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Abstract

In this article, we study rational matrix representations of VZ p-groups (p is any prime). Using our
findings on VZ p-groups, we explicitly obtain all inequivalent irreducible rational matrix representations
of all p-groups of order ≤ p4. Furthermore, we establish combinatorial formulae to determine the
Wedderburn decompositions of rational group algebras for VZ p-groups and all p-groups of order ≤ p4,
ensuring simplicity in the process.
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1. Introduction

This paper consistently employs the following notation: G for a finite group, Irr(G) for
the set of all complex irreducible characters of G, F for a field with characteristic 0
and p for a prime number. In representation theory, a challenging and crucial task is
to compute all inequivalent irreducible matrix representations of G over F, even for
F = C. In this paper, we deal with F = Q. For a given character χ ∈ Irr(G), we define
Ω(χ) as follows:

Ω(χ) = mQ(χ)
∑

σ∈Gal(Q(χ)/Q)

χσ,

where mQ(χ) represents the Schur index of χ overQ. Note thatΩ(χ) corresponds to the
character of an irreducible Q-representation ρ of G. Conversely, if ρ is an irreducible
Q-representation of G, then there exists χ ∈ Irr(G) such that Ω(χ) is the character
of ρ. Generally, obtaining an irreducible Q-representation ρ of G that affords the
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character Ω(χ) is a challenging task. A significant and interesting task is to determine
all inequivalent irreducible matrix representations of G over Q for several reasons. For
example, one problem in rationality concerns the realizability of an F-representation of
G over its subfields, specially, the realizability of a C-representation of G over R or Q.

In this article, we study irreducible rational matrix representations for some classes
of p-groups. In Section 3, for any p-group G, we present Algorithms 15 and 20 for
computing an irreducible rational matrix representation of G that affords the character
Ω(χ), where χ ∈ Irr(G). These algorithms rely heavily on results from [9, 31, 32]. To
obtain an irreducible rational matrix representation of a finite p-group G affording
the character Ω(χ), where χ ∈ Irr(G) is equivalent to finding a pair (H,ψ), where
H ≤ G and ψ ∈ Irr(H), with some suitable properties (see Algorithms 15 and 20).
We refer to (H,ψ) as a required pair for an irreducible rational matrix representation
of G that affords the character Ω(χ). Importantly, using a required pair (H,ψ), we
can also compute an irreducible complex matrix representation of G that affords the
character χ. In Section 4, we study required pairs for VZ p-groups. A group G is called
a VZ-group if all its nonlinear irreducible characters vanish off the centre. VZ-groups
have been extensively studied by various researchers in [8, 18, 19, 25, 26]. By using
our results on VZ p-groups, we explicitly obtain all inequivalent irreducible rational
matrix representations of all p-groups of order ≤ p4 (see Sections 5 and 6).

In parallel, this article delves into an investigation of the Wedderburn decompo-
sition of QG with a specific focus on VZ p-groups. For a semisimple group algebra
FG, the Wedderburn components are matrix algebras over finite extensions of F in
the case of positive characteristic, and Brauer-equivalent to cyclotomic algebras in the
case of zero characteristic, as per the Brauer–Witt theorem (see [30]). Further, the
Wedderburn decomposition of FG aids in describing the automorphisms group of FG
(see [11, 22]) or studying the unit group of the integral group ring ZG when F = Q
(see [7, 14, 16, 28]). The Wedderburn decomposition of QG has been extensively
studied in [2–4, 17, 21, 23, 24]. They used various concepts such as computation
of the field of character values, Shoda pairs, numerical representation of cyclotomic
algebras and so forth, to compute simple components of QG. We prove Theorems 1
and 2, which provide a combinatorial description for the Wedderburn decomposition
of rational group algebra of a VZ p-group. Our results formulate the computation of the
Wedderburn decomposition of a VZ p-group G solely based on computing the number
of cyclic subgroups of Z(G) and Z(G)/G′, which is similar to the Perlis–Walker
theorem for an abelian group (see Lemma 6). Indeed, we prove the following theorems.

THEOREM 1. Let G be a finite VZ p-group (odd prime p). Let m1, m2 and m3
denote the exponents of G/G′, Z(G) and Z(G)/G′, respectively. Then the Wedderburn
decomposition of QG is as follows:

QG �
⊕
d1 |m1

ad1Q(ζd1 )
⊕

d2 |m2,d2�m3

ad2 M|G/Z(G)|1/2 (Q(ζd2 ))

⊕
d2 |m2,d2 |m3

(ad2 − a′d2
)M|G/Z(G)|1/2 (Q(ζd2 )),
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where ad1 , ad2 and a′d2
are the number of cyclic subgroups of G/G′ of order d1, the

number of cyclic subgroups of Z(G) of order d2 and the number of cyclic subgroups of
Z(G)/G′ of order d2, respectively.

THEOREM 2. Let G be a VZ 2-group. Let m1, m2 and m3 denote the exponents of
G/G′, Z(G) and Z(G)/G′, respectively. Suppose k = |{χ ∈ nl(G) : mQ(χ) = 2}| and
H(Q) represents the standard quaternion algebra over Q. Then the Wedderburn
decomposition of QG is as follows:

QG �
⊕
d1 |m1

ad1Q(ζd1 )
⊕

kM1/2|G/Z(G)|1/2 (H(Q))
⊕

(a2 − a′2 − k)M|G/Z(G)|1/2 (Q)

⊕
d2 |m2,d2�m3

ad2 M|G/Z(G)|1/2 (Q(ζd2 ))
⊕

d2 |m2,d2 |m3

(ad2 − a′d2
)M|G/Z(G)|1/2 (Q(ζd2 )),

where ad1 , al and a′l(l ∈ {2, d2 ≥ 4}) are the number of cyclic subgroups of G/G′ of
order d1, the number of cyclic subgroups of Z(G) of order l and the number of cyclic
subgroups of Z(G)/G′ of order l, respectively.

In Section 4.2, we derive several consequences from the above theorems. Further,
if G is a nonabelian p-group of order p4 of maximal class, then G has a unique abelian
subgroup of index p (see Section 6.2). We prove Theorem 3, which formulates the
computation of the Wedderburn decomposition of a non-VZ p-group G of order p4.

THEOREM 3. Let G be a nonabelian p-group (odd prime p) of order p4 of nilpotency
class 3, and let H be its unique abelian subgroup of index p. Let m and m′ denote the
exponents of H and H/G′, respectively. Then the Wedderburn decomposition of QG is
as follows:

QG �
⊕
Q(G/G′)

⊕
d|m,d�m′

ad

p
Mp(Q(ζd))

⊕
d|m,d|m′

ad − a′d
p

Mp(Q(ζd)),

where ad and a′d are the number of cyclic subgroups of order d of H and H/G′,
respectively.

In this article, we also provide a brief analysis of primitive central idempotents
and their corresponding simple components in the Wedderburn decomposition of the
rational group ring of a VZ p-group (see Section 4.3).

2. Notation and some basic results

2.1. Notation. For a finite group G, the following notation is used consistently
throughout this article.

G′ the commutator subgroup of G
|S| the cardinality of a set S

https://doi.org/10.1017/S1446788724000132 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000132


4 R. K. Choudhary and S. K. Prajapati [4]

CoreG(H) the normal core of H in G for H ≤ G
Irr(G) the set of irreducible complex characters of G
lin(G) {χ ∈ Irr(G) : χ(1) = 1}
nl(G) {χ ∈ Irr(G) : χ(1) � 1}
FIrr(G) the set of faithful irreducible complex characters of G
Irr(m)(G) {χ ∈ Irr(G) : χ(1) = m}
cd(G) {χ(1) : χ ∈ Irr(G)}
IrrQ(G) the set of irreducible rational characters of G
Irr(m)
Q

(G) {χ ∈ IrrQ(G) : χ(1) = m}
F(χ) the field obtained by adjoining the values {χ(g) : g ∈ G} to the

field F for some χ ∈ Irr(G)
mQ(χ) the Schur index of χ ∈ Irr(G) over Q
Ω(χ) mQ(χ)

∑
σ∈Gal(Q(χ)/Q) χ

σ for χ ∈ Irr(G)
ker(χ) {g ∈ G : χ(g) = χ(1)} for χ ∈ Irr(G)
Irr(G|N) {χ ∈ Irr(G) : N � ker(χ)}, where N � G
ψG the induced character of ψ to G, where ψ is a character of H for

some H ≤ G
ΨG the induced representation of Ψ to G, where Ψ is a representation

of H for some H ≤ G
χ ↓H the restriction of a character χ of G on H, where H ≤ G
FG the group ring (algebra) of G with coefficients in F
Mn(D) a full matrix ring of order n over the skewfield D
Z(B) the centre of an algebraic structure B
φ(n) the Euler phi function
ζm an m th primitive root of unity

2.2. Basic results. In this subsection, we discuss some basic concepts and results,
which we use frequently throughout the article.

Let G be a finite group and n = |G|. Consider Q(ζn), the n th cyclotomic field
obtained by adjoining a primitive n th root of unity to Q. Let χ ∈ Irr(G). If σ ∈
Gal(Q(ζn)/Q), then define the function χσ : G �→ C as χσ(g) = σ(χ(g)) for g ∈ G. It
is easy to observe that χσ ∈ Irr(G) and hence, Gal(Q(ζn)/Q) acts on Irr(G). Note that
Q(χ) is a finite degree Galois extension of Q and the Galois group Gal(Q(χ)/Q) is
abelian. It is easy to see that Gal(Q(χ)/Q) also acts on Irr(G), with action given by
σ · χ := χσ. Under the above set-up, we have the following lemma.

LEMMA 4 [12, Lemma 9.17]. Let E(χ) denote the Galois conjugacy class of χ ∈ Irr(G)
under the action of Gal(Q(ζn)/Q). Then,

|E(χ)| = [Q(χ) : Q].

DEFINITION 5. Let χ,ψ ∈ Irr(G). We say that χ and ψ are Galois conjugates over Q if
Q(χ) = Q(ψ), and there exists σ ∈ Gal(Q(χ)/Q) such that χσ = ψ.

https://doi.org/10.1017/S1446788724000132 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000132


[5] Rational representations and rational group algebra of VZ p-groups 5

In [24], Perlis and Walker studied the group ring of a finite abelian group G over
the field of rational numbers and proved the following result.

LEMMA 6 (Perlis–Walker theorem). Let G be a finite abelian group of exponent m.
Then the Wedderburn decomposition of QG is as follows:

QG �
⊕
d|m

adQ(ζd),

where ad is equal to the number of cyclic subgroups of G of order d.

