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Some Fock spaces with depth two action
Michael Anshelevich and Jacob Mashburn
Abstract. The subject of this article is operators represented on a Fock space which act only on the
two leading components of the tensor. We unify the constructions from [Ans07, BL09, BL11, LS08]
and extend a number of results from these articles to our more general setting. The results include
the quadratic relation satisfied by the kernel of the free cumulant generating function, the resolvent
form of the generating function for the Wick polynomials, and classification results for the case
when the vacuum state on the operator algebra is tracial. We handle the generating functions in
infinitely many variables by considering their matrix-valued versions.

1 Introduction

Symmetric, antisymmetric, and full Fock spaces have been studied for almost a
century. They have appeared in quantum mechanics and the theory of operator
algebras; in combinatorics, representation theory, and the study of orthogonal poly-
nomials; and in other fields. Over the last few decades, there has been a proliferation
of other Fock spaces, with accompanying structures, which to a greater or lesser
degree share the properties of the classical ones. Such structures include commutation
relations; Gaussian-type and Poisson-type operators; Wick products and orthogonal
polynomials; Itô calculus, etc. Among these numerous constructions, we will highlight
three, all of which appeared roughly at the same time a decade ago. While quite
different, they all share a common feature, which one might call “depth two action”
or “nearest neighbor coupling.” In this article, we study a more general construction
extending the three above, which retains this feature.

To be specific, let B be a unital ∗-algebra with a positive faithful linear functional ϕ
and form the algebraic Fock spaceFalg(B) = ⊕∞n=0 B

⊗n . For each b ∈ B, on this space,
we will define operators a+(b), a−(b), a0(b) and X(b) = a+(b) + a0(b) + a−(b).
Here, the creation operator a+(b) is defined in the usual way, but the annihilation
operator acts on simple tensors as

a−(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = (γ + ϕ)[bu1]u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ,

where γ + ϕ1B is some completely positive map. Note that this operator couples
together the first two components of the tensor. This should be compared with, on
the one hand, the free Fock space, where the annihilation operator acts only on the
first component of the tensor; and, on the other hand, with the q-Fock space, where
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its action involves all components of the tensor. Note also that if γ = 0, this is just
the standard free annihilation operator on the full Fock space F(L2(B, ϕ)). The
preservation operator has the form

a0(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = Λ(b)u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ,

or more generally,

a0(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = Λ(b ⊗ u1) ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un

for a map Λ satisfying a symmetry condition, and acts only on the first component of
the tensor.

Before proceeding further, we now outline the three earlier constructions men-
tioned above. We only list some of the results about these constructions; each of the
articles below contains other important results not pertinent to this introduction.
It can easily be seen that these constructions all fit in the setting of the preceding
paragraph.

In [LS08], Lenczewski and Sałapata constructed a deformation of the free Fock
space of L2(R+) with the annihilation operator of the form

a−( f )g(x1 , . . . , xn) = ∫ f (x1)w(x1 , x2)g(x1 , . . . , xn) dx1

for a specific function w(s, t) of two variables. They studied combinatorial properties
of operators X( f ) on this space, in particular, showing that they have the Kesten
distribution. In [BL09, BL11], BoZ̈ejko and Lytvynov constructed, in the setting of
standard triples, a Fock space based on the annihilation operator

a−( f )g(x1 , . . . , xn) = ∫ f (x1)η(x1)g(x1 , . . . , xn) dx1

for some function η on R. They studied general (Lévy-type) processes on such a
Fock space. Perhaps most importantly, they gave a characterization among these, by
a certain continuity property, of what it is natural to call the Free Meixner class. The
article also contains several formulas for free cumulants of the distributions of such
processes. In the follow-up article, they constructed a generating function for a system
of polynomials (in infinitely many variables) associated with such a process in terms
of certain operator-valued functions. Finally, in [Ans07], the first author studied the
free Meixner states. Here, the Fock space was based on a finite-dimensional space Rd ,
and the annihilation operator is

a−i (eu(1) ⊗ ⋅ ⋅ ⋅ ⊗ eu(n)) = Cu(1),u(2) ⟨e i , eu(1)⟩ eu(2) ⊗ ⋅ ⋅ ⋅ eu(n).

The key results involved equations satisfied by the free cumulant generating function
and the generating function for the Wick products (which can be identified with
monic orthogonal polynomials in d variables), as well as the constructions in which
the vacuum state is tracial on the algebra of these polynomials.

Motivated by these three articles, our primary interest in this article is in:

• The joint distributions of {X(u) ∶ u ∈ B}, typically expressed in terms of appropri-
ate cumulants.
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• The Wick polynomials, which are polynomials in {X(u) ∶ u ∈ B} such that W(u1 ⊗
u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)Ω = u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un .

• The algebras generated by {X(u) ∶ u ∈ B}.
Free and Boolean cumulant generating functions for free Meixner families [Ans07,

BB06] satisfy second-order equations. Depth two action on the Fock space results
in such equations being satisfied not by the scalar-valued free cumulant generating
function R(u) itself, but by its B-valued “kernel” R′(u) with R(u) = ϕ[uR′(u)u]. In
fact,

R′(u)v = v + R′(u)γ [uR′(u)u] v + R′(u)Λ(u ⊗ v).(1.1)

This result easily generalizes to a finite family of variables {u i}d
i=1. To make sense of

a generating function for joint free cumulants of infinitely many variables {u i}∞i=1, we
take an approach different from [BL11]. We form an infinite matrix which contains all
the information about joint free cumulants of {u i}∞i=1, and still satisfies (an appropriate
version of) equation (1.1). In the case when Λ(u ⊗ v) = Λ(u)v, for {u i}∞i=1 uniformly
small, this matrix corresponds to a genuine bounded operator. The analysis is similar
in style to, but different from, computations with fully matricial free cumulants [PV13].

We perform a similar analysis for the joint generating function of Wick polynomi-
als. It can be interpreted as an infinite matrix, and under appropriate assumptions as
a bounded operator. As in [Ans07, BL11], it has a resolvent-type form

W(u) = (B(u) − X(u))−1(B(u) − ϕ[u2]),

where B(u) = 1 + Λ(u) + (γ + ϕ)[u2] (see Section 4).
Finally, we investigate the situation when the vacuum state on the algebra generated

by all operators {X(u) ∶ u ∈ B} is tracial. The depth two nature of the action allows
us to write down explicit conditions on ϕ, γ, Λ which guarantee this. In the case
when γ = 0, the Fock space is the full Fock space, but the circular operators X(u)
are deformed by a nontrivial Λ. We show that one can always use Λ to define a new
multiplication on B, so that the representation splits into a semicircular and a free
compound Poisson parts. More generally, if γ[u] = ηu for η central (related to the
construction from [BL09]), then one has a similar decomposition, but with the third
component on which Λ(u ⊗ v) = λuv for λ central.

The article [Ans07] contained another example of a “depth two action” algebra
with a tracial vacuum state, which naturally corresponded to the free multinomial
distribution. This example also generalizes to the setting of this article. It is described
in a forthcoming article [AM22].

The article is organized as follows: After the Introduction, in Section 2, we present
the main construction. In Section 3, we prove formulas for joint moments, and
Boolean and free cumulants, of the operators {X(u) ∶ u ∈ B}. We also compare and
contrast these formulas with the operator-valued results of [AW18]. In particular,
unlike in [AW18], the inner product in this article is scalar-valued rather than
B-valued. In Section 4, we discuss Wick polynomials, and matricial generating
functions for them and for the free cumulants. In Section 5, we provide conditions
under which operators X(u), as well as various generating functions, are bounded.
In Section 6, we derive the conditions for the vacuum state to be tracial. The results
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in Sections 4 and 5 are proven in the setting of Λ(u ⊗ v) = Λ(u)v; in contrast, the
results in Section 6 are of main interest for general Λ. Finally, in Section 7, we describe
in detail the examples which motivated this article, as well as their generalizations
covered by our construction. We also prove a representation theorem under the
assumption that the vacuum state is tracial.

2 The construction

Definition 2.1 Let B and C be ∗-algebras. An element b ∈ B is positive if
b = ∑k

i=1 u∗i u i for some k and u i ∈ B. A map T ∶ B→ C is positive if for each u ∈ B,
T(u∗u) is positive in C. It is faithful if T(u∗u) = 0 only for u = 0. It is completely
positive if for each n, the map

Tn ∶ Mn(B) → Mn(C), Tn ([a i j]n
i , j=1) = [T(a i j)]n

i , j=1

is positive, where we use the usual ∗-structure on Mn(B).

