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1. Introduction. By a quasi-permutation matrix we mean a square matrix over
the complex ®eld C with non-negative integral trace. Thus every permutation matrix
over C is a quasi-permutation matrix. For a given ®nite group G, let p�G� denote the
minimal degree of a faithful permutation representation of G (or a faithful repre-
sentation of G by permutation matrices), let q�G� denote the minimal degree of a
faithful representation of G by quasi-permutation matrices over the rational ®eld Q,
and let c�G� be the minimal degree of a faithful representation of G by complex
quasi-permutation matrices. See [1].

By a rational valued character we mean a character � corresponding to a com-
plex representation of G such that ��g� 2 Q for all g 2 G. As the values of the char-
acter of a complex representation are algebraic numbers, a rational valued character
is in fact integer valued. A quasi-permutation representation of G is then simply a
complex representation of G whose character values are rational and non-negative.
The module of such a representation will be called a quasi-permutation module. We
will call a homomorphism from G to GL�n;Q� a rational representation of G and its
corresponding character will be called a rational character of G. Let r�G� denote the
minimal degree of a faithful rational valued character of G. It is easy to see that

r�G� � c�G� � q�G� � p�G�

where G is a ®nite group.
Let SL�m; q� denote the group of all m�m matrices with determinant 1 over the

®eld of q elements where q is a power of a prime p and PSL�m; q� � G=Z�G� where
G � SL�m; q�. We will apply the algorithms we developed in [1] to the groups
SL�2; q� and PSL�2; q�. We will show that lim

q!1
c�G�
r�G� � 1, where G � PSL�2; q�. The

quantities p�G� for the ®nite simple groups are known and can be found in [5].

2. Algorithm for p(G), c(G) and q(G).

Lemma 2.1. Let G be a ®nite group with a unique minimal normal subgroup. Then
p�G� is the smallest index of a subgroup with trivial core (that is, containing no non-
trivial normal subgroup).

Proof. See [1, Corollary 2.4].

Definition 2.2. Let � be a character of G such that, for all g 2 G; ��g� 2 Q and
��g� � 0. Then we say that � is a non-negative rational valued character.

Notation. Let ÿ��� be the Galois group of Q��� over Q.
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Definition 2.3 Let G be a ®nite group. Let � be an irreducible complex char-
acter of G. Then de®ne

�1� d��� � ÿ����� ����1�;
�2� m��� � 0 if� � 1G

min ��2ÿ������g� : g 2 G
� 	�� �� otherwise;

�

�3� c��� � ��2ÿ����� �m���1G:

Corollary 2.4. Let � 2 Irr�G�. Then ��2ÿ����� is a rational valued character of
G. Moreover c��� is a non-negative rational valued character of G and c����1� �
d��� �m���.

Proof. See [1, Corollary 3.7].

Now we will give algorithms for calculating c�G� and q�G� where G is a ®nite
group with a unique minimal normal subgroup.

Lemma 2.5. Let G be a ®nite group with a unique minimal normal subgroup. Then

�1� c�G� � min c����1� : � is a faithful irreducible complex character of G
� 	

;

�2� q�G� � min mQ���c����1� : � is a faithful irreducible complex character of G
� 	

:

Proof. See [1, Corollary 3.11].

Lemma 2.6. Let � 2 Irr�G�; � 6� 1G. Then c����1� � d��� � 1 � ��1� � 1.

Proof. From De®nition 2.3 it follows that c����1� is a non-negative rational
valued character of G so, by [1, Lemma 3.2], m��� � 1. Now the result follows from
De®nition 2.3.

Lemma 2.7. Let � 2 Irr�G�. Then

�1� c����1� � d��� � ��1�;

�2� c����1� � 2d���:

Equality occurs if and only if Z���=ker� is of even order.

Proof. (1) follows from the de®nition of c����1� and d���.
(2) See [1, Lemma 3.13].
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Lemma 2.8. Let G be a ®nite group. If the Schur index of each non-principal
irreducible character is equal to m, then q�G� � mc�G�.

Proof. See [1, Corollary 3.15].

3. Permutation representations.

Theorem 3.1. Let G � PSL�2; q�, where q � pn. Then G contains only the fol-
lowing subgroups:

(1) elementary abelian p-groups of each order dividing q;
(2) cyclic groups of each order l with l

�� q�1
k where k � �qÿ 1; 2�;

(3) dihedral groups of each order 2l with l as in (2);
(4) alternating group A4 for p > 2 or p � 2 and n � 0 (mod 2);
(5) symmetric group S4 for q

2 ÿ 1 � 0 (mod 16);
(6) alternating group A5 for p � 5 or q2 ÿ 1 � 0 (mod 5);
(7) semidirect products of an elementary abelian group of order pm and a cyclic

group of order t for each m; 1 � m � n, and each t such that t pm ÿ 1 and t
�� ��qÿ 1;

(8) the groups PSL�2; pm� for any m such that m nj and PGL�2; pm� for any m such
that 2mjn.