REMARK 7. Let G be a finite abelian group of exponent m. Then by Lemma 6:

(1) the number of rational irreducible representations of G of degree φ(d) is equal to
ad; and

(2) the total number of rational irreducible representations of G is equal to
∑

d|m ad.

Let K be an arbitrary field with characteristic zero and K∗ be the algebraic closure of
K. Let U be an irreducible K∗-representation of G with character χ. The Schur index
of U with respect to K is defined as

mK(U) = Min[L : K(χ)],

the minimum being taken over all fields L in which U is realizable. Note that mK(χ) =
mK(U).

Reiner [27] characterized the simple component of the Wedderburn decomposition
of KG and proved the following result.

LEMMA 8 [27, Theorem 3]. Let T be an irreducible K-representation of G, and extend
T (by linearity) to a K-representation of KG. Set

A = {T(x) : x ∈ KG}.

Then, A is simple algebra over K, and we may write A = Mn(D), where D is a division
ring. Further,

Z(D) � K(χ) and [D : Z(D)] = (mK(Ui))
2 (1 ≤ i ≤ k),

where Ui are irreducible K∗-representations of G such that T = mK(Ui)
⊕k

i=1 Ui as a
K∗-representation.

In this article, we use the classification of p-groups of order ≤ p4 (odd prime p)
provided in [13], which is based on the isoclinism concept.

DEFINITION 9. Two finite groups G and H are said to be isoclinic if there exist
isomorphisms θ : G/Z(G) −→ H/Z(H) and φ : G′ −→ H′ such that the following
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diagram is commutative:

G/Z(G) × G/Z(G) G′

H/Z(H) × H/Z(H) H′
θ×θ

aG

φ

aH

where aG(g1Z(G), g2Z(G)) = [g1, g2] for g1, g2 ∈ G, and aH(h1Z(H), h2Z(H)) =
[h1, h2] for h1, h2 ∈ H.

The resulting pair (θ, φ) is called an isoclinism of G onto H. Isoclinism was first
introduced by Hall [10] for the classification of p-groups. It is a generalization of
the concept of isomorphism between two groups. It is well known that two isoclinic
nilpotent groups have the same nilpotency class. Now, we end this subsection by
quoting the following lemma.

LEMMA 10 [29, Theorem 3.2]. Let G and H be isoclinic groups. Then, |H||Irr(k)(G)| =
|G||Irr(k)(H)|.

3. Algorithm

This section outlines the algorithm for computing irreducible rational matrix
representations of p-groups. For χ ∈ Irr(G), there exists a unique irreducible
Q-representation ρ of G such that χ occurs as an irreducible constituent of ρ ⊗Q F
with multiplicity mQ(χ), where F is a splitting field of G. Therefore, the distinct Galois
conjugacy classes give the distinct irreducible rational representations of G.

LEMMA 11 [32, Proposition 1]. Let ψ ∈ lin(G) and N = ker(ψ) with n = [G : N].
Suppose G =

⋃n−1
i=0 Nyi. Then,

ψ(xyi) = ζ i
n, (0 ≤ i < n; x ∈ N).

Now, let f (X) = Xs − as−1Xs−1 − · · · − a1X − a0 be the irreducible polynomial over Q
such that f (ζn) = 0, where s = φ(n) and

Ψ(xyi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
0 0 · · · 0 1
a0 a1 · · · · · · as−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

, (0 ≤ i < n; x ∈ N).

Then Ψ is an irreducible Q-representation of G, whose character is Ω(ψ).

LEMMA 12 [32, Proposition 3]. Let H be a subgroup of G and ψ ∈ Irr(H) be such that
ψG ∈ Irr(G). Then mQ(ψG) divides mQ(ψ)[Q(ψ) : Q(ψG)]. Furthermore, the induced
character Ω(ψ)G of G is a character of an irreducible Q-representation of G if and
only if
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mQ(ψG) = mQ(ψ)[Q(ψ) : Q(ψG)].

In this case, Ω(ψ)G = Ω(ψG).

LEMMA 13 [9, Theorem 1]. Let G be a p-group and χ ∈ Irr(G). Then, one of the
following holds.

(1) There exists a subgroup H of G and ψ ∈ lin(H) such that ψG = χ and Q(ψ) =
Q(χ).

(2) p = 2 and there exist subgroups H < K in G with [K : H] = 2 and λ ∈ lin(H)
such that λK = φ, [Q(λ) : Q(φ)] = 2, φG = χ and Q(φ) = Q(χ).

LEMMA 14 [12, Corollary 10.14]. Let G be a p-group and χ ∈ Irr(G). If p is an odd
prime, then mQ(χ) = 1; otherwise mQ(χ) ∈ {1, 2}.

Let G be a p-group (odd prime p) and χ ∈ Irr(G). According to Lemma 14,
mQ(χ) = 1. By Lemma 13, there exists a subgroup H of G with ψ ∈ lin(H) such that
ψG = χ and Q(ψ) = Q(χ). Therefore, from Lemma 12, we have Ω(χ) = Ω(ψ)G. Now
by using Lemma 11, compute an irreducible matrix representation Ψ of H over Q
that affords the character Ω(ψ). Then ΨG is an irreducible Q-representation of G that
affords the character Ω(ψ)G = Ω(ψG) = Ω(χ). In summary, an algorithm to find an
irreducible rational matrix representation of a p-group G (odd prime p) can be outlined
as follows.

ALGORITHM 15. Input: An irreducible complex character χ of a finite p-group G (odd
prime p).

(1) Find a pair (H, ψ), where H ≤ G and ψ ∈ lin(H) is such that ψG = χ and Q(ψ) =
Q(χ).

(2) Find an irreducible Q-representation Ψ of H that affords the character Ω(ψ).
(3) Induce Ψ to G.

Output: ΨG, an irreducible Q-representation of G whose character is Ω(χ).

REMARK 16. Obtaining an irreducible rational matrix representation of a finite
p-group G (odd prime p) affording the character Ω(χ), where χ ∈ Irr(G) is equivalent
to finding a pair (H,ψ), where H is a subgroup of G and ψ ∈ lin(H), satisfying ψG = χ
and Q(ψ) = Q(χ). We refer to this pair (H,ψ) as a required pair for an irreducible
rational matrix representation of G that affords the character Ω(χ).

Now, we describe the algorithm for computing irreducible rational matrix represen-
tations of 2-groups.

LEMMA 17 [31, Theorem 2.12]. Let G be a 2-group and χ ∈ Irr(G). Then there exists
a pair (H,ψ) such that H ≤ G, ψ ∈ Irr(H), ψG = χ, Q(χ) = Q(ψ), and one of the
following holds:

(1) H/ker(ψ) � Qn(n ≥ 2), mQ(χ) = 2, Q(χ) = Q(ζ2n + ζ−1
2n );

(2) H/ker(ψ) � Dn(n ≥ 3), mQ(χ) = 1, Q(χ) = Q(ζ2n + ζ−1
2n );
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(3) H/ker(ψ) � SDn(n ≥ 3), mQ(χ) = 1, Q(χ) = Q(ζ2n − ζ−1
2n );

(4) H/ker(ψ) � Cn(n ≥ 0), mQ(χ) = 1, Q(χ) = Q(ζ2n ),

where Qn, Dn and SDn are respectively the generalized quaternion, dihedral and
semidihedral group of order 2n+1, and Cn is the cyclic group of order 2n.

LEMMA 18 [32, Example 7 and Proposition 8].

(1) Let G = Qn = 〈a, b : a2n
= 1, b2 = a2n−1

, bab−1 = a−1〉 be the generalized quater-
nion group of order 2n+1, and let χ ∈ FIrr(G). Then, χ = ψG, where H = 〈a〉 and
ψ ∈ lin(H) is such that ψ(a) = ζ2n , mQ(χ) = 2 and Ω(χ) = Ω(ψ)G.

(2) Let G = Dn = 〈a, b : a2n
= b2 = 1, bab−1 = a−1〉 be the dihedral group of order

2n+1 or G = SDn = 〈a, b : a2n
= b2 = 1, bab−1 = a2n−1−1〉 be the semi-dihedral

group of order 2n+1, and let χ ∈ FIrr(G). Then, Ω(χ) = Ω(ψ)G, where H =
〈a2n−1

, b〉 and ψ ∈ lin(H) is such that ψ(a2n−1
) = −1, ψ(b) = 1.

REMARK 19. Let G be a 2-group and let χ ∈ nl(G). By Lemma 17, there exists a
pair (H,ψ), with H ≤ G and ψ ∈ Irr(H), satisfying the following properties: ψG = χ,
Q(χ) = Q(ψ) and H/ker(ψ) is isomorphic to one of the following groups: cyclic group,
generalized quaternion group, dihedral group or semi-dihedral group. We define
ψ̄ ∈ FIrr(H/ker(ψ)) such that ψ̄(h ker(ψ)) = ψ(h) for all h ∈ H. Now we have two cases.

Case 1 (H/ker(ψ) � Cn). In this case, ψ ∈ lin(H) and hence by using Lemma 11, we
get an irreducible rational matrix representation Ψ of H that affords the character
Ω(ψ). Then by Lemma 12, ΨG is an irreducible rational matrix representation of G
that affords the character Ω(χ).

Case 2 (H/ker(ψ) � Qn, or Dn, or SDn for some n ∈ N). In this case, since ψ̄ ∈
FIrr(H/ker(ψ)), by Lemmas 18 and 11, there exists an irreducible rational matrix rep-
resentation of H/ker(ψ) that affords the character Ω(ψ̄). Indeed, we get an irreducible
rational matrix representation Ψ of H that affords the character Ω(ψ). Then again by
Lemma 12, ΨG is an irreducible rational matrix representation of G that affords the
character Ω(χ).

In view of Remark 19, an algorithm to find an irreducible rational matrix represen-
tation of a 2-group G can be outlined as follows.

ALGORITHM 20. Input: An irreducible complex character χ of a finite 2-group G.

(1) Find a pair (H, ψ), where H ≤G and ψ ∈ Irr(H) such that ψG = χ,Q(χ) =Q(ψ) and
H/ ker(ψ) is a cyclic, generalized quaternion, dihedral or semi-dihedral group.

(2) Find an irreducible Q-representation Ψ of H that affords the character Ω(ψ).
(3) Induce Ψ to G.