Construction 2.2 Let B be a unital ∗-algebra, equipped with star-linear maps
ϕ ∶ B→ C, γ ∶ B→ B, and Λ ∶ B⊗alg B→ B such that ϕ is positive and faithful,
γ + ϕ = γ + ϕ1B is completely positive (semi-definite), and Λ satisfies

ϕ[v∗Λ(b ⊗ u)] = ϕ[Λ(b∗ ⊗ v)∗u], γ[v∗Λ(b ⊗ u)] = γ[Λ(b∗ ⊗ v)∗u],(2.1)

On the algebraic Fock space,

Falg(B) = CΩ ⊕
∞
⊕
n=1

B⊗n ,

define the inner product by the linear extension of

⟨u1 ⊗ ⋅ ⋅ ⋅ ⊗ un , v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk⟩γ ,ϕ

= δn=k ϕ [v∗n(γ + ϕ)[v∗n−1(γ + ϕ)[. . . (γ + ϕ)[v∗1 u1] . . .]un−1]un] .(2.2)

This inner product is positive semi-definite but not, in general, positive definite. Denote
by Fγ ,ϕ(B), the completion of the quotient Falg(B)/N by the subspace N of elements of
zero seminorm. Next, for each b ∈ B, consider operators on Falg(B)

a+(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = b ⊗ u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ,

a−(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = (γ + ϕ)[bu1]u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ,

a−(b)(u1) = ϕ[bu1]Ω,

a0(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = Λ(b ⊗ u1) ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ,

a−(b)(Ω) = a0(b)(Ω) = 0,

and

X(b) = a+(b) + a−(b) + a0(b).
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Several of the results below address the questions of when these operators are, in fact,
defined on Falg(B)/N or on Fγ ,ϕ(B).

Denote

Γalg
γ ,Λ(B, ϕ) = Alg

C
(X(b) ∶ b ∈ B) = Alg

C
(X(b) ∶ b ∈ Bsa)

and define on it the vacuum state A ↦ ⟨AΩ, Ω⟩.

Remark 2.3 The following observations are straightforward.

• If for some t < 1, γ + tϕ is still completely positive, then the inner product (2.2) is
positive definite.

• If the operators in Construction 2.2 are bounded with respect to the semi-norm
∥⋅∥γ ,ϕ over Falg(B), then they are well-defined over Fγ ,ϕ(B) and are also norm-
bounded.

• For ζ⃗ , ξ⃗ ∈ Falg(B),

⟨a+(b)ζ⃗ , ξ⃗⟩
γ ,ϕ

= ⟨ζ⃗ , a−(b∗)ξ⃗⟩
γ ,ϕ

, ⟨a0(b)ζ⃗ , ξ⃗⟩
γ ,ϕ

= ⟨ζ⃗ , a0(b∗)ξ⃗⟩
γ ,ϕ

.

In particular, for self-adjoint b, X(b) is symmetric. In the case when Λ(b ⊗ u) =
Λ(b)u for Λ ∶ B→ B, assumption (2.1) simplifies to (Λ(b))∗ = Λ(b∗).

3 Moments, free cumulants, Boolean cumulants

In this section, we give combinatorial expressions for the moments and free cumulants
of the variables {X(u i)}. For any family of bounded operators X1 , . . . , Xn over a
Hilbert space H and a state ψ over B(H), their moments are the numbers

ψ[X i(1) . . . X i(k)].

Combinatorial background.

A partition π of a subset S ⊂ N is a collection of nonempty, disjoint subsets of S
(called blocks of π) whose union equals S. We will use i π

∼ j to say that i and j are
in the same block of π. In this article, we will only be concerned with partitions of
[n] ∶= {1, 2, . . . , n}.

Let NC(n) denote the set of noncrossing partitions over [n], that is, those partitions
π such that there are no i < j < k < � such that i π

∼ k and j π
∼ � unless all four are in the

same block. If i ∈ [n] is the smallest element of its block, we will call it an opening
element, while the largest of its block will be called a closing element. If i is neither, it
will be called a middle element.

For distinct blocks V and W of a noncrossing partition π, V is said to be inner with
respect to W if oW < oV < cV < cW , where oV and oW are the opening elements of V
and W, respectively, while cV and cW are their closing elements. We will simply say a
block is inner if it is inner with respect to some block, and outer if it is not.

Finally, let Int(n) denote the interval partitions over [n], that is, those partitions π
such that whenever i < j and i π

∼ j, we have i π
∼ k for all i < k < j.
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The free cumulants (Rn)∞n=1 of X1 , . . . , Xn are defined inductively via the moment-
cumulant formula

ψ[X i(1) , . . . , X i(k)] = ∑
π∈NC(n)

Rπ[X i(1) , . . . , X i(k)],

where

Rπ[X1 , . . . , Xk] = ∏
V∈π

R∣V ∣[XV(1) , . . . , XV(∣V ∣)].

Their Boolean cumulants (Bn)∞n=1 are defined in almost exactly the same manner:

ψ[X i(1) , . . . , X i(k)] = ∑
π∈Int(n)

Bπ[X i(1) , . . . , X i(k)],

where

Bπ[X1 , . . . , Xk] = ∏
V∈π

B∣V ∣[XV(1) , . . . , XV(∣V ∣)].

Notation 3.1 Denote NCns(n) the set of noncrossing partitions of [n]with no singleton
blocks. For u1 , . . . , un ∈ B, in the moment and Boolean cumulant formulas below, we will
assign to each π ∈ NCns(n) the weight operator on Falg(B)

WM(π) =
n
∏
i=1

a i(u i),

where

a i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a+ , if i is a closing element,
a− , if i is an opening element,
a0 , if i is a middle element.

Proposition 3.2 Given u1 , . . . , un ∈ B, we have the following mixed moment formula:

⟨X(u1) . . . X(un)Ω, Ω⟩ = ∑
π∈NCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ ,(3.1)

if n ≥ 2 and zero if n = 1.

Proof The argument is standard. The proof proceeds by expanding each
X(u i) = a+(u i) + a0(u i) + a−(u i), representing the sum on the left-hand side
as the sum over Motzkin paths, and observing that these paths are in bijection with
NCns(n). ∎

Notation 3.3 Let ÑC(n) = {π ∈ NC(n)∣1 π
∼ n}, and similarly, let

ÑCns(n) = {π ∈ NC(n)∣1 π
∼ n and π has no singleton blocks}.

These are sometimes called the irreducible partitions. For π ∈ ÑCns(n), we will denote
by Vout(π) the unique outer block of π.
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Lemma 3.4 For n ≥ 2, given u1 , . . . , un ∈ B, we have the following mixed Boolean
cumulant formula:

Bn[X(u1), . . . , X(un)] = ∑
π∈ÑCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ ,(3.2)

and for n = 1, the cumulant is zero.

Proof n = 1 is clear. Assume the result holds for all natural numbers less than some
n, and take u1 , . . . , un ∈ B. By Proposition 3.2, we have

∑
π∈Int(n)

Bπ[X(u1), . . . , X(un)] = ⟨X(u1) . . . X(un)Ω, Ω⟩γ ,ϕ

= ∑
π∈NCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ .

For convenience, denote by NCns ,mo(n) the noncrossing, no-singleton partitions
of [n] that have more than one outer block. After isolating the nth cumulant (corre-
sponding to the partition 1̂n consisting of a single block), we get

Bn[X(u1), . . . , X(un)] = ∑
π∈NCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ

− ∑
π∈Int(n)/{1̂n}

Bπ[X(u1), . . . , X(un)]

= ∑
π∈NCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ

− ∑
π∈Int(n)/{1̂n}

∏
V∈π

∑
σ∈ÑCns(∣V ∣)

⟨WM(σ)Ω, Ω⟩γ ,ϕ

= ∑
π∈NCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ

− ∑
σ∈NCns ,mo(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ

= ∑
π∈ÑCns(n)

⟨WM(π)Ω, Ω⟩γ ,ϕ ,

where the second equality follows from the induction hypothesis. ∎
Notation 3.5 Define the operator a∼γ(b) (b ∈ B) by linear extension of

a∼γ(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = γ[bu1]u2 ⊗ ⋅ ⋅ ⋅ ⊗ un for n ≥ 2,

a∼γ(b)(u1) = 0 for n = 1, and

a∼γ(b)(Ω) = 0.

The operator a∼ϕ(b) is defined in a similar manner (for n ≥ 2, apply ϕ, and
a∼ϕ(b)(Ω) = 0), with one critical exception:

a∼ϕ(b)(u1) = ϕ[bu1]Ω for n = 1.

Thus a−(b) = a∼γ(b) + a∼ϕ(b).
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For u1 , . . . , un ∈ B, in the free cumulant formula below, we will assign to each π ∈
NCns(n) the weight operator on Falg(B)

WC(π) =
n
∏
i=1

a i(u i),

where

a i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a+ , if i is a closing element,
a∼γ , if i ≠ 1 and is an opening element,
a∼ϕ , if i = 1, or
a0 , if i is a middle element.

Proposition 3.6 For n ≥ 2, given u1 , . . . , un ∈ B, we have the following mixed free
cumulant formula:

Rn[X(u1), . . . , X(un)] = ∑
π∈ÑCns(n)

⟨WC(π)Ω, Ω⟩γ ,ϕ ,(3.3)

and for n = 1, the cumulant is zero.