Proof. See [3, p. 213].

Lemma 3.2. Every proper normal subgroup of G � SL�m;K� is in Z�G� except
when m � 2 and Kj j � 2 or 3.

Proof. Let N / G, let Z � Z�G� and let N �j Z. Since G=Z � PSL�n;K�, so G=Z
is a simple group by [3, p. 182].

Now consider NZ. It is a normal subgroup of G and 1 6� NZ=Z / G=Z. Since
G=Z is simple, NZ � G. And G=N � NZ=N � Z=Z \N, so G=N is abelian. Hence
N � G0 and by [3, p. 181] we have G0 � G except when m � 2 and Kj j � 2 or 3.
Therefore N � G. Hence the result follows.

Lemma 3.3. Let G � SL�2;K� and char�K� 6� 2. Then G has a unique involution.

Proof. The proof is easy.

Corollary 3.4. Let G � SL�2;K� and char�K� 6� 2. Then Z�G� � �I2f g and
Z�G��� �� � 2. Moreover Z�G� is the unique minimal normal subgroup of G and the core
of any subgroup of even order is non-trivial.

Proof. By [3, p. 181] we know that Z�G� � �I2f g. Since G has a unique involution
so by Lemma 3.2 when q 6� 3 the unique minimal normal subgroup of G is Z�G�.

Now let q � 3. Since in this case the order of G is 24, any non-trivial subgroup
of G has order 3 or even order. If its order is 3, then in the notation of [2, 38.1] we
have two di�erent classes in which the elements have order 3 (namely c and d). Since
hci � hdi and also c and d are not conjugate, the subgroups of order 3 are not nor-
mal. When its order is even it contains an element of order two. Since G has a
unique involution, Z�G� is contained in such a subgroup. Therefore Z�G� is the
unique minimal normal subgroup of G.
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Lemma 3.5. Let G � SL�2; q� where q � pn is odd. Then the odd order subgroups
of G are as follows:

(1) cyclic subgroups of each odd order dividing q� 1;

(2) subgroups of odd order of T�2; q� � a b
0 aÿ1

� �
: a; b 2 Fq; a 6� 0

� �
, where Fq

is the ®nite ®eld of q elements (note that T�2; q��� �� � �qÿ 1�q).

Proof. Let H � G and let Z � Z�G�. Let Hj j be odd. We know that
ZH=Z � H=Z \H. Since Hj j is odd so Z \H � 1f g. But ZH=Z � G=Z. So odd
order subgroups of G are isomorphic to odd order subgroups of PSL�2; q�, and by
Theorem 3.1 the odd order subgroups are of type (1), (2) and (7). Since p is odd, in
Theorem 3.1 part (2), we have k � 2 and l q�1

2

��� . Hence l q� 1
�� . So G has cyclic

subgroups of each odd order dividing q� 1.
Now we want to prove that each odd order subgroup of type (7) in Theorem 3.1

is isomorphic to a subgroup of T � T�2; q�. In fact we will show that it is conjugate
to a subgroup of T.

Let H be an odd order subgroup of PSL�2; q� of type (7). Then H � L=Z where
L � G. Since the order of H is odd so L=Z

�� ��; Zj jÿ � � 1. So by Schur±Zassenhaus
[7, Theorem 10.30] we have L � Z� --- H1 where H1 � L and L=Z � H1. So H � H1.
Hence H1 � B� --- A where B is an elememtary abelian group pm and A is a cyclic
subgroup of order t such that t pm ÿ 1 and t

�� �� pn ÿ 1.

Let U � 1 b
0 1

� �
: b 2 Fq

� �
. Then U is a Sylow p-subgroup of G. By the Sylow

Theorem [7, 5.9] there exists g 2 G such that Bg � U. So Hg
1 � Bg � --- Ag. Now we

have to show that Hg
1 � T. Hence it is enough to prove that Ag � A1 � T. Let

� � a b
c d

� �
2 A1 and � � 1 �

0 1

� �
2 Bg and � 6� 0, Then ���ÿ1 2 Bg. But

���ÿ1 � 1ÿ ca� a2�
ÿc2� 1� ca�

� �
. So c2� � 0. Therefore c � 0, and � 2 T.

Case (1) is similar to (7).

Theorem 3.6. Let G � SL�2; q� where q is odd. Then

p�G� � �qÿ 1�2�q� 1�:

Proof. By Lemma 2.1 we have to ®nd a subgroup of G with maximal order and
trivial core, say H. If Hj j be even then by Corollary 3.4 its core is not trivial. So Hj j
is odd. Conversely by Corollary 3.4 every subgroup of odd order has trivial core.

We will use Lemma 3.5 frequently . Let q � 3 (mod 4), that is, qÿ1
2 � 1 (mod 2).

