕ−1
∗ ∆ is a simple normal crossing divisor on X ′, and in

particular, Supp f ′∗Σ is a simple normal crossing divisor on X ′.

Then we have
KX′ + ∆X′ = f ′∗(KY ′ + ∆Y ′ +M),
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where KX′ + ∆X′ = ϕ∗(KX + ∆), ∆Y ′ is the discriminant divisor and M is the moduli part of
f ′ : (X ′,∆X′)→ Y ′ (see, for example, [FG12b, § 3]). Note that

∆Y ′ =
∑

(1− cQ)Q,

where Q runs through all the prime divisors on Y ′ and

cQ = sup{t ∈ Q | KX′ + ∆X′ + tf ′∗Q is sublc over the generic point of Q}.

When we construct f ′ : X ′ → Y ′, we first make f : X → Y toroidal by [AK00, Theorem 2.1],
next make it equi-dimensional by [AK00, Proposition 4.4], and finally obtain f ′ : X ′ → Y ′ by
taking a resolution. By the above construction, we may assume that f ′ : X ′ → Y ′ factors as

f ′ : X ′
α−→ X̃

f̃−→ Y ′

with the following properties:

(1) f̃ : (Ũ ⊂ X̃) → (UY ′ ⊂ Y ′), where UY ′ = Y ′\Σ and Ũ is some Zariski open set of X̃, is
toroidal and equi-dimensional;

(2) α is a projective birational morphism and is an isomorphism over UY ′ ;

(3) ϕ̃ := ϕ ◦ α−1 : X̃ → X is a morphism such that K
X̃

+ ∆
X̃

= ϕ̃∗(KX + ∆) and that
Supp ∆

X̃
⊂ X̃\Ũ ;

(4) X̃ has only quotient singularities (see [AK00, Remark 4.5]).

For the details, see the arguments in [AK00]. In this setting, it is easy to see that Supp ∆=1
X′ ⊂

Supp f ′∗∆=1
Y ′ . Therefore, ∆=1

X′ 6 f ′∗∆=1
Y ′ . We can check that every g ∈ Bir(X ′,∆X′) = Bir(X,∆)

induces gY ′ ∈ Bir(Y ′,∆Y ′) which satisfies the following commutative diagram (see [Amb04,
Theorems 0.2 and 2.7] for the subklt case, and [FG12b, Theorem 3.6] for the sublc case).

X ′

f ′

��

g // X ′

f ′

��
Y ′ gY ′

// Y ′

Therefore, we have Supp g∗Y ′∆
=1
Y ′ ⊃ Supp ∆=1

Y ′ . This implies that

g∗Y ′∆
=1
Y ′ > ∆=1

Y ′ .

Thus there is an effective Cartier divisor Eg on X ′ such that

g∗f ′∗∆=1
Y ′ + Eg > f ′∗∆=1

Y ′

and that the codimension of f ′(Eg) in Y ′ is > 2. We note the definitions of g∗ and g∗Y ′ because g
and gY ′ are not morphisms but only rational maps (see Definition 2.11). Therefore, g ∈ Bir(X ′,
∆X′) induces an automorphism g∗ of H0(X ′,m′(KX′+∆X′)−f ′∗∆=1

Y ′ ) where m′ is a sufficiently
large and divisible positive integer. This is because

H0(X ′,m′(KX′ + ∆X′)− g∗f ′∗∆=1
Y ′ )

⊂ H0(X ′,m′(KX′ + ∆X′)− f ′∗∆=1
Y ′ + Eg)

' H0(X ′,m′(KX′ + ∆X′)− f ′∗∆=1
Y ′ ).
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Here, we used the facts thatm′(KX′+∆X′) = f ′∗(m′(KY ′+∆Y ′+M)) and that f ′∗OX′(Eg)'OY ′ .
Thus we have a natural inclusion

Bir(X ′,∆X′) ⊂ B̃irm′

(
X ′,∆X′ −

1

m′
f ′∗∆=1

Y ′

)
.

Note that (
X ′,∆X′ −

1

m′
f ′∗∆=1

Y ′

)
is subklt because ∆=1

X′ 6 f ′∗∆=1
Y ′ . Since KY ′ + ∆Y ′ + M is (nef and) big, for a sufficiently large

and divisible positive integer m′, we obtain an effective Cartier divisor Dm′ such that

m′(KY ′ + ∆Y ′ +M) ∼Z ∆=1
Y ′ +Dm′ .

This means that

H0(X ′,m′(KX′ + ∆X′)− f ′∗∆=1
Y ′ ) 6= 0.