Proof By Theorem 1 in [BN08] and Lemma 3.4,

∑
π∈ÑCns(n)

Rπ[X(u1), . . . , X(un)] = Bn[X(u1), . . . , X(un)]

= ∑
π∈ÑCns(n)

∑
�∈Block labelings(γ ,ϕ)

⟨W(π, �)Ω, Ω⟩γ ,ϕ ,

(3.4)

where � is a labeling of the blocks of π with either a γ or ϕ such that Vout(π) is labeled
ϕ, and W(π, �) = ∏n

i=1 a i(u i), where

a i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a+ , if i is a closing element,
a∼γ , if i is an opening element of a block labeled γ,
a∼ϕ , if i is an opening element of a block labeled ϕ,
a0 , if i is a middle element.

This splitting of terms follows from linearity and the fact that the opening of each
block is weighted with (γ + ϕ) of a product involving the operator in that position.
We may rewrite the latter sum as

∑
π∈ÑCns(n)

∑
S⊂π

Vout(π)∈S

⟨W(π, �S)Ω, Ω⟩γ ,ϕ ,(3.5)

where �S is the labeling constructed by giving blocks in S the label ϕ and the rest γ.
Let ≪ denote the partial order on NC(n) defined by

π ≪ σ ⇔ π ≤ σ and ∀V ∈ σ , min(V) π
∼ max(V).

In particular, for each σ ≫ π, we have the decomposition π = ⋃V∈σ πV , with each
πV ∈ ÑC(V).
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By Remark 2.14 in [BN08], we have a bijection

{σ ∈ NCns(n) ∶ π ≪ σ} ≃ {S ⊂ π ∶ Vout(π) ∈ S}

such that the opening and closing elements of the outer block of σ are precisely those
of the corresponding element in S. This implies that

⟨W(π, �S)Ω, Ω⟩γ ,ϕ = ∏
V∈σ

⟨WC(πV)Ω, Ω⟩γ ,ϕ .

With this in mind, the sum (3.5) can be rewritten as

∑
π∈ÑCns(n)

∑
π≪σ

∏
V∈σ

⟨WC(πV)Ω, Ω⟩γ ,ϕ

= ∑
σ∈ÑCns(n)

∏
V∈σ

∑
πV ∈ÑCns(V)

⟨WC(πV)Ω, Ω⟩γ ,ϕ .

The result now follows by Möbius inversion. ∎

Definition 3.7 For each u1 , . . . , un ∈ B, define the linear operator R′n[u1 , . . . , un] on
B by

Rn[X(u1), . . . , X(un)] = ⟨R′n−2[u2 , . . . , un−1]un , u∗1 ⟩
= ϕ[u1R′n−2[u2 , . . . , un−1]un].

(3.6)

In general, this operator need not be bounded.

Lemma 3.8 We have the expansion

R′n[u1 , . . . , un] =
⎛
⎝ ∑

σ∈Int({1,. . . ,n})
∏
V∈π

w(V)
⎞
⎠

,(3.7)

where the products are ordered by each block’s appearance in the partition (from
left to right), and the weights are given by w({i}) = a0(u i) and w({i1 , . . . , in}) =
γ[u i1 R′n−2[u i2 , . . . , u in−1]u in ] for n ≥ 2, with R′0[∅] = 1.

In particular, for Λ(u ⊗ v) = Λ(u)v, R′n[u1 , . . . , un] is the operator of multiplication
by an element of B.

Proof To show that

⟨
⎛
⎝ ∑

σ∈Int({2,.. . ,n−1})
∏
V∈σ

w(V)
⎞
⎠

un , u∗1 ⟩ = ∑
π∈ÑCns(n)

⟨WC(π)Ω, Ω⟩γ ,ϕ ,

we will prove a slightly stronger statement:

R′′ ∶= u1
⎛
⎝ ∑

σ∈Int({2,.. . ,n−1})
∏
V∈σ

w(V)
⎞
⎠

un = ∑
π∈ÑCns(n)

W ′(π)Ω,(3.8)

where the weights W ′(π) on the right-hand side are the same as in the cumulant
formula, except all opening steps at 1 will be weighted by the identity map instead
of a∼ϕ .
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For n = 2, we have u1u2 on both sides. For n = 3, we have u1a0(u2)u3. For
induction, assume the lemma holds for all natural numbers less than some n. Then

∑
π∈ÑCns(n)

W ′(π)Ω = u1
⎛
⎝ ∑

σ∈Int({2,.. . ,n−1})
∏
V∈σ

w(V)
⎞
⎠

un ,

where for k ≥ 2, w({i1 , . . . , ik}) = γ [u i1 (∑τ∈Int({2,.. . ,k−1})∏V∈τ w(V))u ik ].
At this point, we are done, since each π ∈ ÑCns(n) can be uniquely constructed

by taking some σ ∈ Int{2, . . . , n − 1}, then constructing the unique outer block
{1, singletons(σ), n}, then each nested block immediately below the outer block is
recursively constructed in the same manner.

Finally, taking the inner product of both sides of (3.8) with Ω gives the result. ∎

Next, we prove an equation which characterizes the generating function for this
family of operators, which in turn will give us an equation for the free cumulant
generating function.

Lemma 3.9 Denote R′n[u] ∶= R′[u, . . . , u] (n arguments), where R′0[u] = 1. Then

R′n[u] =
n−2
∑
i=0

R′i[u]γ[uR′n−i−2[u]u] + R′n−1[u]a0(u).(3.9)

Proof The claim is analogous to the recursion for the number In of interval parti-
tions of length n,

In =
n−1
∑
i=0

I i ,

where n − i is the number of elements in the block containing n. The right-hand side
in (3.9) is obtained in a similar manner, in which each term is obtained by collecting
all terms in the sum (3.7) (over interval partitions) for R′n[u] for which the weight for
the block containing n is a factor. Thus, by summing over i where n − i is the number
of elements in the block containing n, the term corresponding to each i is a product of
R′i[u] and either γ[uR′n−i−2[u]u], the weight of the block containing n for i ≤ n − 2,
or a0(u), the weight of the singleton block containing n for i = n − 1. ∎

Theorem 3.10 Let R′(u) = 1 +∑∞n=1 R′n[u] be the generating function of R′n[u], n ≥ 0.
Then for any v ∈ B,

R′(u)v = v + R′(u)γ [uR′(u)u] v + R′(u)Λ(u ⊗ v).(3.10)

Proof Apply Lemma 3.9. ∎

Example 3.11 For Λ(u ⊗ v) = Λ(u)v, R′(u) satisfies

R′(u) = (1 − Λ(u) − γ[uR′(u)u])−1 ,

and so can be expanded into a formal continued fraction.

https://doi.org/10.4153/S0008414X24000555 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000555


Some Fock spaces with depth two action 11

Corollary 3.12 More generally, for u1 , . . . , uk ∈ B, let

R′(u1 , . . . , uk) =
∞
∑
n=0

∑
j∶[n]→[k]

R′n[u j(1) , . . . , u j(n)]

be the generating function for the mixed R′n . Then

R′(u1 , . . . , uk)v = v + R′(u1 , . . . , uk)γ
⎡⎢⎢⎢⎢⎣
(

k
∑
i=1

u i)R′(u1 , . . . , uk)
⎛
⎝

k
∑
j=1

u j
⎞
⎠

⎤⎥⎥⎥⎥⎦
v

+ R′(u1 , . . . , uk)
k
∑
i=1

Λ(u i , v).

(3.11)

Proof Apply Theorem 3.10 to R′ (∑k
i=1 u i) = R′(u1 , . . . , uk). ∎

Remark 3.13 The generating function for R′′n [u] is given by R′′(u) = uR′(u)u, since
R′′n [u] is only defined for n ≥ 2. Thus, R′′(u) satisfies

R′′(u) = u2 + uR′(u)γ [R′′(u)]u + uR′(u)Λ(u, u).(3.12)

Applying the vacuum state to both sides gives an equation for the cumulant generating
function. Note that R′′(u) is a series of elements of B.

Remark 3.14 Constructions and results in this section are reminiscent of operator-
valued probability theory, such as those in [AW18]. In this remark, we indicate how
these constructions differ. The map

b1 ⊗ b1 ⊗ ⋅ ⋅ ⋅ ⊗ bn ↦ b1 Xb2 X . . . bn X , Ω ↦ 1B

is an isomorphism from the algebraic Fock space ⊕∞n=0 B
⊗n onto a subspace of

noncommutative polynomials B⟨X⟩. Using this identification, the relation between
the operators in this article (for Λ( f ⊗ g) = Λ( f )g) and in Proposition 3.1 from
[AW18] is:

a+(b) ↔ ba∗ , a−(b) ↔ a b, a0(b) ↔ p

with α1 = ϕ, αn = γ + ϕ for n ≥ 2, and λn = Λ(b) for n ≥ 1. Thus the operator X(1)
here is the same as the B-valued X, but the interaction with the algebra B is different
in the two settings. Similarly, the identity

R′(b) = 1 + R′(b)γ [bR′(b)b] + R′(b)Λ(b)

satisfied by the (under appropriate assumptions) B-valued generating function R′(b)
(from Theorem 3.10) is similar to, but different from the relation

b−1Rμ(b)b−1 = 1 + γ[Rμ(b)b−1]Rμ(b)b−1 + λRμ(b)b−1

from Proposition 3.22 in [AW18]. They do again coincide (up to a flip) for b = 1.