By Lemma 3.5 we have Hj j � q qÿ1
2

ÿ �
and p�G� � 2�q� 1�.

Let q � 1 (mod 4), that is, qÿ1
2 � 0 (mod 2) and q�1

2 � 1 (mod 2). But
q > q�1

2 > qÿ1
2 (as q � 3). Thus, the Sylow p-subgroup of G has order exceeding

that of any odd order subgroup of type (1). On the other hand, if
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H � a b
0 aÿ1

� �
: a; b 2 Fq; a

l � 1

� �
, where qÿ 1 � �qÿ 1�2l, then H is of type (2)

and of order ql which is maximal. Hence p�G� � �qÿ 1�2�q� 1�.

Lemma 3.7. Let G � SL�2; q� where q � 2n. Then SL�2; q� is a simple group when
n 6� 1, and when n � 1 it has a unique minimal normal subgroup, which has order 3.

Proof. See [3, p. 182].

Theorem 3.8. Let G � SL�2; q� where q � 2n. Then p�G� � q� 1.

Proof. We show that every proper subgroup H of G has order less than or equal
to q�qÿ 1�. Let pm � q and t � qÿ 1. Then by Theorem 3.1 a subgroup of type (7)
exists whose order is equal to q�qÿ 1�.

Let n � 1. Then Gj j � 6 and it has a subgroup of order 2 with trivial core and a
normal subgroup of order 3. So p�G� � 6

2 � 3.
Now let n 6� 1. Note that SL�2; 4��� �� � 60 and SL�2; 4� � A5. So subgroups of

type (6) cannot be considered when n � 2. We will use Theorem 3.1 frequently.
Subgroups of type (1), (2), (3), (7). By Theorem 3.1 part (1), (2), (3), (7) the

orders of such subgroups of G are less than or equal to q; q� 1; 2�q� 1� and
q�qÿ 1� respectively. But 2�q� 1� < q�qÿ 1� because q2 ÿ 3qÿ 2 > 0 when q � 4.
So among these subgroups of G the maximal order is q�qÿ 1�.

Subgroup of type (4). Let n � 2k, that is, q � 4k. Then G has a subgroup of
order 12 by Theorem 3.1 part (4). But q�qÿ 1� � 12 (as k � 1 and q � 4).

Subgroup of type (5). As q is a power of 2, 16 --j q2 ÿ 1. So S4 is not a subgroup
of G.

Subgroup of type (6). Let 22n � 1 (mod 5). Then by an earlier remark, we may
assume that n � 3. Further, if n � 3; 26 � 64 � ÿ1 (mod 5) so that we may assume
that n � 4. Now q � 24 � 16 and q�qÿ 1� � 16� 15 > A5j j � 60.

Subgroup of type (8). We will consider two di�erent cases.
Let mjn and 2m --j n, that is, n � m�2k� 1�. Theorem 3.1 part (8) implies that

PSL�2; 2m) is a subgroup of G, and PSL�2; 2m��� �� � �2m ÿ 1�2m�2m � 1�. We have

�2m ÿ 1��2m � 1� � �2mk ÿ 1��2mk � 1� � 22mk ÿ 1 � 2m�2k�1�ÿ1

so

�2m ÿ 1�2m�2m � 1� � 2m�2m�2k�1� ÿ 1� � 2m�2k�1��2m�2k�1� ÿ 1� � q�qÿ 1�:

Now let 2m j n. Then n � 2mk. We know that PGL�2; 2m��� �� � �2m ÿ 1�2m�2m � 1�
and �2m ÿ 1��2m � 1� � 22mk ÿ 1 so

�2m ÿ 1�2m�2m � 1� � 2m�22mk ÿ 1� � 22mk�22mk ÿ 1� � q�qÿ 1�:

Therefore in both cases �2m ÿ 1�2m�2m � 1� � q�qÿ 1�. Hence p�G� � q� 1.

Theorem 3.9. Let G � PSL�2; q� where q is odd. Then p�G� � q� 1 except when
q � 5; 7; 9; 11 and in these cases p�G� � 5; 7; 6; 11 respectively.
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Proof. When q � 5, the result follows from [3, II.8.27 and II.8.28] because G is
simple so that every non-trivial permutation representation is faithful.

When q � 3, G is isomorphic to the alternating group A4 of degree 4 in which a
Sylow 3-subgroup is core-free and of minimal index among such subgroups.

4. Quasi-permutation representations. We begin with a brief summary of facts
relevant to our treatment of the special linear and projective special linear groups.

Theorem 4.1. Let F be the ®nite ®eld of q � pn elements, p an odd prime, and let v
be a generator of the cyclic group of F� � Fÿ 0f g. Let

1 � 1 0
0 1

� �
; z � ÿ1 0

0 ÿ1
� �

; c � 1 0
1 1

� �
; d � 1 0

v 1

� �
; a � v 0

0 vÿ1

� �
in G � SL�2;F�. G contains an element b of order q� 1.

