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Abstract
Let C‖|.‖| be an ideal of compact operators with symmetric norm ‖|.‖|. In this paper, we extend the van Hemmen–
Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on [0, ∞)
and S and T are bounded operators in B(H ) such that sp(S), sp(T) ⊆ �a = {z ∈C | re(z) ≥ a}, then

‖|f (S)X − Xf (T)‖| ≤ f ′(a) ‖|SX − XT‖|,
for each X ∈ C‖|.‖|. In particular, if sp(S), sp(T) ⊆ �a, then

‖|SrX − XTr‖| ≤ rar−1 ‖|SX − XT‖|,
for each X ∈ C‖|.‖| and for each 0 ≤ r ≤ 1.

1. Introduction

Let B(H ) be the algebra of all bounded operators on a complex separable Hilbert space H. Let C(H )
be the algebra of all compact operators on H, and Cfin(H ) denotes the set of all finite rank operators
on H. A norm ‖|.‖| on Cfin(H ) is called to be unitarily invariant or a symmetric norm if

‖|UTV‖| = ‖|T‖|,
for every T ∈ Cfin(H ) and any unitaries U, V , on H. By the relation between the symmetric
gauge functions and the unitarily invariant norms, we can define ‖|T‖| for all T ∈B(H ), see
[6, Section 2]. Let

I‖|.‖| = {T ∈B(H ) : ‖|T‖| < ∞},
and C‖|.‖| be the norm closure of Cfin(H ) in I‖|.‖|. It is known that C‖|.‖| is a Banach space with respect to
the norm ‖|.‖| and C‖|.‖| ⊆ C(H ). Also,

‖|SXT‖| ≤ ‖S‖ ‖|X‖| ‖T‖,

for all S, T ∈B(H ) and all X ∈ C‖|.‖|; see [6, Corollary 3.1]. For example, the Schatten p norms are
unitarily invariant. Let Sp denote the Schatten ideal of compact operators with norms ‖.‖p for each
1 ≤ p < ∞. For more details about unitarily invariant norms, we refer the reader to [4, 6, 13].

Let J be a subset of R. We say that a continuous function f on an interval J is operator monotone, if
A ≤ B implies that f (A) ≤ f (B) for all self-adjoint operators A and B, whose spectrums are contained in
J. Ando and van Hemmen [15] showed that if f is an operator monotone function on [0, ∞) and A and
B are positive operators and sp(A + B) ⊆ [2a, ∞) for some positive scalar a, then

‖|f (A) − f (B)‖| ≤
(

f (a) − f (0)

a

)
‖|A − B‖|,

for every symmetric norm ‖|.‖|. In continuation, Kittaneh and Kosaki [10] improved this inequality and
showed that if f is an operator monotone function on [0, ∞) and A and B are two positive operators that
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sp(A) ⊆ [a, ∞) and sp(B) ⊆ [b, ∞), then

‖|f (A)X − Xf (B)‖| ≤ da,b(f ) ‖|AX − XB‖|, (1.1)

where ‖|.‖| is a symmetric norm, X ∈ C‖|.‖|, and

da,b(f ) =

⎧⎪⎨
⎪⎩

f (b) − f (a)

b − a
if a 
= b

f ′(a) if a = b

Let �a = {z ∈C | re(z) ≥ a} for each a ∈R. In this paper, by a different argument than those of
[10, 15], we extend Inequality (1.1) for arbitrary bounded operators. Indeed, we show that if f is an
operator monotone function on [0, ∞) and S and T are bounded operators such that sp(S), sp(T) ⊆ �a,
then

‖|f (S)X − Xf (T)‖| ≤ f ′(a) ‖|SX − XT‖|,
for each symmetric norm ‖|.‖| and each X ∈ C‖|.‖|. In particular, for any bounded operators S, T with
sp(S), sp(T) ⊆ �a, we have

‖|SrX − XTr‖| ≤ rar−1 ‖|SX − XT‖|,
for each X ∈ C‖|.‖| and for each 0 ≤ r ≤ 1.

2. Operator Lipschitz functions

Let � : B(H ) →B(H ) be a linear map. Let

‖�‖ = sup{‖�(T)‖ : ‖T‖ ≤ 1},

‖�‖1 = sup{‖�(T)‖1 : ‖T‖1 ≤ 1},
It is well known that if ‖�‖ = ‖�‖1 = d, then

‖|�(X)‖| ≤ d‖|X‖|, (2.1)

for all X ∈ C‖|.‖|. For details, see the first part of proof of [7, Proposition 2.7.].
Let A(D) be the disk algebra of all continuous complex-valued functions on the unit disk D, which

are holomorphic in the interior of D. It is well known that any function in A(D) acts on the set of all
contraction operators in B(H ).