By considering the natural inclusion

Bir(X ′,∆X′) ⊂ B̃irm′

(
X ′,∆X′ −

1

m′
f ′∗∆=1

Y ′

)
,

we can use the same arguments as in the proof of Theorem 3.11. Thus we obtain the finiteness

of B-pluricanonical representations. 2

Remark 3.16. Although we did not explicitly state it, in Theorem 3.9, we do not have to assume

that X is irreducible. Similarly, we can prove Theorems 3.11 and 3.15 without assuming that X

is irreducible. For the details, see [Gon13, Remark 4.4].

We close this section with comments on [Fuj00a, § 3] and [Gon13, Theorem B]. In [Fuj00a,

§ 3], we proved Theorem 3.15 for surfaces. There, we do not need the notion of B̃-birational

maps. It is mainly because Y ′ in Case 2 in the proof of Theorem 3.15 is a curve if (X,∆) is

not klt and KX + ∆ is not big. Thus, gY ′ is an automorphism of Y ′. In [Gon13, Theorem B],

we proved Theorem 3.15 under the assumption that KX + ∆ ∼Q 0. In that case, Case 1 in the

proof of Theorem 3.15 is sufficient. Therefore, we do not need the notion of B̃-birational maps

in [Gon13].

4. On the abundance conjecture for log canonical pairs

In this section, we treat various applications of Theorem 1.1 on the abundance conjecture for

(semi) lc pairs (cf. Conjecture 1.3). We note that we only treat Q-divisors in this section.

Let us introduce the notion of nef and log abundant Q-divisors.

Definition 4.1 (Nef and log abundant divisors). Let (X,∆) be a sublc pair. A closed subvariety

W of X is called an lc center if there exist a resolution f : Y →X and a divisor E on Y such that

a(E,X,∆) = −1 and f(E) = W . A Q-Cartier Q-divisor D on X is called nef and log abundant

with respect to (X,∆) if and only if D is nef and abundant, and ν∗WD|W is nef and abundant for

every lc center W of the pair (X,∆), where νW : W ν →W is the normalization. Let π : X → S

be a proper morphism onto a variety S. Then D is π-nef and π-log abundant with respect to

(X,∆) if and only if D is π-nef and π-abundant and (ν∗WD|W )|W ν
η

is abundant, where W ν
η is the

generic fiber of W ν → π(W ). We sometimes simply say that D is nef and log abundant over S.
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The following theorem is one of the main theorems of this section (cf. [Fuj00b, Theorem 0.1],
[Fuj08, Theorem 4.4]). For a relative version of Theorem 4.2, see Theorem 4.12 below. See also
§ 4.1.

Theorem 4.2. Let (X,∆) be a projective lc pair. Assume that KX +∆ is nef and log abundant.
Then KX + ∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (see Theorem 2.8), we may assume that
(X,∆) is dlt and that KX + ∆ is nef and log abundant. We set S = b∆c. Then (S,∆S), where
KS + ∆S = (KX + ∆)|S , is an sdlt (n − 1)-fold and KS + ∆S is semi-ample by induction on
dimension and Theorem 4.3 below. By applying Fukuda’s theorem (see [Fuj12a, Theorem 1.1]),
we obtain that KX + ∆ is semi-ample. 2

We note that Theorem 4.3 is a key result in this paper. It heavily depends on Theorem 1.1.

Theorem 4.3. Let (X,∆) be a projective slc pair. Let ν : Xν →X be the normalization. Assume
that KXν + Θ = ν∗(KX + ∆) is semi-ample. Then KX + ∆ is semi-ample.

Proof. The arguments in [Fuj00a, § 4] work by Theorem 1.1. As we pointed out in 2.20, we can
freely use the results in [Fuj00a, § 2]. The finiteness of B-pluricanonical representations, which
was only proved in dimension 62 in [Fuj00a, § 3], is now Theorem 1.1. Therefore, the results
in [Fuj00a, § 4] hold in any dimension. 2

By combining Theorem 4.3 with Theorem 4.2, we obtain an obvious corollary (see also
Corollary 4.13, Theorem 4.16, and Remark 4.17).

Corollary 4.4. Let (X,∆) be a projective slc pair and let ν : Xν → X be the normalization.
If KXν + Θ = ν∗(KX + ∆) is nef and log abundant, then KX + ∆ is semi-ample.

We give one more corollary of Theorem 4.3.

Corollary 4.5. Let (X,∆) be a projective slc pair such that KX + ∆ is nef. Let ν : Xν → X
be the normalization. Assume that Xν is a union of toric varieties. Then KX + ∆ is semi-ample.