For any x 2 G, let �x� denote the conjugacy class of G containing x. Then G has
exactly q� 4 conjugacy classes (1), (z), (c), (d), (zc), (zd), (a), (a2),. . .,(a

qÿ3
2 ),

(b), (b2),. . .,(b
qÿ1
2 ), satisfying

for 1 � l � �qÿ 3�=2; 1 � m � �qÿ 1�=2.
Put " � �ÿ1��qÿ1�=2. Let � 2 C be a primitive �qÿ 1�-th root of 1; � 2 C a primi-

tive �q� 1�-th root of 1. Then the complex character table of G is

for 1 � i � �qÿ 3�=2; 1 � j � �qÿ 1�=2; 1 � l � �qÿ 3�=2; 1 � m � �qÿ 1�=2. (The
columns for the classes �zc� and �zd� are missing in this table. These values are obtained
from the relations

Table of Conjugacy Classes of SL(2,pn)

x 1 z c d zc zd al bm

�x�j j 1 1 1
2 �q2 ÿ 1� 1

2 �q2 ÿ 1� 1
2 �q2 ÿ 1� 1

2 �q2 ÿ 1� q�q� 1� q�qÿ 1�

Character Table of SL(2,pn)

1 z c d al bm

1G 1 1 1 1 1 1

 q q 0 0 1 ÿ1
�i q� 1 �ÿ1�i�q� 1� 1 1 �il � �ÿil 0

�j qÿ 1 �ÿ1�j�qÿ 1� ÿ1 ÿ1 0 ÿ��jm � �ÿjm�
�1

1
2 �q� 1� 1

2 "�q� 1� 1
2 �1�

�����
"q
p � 1

2 �1ÿ
�����
"q
p � �ÿ1�l 0

�2
1
2 �q� 1� 1

2 "�q� 1� 1
2 �1ÿ

�����
"q
p � 1

2 �1�
�����
"q
p � �ÿ1�l 0

�1
1
2 �qÿ 1� ÿ1

2 "�qÿ 1� 1
2 �ÿ1�

�����
"q
p � 1

2 �ÿ1ÿ
�����
"q
p � 0 �ÿ1�m�1

�2
1
2 �qÿ 1� ÿ 1

2 "�qÿ 1� 1
2 �ÿ1ÿ

�����
"q
p � 1

2 �ÿ1�
�����
"q
p � 0 �ÿ1�m�1
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��zc� � ��z�
��1���c�; ��zd� �

��z�
��1���d�;

for all irreducible characters � of G.)

Proof. See [2, 38.1].

Theorem 4.2. Let F be the ®nite ®eld of q � 2n elements, and let v be a generator
of the cyclic group F� � Fÿ 0f g. Let

1 � 1 0
0 1

� �
; c � 1 0

1 1

� �
; a � v 0

0 vÿ1

� �

in G � SL�2;F�. G contains an element b of order q� 1.
For any x 2 G, let �x� denote the conjugacy class of G containing x. Then G has

exactly q� 1 conjugacy classes �1�; �c�; �a�; �a2�; . . . ; �a�qÿ2�=2�; �b�; �b2�; . . . ; �bq=2�,
where

for 1 � l � �qÿ 2�=2; 1 � m � q=2.
Let � 2 C be a primitive �qÿ 1�-th root of 1. The table of G over C is

for 1� i � �qÿ 2�=2; 1 � j � q=2; 1 � l � �qÿ 2�=2; 1 � m � q=2.

Proof. See [2, 38.2].

Theorem 4.3. Let G � SL�2; q�. If q is a power of 2, then the Schur index of any
irreducible character of G over the rational numbers Q is 1. If q is a power of an odd
prime p, then the Schur indices of the irreducible characters of G over the rational
numbers Q are as follows:

Table of Conjugacy Classes of SL(2,2n)

x 1 c al bm

�x�j j 1 �q2 ÿ 1� q�q� 1� q�qÿ 1�

Character Table of SL(2,2n)

1 c al bm

1G 1 1 1 1
 q 0 1 ÿ1
�i q� 1 1 �il � �ÿil 0
�j qÿ 1 ÿ1 0 ÿ��jm � �ÿjm�
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Proof. See [8].

Lemma 4.4. Let G be a ®nite group and let N / G.
(1) Let � be a character of G. De®ne �̂�Ng� � ��g�. Then �̂ is a character of G=N.
(2) � 2 Irr�G=N� if and only if �̂ 2 Irr�G=N�.

Proof. See [4, 2.22].

Let � be a character of G and N a normal subgroup of G. As �̂�Ng� � ��g� for
all g 2 G, it is convenient to use the notation � in place of �̂ for this character of
G=N.