In light of the preceding remark, the following is related to Theorem 2 from
[Ans07].
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Proposition 3.15 Let B be a C∗-algebra and u1 , . . . , un ∈ Bsa . Assume that
Λ(u ⊗ v) = Λ(u)v. Let X1 , . . . , Xn be a B-valued semicircular system with means
Λ(u1), . . . , Λ(un) and the covariance matrix η ∶ B→ Mn(B) with η i j[b] = γ[u i bu j];
the existence of such a system in some B-valued noncommutative probability space
(A,E,B) is guaranteed by [Shl99]. Then

Rk[X(u j(1)), X(u j(2)), . . . , X(u j(k−1)), X(u j(k))]
= ϕ[u j(1)E[X j(2) . . . X j(k−1)]u j(k)].

Proof It suffices to show that

R′n[u1 , . . . , un] = E[X1 . . . Xn].

Indeed, R′0 = 1 and R′1[u] = Λ(u). The left-hand side satisfies the recursion

R′n[u1 , . . . , un] =
n−2
∑
i=0

R′i[u1 , . . . , u i]γ[u i+1R′n−i−2[u i+2 , . . . , un−1]un]

+ R′n−1[u1 , . . . , un−1]Λ(un)

by Corollary 3.12, while the right-hand side satisfies the well-known recursion

E[X1 , . . . , Xn] =
n−2
∑
i=0

E[X1 , . . . , X i]E[X i+1E[X i+2 , . . . , Xn−1]Xn]

+E[X1 , . . . , Xn−1]E[Xn]

=
n−2
∑
i=0

E[X1 , . . . , X i]η i+1,n[E[X i+2 , . . . , Xn−1]]

+E[X1 , . . . , Xn−1]Λ(un),

see, for example, Proposition 3.13 in [AW18]. ∎

4 Generating functions

4.1 Wick polynomials

Definition 4.1 For u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ∈ B⊗n , define the operator W(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) on
the algebraic Fock space by the recursion

W(b ⊗ u1 ⊗ ⋅ ⋅ ⋅ ⊗ un)
= X(b)W(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) − W(a0(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un))
− W(a−(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un))

= X(b)W(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) − W(Λ(b ⊗ u1) ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)
− W((γ + ϕ)[bu1]u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)

with the initial conditions

W(∅) = I, W(u1) = X(u1),
W(u1 ⊗ u2) = X(u1)W(u2) − W(Λ(u1 ⊗ u2)) − ϕ[u1u2].
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It is easy to check using the recursion that

W(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un)Ω = u1 ⊗ ⋅ ⋅ ⋅ ⊗ un .

Since each W(ξ⃗) ∈ Γalg
γ ,Λ(B, ϕ), it follows that Ω is cyclic for this algebra. W(ξ⃗) is

called a Wick polynomial. In particular, we denote W0(u) = I, Wn(u) = W(u⊗n), and
note that Wn(u)Ω = u⊗n .

For the remainder of this section, we assume that Λ has the special form Λ(u ⊗ v) =
Λ(u)v.

The next proposition states that formally, the generating function for univariate
Wick polynomials is a rational function in X(u). In Section 5, we will give conditions
under which the series defining the generating function is convergent and corresponds
to a well-defined operator.

Proposition 4.2 Denote W(u) = I +∑∞n=1 Wn(u) and

b(u) = I + Λ(u) + (γ + ϕ)[u2].

Then

(b(u) − X(u))W(u) = b(u) − ϕ[u2].

Proof

X(u)Wn(u) = Wn+1(u) + (γ + ϕ)[u2]Wn−1(u) + Λ(u)Wn(u),

X(u)W1(u) = W2(u) + ϕ[u2] + Λ(u)W1(u),

X(u) = W1(u).

So

X(u)W(u) = W(u) − I + ϕ[u2] + (γ + ϕ)[u2](W(u) − 1) + Λ(u)(W(u) − I).

∎

4.2 Matricial generating functions

In this section, we will explore a means of recovering the multivariable polynomials
{W(un , . . . , um) ∶ 1 ≤ n ≤ m < ∞} for a sequence {u i ∶ i ∈ N} in B. Rather than
trying to form their generating function as a power series, we will organize these
polynomials into an infinite matrix. In the next section, this matrix will be identified
with a bounded operator. In the following proposition, L(�2) denotes the linear space
of infinite matrices, and {E i j} are the standard matrix units in it.

Proposition 4.3 Let {u i ∶ i ∈ N} ⊂ B. Define matrices with operator entries
Φ ∈ L(�2), Γ, A0 ∈ B⊗L(�2), X , W ∈ L(Fγ ,ϕ(B)) ⊗L(�2) as follows:
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X =
∞
∑
i=1

X(u i) ⊗ E i , i+1 ,

Wn =
∞
∑
i=1

W(u i ⊗ ⋅ ⋅ ⋅ ⊗ u i+n−1)E i , i+n , n ≥ 0,

W =
∞
∑
n=0

Wn

=
∞
∑
i=1

(I ⊗ E i , i +
∞
∑
n=1

W(u i ⊗ ⋅ ⋅ ⋅ ⊗ u i+n−1) ⊗ E i , i+n) ,

Φ =
∞
∑
i=1

ϕ[u i u i+1] ⊗ E i , i+2 ,

Γ =
∞
∑
i=1

γ[u i u i+1] ⊗ E i , i+2 ,

A0 =
∞
∑
i=1

Λ(u i) ⊗ E i , i+1 .

Denote B = I + A0 + Γ + Φ ∈ L(Fγ ,ϕ(B)) ⊗L(�2). Then

(B − X)W = (B − Φ).

Proof For k > i + 2,

X(u i)W(u i+1 ⊗ ⋅ ⋅ ⋅ ⊗ uk−1) = W(u i ⊗ ⋅ ⋅ ⋅ ⊗ uk−1) + Λ(u i)W(u i+1 ⊗ ⋅ ⋅ ⋅ ⊗ uk−1)
+ (γ[u i u i+1] + ϕ[u i u i+1])W(u i+2 ⊗ ⋅ ⋅ ⋅ ⊗ uk−1).

For k = i + 2,

X(u i)W(u i+1) = W(u i ⊗ u i+1) + Λ(u i)W(u i+1) + ϕ[u i u i+1].

For k = i + 1,

X(u i)I = W(u i).

By comparing matrix entries, we can see that this implies for n ≥ 2,

XWn = Wn+1 + A0Wn + (Γ + Φ)Wn−1 ,

and

XW = (W − I) + A0(W − I) + Φ + (Γ + Φ)(W − I).(4.1) ∎

Since B − X is an upper-triangular matrix with only 1s along the main diagonal, its
inverse exists for a finite family of {u i}, and in a strictly formal sense for an infinite
family. In the next section, we will discuss conditions under which (B − X)−1, and W,
are bounded operators on Fγ ,ϕ(B) ⊗ �2.

Since W contains all the information about the multivariate W’s, it should be con-
sidered as a generating function W(u i ∶ i ∈ N). By constructing certain corresponding
operators on a matricial Fock space construction, we can view W as a more traditional
generating function of these operators.
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Definition 4.4 Let D be a ∗-algebra. B⊗D is naturally a D-bimodule. On the Fock
space

∞
⊕
n=0

B⊗n ⊗D ≃
∞
⊕
n=0

(B⊗D)⊗Dn ,

we consider operators indexed by elements of B⊗D

a+(b ⊗ d)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ d′) = b ⊗ u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ dd′ ,

a−(b ⊗ d)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ d′) = (γ + ϕ)[bu1]u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ dd′ ,

a−(b ⊗ d)(u1 ⊗ d′) = ϕ[bu1]dd′ ,

a0(b ⊗ d)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ d′) = Λ(b)u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ dd′ ,

a−(b ⊗ d)(d′) = a0(b ⊗ d)(d′) = 0.

Then any operator in the algebra generated by

{a+(b ⊗ d), a−(b ⊗ d), a0(b ⊗ d) ∶ b ∈ B, d ∈D}

is of the form A⊗ d, where A acts purely on ⊕∞n=0 B
⊗n . Moreover, the map

Ψ ∶ (A⊗ d) ↦ ⟨(A⊗ d)(1B ⊗ 1D), 1B ⊗ 1D⟩ = ⟨A1B , 1B⟩ d(4.2)

is a D-valued conditional expectation on the algebra generated by

{X(b ⊗ d) ∶ b ∈ B, d ∈D} .

Remark 4.5 Let D be the algebra of infinite matrices with finitely many nonzero
diagonals. Let {u i ∶ i ∈ N} ⊂ B, and define the matrix U ∈ B⊗D by U = ∑i≥1 u i ⊗
E i , i+1. Then the objects from Proposition 4.3 are, in fact,

Φ = (ϕ ⊗ I)[U 2], Γ = (γ ⊗ I)[U 2], A0 = (Λ ⊗ I)[U],

and X = a+(U) + a−(U) + a0(U). If, in addition,

sup
i
∥u i∥ < ∞,(4.3)

then U ∈ B⊗B(�2), where B(�2) denotes the algebra of bounded operators.