Proof. It is well known that every nef Q-Cartier Q-divisor on a projective toric variety is semi-
ample. Therefore, this corollary is obvious by Theorem 4.3. 2

Theorem 4.6. Let (X,∆) be a projective n-dimensional lc pair. Assume that the abundance
conjecture holds for projective dlt pairs in dimension 6 n − 1. Then KX + ∆ is semi-ample if
and only if KX + ∆ is nef and abundant.

Proof. It is obvious that KX + ∆ is nef and abundant if KX + ∆ is semi-ample. So, we show
that KX + ∆ is semi-ample under the assumption that KX + ∆ is nef and abundant. By taking
a dlt blow-up (see Theorem 2.8), we may assume that (X,∆) is dlt. By assumption, it is easy to
see that KX + ∆ is nef and log abundant. Therefore, by Theorem 4.2, we obtain that KX + ∆
is semi-ample. 2

The following theorem is an easy consequence of the arguments in [KMM94, § 7] and
Theorem 4.3 by induction on dimension. We will treat related topics in § 5 more systematically.

Theorem 4.7. Let (X,∆) be a projective lc n-fold such that KX + ∆ is nef. Assume that the
abundance conjecture holds for projective klt pairs in dimension 6 n. We further assume that
the minimal model program with ample scaling terminates for projective Q-factorial klt pairs in
dimension 6 n. Then KX + ∆ is semi-ample.
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Proof. By replacing (X,∆) with its dlt blow-up (see Theorem 2.8), we may assume that (X,∆)

is a Q-factorial dlt pair. Then the statement follows from the arguments in [KMM94, § 7] by

using the minimal model program with ample scaling with the aid of Theorem 4.3. Let H be

a general effective sufficiently ample Cartier divisor on X. We run the minimal model program

for KX + ∆ − εb∆c with scaling of H. We note that KX + ∆ is numerically trivial on the

extremal ray in each step of the above minimal model program if ε is sufficiently small by [Bir11,

Proposition 3.2]. We also note that, by induction on dimension, (KX + ∆)|b∆c is semi-ample if

(X,∆) is a Q-factorial lc n-fold, KX + ∆ is nef, and (X,∆− εb∆c) is klt (cf. Example 2.6). For

the details, see [KMM94, § 7]. 2

Remark 4.8. In the proof of Theorem 4.7, the abundance theorem and the termination of the

minimal model program with ample scaling for projective Q-factorial klt pairs in dimension

6 n−1 are sufficient if KX + ∆− εb∆c is not pseudo-effective for every 0 < ε� 1 by [BCHM10]

(cf. 2.20).

The next theorem is an answer to Kollár’s question for projective varieties. He was mainly

interested in the case where f is birational.

Theorem 4.9. Let f : X → Y be a projective morphism between projective varieties. Let (X,∆)

be an lc pair such that KX + ∆ is numerically trivial over Y . Then KX + ∆ is f -semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (see Theorem 2.8), we may assume that (X,∆)

is a Q-factorial dlt pair. Let S = b∆c = ∪Si be the decomposition into irreducible components. If

S = 0, then KX +∆ is f -semi-ample by Kawamata’s theorem (see [Fuj10, Theorem 1.1]). This is

because (KX+∆)|Xη ∼Q 0, where Xη is the generic fiber of f , by Nakayama’s abundance theorem

for klt pairs with numerical trivial log canonical divisor (cf. [Nak04, ch. V. 4.9. Corollary]). By

induction on dimension, we may assume that (KX + ∆)|Si is semi-ample over Y for every i.

Let H be a general effective sufficiently ample Q-Cartier Q-divisor on Y such that bHc = 0.

Then (X,∆ + f∗H) is dlt, (KX + ∆ + f∗H)|Si is semi-ample for every i. By Proposition 4.3,

(KX+∆+f∗H)|S is semi-ample. By applying [Fuj12a, Theorem 1.1], we obtain thatKX+∆+f∗H

is f -semi-ample. We note that (KX + ∆ + f∗H)|Xη ∼Q 0 (see, for example, [Gon13, Theorem

1.2]). Therefore, KX + ∆ is f -semi-ample. 2

Remark 4.10. In Theorem 4.9, if ∆ is an R-divisor, then we obtain that KX + ∆ is semi-ample

over Y by the same arguments as in [Gon11, Lemma 6.2] and [FG12a, Theorem 3.1]. For some

related results, see [Fuj12c, § 6.2].