Theorem 4.5. All irreducible characters of PSL�2; q� have Schur index 1 over Q

The irreducible characters of PSL�2; q� where q is odd are:

�1� 1;  ; �2; �4; . . . ; �qÿ5
2

; �2; �4; . . . �qÿ1
2

; �1; �2 if q � 1 �mod 4�;

�2� 1;  ; �2; �4; . . . ; �qÿ3
2

; �2; �4; . . . ; �qÿ3
2

; �1; �2 if q � 3 �mod 4�:

Proof. Since PSL�2; q� � SL�2; q�=Z SL�2; q�� �, we can ®nd the irreducible char-
acters of PSL�2; q� from the non-faithful irreducible characters of SL�2; q� by using
Lemma 4.4.

Lemma 4.6. If G � SL�2; q� where q is odd, and if � is a faithful irreducible
character of G, then m��� � 2d���. It follows that

c�G� � 2min d��� : � 2 Irr�G�; � faithful
� 	

;

q�G� � 2min mQ���d��� : � 2 Irr�G�; � faithful
� 	

:

Table of Schur Indices

q � 1 (mod 4) q � 3 (mod 4)

1G 1 1
 1 1
�i 2 (i odd) 2 (i odd)

1(i even) 1 (i even)
�j 2 (j odd) 2 (j odd)

1 (j even) 1 (j even)
�1 1 1
�2 1 1
�1 2 1
�2 2 1
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Proof. As � is faithful and z2 � 1; ��z� � ÿ��1�. Thus z 2 Z���=ker�. Therefore
Z���=ker� is of even order. Hence by Lemma 2.7, m��� � 2d���.

As G has a unique minimal normal subgroup by Corollary 2.5, the result follows
from Corollary 3.4.

Lemma 4.7. Let � be a primitive nth root of unity. Then � � �ÿ1 is rational if and
only if n � 1; 2; 3; 4; 6. The values which occur are as follows:

Proof. The result is clear for n � 1 or n � 2 so that we may assume that n � 3.
As x2 ÿ �� � �ÿ1�x� 1 � �xÿ ���xÿ �ÿ1�, the index Q��� : Q�� � �ÿ1�ÿ � � 2

unless � 2 Q, that is, unless n � 1 or 2. It follows that � � �ÿ1 2 Q if and only if
��n� � Q��� : Q� � � 2. Examination of the possibilities shows that ��n� � 2 if and
only if n � 3; 4 or 6.

Corollary 4.8. Let � be a primitive nth root of unity and m 2 Z. If � � �ÿ1 2 Q,
then so is �m � �ÿm.

Proof. This follows from Lemma 4.7.

Corollary 4.9. Let n � 2k and � be a primitive nth root of unity. Then � � �ÿ1 is
rational if and only if k � 1; 2; 3.

Proof. 2k � 1; 2; 3; 4; 6 by Lemma 4.7. So k � 1; 2; 3.

Corollary 4.10. Let � be a primitive nth root of unity. Let 1 � j � n. Then
�j � �ÿj is rational if and only if n � j; 2j; 3j; 4j; 6j; 32 j;

4
3 j;

6
5 j.

Proof. Let �j; n� denote the greatest common divisor of j and n. Write j � a�j; n�
and n � b� j; n� so that a and b are coprime and 0 < a

b � 1.
As � j is a primitive bth root of unity, Lemma 4.7 shows that � j � �ÿj is rational

if and only if b � 1; 2; 3; 4 or 6. For these values of b, the corresponding possibilities
for a

b are 1,
1
2,

1
3,

2
3,

1
4,

3
4,

1
6 and

5
6. As j � a

b n, the result follows.

Lemma 4.11. Let � be a primitive �q� 1�th root of unity and let q � pn where p is
an odd prime. Suppose that q � 7�mod 8� and that j � 1; 3; . . . ; qÿ12 . Then �j � �ÿj is
not rational.

Proof. Suppose that �j � �ÿj 2 Q. As 1 � j � qÿ1
2 , Corollary 4.10 implies that

j � q�1
d for d � 3; 4 or 6. By hypothesis, 8 q� 1

�� so that q�1
d is even for d � 3; 4 or 6.

This contradicts the assumption that j is odd.

Lemma 4.12. Let q be a power of an odd prime. Let � be a primitive �q� 1�th root

of unity. If q � 3�mod 8� and l is a positive integer, then �
q�1
4 l � �ÿ

q�1
4 l is rational.

n 1 2 3 4 6

� � �ÿ1 2 ÿ2 ÿ1 0 1
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Proof. This follows from Corollary 4.10 and Corollary 4.8.

Corollary 4.13. Let G � SL�2; q� where q is odd. If q � 3�mod 8� then �q�1
4

is a
faithful irreducible rational valued character.

Proof. This follows from Lemma 4.12 and the character table of G.