Before interpreting W(U) as a generating function, we will first establish the
analogous results for moments and cumulants. The formulas below are similar to, but
once again different from, those in Section 6.3 in [PV13]. The first of these is an easy
consequence of matrix multiplication.

Lemma 4.6 For Ψ defined in (4.2) for the case of D as in the preceding remark, and
d(1) , . . . , d(n−1) ∈D,
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Ψ[Xd(1)X . . . d(n−1)X] = ∑
increasing
i∶[n]→N

⟨
n
∏
j=1

X(ui( j))Ω, Ω⟩
n−1
∏
j=1

d( j)
i( j)+1,i( j+1) Ei(1),i(n)+1 .

(4.4)

In particular,

Ψ[Xn] =
∞
∑
i=1

⟨
n
∏
j=1

X(u j)Ω, Ω⟩ E i , i+n−1.

Given a noncommutative operator-valued probability space

(Alg(X(b ⊗ d) ∶ b ∈ B, d ∈D),D, Ψ),

we may define D-valued partitioned moments Ψπ[d0 X , d1 X , . . . , dn−1 Xdn] and D-
valued free cumulants R[d0 X , d1 X , . . . , dn−1 Xdn] as in Chapter 4 of [Spe98]. How-
ever, we will only be interested in these for d0 = d1 = ⋅ ⋅ ⋅ = dn = 1. In this case, we have
the following relations.

Corollary 4.7 For a partition π ∈ NC(n),

Ψπ[X] =
∞
∑
i=1

∏
V∈π

⟨∏
j∈V

X(u i+ j−1)Ω, Ω⟩E i , i+n .

It follows that

Rn[X , . . . , X] =
∞
∑
i=1

Rn[X(u i), . . . , X(u i+n−1)]E i , i+n .(4.5)

Proof We may decompose π ∈ NC(n) into the block (v(1) < v(2) < ⋅ ⋅ ⋅ < v(k) = n)
containing n and non-crossing partitions π j ∈ NC({v( j) + 1, . . . , v( j + 1) − 1}) for
0 ≤ j ≤ k − 1, where v(0) = 0. Applying Lemma 4.6 with d( j) = Ψπ j[X], and using
recursion,

Ψπ[X] = ∑
increasing

i∶[k]→N

⟨
k
∏
j=1

X(ui( j))Ω, Ω⟩Ψπ0[X]
k−1
∏
j=1
(Ψπ j[X])i( j)+1,i( j+1) Ei(1),i(k)+1

= ∑
increasing

i∶[k]→N

⟨
k
∏
j=1

X(ui( j))Ω, Ω⟩

× ∑
increasing

l∶[0,k−1]→N

∏
V∈π0

⟨∏
s∈V

X(ul(0)+s−1)Ω, Ω⟩El(0),l(0)+v(1)−1

×
k−1
∏
j=1

⎛
⎝∏

V∈π j

⟨∏
s∈V

X(ul( j)+s−1)Ω, Ω⟩El( j),l( j)+v( j+1)−v( j)−1
⎞
⎠

i( j)+1,i( j+1)

× Ei(1),i(k)+1.
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For nonzero terms, l( j) = i( j) + 1 and i( j) = i( j − 1) + v( j) − v( j − 1) = i + v( j) − 1,
where we set i = l(0). Thus

Ψπ[X] =
∞
∑
i=1

⟨
k
∏
j=1

X(u i+v( j)−1)Ω, Ω⟩ ∏
V∈π0

⟨∏
s∈V

X(u i+s−1)Ω, Ω⟩

×
k−1
∏
j=1

∏
V∈π j

⟨∏
s∈V

X(u i+v( j)+s−1)Ω, Ω⟩ E i , i+n

=
∞
∑
i=1

∏
V∈π

⟨∏
j∈V

X(u i+ j−1)Ω, Ω⟩E i , i+n .

The second part follows by applying Möbius inversion, both to the D-valued random
variables, and to the scalar-valued random variables in the (i , i + n)th entry. ∎

Finally, the next proposition follows by comparing matricial recursions.

Proposition 4.8 Let U be as in Remark 4.5. Define the operators Wn(U) on the Fock
space Fγ ,ϕ(B) ⊗L(�2) by the recursion

X(U)Wn(U) = Wn+1(U) + δn≥1(Λ ⊗ I)(U)Wn(U)

+ (δn≥2(γ ⊗ I)[U 2] + (ϕ ⊗ I)[U 2])Wn−1(U)

with the initial condition W0(U) = I, and their generating function W(U) =
∑∞n=0 Wn(U). Then in the setting of Proposition 4.3, Wn = Wn(U) and W = W(U)
entrywise. Note that if we only have finitely many nonzero entries u i , boundedness
condition (4.3) holds automatically.

5 Norm estimates and convergence of generating functions

The next two results can be used to estimate the norm of X( f ). The following lemma
is closely related to Lemma 4 in [BS91] and Lemma 1 in [Ans04], although it is not
stated in quite this form in either of those sources.

Lemma 5.1 Let H be a Hilbert space, and let K a positive operator on it. Denote
⟨ζ⃗ , ξ⃗⟩

K
= ⟨ζ⃗ , Kξ⃗⟩ the corresponding deformed inner product. Then for an operator

X on H, denoting by X∗ its adjoint with respect to the deformed inner product,
∥X∥K ≤

√
∥X∥ ∥X∗∥.

For the remainder of this section, we assume that B is a C∗-algebra, the maps ϕ ∶
B→ C and γ ∶ B→ B are bounded, and Λ has the special form Λ(u ⊗ v) = Λ(u)v
with Λ ∶ B→ B bounded.

Proposition 5.2 For b ∈ B,

∥a+(b)∥γ ,ϕ = ∥a−(b∗)∥γ ,ϕ ≤
√

max(ϕ[b∗b], ∥(γ + ϕ)[b∗b]∥)

≤
√

max(∥ϕ∥ , ∥γ + ϕ∥) ∥b∥
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and

∥a0(b)∥γ ,ϕ ≤ ∥Λ(b)∥ ≤ ∥Λ∥ ∥b∥ .

It follows that in this case, the operators in Construction 2.2 are well-defined and
bounded on Fγ ,ϕ(B).

Proof Since tensors of different length in the Fock space are orthogonal, it suffices
to estimate ∥a+(b)∥γ ,ϕ separately on tensors of fixed length. For n = 0,

⟨a+(b)Ω, a+(b)Ω⟩γ ,ϕ

⟨Ω, Ω⟩γ ,ϕ
= ⟨b, b⟩γ ,ϕ = ϕ[b∗b] ≤ ∥ϕ∥∥b∥2

B .

For n ≥ 1, denote

m(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = (bu1) ⊗ ⋅ ⋅ ⋅ ⊗ un ,

and note that a−(b∗)a+(b) = m((γ + ϕ)[b∗b]).
For a fixed tensor ξ⃗ ⊥ Ω, denote ψ ξ⃗[u] = ⟨m(u)ξ⃗, ξ⃗⟩

γ ,ϕ
. Then ψ ξ⃗ is linear, and

ψ ξ⃗[u
∗u] = ⟨m(u)ξ⃗, m(u)ξ⃗⟩

γ ,ϕ
≥ 0. Therefore

⟨a+(b)ξ⃗, a+(b)ξ⃗⟩
γ ,ϕ

= ψ ξ⃗[(γ + ϕ)[b∗b]]

≤ ∥(γ + ϕ)[b∗b]∥ψ ξ⃗[1] = ∥(γ + ϕ)[b∗b]∥ ∥ξ⃗∥
2

γ ,ϕ
.

Hence, ∥a+(b)∥γ ,ϕ ≤
√

max(ϕ[b∗b], ∥(γ + ϕ)[b∗b]∥).
Since a−(b∗) is the adjoint of a+(b), their operator norms are equal, so the above

inequality also applies to a−.
The argument for a0(b), with Λ of the special form, is similar. ∎

Proposition 5.3 Denote cγ ,ϕ =
√

max(∥ϕ∥ , ∥γ + ϕ∥) and

K = max(1, (
√

2 − 1)(2 + ∥Λ∥
cγ ,ϕ

)) .

Then for (un)∞n=1 ⊂ B,

∥W(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un)∥ ≤ (
√

2 + 1)n cn
γ ,ϕK ∥u1∥ . . . ∥un∥ .

Proof ∥W(∅)∥ = 1 ≤ K, and by Proposition 5.2,

∥W(u1)∥ = ∥X(u1)∥ ≤ (2cγ ,ϕ + ∥Λ∥) ∥u1∥ ≤ (
√

2 + 1)cγ ,ϕK ∥u1∥ .

For n = 2,

W(u1 ⊗ u2) = X(u1)W(u2) − Λ(u1)W(u2)
− ϕ[u1u2] = (a+(u1) + a−(u1))W(u2) − ϕ[u1u2],

and

∥W(u1 ⊗ u2)∥ ≤ 2cγ ,ϕ ∥u1∥ ∥W(u2)∥ + ∥ϕ∥ ∥u1∥ ∥u2∥ ,
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while for n ≥ 3,

W(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un) = (a+(u1) + a−(u1))W(u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)
− (γ + ϕ)[u1u2]W(u3 ⊗ ⋅ ⋅ ⋅ ⊗ un),

and

∥W(u1 , u2 , . . . , un)∥ ≤ 2cγ ,ϕ ∥u1∥ ∥W(u2 , . . . , un)∥
+ ∥γ + ϕ∥ ∥u1∥ ∥u2∥ ∥W(u3 , . . . , un)∥ .