As a corollary, we obtain a relative version of the main theorem of [Gon13] (cf. [Fuj12c,

Theorem 6.8]).

Corollary 4.11 (See [Gon13, Theorem 1.2]). Let f : X → Y be a projective morphism from

a projective slc pair (X,∆) to a (not necessarily irreducible) projective variety Y . Assume that

KX + ∆ is numerically trivial over Y . Then KX + ∆ is f -semi-ample.

Proof. Let ν : Xν →X be the normalization such that KXν +Θ = ν∗(KX +∆). By Theorem 4.9,

KXν + Θ is semi-ample over Y . Let H be a general sufficiently ample Q-divisor on Y such

that KXν + Θ + ν∗f∗H is semi-ample and that (X,∆ + f∗H) is slc. By Proposition 4.3,

KX + ∆ + f∗H is semi-ample. In particular, KX + ∆ + f∗H is f -semi-ample. Then KX + ∆ is

f -semi-ample. 2
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By the same arguments as in the proof of Theorem 4.9 (respectively Corollary 4.11), we

obtain the following theorem (respectively corollary), which is a relative version of Theorem 4.2

(respectively Corollary 4.4).

Theorem 4.12. Let f : X → Y be a projective morphism between projective varieties. Let

(X,∆) be an lc pair such that KX + ∆ is f -nef and f -log abundant. Then KX + ∆ is

f -semi-ample.

Corollary 4.13. Let f : X → Y be a projective morphism from a projective slc pair (X,∆) to

a (not necessarily irreducible) projective variety Y . Let ν : Xν → X be the normalization such

that KXν + Θ = ν∗(KX + ∆). Assume that KXν + Θ is nef and log abundant over Y . Then

KX + ∆ is f -semi-ample.

4.1 Relative abundance conjecture

In this subsection, we make some remarks on the relative abundance conjecture.

After we circulated this paper, Hacon and Xu proved the relative version of Theorem 1.5

(see Theorem 4.3) in [HX11].

Theorem 4.14 [HX11, Theorem 1.4]. Let (X,∆) be an slc pair, let f : X → Y be a projective

morphism onto an algebraic variety Y , and let ν : Xν →X be the normalization with KXν +Θ =

ν∗(KX + ∆). If KXν + Θ is semi-ample over Y , then KX + ∆ is semi-ample over Y .

The proof of [HX11, Theorem 1.4] in [HX11, § 4] depends on Kollár’s gluing theory

(see, for example, [HX13, Kol11, Kol13]) and the finiteness of the log pluricanonical

representation: Theorem 1.1. Note that Hacon and Xu prove a slightly weaker version of

Theorem 1.1 in [HX11, § 3], which is sufficient for the proof of [HX11, Theorem 1.4]. Their

arguments in [HX11, § 3] are more Hodge theoretic than ours and use the finiteness result in the

case when the Kodaira dimension is zero established in [Gon13]. We note that Theorem 4.14

implies the relative versions (or generalizations) of Theorem 4.2, Corollaries 4.4, 4.5,

Theorems 4.6, 4.7, 4.9, Corollary 4.11, Theorem 4.12, and Corollary 4.13 without assuming

the projectivity of varieties. We leave the details as exercises for the reader.

4.2 Miscellaneous applications

In this subsection, we collect some miscellaneous applications related to the base point free

theorem and the abundance conjecture.

The following theorem is the log canonical version of Fukuda’s result.

Theorem 4.15 (See [Fuk11, Theorem 0.1]). Let (X,∆) be a projective lc pair. Assume that

KX + ∆ is numerically equivalent to some semi-ample Q-Cartier Q-divisor D. Then KX + ∆ is

semi-ample.

Proof. By taking a dlt blow-up (see Theorem 2.8), we may assume that (X,∆) is dlt. By

induction on dimension and Theorem 4.3, we have that (KX +∆)|b∆c is semi-ample. By [Fuj12a,

Theorem 1.1], we can prove the semi-ampleness of KX + ∆. For the details, see the proof

of [Gon13, Theorem 6.3]. 2

By using the deep result in [CKP12], we have a slight generalization of Theorem 4.15

and [CKP12, Corollary 3.5]. It is also a generalization of Theorem 4.2.
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Theorem 4.16 (See [CKP12, Corollary 3.5]). Let (X,∆) be a projective lc pair and let D be a
Q-Cartier Q-divisor on X such that D is nef and log abundant with respect to (X,∆). Assume
that KX + ∆ ≡ D. Then KX + ∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (see Theorem 2.8), we may assume that (X,∆) is
dlt. Let f : Y →X be a log resolution. We set KY +∆Y = f∗(KX+∆)+F with ∆Y = f−1

∗ ∆+
∑
E

where E runs through all the f -exceptional prime divisors on Y . We note that F is effective and
f -exceptional. By [CKP12, Corollary 3.2],

κ(X,KX + ∆) = κ(Y,KY + ∆Y ) > κ(Y, f∗D + F ) = κ(X,D).