Output: ΨG, an irreducible Q-representation of G whose character is Ω(χ).
Here, we call such a pair (H, ψ) a required pair for an irreducible rational matrix

representation of G that affords the character Ω(χ).
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4. VZ p-group

A group G is called a VZ-group if all its nonlinear complex irreducible characters
vanish off centre (see [19]). In this case, G′ ⊆ Z(G) and hence the nilpotency class
of G is 2. The character degree set is given by cd(G) = {1, |G/Z(G)|1/2}. Furthermore,
G has |Z(G)| − |Z(G)/G′| many inequivalent nonlinear irreducible complex characters,
and there is a one-to-one correspondence between the sets nl(G) and Irr(Z(G)|G′) (see
[26, Section 3.1]). For any μ ∈ Irr(Z(G)|G′), the corresponding χμ ∈ nl(G) is defined
as follows:

χμ(g) =

⎧⎪⎪⎨⎪⎪⎩
|G/Z(G)|1/2μ(g) if g ∈ Z(G),
0 otherwise.

(1)

Observe that, being a nilpotency class 2 group, G can be written as a direct product
of its Sylow subgroups. Since cd(G) = {1, |G/Z(G)|1/2}, all the Sylow subgroups of G,
except one, are abelian.

4.1. Rational representations of VZ p-groups. Let G be a VZ-group and let χμ ∈
nl(G) (as defined in (1)).

Since G is monomial, there exists a subgroup H of G with index |G/Z(G)|1/2, and
ψ ∈ lin(H), satisfying ψG = χμ. We now present the following results that provide a
description of H and ψ.

PROPOSITION 21. Let G be a VZ-group. Suppose H is a subgroup of G with index
|G/Z(G)|1/2 and ψ ∈ lin(H). Then, ψG = χμ ∈ nl(G) (as defined in (1)) if and only if H
is normal in G such that Z(G) ⊂ H and ψ ↓Z(G)= μ with μ ∈ Irr(Z(G)|G′).

PROOF. Let ψ ∈ lin(H) be such that ψG = χμ. Let T be a set of right coset repre-
sentatives of H in G. Then, for g ∈ G, we have ψG(g) =

∑
gi∈T ψ

◦(gigg−1
i ), where ψ◦

is defined by ψ◦(x) = ψ(x) if x ∈ H and ψ◦(x) = 0 if x � H. Now, for z ∈ Z(G), we
get ψG(z) = |G/Z(G)|1/2ψ◦(z) and since ψG = χμ, we obtain ψ◦(z) = μ(z) = ψ(z). This
implies that Z(G) ⊆ H and ψ ↓Z(G)= μ. Since G′ ⊂ Z(G), H is normal in G.
Conversely, assume H is a subgroup of G with index |G/Z(G)|1/2, ψ ∈ lin(H) and
Z(G) ⊆ H with ψ ↓Z(G)= μ, where μ ∈ Irr(Z(G)|G′). Claim: ψG ∈ nl(G). In contrast,
suppose that ψG � nl(G), then ψG must be a sum of some linear characters of G. Hence,
G′ ⊆ ker(ψG), which is a contradiction as ψ ↓Z(G)= μ, where μ ∈ Irr(Z(G)|G′). This
proves the claim. �

We prove Proposition 22 which describes a required pair of a VZ 2-group.

PROPOSITION 22. Let G be a VZ 2-group and χ ∈ nl(G). Consider (H,ψ) as a required
pair for an irreducible rational matrix representation of G that affords the character
Ω(χ). Then H/ker(ψ) is isomorphic to one of the following groups: cyclic group,
quaternion group of order 8 denoted as Q8 or dihedral group of order 8 denoted
as D8.
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PROOF. Since H is a monomial group, there exists a subgroup K of H such that λH =

ψ, where λ ∈ lin(K). Consequently, we have λG = χ. From Proposition 21, it follows
that Z(G) ≤ K, which implies that G′ ≤ Z(G) ≤ H. It is worth noting that H′ ≤ Z(H)
and therefore, (H/ker(ψ))′ ≤ Z(H/ker(ψ)). Hence, H/ker(ψ) must be isomorphic to
one of the groups: cyclic, Q8 or D8. �

Let G be a VZ 2-group and χ ∈ Irr(G). Consider a required pair (H,ψ) for a rational
representation of G that affords the character Ω(χ). Then by Proposition 22, H/ker(ψ)
is isomorphic to one of the following: cyclic, Q8 or D8.

Case 1 (H/ker(ψ) is cyclic). See Case 1 of Remark 19, to get an irreducible rational
matrix representation of G that affords the character Ω(χ).

Case 2 (H/ker(ψ)�D8). Suppose H/ker(ψ)= 〈a, b : a4 = b2 = 1, bab−1 = a−1〉 (that is
ψ ∈ nl(H)). Then, ψ̄ ∈ FIrr(H/ker(ψ)) and λ̄ ∈ lin(K/ker(ψ)) are such that λ̄H/ker(ψ) = ψ̄
and Q(λ̄) = Q(ψ̄) = Q, where K/ker(ψ) = 〈a2, b〉 and λ̄ is defined as λ̄(a2) = −1,
λ̄(b) = 1. This shows that (K/kerψ, λ̄) is a required pair for the rational representation
of H/ker(ψ) that affords the character Ω(ψ̄). This implies that (K, λ) is also a required
pair for the rational representation of G that affords the character Ω(χ). Note that
Q(λ) = Q(χ) = Q, [G : H] = 1

2 |G/Z(G)|1/2 and [G : K] = |G/Z(G)|1/2.

Case 3 (H/ker(ψ) � Q8). Suppose H/ker(ψ) = 〈a, b : a4 = b4 = 1, bab−1 = a−1〉 (that
is, ψ ∈ nl(H)). Then ψ̄ ∈ FIrr(H/ker(ψ)) and λ̄ ∈ lin(K/ker(ψ)) are such that λ̄H/ker(ψ) = ψ̄
and [Q(λ̄) : Q(ψ̄)] = 2, where K/ker(ψ) = 〈a〉 and λ̄ is defined as λ̄(a) = ζ4. Since
mQ(ψ̄) = 2, from Lemma 12, we get Ω(λ̄)H/ker(ψ) = Ω(ψ̄). This implies that there exists
a subgroup K of G and λ ∈ lin(K) such thatΩ(λ)G = Ω(χ). Note that [Q(λ) : Q(χ)] = 2,
[G : H] = 1

2 |G/Z(G)|1/2 and [G : K] = |G/Z(G)|1/2.

REMARK 23. In view of the above discussion and Algorithm 15, to obtain an
irreducible rational matrix representation of a VZ p-group G (p is any prime) that
affords the character Ω(χ), where χ ∈ Irr(G), we need to do the following.

(1) If mQ(χ) = 1, then find H ≤ G and ψ ∈ lin(H) such that ψG = χ, Q(ψ) = Q(χ).
(2) If mQ(χ) = 2, then find H ≤ G and ψ ∈ lin(H) so that ψG = χ, [Q(ψ) : Q(χ)] = 2.

We call such a pair (H,ψ) a special required pair for an irreducible rational matrix
representation of a VZ p-group G that affords the character Ω(χ), where χ ∈ Irr(G).

Now, we prove Lemma 24 which provides a description of the character fields,
which is useful to obtain a special required pair of a VZ p-group.

LEMMA 24. Let G be a VZ-group and let χμ ∈ nl(G) (as defined in (1)). Consider a
subgroup H of G with index |G/Z(G)|1/2 and ψμ ∈ lin(H) such that ψG

μ = χμ. Then,
Q(ψμ) = Q(χμ) if and only if |ker(ψμ)/ker(μ)| = |G/Z(G)|1/2, and |Q(ψμ) : Q(χμ)| = 2 if
and only if |ker(ψμ)/ker(μ)| = 1

2 |G/Z(G)|1/2.
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PROOF. By Proposition 21, ψμ ↓Z(G)= μ with μ ∈ Irr(Z(G)|G′) and Q(χμ) = Q(μ).
Observe that

Q(ψμ) = Q(χμ) = Q(μ) ⇐⇒ Q(ζ|H/ker(ψμ)|) = Q(ζ|Z(G)/ker(μ)|)

⇐⇒ |H/ker(ψμ)| = |Z(G)/ker(μ)|
⇐⇒ |ker(ψμ)| = |H/Z(G)||ker(μ)|
⇐⇒ |ker(ψμ)| = |G/Z(G)|1/2|ker(μ)|.

Again,

[Q(ψμ) : Q(χμ)] = [Q(ψμ) : Q(μ)] = 2 ⇐⇒ |Q(ζ|H/ker(ψμ)|) : Q(ζ|Z(G)/ker(μ)|)| = 2
⇐⇒ |H/ker(ψμ)| = 2|Z(G)/ker(μ)|
⇐⇒ |ker(ψμ)| = 1

2 |H/Z(G)||ker(μ)|
⇐⇒ |ker(ψμ)| = 1

2 |G/Z(G)|1/2|ker(μ)|.

This completes the proof. �

COROLLARY 25. Let G be a VZ-group. Suppose H is a subgroup of G with index
|G/Z(G)|1/2 and ψ ∈ lin(H) is such that ψG ∈ nl(G). If one of the following is satisfied

(a) cd(G) = {1, p};
(b) |G′| = p,

then H is abelian.

PROOF. Let H be a subgroup of G of index |G/Z(G)|1/2 and let ψ ∈ lin(G) be such that
ψG ∈ nl(G). Then by Proposition 21, Z(G) ⊆ H and ψ ↓Z(G)= μ.

Case (a): Suppose cd(G) = {1, p}. This implies |G/Z(G)| = p2 and |H/Z(G)| = p. This
shows that H is abelian.

Case (b): Suppose |G′| = p. In this case, |H′| ∈ {1, p}. Since H′ ⊆ ker(ψG) =
CoreG(ker(ψ)) and ψG ∈ nl(G), we get |H′| = 1. Thus, H is abelian. �

As we know, for a VZ-group G, G′ is an elementary abelian subgroup, then by
Corollary 25, we get the following result.

COROLLARY 26. Let G be a VZ-group. Suppose H is a subgroup of G with index
|G/Z(G)|1/2 and ψ ∈ lin(H) is such that ψG ∈ nl(G). If Z(G) is cyclic, then H is abelian.

COROLLARY 27. Suppose G is a VZ p-group of order ≤ p5 (p is any prime). Let H be
a subgroup G of index |G/Z(G)|1/2 with ψ ∈ lin(H) such that ψG ∈ nl(G). Then, H is
abelian.