Since (
√

2 + 1)n = 2(
√

2 + 1)n−1 + (
√

2 + 1)n−2, the result follows by induction. ∎

Let’s turn our attention back to the infinite matrix W whose structure we estab-
lished in the previous section, particularly the decomposition into a sum of matrices
with a single nonzero diagonal. The following more general proposition will be
combined with this fact to obtain conditions under which W is a bounded operator.
The following result must be standard, although we do not have a reference for it.

Lemma 5.4 Let T ∈ B(H⊗ �2), which we can write as an infinite matrix with entries
Ti j ∈ B(H). Then

∥T∥ ≤ ∑
i∈Z

sup
k≥max(1,1−i)

∥Tk ,k+i∥ .

Corollary 5.5 For supi ∥u i∥ <
√

2−1√
max(∥ϕ∥,∥γ+ϕ∥)

,

(a) W is a bounded operator.
(b) B − X is invertible, and

W = (B − X)−1(B − Φ).

Proof For (a), by Proposition 5.3, ∥Wi , i+n∥ ≤ K ((
√

2 + 1)cγ ,ϕ supi ∥u i∥)
n

. The
result follows from Lemma 5.4.

For (b), let Y = B − X − 1 = A0 + Γ + Φ − X. Note that Y has nonzero entries on
only two diagonals:

Yi , i+1 = a+(u i) + a−(u i),
Yi , i+2 = (γ + ϕ)[u i u i+1].

So apply Lemma 5.4 and Proposition 5.2 to get the estimate

∥Y∥ ≤ (∥a+∥ + ∥a−∥)(sup
i
∥u i∥) + ∥γ + ϕ∥(sup

i
∥u i∥)

2

≤ 2cγ ,ϕ (sup
i
∥u i∥) + c2

γ ,ϕ (sup
i
∥u i∥)

2

< 1.

Therefore, (B − X) is invertible. The formula follows from Proposition 4.3. ∎

Finally, we return to the question of convergence for the cumulant generating
function.
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Proposition 5.6 Let K = max{
√
∥γ∥, ∥Λ∥}. Then ∥R′n[u]∥ ≤ Cn Kn ∥u∥n , where Cn is

the Catalan number. If ∥u∥ ≤ 1
4K , then the generating function R′(u) converges, and thus

the cumulant generating function does as well.

Proof By Lemma 3.9, R′0[u] = 1, ∥R′1[u]∥ ≤ ∥Λ∥ ∥u∥ ≤ K ∥u∥, and

∥R′2[u]∥ ≤ (∥Λ∥2 + ∥γ∥) ∥u∥2 ≤ 2K2 ∥u∥2 .

Recursively,

∥R′n[u]∥ ≤
n−2
∑
i=0

∥R′i[u]∥ ∥R′n−i−2[u]∥ ∥γ∥ ∥u∥2 + ∥R′n−1[u]∥ ∥Λ∥ ∥u∥

≤
n−2
∑
i=0

C i Cn−i−2Kn−2 ∥γ∥ ∥u∥n + Cn−1Kn−1 ∥Λ∥ ∥u∥n

≤ Cn Kn ∥u∥n ,

since Cn−1 = ∑n−2
i=0 C i Cn−i−2 and Cn ≥ 2Cn−1. So the generating function has norm

bounded by
∞
∑
n=0

∥R′n[u]∥ ≤
∞
∑
n=0

Cn Kn ∥u∥n .

A well-known approximation of the Catalan numbers via Stirling’s formula is
Cn ∼ 4n

n3/2√π . So this series converges by assumption. ∎

For the generating function R[U] = ∑∞n=0 Rn[X , . . . , X] for matricial cumulants,
we also have the following corollary:

Corollary 5.7 Under the conditions of Proposition 5.6, with the assumption ∥u∥ ≤ 1
4K

replaced with supi ∥u i∥ ≤ 1
4K , the infinite matrix R[U] is bounded, with

∥R[U]∥ ≤
∞
∑
n=2

∥ϕ∥Cn−2Kn−2 (sup
i
∥u i∥)

n

.(5.1)

Proof Using Corollary 4.7, the ith diagonal of R[U] has the bound

∥ϕ∥Cn−2Kn−2 (sup
i
∥u i∥)

n

,

so the convergence of the sum follows from Lemma 5.4 and the same argument from
the proof of Proposition 5.6. ∎

6 Traciality

Recall that a state ψ on a noncommutative algebra A is tracial, or a trace, if for all
x , y ∈ A,

ψ[x y] = ψ[yx].

In this section, we give conditions under which the vacuum state is tracial. We start
with an auxiliary result.
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Definition 6.1 OnFalg(B), define an anti-linear involution by the linear extension of

S(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = u∗n ⊗ ⋅ ⋅ ⋅ ⊗ u∗1 .

For b ∈ B, denote Xr(b) = SX(b∗)S. Explicitly, for n ≥ 2,

Xr(b)(u1 ⊗ ⋅ ⋅ ⋅ ⊗ un) = u1 ⊗ ⋅ ⋅ ⋅ ⊗ un ⊗ b + u1 ⊗ ⋅ ⋅ ⋅ ⊗ un−1 ⊗ Λ(b∗ ⊗ u∗n)∗

+ u1 ⊗ ⋅ ⋅ ⋅ ⊗ un−1(γ + ϕ)[unb],

with appropriate modifications for n = 1 and n = 0. Denote Γalg
γ ,Λ(B, ϕ; r) =

SΓalg
γ ,Λ(B, ϕ)S the algebra generated by {Xr(b) ∶ b ∈ B}. For ξ⃗ ∈ Falg(B) a simple

tensor, denote Wr(ξ⃗) = SW(ξ⃗)S. Then Wr(S(ξ⃗))Ω = ξ⃗, so that Ω is cyclic for
Γalg

γ ,Λ(B, ϕ; r).

Proposition 6.2

(a) Suppose that Γalg
γ ,Λ(B, ϕ) and Γalg

γ ,Λ(B, ϕ; r) commute. Then W extends to a linear
map on Falg(B),

Γalg
γ ,Λ(B, ϕ) = {W(ξ⃗) ∶ ξ⃗ ∈ Falg(B)} , Γalg

γ ,Λ(B, ϕ; r) = {Wr(ξ⃗) ∶ ξ⃗ ∈ Falg(B)} ,

and for ξ⃗ ∈ Falg(B),

W(ξ⃗)∗ = W(S(ξ⃗)).

Therefore for A ∈ Γalg
γ ,Λ(B, ϕ), S(AΩ) = A∗Ω.

(b) In addition to the assumption in (a), suppose that ϕ is tracial onB. Then the vacuum
state is tracial on Γalg

γ ,Λ(B, ϕ).

Proof
(a) Since Ω is cyclic for Γalg

γ ,Λ(B, ϕ) and Γalg
γ ,Λ(B, ϕ; r), it is separating for them (and

the von Neumann algebras they generate). Using the recursion and induction,
for ξ⃗ ∈ Falg(B),

W(a+(b)(ξ⃗))Ω = X(b)W(ξ⃗)Ω − W(a0(b)(ξ⃗))Ω − W(a−(b)(ξ⃗))Ω

= X(b)ξ⃗ − a0(b)(ξ⃗) − a−(b)(ξ⃗)
= a+(b)(ξ⃗).

In particular, if ξ⃗ = 0, then W(ξ⃗)Ω = 0, so W(ξ⃗) = 0, and the map W is well
defined.

Clearly, W(ξ⃗) ∈ Γalg
γ ,Λ(B, ϕ). On the other hand, using induction on the

number of factors, a monomial X(u0)X(u1) . . . X(un) is a linear combination
of terms of the form X(u0)W(ξ⃗), each of which is a linear combination of the
terms of the form W(ξ⃗′) by the recursion.

Next, note that

Xr(b)Ω = X(b)Ω
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and

W(b)∗ = X(b)∗ = X(b∗) = W(b∗).

Using induction,

W(a+(b)(ξ⃗))∗ = W(ξ⃗)∗X(b)∗ − W(a0(b)(ξ⃗))∗ − W(a−(b)(ξ⃗))∗

= W(S(ξ⃗))X(b∗) − W(S(a0(b)(ξ⃗))) − W(S(a−(b)(ξ⃗))).

On the other hand, if Xr(b) commutes with Γalg
γ ,Λ(B, ϕ),

W(S(ξ⃗))X(b∗)Ω = W(S(ξ⃗))Xr(b∗)Ω = Xr(b∗)W(S(ξ⃗))Ω

= SX(b)SS(ξ⃗) = SX(b)(ξ⃗).