Theorem 4.14. Let G � SL�2; q� where q � pn is odd. If q � 1 (mod 4) then

q�G� � 2c�G� � 2�qÿ 1� if n is even
4�qÿ 1� otherwise

:

�

If q � 3 (mod 4) then

c�G� � 2�q� 1� if q � 7�mod 8�
2�qÿ 1� if q � 3�mod 8�

�

and

q�G� � 2�q� 1�:

Proof. By Lemma 4.6 we need to look at each faithful irreducible character �,
say, and calculate d���.

By Lemma 2.7(1) we have

d��i� � q� 1:

d��j� � ÿj

�� ���qÿ 1� � qÿ 1 where ÿj � ÿ Q��j� : Q
ÿ �

. Hence d��j� � qÿ 1. But by

Lemma 4.11 we can sharpen this inequality when q � 7 (mod 8) and j � 1; 3; . . . ; qÿ12
as ÿj

�� �� � 2. So in this case d��j� � 2�qÿ 1�. Also, when q � 3 (mod 8), then q�1
4 is odd

and 1 � q�1
4 � qÿ1

2 so by Corollary 4.13 the character �q�1
4

is an irreducible rational

valued character. Therefore ÿq�1
4

���� ���� � 1 and d��q�1
4

� � qÿ 1.

d��1� � d��2� � 1
2 ÿ�
�� ���q� 1� where ÿ� � ÿ Q��1� : Q� � � ÿ Q��2� : Q� �:

d��1� � d��2� � 1
2 ÿ�
�� ���qÿ 1� where ÿ� � ÿ Q��1� : Q� � � ÿ Q��2� : Q� �:

Moreover

ÿ�
�� �� � ÿ�

�� �� � 1 if n is even and " � 1
2 otherwise:

�
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First let q � 1 mod 4. Then by [2, 38.1] we have " � 1. Hence the faithful irreducible
characters are �1; �2; �1; �3; . . . ; �qÿ3

2

; �1; �3; . . . ; �qÿ3
2

. Also by [8] the Schur index for

each faithful irreducible character is equal to 2 so by Lemma 2.8 we have
q�G� � 2c�G�.

For n even we have d��1� � d��2� � 1
2 �qÿ 1� and this is the minimal value.

For n odd we have d��1� � d��2� � qÿ 1.
Next let q � 3 (mod 4). Then by [2, 38.1] we have " � ÿ1. Hence the faithful

irreducible characters are �1; �2; �1; �3; . . . ; �qÿ5
2

; �1; �3; . . . ; �qÿ1
2

.

In this case d��1� � d��2� � q� 1 and mQ��1� � mQ��2� � 1.
Finally, note that, when q � 3 (mod 8), �q�1

4

is rational valued and d��q�1
4

� �
qÿ 1, the minimal value. When q � 7 (mod 8), then by Lemma 4.11, the minimal
value is achieved by �1 as 2�qÿ 1� � q� 1.

An overall picture is provided by the tables, compiled using Lemma 4.6, [2, 38.1]
for the Schur indices and the preceding arguments.

Lemma 4.15. Let G � SL�2; 2�. Then

d� � � 2;
c� ��1� � 3;

q�G� � c�G� � 3:

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma
2.8 we have c�G� � q�G�.

Since the only faithful irreducible character of G is  , the result follows.

q �1 (mod 4) �3 (mod 4)

q n even n odd �3 (mod 8) �7 (mod 8)
d��i� � q� 1 � q� 1 � q� 1 � q� 1
d��j� � qÿ 1 � qÿ 1 � qÿ 1 � 2�qÿ 1�
d��1� not faithful not faithful q� 1 q� 1
d��1� 1

2 �qÿ 1� qÿ 1 not faithful not faithful
c�G� qÿ 1 2�qÿ 1� 2�qÿ 1� 2�q� 1�

q �1 (mod 4) �3 (mod 4)

q n even n odd �3 (mod 8) �7 (mod 8)
mQ��i�d��i� � 2�q� 1� � 2�q� 1� � 2�q� 1� � 2�q� 1�
mQ��j�d��j� � 2�qÿ 1� � 2�qÿ 1� � 2�qÿ 1� � 4�qÿ 1�
mQ��1�d��1� not faithful not faithful q� 1 q� 1
mQ��1�d��1� �qÿ 1� 2�qÿ 1� not faithful not faithful

q�G� 2�qÿ 1� 4�qÿ 1� 2�q� 1� 2�q� 1�
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Lemma 4.16. Let G � SL�2; q� where q � 2n and n � 2. Then for each j; 1 � j � q
2

�1� �j is rational if and only if q � ÿ1�mod 3� and j � q�1
3 ;

�2� d��j� � qÿ 1; and equality holds if �j is rational;

�3� c��j��1� � q� 1; and equality holds if �j is rational:

Proof. As 1 � j � q
2 <

q�1
2 and as � is a primitive �q� 1�th root of unity, Cor-

ollaries 4.10 and 4.8 imply that �j is rational if and only if j � q�1
6 ; q�14 ; q�13 . Since

q� 1 is odd, q�1
6 and q�1

4 are not integers. Thus, �j � �ÿj 2 Q if and only if 3 �q� 1���
and j � q�1

3 . This proves (1).