PROOF. Suppose G is a VZ p-group of order ≤ p5. In this case, cd(G) ∈ {{1, p}, {1, p2}}.
If cd(G) = {1, p}, then by Corollary 25, H is abelian. If cd(G) = {1, p2}, then√
|G/Z(G)| = p2 and hence, |G′| = |Z(G)| = p. Again, by Corollary 25, it follows that

H is abelian. �
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REMARK 28. The conclusion of Corollary 27 need not hold for higher order VZ
p-groups. For instance, consider the group

G = G(15,1) = 〈α1,α2,α3,α4,α5,α6 : [α3,α5] = α1, [α4,α5]

= α2, [α3,α6] = α2, [α4,α6] = αν1,αp
1 = α

p
2 = α

p
3 = α

p
4 = α

p
5 = α

p
6 = 1〉,

of order p6 (p ≥ 7), where ν denotes the smallest positive integer that is a quadratic
nonresidue (mod p) (see [20]). Here, Z(G) = G′ = 〈α1,α2〉. It is easy to observe
that G is a VZ p-group and cd(G) = {1, p2}. Set H = 〈α1,α2,α3,α5〉. Then H′ =
〈α1〉 and H/H′ = 〈α2H′,α3H′,α5H′〉 � Cp × Cp × Cp. Define ψ̄ ∈ Irr(H/H′) such that
ψ̄(α2H′) = ζp, ψ̄(α3H′) = 1 and ψ̄(α5H′) = 1. Now, define a character ψ of H by taking
the lift of ψ̄ ∈ Irr(H/H′). Then, ψ ∈ lin(H) and ψ↓Z(G) ∈ Irr(Z(G)|G′) = Irr(Z(G)) \
1Z(G), where 1Z(G) is the trivial character of Z(G). Then by Proposition 21, ψG ∈ nl(G);
however, H is nonabelian.

4.2. Rational group algebra of a VZ p-group. Let G be a VZ-group. Then the
Wedderburn decomposition of CG is as follows:

CG � |G/G′|C
⊕

(|Z(G)| − |Z(G)/G′|)M|G/Z(G)|1/2 (C),

where M|G/Z(G)|1/2 (C) denotes the ring of matrices of order |G/Z(G)|1/2 over C. In this
subsection, we compute the Wedderburn decomposition of the rational group algebra
of a finite VZ p-group.

Let G be a finite group and let χ, ψ ∈ Irr(G). It is well known that if χ and ψ are
Galois conjugates overQ, then ker(χ) = ker(ψ). Now, we begin with the following easy
observations.

LEMMA 29. Let G be a finite group and let χ,ψ ∈ lin(G) be such that ker(χ) = ker(ψ).
Then, χ and ψ are Galois conjugates over Q.

In general, if χ, ψ ∈ nl(G) are such that ker(χ) = ker(ψ), then χ may not be Galois
conjugate to ψ over Q. However, in the case of VZ groups, this is true.

LEMMA 30. Let G be a VZ-group and let χ,ψ ∈ Irr(G). Then χ and ψ are Galois
conjugates over Q if and only if ker(χ) = ker(ψ).

PROOF. If χ,ψ ∈ lin(G), then the result follows from Lemma 29. Now let χ,ψ ∈ nl(G)
be such that ker(χ) = ker(ψ). Then, in view of (1), there exist μ, ν ∈ Irr(Z(G) | G′)
such that χ ↓Z(G)= μ and ψ ↓Z(G)= ν. Observe that ker(χ) = ker(μ) and ker(ψ) = ker(ν).
Thus, μ and ν are Galois conjugates and hence, χ and ψ are Galois conjugates over Q.
This completes the proof. �

LEMMA 31. Consider a finite abelian group G, where d divides the exponent of G.
Let ad denote the number of cyclic subgroups of G with order d. Then the number of
non-Galois conjugate characters χ satisfying Q(χ) = Q(ζd) is precisely ad.

PROOF. See [1, Lemma 1]. �

Analogously to Lemma 31, we have the following lemma for VZ-groups.
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LEMMA 32. Consider a VZ-group G. Let χμ ∈ nl(G) (defined in (1)). Assume that ad

and a′d represent the number of cyclic subgroups of order d of Z(G) and Z(G)/G′,
respectively. Then the following statements hold.

(1) The number of non-Galois conjugate nonlinear characters χμ of G satisfying
Q(χμ) = Q(ζd), where d | exp(Z(G)) but d � exp(Z(G)/G′), is equal to ad.

(2) The number of non-Galois conjugate nonlinear characters χμ of G satisfying
Q(χμ) = Q(ζd), where d | exp(Z(G)) and d | exp(Z(G)/G′), is equal to ad − a′d.

PROOF. By the one-to-one correspondence between nl(G) and Irr(Z(G)|G′), we
get that ker(χμ) = ker(μ) and Q(χμ) = Q(μ). Observe that Irr(Z(G)) = Irr(Z(G)|G′) �
Irr(Z(G)/G′). Hence, if d | exp(Z(G)) but d � exp(Z(G)/G′), then by Lemma 31, the
number of non-Galois conjugate characters μ ∈ Irr(Z(G)|G′) such that Q(μ) = Q(ζd) is
equal to ad. This proves Lemma 32(1).

Similarly, if d | exp(Z(G)) and d | exp(Z(G)/G′), then the number of non-Galois
conjugate characters μ ∈ Irr(Z(G)|G′) such thatQ(μ) = Q(ζd) is the difference between
the number of non-Galois conjugate characters in Irr(Z(G)) whose character field is
Q(ζd) and the number of non-Galois characters in Irr(Z(G)/G′) whose character field
is Q(ζd). Hence, by using Lemma 31, we get Lemma 32(2). �

Now, we prove Theorem 1, which provides the Wedderburn decomposition of a VZ
p-group, where p is an odd prime.

PROOF OF THEOREM 1. Let G be a finite VZ p-group (odd prime p) and χ ∈
Irr(G). Suppose ρ is an irreducible Q-representation of G that affords the character
Ω(χ). Let AQ(χ) be the simple component of the Wedderburn decomposition of QG
corresponding to ρ, that is isomorphic to Mn(D) for some n ∈ N and a division ring
D. From Lemma 14, mQ(χ) = 1 and from Lemma 8, we have [D : Z(D)] = mQ(χ)2

and Z(D) = Q(χ). Therefore, D = Z(D) = Q(χ). Now consider ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk,
where for 1 ≤ i ≤ k, ρi is a complex irreducible representation of G affording χσi

for some σi ∈ Gal(Q(χ) : Q). Here, k = [Q(χ) : Q]. Since mQ(χ) = 1, we observe that
n = χ(1).

Let χ ∈ lin(G) and suppose ρ is the irreducible Q-representation of G affording
Ω(χ). Let χ̄ ∈ Irr(G/G′) be such that χ̄(gG′) = χ(g). Hence, AQ(χ̄) � Q(χ̄). Since
G/G′ is abelian, according to Lemma 6, the simple components of the Wedderburn
decomposition of QG corresponding to all irreducible Q-representations of G whose
kernels contain G′ contribute ⊕

d1 |m1

ad1Q(ζd1 )

in QG, where m1 is the exponent of G/G′ and ad1 is the number of cyclic subgroups of
G/G′ of order d1.
Now, let ρ be an irreducible Q-representation of G that affords the character Ω(χμ),
where χμ ∈ nl(G) as defined in (1). Here, χμ(1) = |G/Z(G)|1/2 and Q(χμ) = Q(μ).
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Therefore, by the above discussion, AQ(χμ) � M|G/Z(G)|1/2 (Q(μ)). Observe that Q(χμ) =
Q(μ) = Q(ζd) for some d | exp(Z(G)). Now, we have two cases.

Case 1 (d | exp(Z(G)) but d � exp(Z(G)/G′)). In this case, from Lemma 32(1), the
number of irreducible Q representations of G that afford the character Ω(χμ) is equal
to the number of cyclic subgroups of Z(G) of order d, where Q(χμ) = Q(μ) = Q(ζd).

Case 2 (d | exp(Z(G)) and d | exp(Z(G)/G′)). In this case, from Lemma 32(2), the
number of irreducible Q representations of G that afford the character Ω(χμ) is equal
to the difference of the number of cyclic subgroups of Z(G) of order d and the number
of cyclic subgroups of Z(G)/G′ of order d, where Q(χμ) = Q(μ) = Q(ζd).

Let m2 and m3 be the exponents of Z(G) and Z(G)/G′, respectively. Then by the
above discussion, the simple components of the Wedderburn decomposition of QG
corresponding to all irreducible Q-representations of G whose kernels do not contain
G′ contribute⊕

d2 |m2,d2�m3

ad2 M|G/Z(G)|1/2 (Q(ζd2 ))
⊕

d2 |m2,d2 |m3

(ad2 − a′d2
)M|G/Z(G)|1/2 (Q(ζd2 ))

in QG, where ad2 and a′d2
are the number of cyclic subgroups of Z(G) of order d2 and

the number of cyclic subgroups of Z(G)/G′ of order d2, respectively. Therefore, the
result follows. �

COROLLARY 33. Let G be a finite VZ p-group (odd prime p) with cyclic centre Z(G).
Then the Wedderburn decomposition of the group algebra QG is given by

QG � Q(G/G′)
⊕

M|G/Z(G)|1/2 (Q(ζ|Z(G)|)).

PROOF. Let G be a VZ p-group (odd prime p). It is known that G′ ⊆ Z(G) and G′ is
an elementary abelian p-group. Since Z(G) is cyclic, |G′| = p. Let μ ∈ Irr(Z(G)|G′).
It follows that μ is faithful and Q(μ) = Q(ζ|Z(G)|). Therefore, all nonlinear complex
irreducible characters G are faithful and Galois conjugate to each other. This completes
the proof. �

COROLLARY 34. Let G be an extra special p-group (odd prime p) of order p1+2n.
Then,

QG � Q
⊕

(p2n−1 + p2n−2 + · · · + p + 1)Q(ζp)
⊕

Mpn (Q(ζp)).

PROOF. One can easily observe that G is a VZ p-group and |G/Z(G)|1/2 = pn = χ(1),
where χ ∈ nl(G). Therefore, the result follows from Lemma 6 and Corollary 33. �

REMARK 35

(1) Corollary 34 shows that the rational group algebras of two nonisomorphic groups
may be isomorphic.
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(2) Suppose G is a nonabelian p-group of order p3 (odd prime p). Then by
Corollary 34,

QG � Q
⊕

(p + 1)Q(ζp)
⊕

Mp(Q(ζp)).