By assumption, κ(X,D) = ν(X,D) = ν(X,KX + ∆). On the other hand, ν(X,KX + ∆) >
κ(X,KX + ∆) always holds. Therefore, κ(X,KX + ∆) = ν(X,KX + ∆), that is, KX + ∆ is
nef and abundant. By applying the above argument to every lc center of (X,∆), we obtain
that KX + ∆ is nef and log abundant. Thus, by Theorem 4.2, we obtain that KX + ∆ is
semi-ample. 2

Remark 4.17. By the proof of Theorem 4.16, we see that we can weaken the assumption as
follows. Let (X,∆) be a projective lc pair. Assume that KX + ∆ is numerically equivalent to a
nef and abundant Q-Cartier Q-divisor and also that ν∗W ((KX + ∆)|W ) is numerically equivalent
to a nef and abundant Q-Cartier Q-divisor for every lc center W of (X,∆), where νW : W ν →W
is the normalization of W . Then KX + ∆ is semi-ample.

Theorem 4.18 is a generalization of [Gon12a, Theorem 1.7]. The proof is the same as [Gon12a,
Theorem 1.7] once we adopt [Fuj12a, Theorem 1.1].

Theorem 4.18 (See [Gon13, Theorems 6.4, 6.5]). Let (X,∆) be a projective lc pair such that
−(KX + ∆) (respectively KX + ∆) is nef and abundant. Assume that dim Nklt(X,∆) 6 1 where
Nklt(X,∆) is the non-klt locus of the pair (X,∆). Then −(KX + ∆) (respectively KX + ∆) is
semi-ample.

Proof. Let T be the non-klt locus of (X,∆). By the same argument as in the proof of [Gon12a,
Theorem 3.1], we can check that−(KX+∆)|T (respectively (KX+∆)|T ) is semi-ample. Therefore,
−(KX + ∆) (respectively KX + ∆) is semi-ample by [Fuj12a, Theorem 1.1]. 2

Similarly, we can prove Theorem 4.19.

Theorem 4.19. Let (X,∆) be a projective lc pair. Assume that −(KX +∆) is nef and abundant
and that (KX + ∆)|W ≡ 0 for every lc center W of (X,∆). Then −(KX + ∆) is semi-ample.

Proof. By taking a dlt blow-up (see Theorem 2.8), we may assume that (X,∆) is dlt. By [Gon13,
Theorem 1.2] (cf. Corollary 4.11), (KX+∆)|b∆c is semi-ample. Hence we have (KX+∆)|b∆c ∼Q 0.
Therefore, −(KX + ∆) is semi-ample by [Fuj12a, Theorem 1.1]. 2

5. Non-vanishing, abundance, and extension conjectures

In this final section, we discuss the relationship among various conjectures in the minimal model
program. Roughly speaking, we prove that the abundance conjecture for projective log canonical
pairs (cf. Conjecture 1.3) is equivalent to the non-vanishing conjecture (see Conjecture 5.7) and
the extension conjecture for projective dlt pairs (see Conjecture 5.8).

First, let us recall the weak non-vanishing conjecture for projective lc pairs (cf. [Bir11,
Conjecture 1.3]).
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Conjecture 5.1 (Weak non-vanishing conjecture). Let (X,∆) be a projective lc pair such

that ∆ is an R-divisor. Assume that KX + ∆ is pseudo-effective. Then there exists an effective

R-divisor D on X such that KX + ∆ ≡ D.

Conjecture 5.1 is known to be one of the most important problems in the minimal model

theory (cf. [Bir11]).

Remark 5.2. By an R-version of [CKP12, Theorem 0.1] (see [CKP12, § 3]), KX + ∆ ≡ D > 0 in

Conjecture 5.1 means that there is an effective R-divisor D′ such that KX + ∆ ∼R D
′.

By Remark 5.2 and Lemma 5.3 below, Conjecture 5.1 in dimension 6 n is equivalent to

[Bir11, Conjecture 1.3] in dimension 6 n with the aid of dlt blow-ups (see Theorem 2.8).