If �j is not rational, then ÿj j � 2 where ÿ � ÿ Q��j� : Q
ÿ �

so that c��j��1� �
d��j� � 2�qÿ 1� > q� 1 by Lemma 2.7. On the other hand if 3 �q� 1��� , then 8 � q so
that 3 � q

2; but �q�1
3

�b3� � ÿ2 � �q�1
3

�g� for all g 2 G so that m
�
�q�1

3

�
� 2. Thus

d
�
�q�1

3

�
� qÿ 1 and c

�
�q�1

3

�
�1� � q� 1. This completes the proofs of (2) and (3).

Since PSL�2; 2n� � SL�2; 2n�, we will calculate c�G� and q�G� for SL�2; 2n�.

Theorem 4.17. Let G � SL�2; q� where q � 2n. Then

c�G� � q�G� � q� 1:

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma
2.8 we have c�G� � q�G�.

(a) Let q � 2. Then by Lemma 4.15, c�G� � q�G� � 3.
(b) Lemma 2.7(1) shows that d��i� � q� 1, while Lemma 4.16 has dealt with �j.

The values are set out in the following tables.

Table (1)

q 2 �ÿ1 (mod 3) otherwise

d� � 2 q q
d��i� no �i exists � q� 1 � q� 1

d��j��1� not faithful � qÿ 1 > qÿ 1

q 2 �ÿ1 (mod 3) otherwise

c� ��1� 3 q� 1 q� 1
c��i��1� no �i exists � q� 1 � q� 1
c��j��1� not faithful � q� 1 > q� 1
c�G� 3 q� 1 q� 1
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The next result concerns the groups PSL�2; q� for q odd. Aside from the case
q � 3, these groups are simple so that their non-trivial irreducible characters are
faithful. As explained in Lemma 4.4, the characters of PSL�2; q� are obtained from
those of SL�2; q� and we will use the names of its characters as given in [2, 38.1] in
what follows.

Lemma 4.18. Let G � PSL�2; q� where q � pn and q is odd. Let n be odd and
q 62 C � 3; 5; 7; 11f g. Then c��j��1� � q� 1 for j; 0 � j � qÿ1

2 .

Proof. If �j is not rational valued, then ÿj j � 2;ÿ � ÿ Q��j� : Q
ÿ �

, so that
c��j��1� � d��j� � ÿj j�j�1� � 2�qÿ 1� � q� 1.

If it is rational valued, then, by Lemma 4.10, j � q�1
d for d � 3, 4 or 6 and

�j� �bd� � ÿ2 where �b denotes the image of b in PSL�2; q�. As q > 11; bd 6� z so that
m��j� � 2 and c��j��1� � qÿ 1� 2 � q� 1.

Theorem 4.19. Let G � PSL�2; q� where q � pn is odd. Then

�1� c�G� � q�G� �
1
2 q� ���

q
pÿ �

if n is even;
q� 1 otherwise;

�

if q 62 5; 7; 11f g;

�2� c�G� � q�G� � 5; 7; 11 if q � 5; 7; 11; respectively:

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma
2.8 we have c�G� � q�G�.

By [8],  is an irreducible rational valued character of G. So

c� ��1� � q� 1:

From Lemma 2.7(1), for all i,

c��i��1� � q� 1:

That c��j��1� � q� 1 for all j was shown in Lemma 4.18.
Let q 62 3; 5; 7; 11f g. If q � 1 (mod 4) then, by [8],

c��1��1� � c��2��1� �
q�1
2 �

��
q
p ÿ1

2 �
q� ��

q
p
2 if n even;

q� 3 otherwise:

�

If q � 3 mod 4 then " � ÿ1 and, by [8],

c��1��1� � c��2��1� � q� 1:
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As q� 2 � ���
q
p
; q� 1 � q� ��

q
p
2 . This establishes (1) as can be seen in the summary

tables which follow.

Now let q 2 3; 5; 7; 11f g. We will show that when q 2 5; 7; 11f g then c��j��1� � q
and this value is minimal. From Lemma 2.7(1) we have

Let q � 3. Then  ; �1 and �2 are the faithful irreducible characters of G. Note
that d��1� � d��2� � 2 and m��1� � m��2� � 2. Therefore c�G� � 4.

Let q � 5. Then the irreducible characters of G are  ; �2; �1 and �2. Here �2 is
rational valued. Also m��2� � 1 so c��2��1� � 5. Therefore c�G� � 5.