This is also computed in [4, Theorems 3 and 4]. The authors computed
Wedderburn components of QG by using the Shoda pair concept.

COROLLARY 36. Let G and H be two isoclinic VZ p-groups (odd prime p) of the same
order. Then the Wedderburn decompositions ofQG andQH are isomorphic if and only
if G/G′ � H/H′ and Z(G) � Z(H).

PROOF. The result follows from Theorem 1. �

Now, we discuss the rational group algebra of a VZ 2-group.

LEMMA 37. Let G be a VZ 2-group. Suppose χ ∈ nl(G) is such that mQ(χ) = 2. Then,
Q(χ) = Q.

PROOF. The result follows from Lemma 17 and Proposition 22. �

Now we prove Theorem 2, which provides a combinatorial description for the
Wedderburn decomposition of the rational group algebra of a VZ 2-group.

PROOF OF THEOREM 2. Let χμ ∈ nl(G) as defined in (1). We have two cases for
nonlinear irreducible complex characters of G.

Case 1 (mQ(χμ) = 2, χμ ∈ nl(G)). By Lemma 37, there are k rational irreducible
representations of G, which correspond to k simple components of QG, denoted as
AQ(χμ). We know that AQ(χμ) � Mn(D) for some n ∈ N and a division ring D. By [31,
Theorem 2.4], we have n = 1

2 |G/Z(G)|1/2. Now by using Lemmas 8 and 37, we get
Z(D) = Q(χ) = Q and [D : Q] = 4.

Claim. AQ(χμ) = M1/2|G/Z(G)|1/2 (H(Q)).

To prove our claim, let (H,ψ) be a required pair to compute an irreducible rational
matrix representation of G that affords the character χμ. Then, H/ker(ψ) � Q8 (by
Algorithm 20 and Proposition 22). Therefore, ψ̄ ∈ FIrr(H/ker(ψ)) and ψ̄ = ¯(λ)H/ker(ψ),
where ¯(λ) ∈ FIrr(N/ker(ψ)) and N/ker(ψ) � C4. Hence, by Proposition 21, N � G with
λ ∈ lin(N) such that λG = χμ. Now, assume that K = ker(ψ) and observe that NG(K) =
H. Further, N/K is cyclic and a maximal abelian subgroup of H/K. Hence, (N, K) is
an extremely strong Shoda pair (see [4]). Furthermore, from [15, Theorem 3.5.5],

AQ(χμ) = AQ(G, N, K) � M1/2|G/Z(G)|1/2 (Q(ζ4) ∗ H/N) � M1/2|G/Z(G)|1/2 (H(Q)).

This completes the proof of the above claim and Case 1.

Case 2 (mQ(χμ) = 1, χμ ∈ nl(G)). Here, AQ(χμ) � Mn(D) for some n ∈ N and a division
ring D. By [31, Theorem 2.4], we have n = |G/Z(G)|1/2. Now again, by using Lemma
8, we get D = Q(χμ). Now we have two sub-cases:
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Sub-case 2(1)(Q(χμ) = Q). From Case 1 and Lemma 37, there are a2 − a2
′ − k Galois

conjugacy classes of complex irreducible characters χμ such that mQ(χμ) = 1 and
Q(χμ) = Q. Therefore, QG contains (a2 − a′2 − k)M|G/Z(G)|1/2 (Q).

Sub-case 2(2)(Q(χμ) � Q). In this sub-case, Q(χμ) = Q(μ) = Q(ζd), where d ≥ 4.
Observe that either d | exp(Z(G)) but d � exp(Z(G)/G′), or d | exp(Z(G)) and d |
exp(Z(G)/G′). Now by using a similar argument to that mentioned in the proof of
Theorem 1, QG contains⊕

d2 |m2,d2�m3

ad2 M|G/Z(G)|1/2 (Q(ζd2 ))
⊕

d2 |m2,d2 |m3

(ad2 − a′d2
)M|G/Z(G)|1/2 (Q(ζd2 )).

This completes the discussion of Case 2.
Now by using Lemma 6, Case 1 and Case 2, we get the result. �

COROLLARY 38. Let G be a VZ 2-group G such that Z(G) is cyclic and |Z(G)| ≥ 4.
Then the following hold:

(1) mQ(χ) = 1 for each χ ∈ Irr(G);
(2) QG � Q(G/G′)

⊕
M|G/Z(G)|1/2 (Q(ζ|Z(G)|)).

PROOF. It follows from Theorem 2 and Lemma 37. �

COROLLARY 39. Suppose G is a VZ 2-group with elementary abelian centre. Then,

QG � Q(G/G′)
⊕

kM1/2|G/Z(G)|1/2 (H(Q))
⊕

k′M|G/Z(G)|1/2 (Q),

where k and k′ denote the number of nonlinear complex irreducible characters of G
with Schur index 2 and the number of nonlinear complex irreducible characters of G
with Schur index of 1, respectively.

The counting of rational irreducible representations of an abelian group can be
determined using Lemma 6 and Remark 7. Corollary 40 provides a characterization
for counting irreducible rational representations of VZ-groups.

COROLLARY 40. For a VZ-group G, let n, x, y and z represent the total numbers of
irreducible rational representations of G, G/G′, Z(G) and Z(G)/G′, respectively. It
follows that n = x + y − z.

PROOF. Observe that |{η ∈ IrrQ(G) : G′ ⊆ ker(η)}| = x. Further,

|{η ∈ IrrQ(G) : G′ � ker(η)}|
= the number of Galois conjugacy classes of Irr(Z(G)) over Q
− the number of Galois conjugacy classes of Irr(Z(G)/G′) over Q.

This completes the proof. �

In the case of a cyclic centre, we have the following corollary.

COROLLARY 41. If G is a VZ p-group and Z(G) is cyclic, then G has only one rational
irreducible representation whose kernel does not contain G′.
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4.3. Primitive central idempotents in rational group algebras of VZ-groups. Let
G be a finite group. An element e in QG is an idempotent if e2 = e. A primitive central
idempotent e in QG is one that belongs to the centre of QG and cannot be expressed as
e = e′ + e′′, where e′ and e′′ are nonzero idempotents such that e′e′′ = 0. It is well
known that a complete set of primitive central idempotents of QG determines the
decomposition of QG into a direct sum of simple sub-algebras. Specifically, if e is
a primitive central idempotent of QG, then the corresponding simple component of
QG is QGe. For χ ∈ Irr(G), the expression

e(χ) =
χ(1)
|G|
∑
g∈G

χ(g)g−1

defines a primitive central idempotent of CG. In fact, the set {e(χ) : χ ∈ Irr(G)} forms
a complete set of primitive central idempotents of CG. Moreover, for χ ∈ Irr(G), we
define

eQ(χ) :=
∑

σ∈Gal(Q(χ)/Q)

e(χσ).

Then eQ(χ) is a primitive central idempotent in QG.
For a subset X of G, define

X̂ =
1
|X|
∑
x∈X

x ∈ QG,

and for a normal subgroup N of G, define

ε(G, N) =

⎧⎪⎪⎨⎪⎪⎩
Ĝ if G = N;∏

D/N∈M(G/N)(N̂ − D̂) otherwise,

where M(G/N) represents the set of minimal nontrivial normal subgroups D/N of
G/N, with D being a subgroup of G that contains N. In this subsection, we compute
a complete set of primitive central idempotents of the rational group algebra of a
VZ-group. Let us start with a general result.

LEMMA 42 [15, Lemma 3.3.2]. Let G be a finite group. If χ ∈ lin(G) and N = ker(χ),
then the following hold:

(1) eQ(χ) = ε(G, N);
(2) QGε(G, N) � Q(ζ|G/N |).

Theorem 43 provides a characterization of primitive central idempotents and their
corresponding simple components in QG for a VZ p-group.

THEOREM 43. Let G be a VZ-group and let χμ ∈ nl(G) (as defined in (1)) with N =
ker(χμ) = ker(μ). Then the following statements hold:

(1) eQ(χμ) = ε(Z(G), N);
(2) if G is a VZ p-group (odd prime p), then QGε(G, N) � M|G/Z(G)|1/2 (Q(ζ|Z(G)/N |));
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(3) if G is a VZ 2-group, then QGε(G, N) � M|G/Z(G)|1/2 (Q(ζ|Z(G)/N |)) when mQ(χμ) =
1, and QGε(G, N) � M1/2|G/Z(G)|1/2 (H(Q)) when mQ(χμ) = 2.

PROOF. From (1), it is easy to observe that e(χμ) = e(μ).
Furthermore, we can observe:

eQ(χμ) =
∑

σ∈Gal(Q(χμ)/Q)

e(χσμ )

=
∑

σ∈Gal(Q(μ)/Q)

e(χμσ)

=
∑

σ∈Gal(Q(μ)/Q)

e(μσ)

= eQ(μ)

= ε(Z(G), N) (from Lemma 42),

where N = ker(μ). Moreover, if G is a VZ p-group (odd prime p), from Theorem 1, the
simple component of QG corresponding to χμ ∈ nl(G) is given by

AQ(χμ) � M|G/Z(G)|1/2 (Q(μ)) = M|G/Z(G)|1/2 (Q(ζ|Z(G)/N |)).

Hence,

QGeQ(χμ) = QGε(G, N) � M|G/Z(G)|1/2 (Q(ζ|Z(G)/N |)).

Similarly, statement (3) follows from Theorem 2. �

REMARK 44. In [5, Corollary 2], primitive central idempotents of the rational group
algebra of VZ-groups have been computed. However, our approach, which is based on
character properties, offers a direct proof.

5. p-group of order p3

Let G be a nonabelian p-group (odd prime p) of order p3. It is well known that G is
isomorphic to one of the following two groups:

Φ2(21) = 〈α,α1,α2 : [α1,α] = αp = α2,αp
1 = α

p
2 = 1〉, and

Φ2(111) = 〈α,α1,α2 : [α1,α] = α2,αp = α
p
1 = α

p
2 = 1〉,

(see [13, Section 4.3]). It is easy to check that both the groups are VZ p-groups. In
both cases, we have Z(G) = G′ = 〈α2〉 � Cp, cd(G) = {1, p}, |nl(G)| = |Z(G)| − 1 and
G/G′ = 〈αG′,α1G′〉 � Cp × Cp. Since G is a VZ p-group, the nonlinear characters of
G can be defined as follows:

χμ(g) =

⎧⎪⎪⎨⎪⎪⎩
pμ(g) if g ∈ Z(G),
0 otherwise,

(2)

where μ ∈ Irr(Z(G)|G′). The rational representations of G are characterized in
Proposition 45.
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PROPOSITION 45. Let G be a nonabelian group of order p3 (odd prime p). Then the
following statements hold.