A continuous function f on the unit disk D is called operator Lipschitz with
constant d, if

||f (S) − f (T)|| ≤ d ||S − T||, (2.2)

for all normal contraction operators T and S on any Hilbert space H.
Kissin and Shulman in [9] proved that if f ∈ A(D) is an operator Lipschitz function with constant d,

then

||f (S) − f (T)|| ≤ d ||S − T||,
for all arbitrary contraction operators S and T . Moreover, by using the interpolation theory, they proved
that if f ∈ A(D) is an operator Lipschitz function with constant d, then

||f (T) − f (S)||p ≤ d ||T − S||p,

for any 1 ≤ p < ∞ and any contraction operators S and T with S − T ∈ Sp; see also [8, Theorem 6.4].
We can extend the results of [9] for a unitarily invariant norm ideals by using the majorization property

that state in the first part of this section. Although, the proof of the following theorem is similar to
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[9, Theorem 4.2.], for the convenience of the reader we prove the following theorem. For more results
on Lipschitz-type estimates for general symmetrically normed ideals, we refer the reader to [14].

Theorem 2.1. Let f ∈ A(D) be operator Lipschitz with constant d. Then, for arbitrary contraction
operators S and T and an arbitrary operator X ∈ C‖|.‖|, we have

‖|f (S)X − Xf (T)‖| ≤ d ‖|SX − XT‖|.
Proof. First, assume that σ (S) ∩ σ (T) =∅. As the operator � = LS − RT on B(H ) is invertible, we

can consider the operator F = (Lf (S) − Rf (T))�−1. The proof of [9, Theorem 4.2.] shows that ‖F‖ ≤ d on
B(H ) and ‖F|S1‖1 ≤ d. Now, by interpolation theory (equation (2.1)), for each unitarily invariant norm
‖|.‖| and for each X ∈ C‖||.‖|, we have

‖|F(X)‖| ≤ d ‖|X‖|.
The definition of F implies that for each S, T ∈B(H ) with σ (S) ∩ σ (T) =∅ and for each X ∈ C‖|.‖|,
we have

‖|f (S)X − Xf (T)‖| ≤ d ‖|SX − XT‖|. (2.3)

Now, if dim(H ) < ∞ and S, T ∈B(H ), we can see that there exist contractions Sn such that σ (Sn) ∩
σ (T) =∅ and ‖Sn − S‖ → 0. We have

‖|f (S)X − Xf (T)‖| ≤ ‖|f (Sn)X − Xf (T)‖| + ‖|f (Sn)X − f (S)X‖|
≤ ‖|f (Sn)X − Xf (T)‖| + ‖f (Sn) − f (S)‖ ‖|X‖|
≤ d ‖|SnX − XT‖| + ‖f (Sn) − f (S)‖ ‖|X‖|.

By the previous observation, we can prove (2.3) for finite rank operators S, T .
In the general case, let Pn be an increasing sequence of finite-dimensional projections such that Pn → I

in the strong operator topology. We have

‖|f (PnS)XPn − PnXf (TPn)‖| ≤ d ‖|PnSXPn − PnXTPn‖|
= d ‖|Pn(SX − XT)Pn‖|
≤ d ||Pn|| ‖|SX − XT‖| ||Pn‖|
≤ d ‖|SX − XT‖|.

Since C‖|.‖| is an ideal of compact operators, f (S)X − Xf (T) is compact. Now f (PnS)XPn −
PnXf (TPn) → f (S)X − Xf (T) in the strong operator topology and f (S)X − Xf (T) is compact, so by the
noncommutative Fatou’s lemma [13], we have

‖|f (S)X − Xf (T)‖| ≤ sup
n∈N

‖|f (PnS)XPn − PnXf (TPn)‖| ≤ d ‖|SX − XT‖|.

Let Or(z0) = {z ∈C : |z − z0| ≤ r} be a closed disk in C. We can see that f ∈ A(D) is an operator
Lipschitz function with constant d, if and only if g(z) = f

(
1
r
(z − z0)

)
is an operator Lipschitz function

with constant d on Or(z0). Hence, we have the following corollary.