Since Ω is separating for Γalg
γ ,Λ(B, ϕ), this implies that

W(S(ξ⃗))X(b∗) = W(SX(b)(ξ⃗))
= W(S(a+(b)(ξ⃗))) + W(S(a0(b)(ξ⃗))) + W(S(a−(b)(ξ⃗))).

Thus

W(a+(b)(ξ⃗))∗ = W(S(a+(b)(ξ⃗))).

(b) We first show that Xr(b)∗Ω = X(b)∗Ω. Indeed, for ξ⃗ ∈B⊗n , ⟨Xr(b)(ξ⃗), Ω⟩ = 0,
if n ≠ 1. For u ∈ B, using the fact that ϕ is a trace,

⟨Xr(b)(u), Ω⟩ = ⟨Sa−(b∗)(S(u)), Ω⟩
= ϕ[b∗u∗] = ϕ[ub] = ϕ[bu] = ⟨u, b∗⟩ = ⟨u, X(b)∗Ω⟩ .

To check that the vacuum state is tracial on Γalg
γ ,Λ(B, ϕ), it suffices to verify that

⟨W(ξ⃗)X(b)Ω, Ω⟩ = ⟨W(ξ⃗)Xr(b)Ω, Ω⟩ = ⟨Xr(b)W(ξ⃗)Ω, Ω⟩

= ⟨W(ξ⃗)Ω, Xr(b)∗Ω⟩ = ⟨W(ξ⃗)Ω, X(b)∗Ω⟩

= ⟨X(b)W(ξ⃗)Ω, Ω⟩ . ∎

Theorem 6.3 Suppose the operators {X(u) ∶ u ∈ B} are bounded, and the inner
product on Falg(B) nondegenerate. Denote

Γγ ,Λ(B, ϕ) = W∗(X(u) ∶ u ∈ B) = W∗(X(u) ∶ u ∈ Bsa).

Suppose that the following conditions hold:

Λ(v∗ ⊗ u∗)∗ = Λ(u ⊗ v),(6.1)

uγ[ f v] − γ[u f ]v = Λ(u ⊗ Λ( f ⊗ v)) − Λ(Λ(u ⊗ f ) ⊗ v),(6.2)

Λ(u ⊗ f γ[gv]) − Λ(u ⊗ f )γ[gv] = Λ(γ[u f ]g ⊗ v) − γ[u f ]Λ(g ⊗ v),(6.3)
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and

ϕ[γ[u]v] = ϕ[uγ[v]].(6.4)

Then each Xr(u) commutes with Γγ ,Λ(B, ϕ). If, in addition, ϕ is tracial, then the
vacuum state is tracial on Γγ ,Λ(B, ϕ). All the conclusions in Proposition 6.2 hold,
the map S extends to an anti-linear isometry on Fγ ,ϕ(B), and the map A ↦ SA∗S
implements the canonical anti-isomorphism between Γγ ,Λ(B, ϕ) and its commutant.

Moreover, traciality of ϕ and conditions (6.1) and (6.2) are necessary for the vacuum
state to be tracial.

Proof Since we are working on a Fock space with depth two action, to show that
X(u)Xr(v) − Xr(v)X(u) = 0 it suffices to consider their actions on tensors of length
0, 1, and 2. Acting on f, we get

(ϕ[uΛ(v∗ ⊗ f ∗)∗] − ϕ[Λ(u ⊗ f )v])

+ (Λ(u ⊗ Λ(v∗ ⊗ f ∗)∗) + γ[u f ]v − Λ(v∗ ⊗ Λ(u ⊗ f )∗)∗ − uγ[ f v]).

Using the previously assumed (2.1), (6.1), and (6.2), this expression is 0. Similarly,
acting on f ⊗ g, we get

(Λ(u ⊗ f γ[gv]) + γ[u f ]Λ(v∗ ⊗ g∗)∗ − Λ(u ⊗ f )γ[gv] − Λ(v∗ ⊗ g∗γ[u f ]∗)∗)

+ (ϕ[u f γ[gv]] − ϕ[γ[u f ]gv])

which is 0 using (6.3) and (6.4). The rest of the properties follow from Proposition 6.2
and general theory.

Finally, if the vacuum state is tracial, then the joint free cumulants are cyclically
symmetric. Using Proposition 3.6, the symmetry of the second cumulant gives tra-
ciality of ϕ, the symmetry of the third cumulant when combined with (2.1) gives (6.1).
The fourth cumulant combined with (2.1) and (6.1) gives

ϕ[uΛ(v ⊗ Λ( f ⊗ g))] + ϕ[uγ[v f ]g] = ϕ[vΛ( f ⊗ Λ(g ⊗ u))] + ϕ[vγ[ f g]u]
= ϕ[Λ(Λ(v ⊗ f ) ⊗ g)u] + ϕ[vγ[ f g]u],

and faithfulness of ϕ implies (6.2). ∎

7 Examples

In this section, we show how the motivating examples described in the Introduction,
and their generalizations, fit into the general setting of this article.

Example 7.1 Let

B = L∞([0, 1]), ϕ[ f ] = ∫
1

0
f (x) dx ,

and η positive a.e. and λ a real-valued function. Define

γ[ f ](x) = η(x) f (x), Λ(b ⊗ f )(x) = λ(x)b(x) f (x).
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Then the construction is closely related to the setting in [BL09, BL11] (see also
[BLR15]).

More generally, for an algebra B, let η, λ be central elements in B such that η + 1 is
positive and λ self-adjoint. Then we may take

γ[ f ] = η f , Λ(b ⊗ f ) = λb f .

If η + 1 is invertible, then the inner product is positive definite. The operators X( f ) are
typically unbounded, so Theorem 6.3 does not apply. Nevertheless the vacuum state
is always tracial.

By Proposition 3.6, the free cumulants are given by an explicit formula

R[X( f1), . . . , X( fn)] = ∑
π∈ÑCns(n)

ϕ[η∣π∣−1 λn−2∣π∣ f1 f2 . . . fn].(7.1)

In particular, in this case, R′[(X( f2), . . . , X( fn−1)] may be identified with an element
of B, and their generating function satisfies a quadratic relation

R′( f ) = 1 + λR′( f ) f + ηR′( f ) f R′( f ).(7.2)

In the case where B = L∞([0, 1]), we may take R′( f ) to be the operator of pointwise
multiplication by a function R′( f )(x) which satisfies

R′( f )(x) = 1 + R′( f )(x)λ(x) f (x) + R′( f )(x)2η(x) f (x),

and so is a solution of a quadratic equation for each x. The free cumulant generating
function can then be found via

R( f ) = ∫ f (x)2R′( f )(x) dx .

Finally, from equation (7.1), if f g = g f = f ∗g = f g∗ = 0, then X( f ) and X(g) are free,
and if f is self-adjoint with η f = λ f = 0, then X( f ) is semicircular. See also the end of
the section for related results.

Example 7.2 Let

B = L∞([0, 1]), ϕ[ f ] = ∫
1

0
f (x) dx ,

and

w(x , y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p, if 0 < x < y,
q, if 0 < y < x ,
1, otherwise,

for p, q ≥ 0. Define

γ[ f ](x) = ∫ w(x , y) f (y) d y

and

Λ(b ⊗ f )(x) = f (x)∫ w(x , y)b(y) d y + f (y)b(y).

We obtain the construction from [LS08].
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The specific form of a function w above allowed for explicit combinatorial calcula-
tions, but γ can be defined by the same formula as long as (w + 1) is nonnegative a.e.,
and it is natural to take

Λ(b ⊗ f )(x) = ∫ b(y) f (z)λ(x , y, z) d y dz

or

Λ(b)(x) = ∫ b(y)λ(x , y) d y

for an appropriate function λ. In the first case, necessary conditions (2.1), (6.1) for
the vacuum state to be tracial imply that λ(x , y, z) is conjugate-symmetric in its
arguments, and w(x , y) is symmetric in its arguments. These conditions are not
sufficient, and typically the vacuum state is not tracial.

In the second case, we may identify R′( f ) with a function satisfying

R′( f )(x) = 1
1 − ∫ λ(x , y) f (y) d y − ∫ w(x , y)R′( f )(y) f (y)2 d y

.

One can generalize this construction further. Instead of the map γ, it suffices to
use a bilinear map ⟨⋅, ⋅⟩γ ∶ B⊗B→ B which is star-linear in each argument and such
that ⟨⋅, ⋅⟩γ + ⟨⋅, ⋅⟩ϕ is positive semi-definite. Let w ∈ B⊗B satisfy w + (1 ⊗ 1) ≥ 0, and
define

⟨ f , g⟩γ = (ϕ ⊗ I)[( f ⊗ 1)w(g ⊗ 1)].
Then the corresponding inner product on the Fock space is positive semi-definite. If
w + 1 ⊗ 1 is invertible, then the inner product is positive definite.

Note that

⟨ζ⃗ , ξ⃗⟩
γ ,ϕ

= ⟨ζ⃗ , Kξ⃗⟩ ,

where K is the multiplication operator by

[(1 +w) ⊗ 1⊗(n−2)] ⋅ [1 ⊗ (1 +w) ⊗ 1⊗(n−3)] ⋅ . . . ⋅ [1⊗(n−2) ⊗ (1 +w)].
In the commutative case, we may identify

K(s1 , s2 , . . . sn) = (1 +w(s1 , s2)) . . . (1 +w(sn−1 , sn)).