(1) |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p + 1 and |Irr(φ(p2))
Q

(G)| = 1.
(2) A special required pair (H,ψμ) to determine a rational matrix representation of

G whose character is Ω(χμ) (χμ is defined in (2)) is given by H = 〈α1,α2〉, and
ψμ ∈ lin(H) defined by ψμ(α1) = 1 and ψμ(α2) = μ(α2).

PROOF. The proof of Proposition 45(1) is obvious. As Z(G) ⊂ H and ψμ ↓Z(G)= μ, we
get ψG

μ = χμ (from Proposition 21). Furthermore, since ψμ(α1) = 1 and ψμ(α2) = μ(α2),
it follows that Q(ψμ) = Q(μ) = Q(χμ). This completes the Proof of Proposition 45(2).
�

REMARK 46. In general, a required pair to find an irreducible rational matrix
representation of G whose character is Ω(χ) may not be unique. For example, consider
G = Φ2(111) and χμ ∈ nl(G), as defined in (2). Take H1 = 〈α,α2〉 and choose ψ′μ ∈
lin(H1) such that ψ′μ(α) = 1 and ψ′μ(α2) = μ(α2). The pair (H1,ψ′μ) is also a special
required pair to find an irreducible rational matrix representation of G that affords the
character Ω(χμ).

In Example 47, we show how to find an irreducible rational matrix representation
associated with a required pair.

EXAMPLE 47. Consider

G = Φ2(21) = 〈α,α1,α2 : [α1,α] = αp = α2,αp
1 = α

p
2 = 1〉.

We have Z(G) = G′ = 〈α2〉 � Cp. Let μ ∈ Irr(Z(G)|G′) be such that μ(α2) = ζp. The
character χμ defined in (2) is a nonlinear irreducible complex character of G.
From Proposition 45, a special required pair to find an irreducible rational matrix
representation of G affording the character Ω(χμ) is (H,ψμ), where H = 〈α1,α2〉 and
ψμ ∈ lin(H) is such that ψμ(α1) = 1 and ψμ(α2) = μ(α2) = ζp. Now, let Ψμ denote
an irreducible rational matrix representation of degree p − 1 of H that affords the
character Ω(ψμ). The explicit form of Ψμ is given by

Ψμ(α1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
0 0 · · · 1 0
0 0 · · · · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= I, and Ψμ(α2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
0 0 · · · 0 1
−1 −1 · · · · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(see Lemma 11). Set Ψμ(α2) = P, where P denotes a matrix of order (p − 1), and
let O denote the zero matrix of the same order. Then an irreducible rational matrix
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representation ΨG of degree p2 − p of G affording the character Ω(χμ) is given by

ΨG
μ (α) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O O O · · · P
I O O · · · O
O I O · · · O
...

...
...

. . .
O O · · · I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and ΨG

μ (α1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I O O · · · O
O P O · · · O
O O P2 · · · O
...

...
...

. . .
O O · · · · · · Pp−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, ΨG is a rational matrix representation of G whose kernel does not contain G′.
Now, use Lemma 11 to compute all irreducible rational matrix representations of
G whose kernel contains G′. This gives the complete description of all irreducible
rational matrix representations of G.

REMARK 48. If G is a nonabelian group of order 8, then either G � Q8 or G � D8. A
special required pair to obtain an irreducible rational matrix representation of G whose
kernel does not contain G′ is determined in Section 4.1.

6. p-Group of order p4

In this section, we provide a comprehensive description of all inequivalent irre-
ducible rational matrix representations and the Wedderburn decompositions of the
rational group rings for all nonabelian groups of order p4. It is easy to observe that if G
is a nonabelian group of order p4, then |Z(G)| = p or p2, and cd(G) = {1, p}. Moreover,
if |Z(G)| = p, then G/Z(G) is nonabelian. As we know, a group G is VZ-group if and
only if cd(G) = {1, |G/Z(G)|1/2}. Hence, a p-group of order p4 of nilpotency class 2 is a
VZ p-group. In the subsequent subsections, we separately discuss the cases of groups
of order p4 of nilpotency class 2 and nilpotency class 3.

6.1. p-Groups of order p4 of nilpotency class 2. Let G be a p-group of order p4

of nilpotency class 2. Then |G′| = p, |Z(G)| = p2 and cd(G) = {1, p}. Furthermore,
|lin(G)| = p3 and |nl(G)| = p2 − p. Note that G is a VZ p-group. Then by (1), a
nonlinear irreducible complex character is of the form χμ and is given by

χμ(g) =

⎧⎪⎪⎨⎪⎪⎩
pμ(g) if g ∈ Z(G),
0 otherwise ,

(3)

where μ ∈ Irr(Z(G)|G′).
For an odd prime p, we rely on James’ classification of p-groups of order p4 (see

[13]). There exist two distinct isoclinic families of nonabelian groups of order p4,
denoted as Φ2 and Φ3 (see [13, Section 4.4]). Prajapati et al. [25, Proposition 4.2] have
proved that all the groups belonging to isoclinic familyΦ2 are VZ-groups. Note that all
the groups belonging to isoclinic family Φ3 are non-VZ-groups. Theorem 49 provides
a description of all inequivalent irreducible rational matrix representations for all VZ
p-groups of order p4, where p is an odd prime.
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TABLE 1. Special required pair (H,ψμ) to obtain an irreducible rational matrix representation of G ∈ Φ2

that affords the character Ω(χμ), where χμ ∈ nl(G) (defined in (3)).

Group G Z(G) G′ H ψμ ∈ Irr(H) and μ ∈ Irr(Z(G)|G′)

Φ2(211)a = 〈α,α1,α2,α3 :
[α1,α] = αp = α2,
α

p
1 = α

p
2 = α

p
3 = 1〉

〈αp,α3〉 〈αp〉 〈αp,α1,α3〉 ψμ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ(αp) if h = αp,

1 if h = α1,

μ(α3) if h = α3

Φ2(14) = 〈α,α1,α2,α3 :
[α1,α] = α2,
αp = α

p
1 = α

p
2 = α

p
3 = 1〉

〈α2,α3〉 〈α2〉 〈α,α2,α3〉 ψμ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if h = α,

μ(α2) if h = α2,

μ(α3) if h = α3,

Φ2(31) = 〈α,α1,α2 :
[α1,α] = αp2

= α2,
α

p
1 = α

p
2 = 1〉

〈αp〉 〈αp2 〉 〈αp,α1〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
μ(αp) if h = αp,

1 if h = α1,

Φ2(22) = 〈α,α1,α2 :
[α1,α] = αp = α2,
α

p2

1 = α
p
2 = 1〉

〈αp,αp
1 〉 〈αp〉 〈α−iα1,αp〉

(0 ≤ i ≤ p − 1)
ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
1 if h = α−iα1,

μ(αp) if h = αp,

Φ2(211)b = 〈α,α1,α2, γ :
[α1,α] = γp = α2,
αp = α

p
1 = α

p
2 = 1〉

〈γ〉 〈γp〉 〈α1, γ〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
1 if h = α1,

μ(γ) if h = γ,

Φ2(211)c = 〈α,α1,α2 :
[α1,α] = α2,
αp2
= α

p
1 = α

p
2 = 1〉

〈αp,α2〉 〈α2〉 〈αp,α1,α2〉 ψμ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ(αp) if h = αp,

1 if h = α1,

μ(α2) if h = α2.

THEOREM 49. Let G be a nonabelian p-group (odd prime p) of order p4 in the
isoclinic family Φ2. Then Table 1 determines all inequivalent irreducible rational
matrix representations of G whose kernels do not contain G′.

PROOF. Let G ∈ Φ2 and let χμ ∈ nl(G) (as defined in (3)). Suppose (H,ψμ) is a
special required pair to obtain an irreducible rational matrix representation of G
which affords the character Ω(χμ). By Proposition 21, it follows that Z(G) ⊂ H and
ψμ ↓Z(G)= μ. Further, from Corollary 27, H is abelian. Since (H,ψμ) is a special
required pair, Q(ψμ) = Q(χμ) and hence by Lemma 24, we must choose ψμ ∈ lin(H)
such that |ker(ψμ)| = |G/Z(G)|1/2|ker(μ)| = p|ker(μ)|. Consider G = Φ2(22). Now, for
each 0 ≤ i ≤ (p − 1), take H = 〈α−iα1,αp〉 and define μ ∈ Irr(Z(G)|G′) as follows:

μ(z) =

⎧⎪⎪⎨⎪⎪⎩
ζp if z = αp,
ζ i

p if z = αp
1 ,

where z ∈ Z(G). Observe that (α−iα1)p = α−ipα
p
1 . Then, ψμ ∈ lin(H) (given in Table 1)

satisfies ψμ(αp
1 ) = (ψμ(α−iα1))p(ψμ(αp))i = (ψμ(αp))i = μ(αp

1 ). It is easy to check that
a pair (H,ψμ) satisfies the criteria of a special required pair.
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It is routine to check that all the pairs (H,ψμ) for the rest of the groups mentioned in
Table 1 also satisfy the criteria to being special required pairs. This shows that Table 1
presents all of the special required pairs (H,ψμ) to find all inequivalent irreducible
rational matrix representations of G whose kernels do not contain G′, where G ∈ Φ2.
This completes the proof of Theorem 49. �

Proposition 50 provides the counting of rational irreducible representations of
different degrees for all groups of order p4 in Φ2.

PROPOSITION 50. Let G be a nonabelian group of order p4 (odd prime p) in Φ2.

(1) If G = Φ2(211)a or G = Φ2(14), then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p2 + p + 1 and

|Irr(φ(p2))
Q

(G)| = p.

(2) If G = Φ2(31), then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p + 1, |Irr(φ(p2))
Q

(G)| = p and

|Irr(φ(p3))
Q

(G)| = 1.

(3) If G = Φ2(22), then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p + 1 and |Irr(φ(p2))
Q

(G)| = 2p.

(4) If G = Φ2(211)b, then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p2 + p + 1, |Irr(φ(p3))
Q

(G)| = 1.

(5) If G = Φ2(211)c, then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p + 1 and |Irr(φ(p2))
Q

(G)| =
p + 1.

PROOF. Suppose χ ∈ Irr(G) and E(χ) denotes the Galois conjugacy class of χ over
Q. Then the degree of the rational representation affording the character Ω(χ) is
|E(χ)|χ(1).