Lemma 5.3. Assume that Conjecture 5.1 holds in dimension 6 n. Let f : X → Z be a projective

morphism between quasi-projective varieties with dimX = n. Let (X,∆) be an lc pair such that

KX + ∆ is pseudo-effective over Z. Then there exists an effective R-Cartier R-divisor M on X

such that KX + ∆ ∼R,Z M .

Proof. Apply Conjecture 5.1 and Remark 5.2 to the generic fiber of f . Then, by [BCHM10,

Lemma 3.2.1], we obtain M with the required properties. 2

We give a small remark on Birkar’s paper [Bir11].

Remark 5.4 (Absolute versus relative). Let f : X → Z be a projective morphism between

projective varieties. Let (X,B) be a Q-factorial dlt pair and let (X,B + C) be an lc pair such

that C > 0 and that KX + B + C is nef over Z. Let H be a very ample Cartier divisor on

Z. Let D be a general member of |2(2 dimX + 1)H|. In this situation, (X,B + 1
2f
∗D) is dlt,

(X,B+ 1
2f
∗D+C) is lc, and KX +B+ 1

2f
∗D+C is nef by Kawamata’s bound on the length of

extremal rays. The minimal model program for KX +B+ 1
2f
∗D with scaling of C is the minimal

model program for KX + B over Z with scaling of C. By this observation, the arguments in

[Bir11] work without appealing to the relative settings if the varieties considered are projective.

Theorem 5.5. The abundance theorem for projective klt pairs in dimension 6 n and

Conjecture 5.1 in dimension 6 n imply the abundance theorem for projective lc pairs in dimension

6 n.

Proof. Let (X,∆) be an n-dimensional projective lc pair such that KX+∆ is nef. As we explained

in 2.20, by [Bir11, Theorems 1.4, 1.5], the minimal model program with ample scaling terminates

for projective Q-factorial klt pairs in dimension 6 n. Thus, by Theorem 4.7, we obtain the desired

result. 2

The following corollary is a result on a generalized abundance conjecture formulated by

Nakayama’s numerical Kodaira dimension κσ.

Corollary 5.6 (Generalized abundance conjecture). Assume the abundance conjecture for

projective klt pairs in dimension 6 n and Conjecture 5.1 in dimension 6 n. Let (X,∆) be an

n-dimensional projective lc pair. Then κ(X,KX + ∆) = κσ(X,KX + ∆).

Proof. We may assume that (X,∆) is a Q-factorial projective dlt pair by replacing it with its dlt

blow-up (see Theorem 2.8). Let H be a general effective sufficiently ample Cartier divisor on X.

We can run the minimal model program with scaling ofH by 2.20. Then we obtain a good minimal
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model by Theorem 5.5 if KX + ∆ is pseudo-effective. When KX + ∆ is not pseudo-effective, we
have a Mori fiber space structure. In each step of the minimal model program, κ and κσ are
preserved. So, we obtain κ(X,KX + ∆) = κσ(X,KX + ∆). 2

Finally, we explain the importance of Theorem 1.5 to the abundance conjecture. Let us
consider the following two conjectures.

Conjecture 5.7 (Non-vanishing conjecture). Let (X,∆) be a projective lc pair such that ∆ is
an R-divisor. Assume that KX + ∆ is pseudo-effective. Then there exists an effective R-divisor
D on X such that KX + ∆ ∼R D.

As we pointed out in Remark 5.2, Conjecture 5.7 in dimension n follows from Conjecture 5.1 in
dimension n. For related topics on the non-vanishing conjecture, see [DHP13, § 8] and [Gon12b],
where Conjecture 5.7 is reduced to the case when X is a smooth projective variety and ∆ = 0
by assuming the global ACC conjecture and the ACC for log canonical thresholds (see [DHP13,
Theorems 8.2 and 8.4]). Hacon, McKernan, and Xu have recently announced that they have
solved both ACC conjectures (see [HMX12, Theorems 1.5 and 1.1]).

Conjecture 5.8 (Extension conjecture for dlt pairs (see [DHP13, Conjecture 1.3])). Let (X,
S+B) be an n-dimensional projective dlt pair such that B is an effective Q-divisor, bS+Bc = S,
KX + S +B is nef, and KX + S +B ∼Q D > 0 where S ⊂ SuppD. Then

H0(X,OX(m(KX + S +B)))→ H0(S,OS(m(KX + S +B)))

is surjective for all sufficiently divisible integers m > 2.

In Conjecture 5.8, if (X,S + B) is a plt pair, equivalently, S is normal, with SuppD ⊂
Supp(S +B), then the claim holds by [DHP13, Corollary 1.8].