Let q � 7. Then the irreducible characters of G are  ; �2; �2; �1 and �2. But
m��2� � 1 so c��2��1� � 7. Also by Lemma 2.6 we have c��1��1� � c��2��1� � 7.
Therefore c�G� � 7.

Table (2)

q 62 3; 5; 7; 11f g
q �1 (mod 4) �3 (mod 4)

q n even n odd �3 (mod 8) �7 (mod 8)
d� � q q q q
d��i� � q� 1 � q� 1 � q� 1 > q� 1
d��j� � qÿ 1 � qÿ 1 � qÿ 1 � qÿ 1

d��1� 1
2 �q� 1� q� 1 no �1 exsists no �1 exists

d��1� no �1 exists no �1 exists qÿ 1 qÿ 1

q 62 3; 5; 7; 11f g
q �1 (mod 4) �3 (mod 4)

q n even n odd �3 (mod 8) �7 (mod 8)
c� ��1� q� 1 q� 1 q� 1 q� 1
c��i��1� � q� 1 � q� 1 � q� 1 � q� 1
c��j��1� � q� 1 � q� 1 � q� 1 � q� 1

c��1��1� q� ��qp
2 q� 3 no �1 exists no �1 exists

c��1��1� no �1 exists no �1 exists q� 1 q� 1

c�G� q� ��qp
2 q� 1 q� 1 q� 1

Table (3)

q 3 5 7 11

d� � 3 5 7 11
d��i� no �i exists no �i exists �8 �12
d��j� no �j exists 4 6 10
d��1� no �1 exists 6 no �1 exists no �1 exists
d��1� 2 no �1 exists 6 10
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Let q � 11. Then the irreducible characters of G are  ; �1; �4; �2; �4; �1 and �2.
But m��2� � 1 so c��2��1� � 11. Also by Lemma 2.6 we have c��4��1� � 11 and
c��1��1� � c��2��1� � 11. Therefore c�G� � 11.

5. Rational valued characters.

Lemma 5.1. Let G be a ®nite group. Let G have a unique minimal normal sub-
group. Then

r�G� � min d��� : � is a faithful irreducible character of G
� 	

:

Proof. Let � 2 Irr�G�. Then ��2ÿ�
�, where ÿ � ÿ Q��� : Q� � is an irreducible

rational valued character by [4. Corollary 10.2].
Let � be a faithful rational valued character such that r�G� � ��1�. Since G has a

unique minimal normal subgroup, there exists a faithful irreducible character, say �,
such that �; �� � 6� 0. So � � ��2ÿ�

� �  , for some rational valued character  .
Hence ��1� � ��2ÿ�

��1� � d���. So r�G� � d���.

Lemma 5.2. Let G � SL�2; q� where q is odd. Then c�G�
r�G� � 2.

Proof. This follows from Corollary 4.6.

Lemma 5.3. Let G � SL�2; q� � PSL�2; q� where q � 2n. Then

r�G� � qÿ 1 if q � ÿ1�mod 3� and n > 1;
q otherwise:

�

Proof. This follows from Table (1) and Lemma 4.16.

Lemma 5.4. Let G � PSL�2; q� where q is odd, q � pn.

(1) If q � 3�mod 4�, then r�G� � qÿ 1.
(2) If q � 1�mod 4�; then

r�G� �
1
2 �q� 1� if n is even;
qÿ 1 if n is odd and q � ÿ1�mod 3�;
q otherwise:

8<:
Proof. This follows from Tables (2) and (3) except for the case q � 1�mod 4� and

n odd. In this case, d��j� � qÿ 1 for 1 � j � qÿ1
2 ; j even. Thus, using Corollaries 4.10

and 4.8, we see that r�G� � qÿ 1 precisely when one of q�1
d ; d � 3; 4 or 6, is an even

integer. As q � 1�mod 4� neither d � 4 nor d � 6 is possible. But q�1
3 is an even

integer if and only if q � ÿ1�mod 3�.

Theorem 5.5. Let G � PSL�2; q�. Then

lim
q!1

c�G�
r�G� � 1
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Proof. Let G � PSL�2; q� where q � 2n. Then G � SL�2; q�. By Lemma 5.3 we
have qÿ 1 � r�G� � q. Also by Theorem 4.17 we have c�G� � q� 1 for q 6� 2. Hence
q�1
q � c�G�

r�G� � q�1
qÿ1.

Let G � PSL�2; q� where q is odd. By Lemma 5.4 we have r�G� � 1
2 �qÿ 1� if n is

even; otherwise qÿ 1 � r�G� � q. By Theorem 4.19 we have c�G�
r�G� �

q� ��
q
p

qÿ1 if n is even;

otherwise q�1
q � c�G�

r�G� � q�1
qÿ1. Hence in all cases q�1

q � c���
r��� �

q� ��
q
p

qÿ1 and so lim
q!1

c�G�
r�G� � 1.
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