(1) For G = Φ2(211)a, we have Z(G) = 〈αp,α3〉 � Cp × Cp, G′ = 〈αp〉 � Cp and
G/G′ = 〈αG′,α1G′,α2G′〉 � Cp × Cp × Cp. Observe that in Irr(1)(G), there is a
single Galois conjugacy class over Q with size 1 and (p3 − 1)/φ(p) = p2 + p + 1
distinct Galois conjugacy classes over Q with size φ(p). If μ ∈ Irr(Z(G)|G′), then
[Q(μ) : Q] = φ(p). Hence, there are (p2 − p)/φ(p) = p distinct Galois conjugacy
classes overQwith size φ(p) in Irr(p)(G). Similar statements hold for G = Φ2(14).
This proves part (1).

(2) For G = Φ2(31), we have Z(G) = 〈αp〉 � Cp2 , G′ = 〈αp2〉 � Cp and G/G′ =
〈αG′,α1G′〉 � Cp2 × Cp. In Irr(1)(G), there is one Galois conjugacy class over
Q with size 1, (1 × φ(p) + φ(p) × 1 + φ(p) × φ(p))/φ(p) = p + 1 distinct Galois
conjugacy classes over Q with size φ(p), and (φ(p2) × p)/φ(p2) = p distinct
Galois conjugacy classes over Q with size φ(p2). If μ ∈ Irr(Z(G)|G′), then
[Q(μ) : Q] = φ(p2). Consequently, there is only one ( (p2 − p)/φ(p2) = 1) Galois
conjugacy class over Q with size φ(p2) in Irr(p)(G). This completes the proof of
part (2).

By using similar arguments, we get the proofs of the remaining parts of
Proposition 50. �
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TABLE 2. Special required pair (H,ψμ) to obtain an irreducible rational matrix representation of a VZ
2-group G of order 16 that affords the character Ω(χμ), where χμ ∈ nl(G) (defined in (3)).

Group G Z(G) G′ H ψμ ∈ Irr(H) and μ ∈ Irr(Z(G)|G′)

G1 = 〈x, y, z : x4 = y2 = z2 = 1,
[x, y] = [x, z] = 1,
[y, z] = x2〉

〈x〉 〈x2〉 〈x, y〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
μ(x) if h = x,

1 if h = y,

G2 = 〈x, y : x8 = y2 = 1,
[x, y] = x4〉

〈x2〉 〈x4〉 〈x2, y〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
μ(x2) if h = x2,

μ(α3) if h = y,

G3 = 〈x, y, z : x4 = y2 = z2 = 1,
[x, z] = [y, z] = 1,
[x, y] = x2〉

〈x2, z〉 〈x2〉 〈x2, y, z〉 ψμ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ(x2) if h = x2,

1 if h = y,

μ(z) if h = z,

G4 = 〈x, y, z : x4 = y2 = z2 = 1,
[x, z] = [y, z] = 1,
[x, y] = z〉

〈x2, z〉 〈z〉 〈x2, y, z〉 ψμ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ(x2) if h = x2,

1 if h = y,

μ(z) if h = z,

G5 = 〈x, y : x4 = y4 = 1,
[x, y] = x2〉

〈x2, y2〉 〈x2〉 〈x2, y〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
μ(x2) if h = x2,

(μ(y2))1/2 if h = y,

G6 = 〈x, y, z : x4 = y4 = z2 = 1,
[x, z] = [y, z] = 1,
[x, y] = x2, x2 = y2〉

〈x2, z〉 〈x2〉 〈x, z〉 ψμ(h) =

⎧⎪⎪⎨⎪⎪⎩
(μ(x2))1/2 if h = x,

μ(z) if h = z,

REMARK 51. Let G and H be isoclinic groups with the same order. According to
Lemma 10, we have |Irr(k)(G)| = |Irr(k)(H)|. However, it is important to note that
|Irr(k)
Q

(G)| may not be equal to |Irr(k)
Q

(H)| (see Proposition 50).

Now, let G be a nonabelian 2-group of order 16 of nilpotency class 2. Then
|nl(G)| = 2. We take presentations of 2-groups from Burnside’s book [6]. Theorem 52
provides a description of all inequivalent irreducible rational matrix representations of
G whose kernels do not contain G′.

THEOREM 52. Let G be a nonabelian 2-group of order 16 of nilpotency class 2. Then
Table 2 determines all inequivalent irreducible rational matrix representations of G
whose kernels do not contain G′.

PROOF. Let G be a nonabelian group of order 16 of nilpotency class 2. Observe that
G is a VZ 2-group. Let χμ ∈ nl(G) as defined in (3). Suppose (H,ψμ) is a special
required pair to obtain an irreducible rational matrix representation of G that affords
the character Ω(χμ). By Proposition 21, it follows that Z(G) ⊂ H and ψμ ↓Z(G)= μ.
Further, from Corollary 27, H is abelian. In view of Remark 23, we have the
following: if mQ(χμ) = 1, then Q(ψμ) = Q(χμ) and if mQ(χμ) = 2, then [Q(ψμ) :
Q(χμ)] = 2. Therefore, from Lemma 24, we must choose ψμ ∈ lin(H) such that
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|ker(ψμ)| = 2|ker(μ)| whenever mQ(χμ) = 1, and ψμ ∈ lin(H) such that |ker(ψμ)| =
|ker(μ)| whenever mQ(χμ) = 2. Note that mQ(χμ) = 2 for χμ ∈ nl(G5), where μ ∈
Irr(Z(G5)|G′5) is given by μ(x2) = −1, μ(y2) = −1, and mQ(χμ) = 2 for all χμ ∈ nl(G6),
where μ ∈ Irr(Z(G6)|G′6). It is routine to check that the pairs (H,ψμ) mentioned in
Table 2 are special required pairs. This shows that Table 2 presents special required
pairs (H,ψμ) to find irreducible rational matrix representations of G whose kernels do
not contain G′, where G ∈ Φ2. This completes the proof of Theorem 52. �

6.2. p-Groups of order p4 of nilpotency class 3. Let G be a p-group of order p4 of
nilpotency class 3. Then |Z(G)| = p, |G′| = p2 and Z(G) ⊂ G′. Further, |lin(G)| = p2,
|nl(G)| = p2 − 1 and cd(G) = {1, p}.

We begin by presenting a few results that enable us to determine all the inequivalent
irreducible rational matrix representations of G.

LEMMA 53. Let G be a p-group (odd prime p) and let 1 � χ ∈ Irr(G). Then,Q(χ) � Q.

PROOF. The proof is obvious. �

LEMMA 54. Let G be a nonabelian group with nilpotency class ≥ 3. Suppose that there
exists a maximal normal subgroup H of G such that both H and G/H are abelian. Then
H is unique.

PROOF. Since G/H is abelian, G′ ⊆ H. As H is abelian, we get CG(G′) ⊇ H, where
CG(G′) denotes the centralizer subgroup of G′. Since nilpotency class of G is ≥ 3,
G′ � Z(G). This implies that CG(G′) � G. Thus, we conclude that CG(G′) = H, which
implies the uniqueness of H. �

COROLLARY 55. If G is a nonabelian group of order p4 of nilpotency class 3, then G
has a unique abelian subgroup of index p, namely CG(G′).

PROOF. Let G be a nonabelian p-group of order p4 of nilpotency class 3. Then Z(G) ⊂
G′ and there exists an abelian subgroup H of G with index p. Therefore, the proof
follows from Lemma 54. �

For an odd prime p, we follow James’ classification of p-groups of order p4 (see
[13]). All the relevant groups in this subsection belong toΦ3 (refer to [13, Section 4.4]).

REMARK 56. Let G be a nonabelian p-group (p ≥ 5) of order p4 in Φ3 (see [13,
Section 4.4]). Then the description of unique abelian subgroup H of G of index p
is as follows.

• If G = Φ3(14), then H = 〈α1,α2,α3〉 � Cp × Cp × Cp.
• If G = Φ3(211)a, then H = 〈αp,α1,α2〉 � Cp × Cp × Cp.
• If G = Φ3(211)br (r = 1, ν), then H = 〈α1,α2〉 � Cp2 × Cp.

LEMMA 57. Let G be a nonabelian p-group of order p4 of nilpotency class 3. Let H
be the unique abelian subgroup of G of index p. If ψ ∈ Irr(H|G′), then ψG ∈ nl(G).
Further, for χ ∈ nl(G), there exists some ψ ∈ Irr(H|G′) such that χ = ψG.
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PROOF. Consider ψ ∈ Irr(H|G′). In contrast, suppose that ψG � nl(G). This implies
that ψG is a sum of some linear characters of G. This implies that G′ ⊆ ker(ψG) ⊆
ker(ψ), which is a contradiction.

Now, let ψ ∈ Irr(H|G′). Then ψG ∈ nl(G), and hence the inertia group IG(ψ) of ψ in
G is equal to H [12, Problem 6.1]. Furthermore, ψG ↓H=

∑p
i=1 ψi, where the ψi terms

are conjugates of ψ in G and p = |G/IG(ψ)|. Hence, there are p conjugates of ψ and
observe that ψG = ψG

i ∈ nl(G) for each i. Thus, |nl(G)| = |Irr(H|G′)|/p = p2 − 1. This
completes the proof of Lemma 57. �

Theorem 58 provides the necessary information to determine all inequivalent
irreducible rational matrix representations for all nonabelian p-groups of order p4 of
nilpotency class 3, where p is an odd prime.

THEOREM 58. Let G be a nonabelian p-group (odd prime p) of order p4 belonging
to Φ3. Suppose H is the unique abelian subgroup of G with index p and χ ∈ nl(G) is
such that χ = ψG for some ψ ∈ Irr(H|G′). Then (H,ψ) is a required pair to determine
an irreducible rational matrix representation of G that affords the character Ω(χ).