The following theorem is essentially contained in the proof of [DHP13, Theorem 1.4].
However, our proof of Theorem 5.9 is slightly different from the arguments in [DHP13] because
we directly use Birkar’s result [Bir11, Theorems 1.4 and 1.5] and Theorem 1.5.

Theorem 5.9. Assume that Conjectures 5.7 and 5.8 hold true in dimension 6 n. Then
Conjecture 1.3 is true in dimension n.

Proof. By Theorem 1.5, it is sufficient to treat log canonical pairs. This reduction is crucial
for our inductive proof. We show the statement by induction on dimension. Note that we
can freely use the minimal model program with ample scaling for projective Q-factorial dlt
pairs by Conjecture 5.7 and Birkar’s results (cf. [Bir11, Theorems 1.4 and 1.5] and 2.20). By
Theorem 4.6 and Corollary 5.6, it is sufficient to show the generalized abundance conjecture,
that is, κ(X,KX + ∆) = κσ(X,KX + ∆), for an n-dimensional projective Kawamata log
terminal pair (X,∆) such that KX + ∆ is pseudo-effective. By Conjecture 5.7, we see κ(X,
KX + ∆)> 0 (cf. [Cho08, Corollary 2.1.4 and Proposition 2.2.2]). By Kawamata’s well-known
inductive argument (cf. [Kaw85, Theorem 7.3], [Fuk02, Proposition 3.1]), we may assume that
κ(X,KX + ∆) = 0. We take an effective Q-divisor D such that D ∼Q KX + ∆. We take a
resolution ϕ : Y → X such that Exc(ϕ) ∪ Supp f−1

∗ (∆ + D) is a simple normal crossing divisor
on Y . Let B and E be effective Q-divisors satisfying:

KY +B = ϕ∗(KX + ∆) + E,

and E and B have no common irreducible components. Now we know that κ(X,KX +∆) = κ(Y,
KY + B) = 0 and κσ(X,KX + ∆) = κσ(Y,KY + B). Thus, by replacing X with Y , we may
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further assume that X is smooth and ∆ +D has simple normal crossing support. Let

∆ =
∑

δiDi and D =
∑

diDi

be the decompositions into irreducible components. We set

∆′ = ∆−
∑
di 6=0

δiDi +Dred,

where Dred =
∑

di 6=0Di. Then the effective divisor ∆′ satisfies

Supp ∆′ = Supp(∆ +D), Suppb∆′c = SuppD,

and SuppD = Supp(∆′ −∆) since (X,∆) is klt. Note that

κ(X,KX + ∆) = κ(X,KX + ∆′)

and
κσ(X,KX + ∆) = κσ(X,KX + ∆′).

We take a minimal model
f : (X,∆′) 99K (Y,Γ′)

of (X,∆′). If (Y,Γ′) is klt, then b∆′c is f -exceptional. Thus we have KY + Γ′ ∼Q 0 since
Suppb∆′c = SuppD. Therefore,

κσ(X,KX + ∆) = κσ(X,KX + ∆′) = 0.

This is the desired result. So, from now on, we assume that S := bΓ′c 6= 0. Then, by
Conjecture 5.8, we have

H0(Y,OY (m(KY + Γ′)))→ H0(S,OS(m(KY + Γ′)))

is surjective for all sufficiently divisible integers m > 2. By the hypothesis of the induction,
KS + ΓS = (KY + Γ′)|S is semi-ample. Note that the pair (S,ΓS) is an sdlt pair. In particular,
H0(S,OS(m(KY + Γ′))) 6= 0. However, since Suppb∆′c = SuppD and κ(Y,KY + Γ′) = 0,

H0(Y,OY (m(KY + Γ′)))→ H0(S,OS(m(KY + Γ′)))

is the zero map. This is a contradiction. Thus we see that S = 0. Therefore, we obtain κ(X,
KX + ∆) = κσ(X,KX + ∆). 2

We have a generalization of [DHP13, Theorem 1.4] as a corollary of Theorem 5.9. For a
different approach to the existence of good minimal models, see [Bir13].

Corollary 5.10 (See [DHP13, Theorem 1.4]). Assume that Conjectures 5.7 and 5.8 hold true
in dimension 6 n. Let f : X → Y be a projective morphism between quasi-projective varieties.
Assume that (X,∆) is an n-dimensional dlt pair such that KX + ∆ is pseudo-effective over Y .
Then (X,∆) has a good minimal model (X ′,∆′) over Y .