So Lemma 5.1 applies. Moreover, a−(b) = �∗(b)[(1 +w) ⊗ 1⊗(n−2)], where �∗ is the
free annihilation operator. It follows that for w ∈ B⊗min B and ∥Λ(b ⊗ b1)∥ϕ ≤
∥Λ∥ ∥b∥ ∥b1∥ϕ ,

∥a−(b)∥γ ,ϕ = ∥a+(b)∥γ ,ϕ ≤ ∥b∥ϕ

√
∥w∥ + 1, ∥a0(b)∥γ ,ϕ ≤ ∥Λ∥ ∥b∥ .

In particular, the operators extend to Fγ ,ϕ(B).

Example 7.3 LetB = R
d with component-wise multiplication and the standard basis

{e i}d
i=1,

ϕ[e j] = 1, γ[e j] =
d
∑
i=1

C i j e i , Λ(e i ⊗ e j) =
d
∑
k=1

Bk
i j ek ,

https://doi.org/10.4153/S0008414X24000555 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000555


26 M. Anshelevich and J. Mashburn

with C i j ≥ −1 and certain relations between the coefficients. This is the setting of
[Ans07] (possibly with slightly different notation). Embedding Rd into L∞[0, 1] using
functions constant on cubes, relates this example to the preceding one.

If all C i j > −1, the inner product is positive definite. The operators are clearly
bounded, and so extend toFγ ,ϕ(B). Particular parameters for which the vacuum state
is tracial were given in [Ans07].

Example 7.4 Choose B, ϕ, Λ to be general, but let γ = ψ − ϕ be scalar-valued, where
ψ is positive semi-definite. Then the inner product simplifies to

⟨ f1 ⊗ ⋅ ⋅ ⋅ ⊗ fn , g1 ⊗ ⋅ ⋅ ⋅ ⊗ gk⟩γ ,ϕ = δn=k ϕ[g∗n fn]
n−1
∏
i=1

ψ[g∗i f i],

so that

Fγ ,ϕ(B) ≃ CΩ ⊕ (L2(B, ϕ) ⊗ F(L2(B, ψ)))

with the standard inner product. It follows from equation (6.2) that for ψ ≠ ϕ and
Λ = 0, the vacuum state is not tracial. In [AM22], we investigate a choice of Λ which
does lead to a tracial vacuum state.

Example 7.5 Let γ = 0 and Λ( f ⊗ g) = f g. For any (B, ϕ), the corresponding alge-
bra of operators on the Fock space is the free (compound) Poisson algebra, a particular
case of the constructions in the Appendix of [Ans04] (for q = 0) or Proposition 23 in
[Ans20] (for the scalar case) (see also [GSS92]). In particular, for f ∈ Bsa , X( f ) has a
centered free compound Poisson distribution, and a centered free Poisson distribution
if f is a projection. Moreover, if f ⋅ g = g ⋅ f = 0 then X( f ) and X(g) are free.

We finish the article with two structure results under the assumption that the
vacuum state is tracial.

Proposition 7.6 Assume that B is unital, and the vacuum state is tracial. Suppose that
Λ(u ⊗ v) = Λ(u)v. Then Γalg

γ ,Λ(B, ϕ) is as in Example 7.1, with Λ(u) = λu for some
central λ, and γ[u] = ηu for some central η.

Proof If Λ(u ⊗ v) = Λ(u)v, then conditions (2.1), (6.1), and (6.2) imply that
uΛ(v) = Λ(u)v and uγ[yv] = γ[uy]v. Therefore Λ(u) = λu = uλ for λ = Λ(1), and
γ[u] = ηu = uη for η = γ[1]. ∎

Theorem 7.7 Assume that B is unital, and the vacuum state is tracial. Suppose that
γ[ f ] = η f for η central, and for some M, and all f , g ∈ B,

⟨Λ( f ⊗ g), Λ( f ⊗ g)⟩ ≤ M ∥ f ∥2
B ⟨g , g⟩ .(7.3)

Then we have an orthogonal decomposition

H = (B, ⟨⋅, ⋅⟩ϕ) = N ⊕N⊥ = Z⊕P⊕N⊥ ,

such that:
• Γalg

γ ,Λ(N⊥, ϕ) is as in Example 7.1, with Λ( f ⊗ g) = λ f g for some central λ.
• Γalg

γ ,Λ(Z, ϕ) is generated by free semicircular elements.
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• Γalg
γ ,Λ(P, ϕ) is a free Poisson algebra as in Example 7.5, where the multiplication on P

is given by Λ (rather than inherited from B).

Moreover, the subalgebras Γalg
γ ,Λ(N⊥, ϕ), Γalg

γ ,Λ(Z, ϕ), and Γalg
γ ,Λ(P, ϕ) are free.

Proof Denote by H the inner product space B with the involution and the inner
product ⟨ f , g⟩ = ϕ[g∗ f ] satisfying the relation

⟨ f , g⟩ = ⟨g∗ , f ∗⟩ .

Denote

f ⋅ g = Λ( f ⊗ g).(7.4)

The notation is meant to suggest that we consider the binary operation Λ as a
multiplication on H (different from a multiplication it may have inherited from B).
Indeed, equations (6.1), (6.2), and the first condition in (2.1) say that

( f ⋅ g)∗ = g∗ ⋅ f ∗ , ( f ⋅ g) ⋅ h = f ⋅ (g ⋅ h), ⟨ f ⋅ g , h⟩ = ⟨g , f ∗ ⋅ h⟩ .

That is, (H, ⋅, ∗) is an associative star-algebra (linearity/distributivity is immediate),
which is represented on H by left multiplication operators.

Second condition in equation (2.1) reads

ηg∗Λ(b ⊗ f ) = ηΛ(b∗ ⊗ g)∗ f = ηΛ(g∗ ⊗ b) f .(7.5)

Therefore ηΛ(b ⊗ f ) = ηλb f , where λ = Λ(1 ⊗ 1).
Let

N = { f ∈ B ∶ η f = 0} .

Then N is a self-adjoint subspace and an ideal. Restricted to N⊥, multiplication by η
is injective. Since by (6.1), ηλbg = ηbgλ∗, it follows that λ, restricted to N⊥, is self-
adjoint and central. N⊥ is self-adjoint and a left ideal with respect to ⋅, so Γalg

γ ,Λ(N⊥, ϕ)
is a star-subalgebra.

Let f1 , . . . , fn ∈ N ∪N⊥, with at least one element from N. It follows from equation
(7.5) that N is also an ideal with respect to ⋅. Combined with the definition of N, this
implies that in the expansion for the joint free cumulant in Proposition 3.6, elements
of N can only appear in the (unique) outer block of π. Since each inner block is a
multiple of η, it follows that in fact, π has a single block so that

R[X( f1), . . . , X( fn)] = ⟨ f1 , f2 ⋅ . . . ⋅ fn⟩ .(7.6)

Since the vacuum state is tracial, the free cumulants are cyclically symmetric. So if

f1 , . . . , fn ∈ N ∪N⊥

with at least one element from each of N,N⊥, we may assume that f1 ∈ N⊥ and f2 ⋅ . . . ⋅
fn ∈ N. Then their inner product is zero, which implies freeness by (7.6).

Next, denote

Z = { f ∈ N ∶ ∀g ∈ N, g ⋅ f = 0}
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and

P = Span({ f ⋅ g ∶ f , g ∈ N}).

Clearly both of them are subspaces (and in fact ideals with respect to ⋅). Also, using
the properties of ⋅ at the beginning of the proof, one sees that Z and P are orthogonal
complements of each other, and N = Z⊕P. P is clearly self-adjoint, therefore so is Z.

For f1 , . . . , fn ∈ Z ∪Pwith at least one of them inZ, using the cyclic property again,

R[X( f1), . . . , X( fn)] = ⟨ f1 , f2 ⋅ . . . ⋅ fn⟩ = δn=2 ⟨ f1 , f2⟩

and is zero unless both f1 , f2 ∈ Z. It follows that for f ∈ Zsa , X( f ) are semicircular,
with orthogonal f corresponding to free X( f ), and are also free from X(g)with g ∈ P.

Under the boundedness assumption (7.3), P satisfies all the axioms of a Hilbert
algebra (Chapters 5 and 6 of [Dix81]). Then we can complete P to a von Neumann
algebra represented on N (since it acts as zero on Z, it is also represented on P) by
left multiplication. Moreover, we have a semi-finite trace ψ on this von Neumann
algebra which is finite on P and satisfies ⟨ f , g⟩ = ψ[g∗ ⋅ f ]. So in this case for self-
adjoint elements and n ≥ 2,

R[X( f1), . . . , X( fn)] = ψ[ f1 ⋅ f2 ⋅ . . . ⋅ fn].

It follows that Γalg
γ ,Λ(P, ϕ) is the free compound Poisson algebra of (P, ψ). ∎

Acknowledgments The authors are grateful to the referee for a careful reading of the
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