Corollary 2.2. Let f be an analytic function on the disk Or(z0) such that

||f (S) − f (T)|| ≤ d ||S − T||, (2.4)

for all normal operators T,S on any Hilbert space H with sp(S), sp(T) ⊆Or(z0). Then, for arbitrary
operators S and T with sp(S), sp(T) ⊆Or(z0) and an arbitrary operator X ∈ C‖|.‖|, we have

‖|f (S)X − Xf (T)‖| ≤ d ‖|SX − XT‖|.
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3. Operator monotone functions

Let �+ be the upper half-plane and �− be the lower half-plane. Let � = �+ ∪ �− ∪ [0, ∞). Let f be an
operator monotone function on [0, ∞). The Löwner theorem [11] states that f is analytic on (0, ∞) and
has an analytic continuation to �, which again we denote by f , such that f (�+) ⊆ �+. Let S ∈B(H )
with sp(S) ⊆ � \ {0} and f be an operator monotone function on [0, ∞). Since f is analytic on �, we
can define the operator f (S) by the integral representation:

f (S) = 1

2π i

∫
γ

f (z)(z − S)−1 dz, (3.1)

where γ is a closed rectifiable curve in � such that sp(S) ⊂ ins(γ ).
Let P[0, ∞) denote the set of all positive operator monotone functions defined in the positive half-line

and consider the convex set:

P = {f ∈ P[0, ∞)|f (1) = 1}.
Hansen in [5] showed that P is compact in the topology of point-wise convergence and extreme points
in P are necessarily of the form:

fα(t) = t

α + (1 − α)t
,

where 0 ≤ α ≤ 1. The next theorem shows that the family P is generated in the uniformly compact
topology by the convex hull of its extreme points.

Theorem 3.1. [12, Theorem 3.1] Let f be a nonnegative operator monotone function on [0, ∞) such that
f (1) = 1. Then, there exists a sequence fn which is uniformly convergent to f on every compact subset of
�. Moreover, for each n the following property hold:

fn =
kn∑

i=1

γifαi , (3.2)

where α1, α2, . . . , αkn and γ1, γ2, . . . , γkn are positive scalars such that
∑kn

i=1 γi = 1.

In the last theorem, since fn converges uniformly on compact sets to f , we can conclude that f
′
n is also

uniformly convergent to f ′ on compact sets. The following lemma will be useful.

Lemma 3.2. Let 0 ≤ α ≤ 1, and let S,T be bounded invertible operators such that (sp(S) ∪ sp(T)) ∩
( − ∞, 0) = ∅. Then,

fα(S) − fα(T) = α f1−α(S−1)(S − T)f1−α(T−1).

Proof. We can see that fα(t) = (αt−1 + (1 − α))−1. Since αS−1 + (1 − α) and αT−1 + (1 − α) are
invertible, so

fα(S) − fα(T) = (αS−1 + (1 − α))−1 − (αT−1 + (1 − α))−1

= α(αS−1 + (1 − α))−1(T−1 − S−1)(αT−1 + (1 − α))−1

= α(αS−1 + (1 − α))−1S−1(S − T)T−1(αT−1 + (1 − α))−1

= α(α + (1 − α)S)−1(S − T)(α + (1 − α)T)−1

= α f1−α(S−1)(S − T)f1−α(T−1).
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Proposition 3.3. Let f be an operator monotone function on [0, ∞). Let S and T be bounded normal
operators in B(H ) such that sp(S) ⊆ �a and sp(T) ⊆ �b for some a, b > 0. Then,

‖f (S) − f (T)‖ ≤ da,b(f ) ‖S − T‖,

for each X ∈ C‖|.‖|.

Proof. Without loss of generality, we can assume that f is nonconstant. Let Tα = α + (1 − α)T and
Sα = α + (1 − α)S for each 0 ≤ α ≤ 1. As sp(S), sp(T) ⊆ �a, we can conclude that Tα, Sα are invertible
for each 0 ≤ α ≤ 1. Moreover,

S∗
α
Sα = α2 + (1 − α)2S∗S + α(1 − α)(S + S∗).

Since S is normal, S + S∗ ≥ 2a and S∗S ≥ a2. Therefore,

S∗
α
Sα ≥ α2 + (1 − α)2S∗S + 2aα(1 − α)

≥ α2 + (1 − α)2a2 + 2aα(1 − α)

= (α + (1 − α)a)2.

Hence, (S∗
α
Sα)−1 ≤ (α + (1 − α)a)−2, and so

||S−1
α

|| = ||S∗−1
α

S−1
α

|| 1
2 = ||(S∗

α
Sα)−1|| 1

2 ≤ (α + (1 − α)a)−1.