Proof. By Conjecture 5.7 with Lemma 5.3, we can run the minimal model program with ample
scaling (cf. 2.20). Therefore, we can construct a minimal model (X ′,∆′) over Y . By Theorem 5.9,
KX′ + ∆′ is semi-ample when Y is a point and ∆′ is a Q-divisor. By the relative version of
Theorem 4.2 and induction on dimension with the aid of Theorem 4.14, we can check that
KX′ + ∆′ is semi-ample over Y when ∆′ is a Q-divisor. If ∆′ is an R-divisor, then we can
reduce it to the case when ∆′ is a Q-divisor by using Shokurov’s polytope (see, for example,
[FG12a, Proof of Theorem 3.1] and [Fuj12c, § 6.2]) and obtain that KX′ + ∆′ is semi-ample over
Y . It is a standard argument. 2
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Remark 5.11. The referee pointed out that we can easily reduce the problem to the case when X
and Y are projective in Corollary 5.10. In that case, we do not need Theorem 4.14. Theorem 4.12
is sufficient for the proof of Corollary 5.10. We leave the details as an exercise for the reader.

We close this paper with an easy observation. Conjecture 5.8 follows from Conjecture 1.3 by
a cohomology injectivity theorem.

Proposition 5.12. Assume that Conjecture 1.3 is true in dimension n. Then Conjecture 5.8
holds true in dimension n. More precisely, in Conjecture 5.8, if KX + S +B is semi-ample, then
the restriction map is surjective for every m > 2 such that m(KX + S +B) is Cartier.

Proof. Let f : Y → X be a projective birational morphism from a smooth variety Y such that
Exc(f) ∪ Supp f−1

∗ (S + B) is a simple normal crossing divisor on Y and such that f is an
isomorphism over the generic point of every lc center of the pair (X,S +B). Then we can write

KY + S′ + F = f∗(KX + S +B) + E

where S′ is the strict transform of S, E is an effective Cartier divisor, F is an effective Q-divisor
with bF c = 0. Note that E is f -exceptional. We consider the short exact sequence

0→ OY (E − S′)→ OY (E)→ OS′(E)→ 0.

By the relative Kawamata–Viehweg vanishing theorem, Rif∗OY (E − S′) = 0 for every i > 0.
Therefore,

OX ' f∗OY (E)→ f∗OS′(E)

is surjective. Thus, we obtain f∗OS′(E) ' OS . Let m be a positive integer such that m(KX +
S +B) is Cartier with m > 2. We set L = m(KX + S +B). It is sufficient to prove that

H0(Y,OY (f∗L+ E))→ H0(S′,OS′(f∗L+ E))

is surjective. By assumption, KX + S +B is semi-ample. Let g : X → Z be the Iitaka fibration
associated to KX + S + B. Then there is an ample Q-Cartier Q-divisor A on Z such that
KX + S +B ∼Q g

∗A. We note that

(f∗L+ E − S′)− (KY + F ) = (m− 1)f∗(KX + S +B)

∼Q(m− 1)f∗g∗A.

Since S ⊂ SuppD and KX + S + B ∼Q D > 0, we have g ◦ f(S′) ( Z. Note that g : X → Z is
the Iitaka fibration associated to KX + S +B. Therefore, it is easy to see that

H i(Y,OY (f∗L+ E − S′))→ H i(Y,OY (f∗L+ E))

is injective for every i because |kf∗g∗A − S′| 6= ∅ for k � 0 and (Y, F ) is klt (see, for
example, [Fuj11b, Theorem 6.1]). In particular,

H1(Y,OY (f∗L+ E − S′))→ H1(Y,OY (f∗L+ E))

is injective. Thus we obtain that

H0(Y,OY (f∗L+ E))→ H0(S′,OS′(f∗L+ E))

is surjective. It implies the desired surjection

H0(X,OX(m(KX + S +B)))→ H0(S,OS(m(KX + S +B))).

We finish the proof. 2

Proposition 5.12 shows that Conjecture 5.8 is a reasonable conjecture in the minimal model
program.
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Mathématiques de Jussieu for their hospitality. The main idea of this paper was obtained when
both authors stayed at CIRM in February 2011. They are grateful for the hospitality. They also
thank the referees for giving them useful comments.

References
AK00 D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math.

139 (2000), 241–273.

AFKM92 D. Abramovich, L.-Y. Fong, J. Kollár and J. McKernan, Semi log canonical surfaces, in Flips
and abundance for algebraic threefolds, Astérisque, vol. 211 (Société Mathématique de France,
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