PROOF. Suppose p ≥ 5. If G = Φ3(14) or Φ3(211)a, then H � Cp × Cp × Cp (see
Remark 56). Suppose χ ∈ nl(G) is such that χ = ψG for some ψ ∈ Irr(H|G′). Then,
Q(ψ) = Q(ζp). Observe that Q(χ) = Q(ψG) ⊆ Q(ψ). From Lemma 53, we get Q(χ) =
Q(ψ) = Q(ζp). Next, if G = Φ3(211)br (r = 1, ν), then H = 〈α1,α2〉 � Cp2 × Cp (see
Remark 56). Again, suppose that χ ∈ nl(G) is such that χ = ψG for some ψ ∈ Irr(H|G′).
Then, Q(ψ) = Q(ζp) or Q(ζp2 ). If Q(ψ) = Q(ζp), then from Lemma 53, Q(ψ) = Q(χ) =
Q(ζp). Now, suppose Q(ψ) = Q(ζp2 ). This implies that ψ(α1) = ζp2 . Assume that G =⋃
αiH(0 ≤ i ≤ p − 1). Then we have the following:

ψG(α1) =
p−1∑
i=0

ψ◦(α−iα1α
i), where ψ◦(g) =

⎧⎪⎪⎨⎪⎪⎩
ψ(g) if g ∈ H,
0 if g � H,

= ψ(α1) + ψ(α1α2) + ψ(α1+p
1 α2

2) + ψ(α1+3p
1 α3

2) + · · · + ψ(α1+(p−1)(p−2)/2p
1 α

p−1
2 )

= ψ(α1)[1 + ψ(α2) + ψ(αp
1α

2
2) + ψ(α3p

1 α
3
2) + · · · + ψ(α(p−1)(p−2)/2p

1 α
p−1
2 )]

= θζp2 , for some 0 � θ ∈ Q(ζp).

Therefore, Q(ψ) = Q(ψG) = Q(ζp2 ). Hence, (H,ψ) is a required pair. Now, let p = 3. If

G = Φ3(211)b1 = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α] = α3
1α3 = α3,

α3 = α3
2 = α

3
3 = 1〉,

then H = 〈α1,α2,α3〉 � C3 × C3 × C3 is the unique normal abelain subgroup of G
of index 3 (see [13, Section 4.4]). Suppose χ ∈ nl(G) is such that χ = ψG for some
ψ ∈ Irr(H|G′). From Lemma 53, we get Q(χ) = Q(ψ) = Q(ζ3). Next, if G is one of the
following groups:
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Φ3(211)a = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α] = α3 = α3,α3
1α3 = α

3
2 = α

3
3 = 1〉

Φ3(14) = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α] = α3,α3 = α3
1α3 = α

3
2 = α

3
3 = 1〉

Φ3(211)b2 = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α]2 = α3
1α3 = α

2
3,α3 = α3

2 = α
3
3 = 1〉,

then H = 〈α1,α2〉 � C9 × C3 is the unique normal subgroup of G of index 3 (see [13,
Section 4.4]). Again, suppose χ ∈ nl(G) is such that χ = ψG for some ψ ∈ Irr(H|G′). By
a similar argument as in the case of p ≥ 5, we can establish that Q(χ) = Q(ψ). Hence,
(H,ψ) is a required pair. This completes the proof of Theorem 58. �

In Proposition 59, the counting of rational irreducible representations of all
p-groups (odd prime p) of order p4 in Φ3 is described.

PROPOSITION 59. Let G be a nonabelian p-group (p ≥ 5) of order p4 in Φ3. Then we
have the following.

(1) If G = Φ3(211)a or Φ3(14), then |Irr(1)
Q

(G)| = 1, |Irr(φ(p))
Q

(G)| = p + 1 and

|Irr(φ(p2))
Q

(G)| = p + 1.

(2) If G=Φ3(211)br (r= 1,ν), then |Irr(1)
Q

(G)|= 1, |Irr(φ(p))
Q

(G)|= p+1, |Irr(φ(p2))
Q

(G)|= 1

and |Irr(φ(p3))
Q

(G)| = 1.

PROOF. Suppose χ ∈ Irr(G) and E(χ) denotes the Galois conjugacy class of χ over
Q. Then the degree of the rational representation affording the character Ω(χ) is
|E(χ)|χ(1).

(1) Let

G = Φ3(211)a = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α] = αp = α3,
α

p
1 = α

p
2 = α

p
3 = 1〉.

Then Z(G) = 〈αp〉 � Cp, G′ = 〈αp,α2〉 � Cp × Cp and G/G′ = 〈αG′,α1G′〉 �
Cp × Cp. Thus, there are one Galois conjugacy class over Q of size 1, and
(p2 − 1)/φ(p) = p + 1 distinct Galois conjugacy classes over Q of size φ(p) in
Irr(1)(G). Further, H = 〈αp,α1,α2〉 � Cp × Cp × Cp is the abelian subgroup of
Φ3(211)a of index p. Suppose χ ∈ Irr(p)(G). Then from Theorem 58, χ = ψG

for some ψ ∈ Irr(H|G′) and Q(χ) = Q(ψ). Moreover, from Lemma 53, Q(χ) =
Q(ψ) = Q(ζp). Thus, there are (p2 − 1)/φ(p) = p + 1 distinct Galois conjugacy
classes over Q of size φ(p) in Irr(p)(G). We get similar results for G = Φ3(14).
This completes the proof of part (1) of Proposition 59.

(2) Let

G = Φ3(211)b1 = 〈α,α1,α2,α3 : [α1,α] = α2, [α2,α] = αp
1 = α3,

αp = α
p
2 = α

p
3 = 1〉.

Then Z(G) = 〈αp
1〉 = Cp, G′ = 〈αp

1 ,α2〉 = Cp × Cp and G/G′ = 〈αG′,α1G′〉 �
Cp × Cp. Thus, there are one Galois conjugacy class over Q of size 1, and
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(p2 − 1)/φ(p) = p + 1 distinct Galois conjugacy classes over Q of size φ(p) in
Irr(1)(G). Further, H = 〈α1,α2〉 � Cp2 × Cp is the abelian subgroup of Φ3(211)b1

of index p. Suppose χ ∈ Irr(p)(G). Then from Theorem 58, χ = ψG for some ψ ∈
Irr(H|G′) andQ(χ)=Q(ψ). Observe that |{ψ ∈ Irr(H|G′) : Q(ψ)=Q(ζp)}|= p2 − p
and |{ψ ∈ Irr(H|G′) : Q(ψ) = Q(ζp2 )}| = p3 − p2. Since there are p conjugates of
each ψ ∈ Irr(H|G′), the numbers of complex irreducible characters of degree
p (χ ∈ Irr(p)) such that Q(χ) = Q(ζp) and Q(χ) = Q(ζp2 ) are (p2 − p)/p = p − 1
and (p3 − p2)/p = p2 − p, respectively. Thus, there are (p − 1)/φ(p) = 1 Galois
conjugacy classes over Q of size φ(p), and (p2 − p)/φ(p2) = 1 Galois conjugacy
classes overQ of size φ(p2) in Irr(p)(G). We get similar results for G = Φ3(211)bν.
This completes the proof of part (2) of Proposition 59. �

Now, we prove Theorem 3, which provides the Wedderburn decomposition of QG,
where G is a p-group (odd prime p) of order p4 of nilpotency class 3.

PROOF OF THEOREM 3. Observe that G ∈ Φ3. Suppose χ ∈ nl(G) and H is the unique
abelian subgroup of G. Then from Lemma 57, there exists ψ ∈ Irr(H|G′) such that
χ = ψG, and if ψ ∈ Irr(H|G′), then ψG ∈ nl(G). Now by Theorem 58, Q(χ) = Q(ψ).
Observe that χσ = (ψσ)G, where σ ∈ Gal(Q(χ)/Q) and there are exactly p distinct
conjugates ψ ∈ Irr(H|G′) such that χ = ψG (see the proof of Lemma 57). Let X
and Y be the representative sets of distinct Galois conjugacy classes of Irr(G) and
Irr(H), respectively. Let d be a divisor of exp(H) such that Q(χ) = Q(ψ) = Q(ζd). Set
m = exp(H) and m′ = exp(H/G′). Then we have two cases.

Case 1 (d | m but d � m′). In this case,

|{χ ∈ X : χ(1) = p,Q(χ) = Q(ζd)}| = 1
p
|{ψ ∈ Y : ψ ∈ Irr(H|G′), Q(ψ) = Q(ζd)}|

=
ad

p
,

where ad denotes the number of cyclic subgroups of order d of H (see Lemma 31).

Case 2 (d | m and d | m′). In this case,

|{χ ∈ X : χ(1) = p,Q(χ) = Q(ζd)}| = 1
p
|{ψ ∈ Y : ψ ∈ Irr(H|G′), Q(ψ) = Q(ζd)}|

=
ad − a′d

p
,

where ad and a′d denote the numbers of cyclic subgroups of order d of H and H/G′,
respectively (see Lemma 31).

Now, let AQ(χ) be the simple component of the Wedderburn decomposition of
QG corresponding to the rational representation of G that affords the character Ω(χ).
Then AQ(χ) � Mn(D) for some n ∈ N and a division ring D. Observe that n = p and
D = Q(χ) (see Lemma 8). Therefore, all the irreducible rational representations of G
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whose kernels do not contain G′ contribute
⊕

d|m,d�m′

ad

p
Mp(Q(ζd))

⊕
d|m,d|m′

ad − a′d
p

Mp(Q(ζd))

in the Wedderburn decomposition of QG. This completes the proof of Theorem 3. �

Corollary 60 immediately follows from Theorem 3.

COROLLARY 60. Suppose G is a nonabelian p-group (p ≥ 5) of order p4 in Φ3.

(1) If G = Φ3(211)a or Φ3(14), then

QG � Q
⊕

(p + 1)Q(ζp)
⊕

(p + 1)Mp(Q(ζp)).

(2) If G = Φ3(211)br (r = 1, ν), then

QG � Q
⊕

(p + 1)Q(ζp)
⊕

Mp(Q(ζp))
⊕

Mp(Q(ζp2 )).

REMARK 61. For p = 3, let G ∈ Φ3. For G = Φ3(211)b1,

QG � Q
⊕

4Q(ζ3)
⊕

4M3(Q(ζ3)).

Additionally, for G = Φ3(14) or Φ3(211)a or Φ3(211)b2,

QG � Q
⊕

4Q(ζ3)
⊕

M3(Q(ζ3))
⊕

M3(Q(ζ9)).

We end this subsection with the following remark.

REMARK 62. It is well known that if G is a 2-group of maximal class, then G is
isomorphic to one of the following: a dihedral group, a semi-dihedral group or a
generalized quaternion group. Let G be a 2-group of order 16 of maximal class (that
is, of nilpotency class 3). Then G has two inequivalent irreducible two-dimensional
faithful complex representations and one irreducible two-dimensional nonfaithful
complex representation. Observe that the irreducible two-dimensional nonfaithful
complex representation of G is realizable overQ. From Lemma 18, one can compute an
irreducible rational matrix representation of G that affords the character Ω(χ), where
χ ∈ FIrr(G).
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