A similar argument implies that ||T−1
α

|| ≤ (α + (1 − α)b)−1. By Lemma 3.2, we have

||fα(S) − fα(T)|| = α||S−1
α

(S − T)T−1
α

||
≤ α||S−1

α
|| ||S − T|| ||T−1

α
||

≤ α

(α + (1 − α)a)(α + (1 − α)b)
||S − T||

= da,b(fα)||S − T||.
Now, assume that f is an arbitrary operator monotone function on [0, ∞). By replacing f (t) with

f (t)−f (0)
f (1)−f (0)

, we can assume that f is nonnegative and f (1) = 1 (as f is non-constant, Lemma 3.2. in [2],
implies that f (1) 
= f (0)). By Theorem 3.1, there exists a sequence {fn} in P that satisfies (3.2) and is
uniformly convergent to f on compact sets. If

fn =
kn∑

i=1

γifαi ,

then da,b(fn) = ∑kn

i=1 γida,b(fαi ) and we have

||fn(S) − fn(T)|| = ||
kn∑

i=1

γifαi (S) −
kn∑

i=1

γifαi (T)||

≤
kn∑

i=1

γi ||fαi (S) − fαi (T)||

≤
kn∑

i=1

γida,b(fαi ) ||S − T||

= da,b(fn)||S − T||.
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Letting n → ∞ to get

||f (S) − f (T)|| ≤ da,b(f )||S − T||. (3.3)

We obtain the following theorem.

Theorem 3.4. Let f be an operator monotone function on [0, ∞). Let S and T be bounded operators in
B(H ) such that sp(S), sp(T) ⊆ �a for some a > 0. Then,

‖|f (S)X − Xf (T)‖| ≤ f ′(a) ‖|SX − XT‖|,
for each X ∈ C‖|.‖|.

Proof. Let S, T be arbitrary and sp(S), sp(T) ⊆ {z ∈C | re(z) > a}. Since sp(S) and sp(T) are compact,
there exists a closed disk O ⊂ �a such that sp(S), sp(T) ⊆O. Proposition 3.3 shows that f is operator
Lipschitz with constant f ′(a) on the closed disk O. Hence, Corollary 2.2 implies that

‖|f (S)X − Xf (T)‖| ≤ f ′(a)‖|SX − XT‖|,
for any symmetric norm ‖|.‖| and any X ∈ C‖|.‖|.

In the general case, the assumptions sp(S), sp(T) ⊆ �a imply that sp(S + 1/n), sp(T + 1/n) ⊆ {z ∈
C | re(z) > a} for each n ∈N. We use the noncommutative Fatou’s lemma to get

‖|f (S)X − Xf (T)‖| ≤ sup
n∈N

‖|f (S + 1/n)X − Xf (T + 1/n)‖|

≤ f ′(a) sup
n∈N

‖|(S + 1/n)X − X(T + 1/n)‖|

= f ′(a) lim sup
n

‖|(S + 1/n)X − X(T + 1/n)‖|

= f ′(a)‖|SX − XT‖|.

Corollary 3.5. Let f be an operator monotone function on [0, ∞). Let S and T be bounded operators in
B(H ) such that sp(S), sp(T) ⊆ �a for some a > 0 and T − S ∈ C|||.|||. Then,

‖|f (S) − f (T)‖| ≤ f ′(a) ‖|S − T‖|.
Proof. Let Pn be an increasing sequence of finite-dimensional projections such that Pn → I in the

strong operator topology. We have

|||f (PnS)Pn − Pnf (TPn)||| ≤ f ′(a)|||PnSPn − PnTPn|||
= f ′(a)|||Pn(S − T)Pn|||
≤ f ′(a)||Pn|| |||S − T||| ||Pn|||
≤ f ′(a)|||S − T|||.

Since f is an analytic function and S − T is a compact operator, f (S) − f (T) is compact. Now
f (PnS)Pn − Pnf (TPn) → f (S) − f (T) in the strong operator topology and f (S) − f (T) is compact, so by
the noncommutative Fatou’s lemma, we have

|||f (S) − f (T)||| ≤ sup
n∈N

|||f (PnS)Pn − Pnf (TPn)||| ≤ f ′(a)|||S − T|||.
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As t �→ tr and t �→ log (t + 1) are operator monotone functions on [0, ∞) for each 0 ≤ r ≤ 1, we obtain
the following corollaries.

Corollary 3.6. Let 0 ≤ r ≤ 1, and let S,T be bounded operators such that sp(S), sp(T) ⊆ �a. Then

‖|SrX − XTr‖| ≤ rar−1 ‖|SX − XT‖|,
for each X ∈ C‖|.‖|. In particular, if T − S ∈ C‖|.‖|, then

‖|Sr − Tr‖| ≤ rar−1 ‖|S − T‖|.

Corollary 3.7. If S and T are bounded operators such that sp(S), sp(T) ⊆ �a, then

‖| log (S + 1)X − X log (T + 1)‖| ≤ 1

a + 1
‖|SX − XT‖|,

for each X ∈ C‖|.‖|.
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