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1. Introduction. By a quasi-permutation matrix we mean a square matrix over
the complex field C with non-negative integral trace. Thus every permutation matrix
over C is a quasi-permutation matrix. For a given finite group G, let p(G) denote the
minimal degree of a faithful permutation representation of G (or a faithful repre-
sentation of G by permutation matrices), let ¢(G) denote the minimal degree of a
faithful representation of G by quasi-permutation matrices over the rational field Q,
and let ¢(G) be the minimal degree of a faithful representation of G by complex
quasi-permutation matrices. See [1].

By a rational valued character we mean a character y corresponding to a com-
plex representation of G such that x(g) € Q for all g € G. As the values of the char-
acter of a complex representation are algebraic numbers, a rational valued character
is in fact integer valued. A quasi-permutation representation of G is then simply a
complex representation of G whose character values are rational and non-negative.
The module of such a representation will be called a quasi-permutation module. We
will call a homomorphism from G to GL(n, Q) a rational representation of G and its
corresponding character will be called a rational character of G. Let r(G) denote the
minimal degree of a faithful rational valued character of G. It is easy to see that

1(G) = ¢(G) = ¢4(G) = p(G)

where G is a finite group.

Let SL(m, g) denote the group of all m x m matrices with determinant 1 over the
field of ¢ elements where ¢ is a power of a prime p and PSL(m, q¢) = G/Z(G) where
G = SL(m, q). We will apply the algorithms we developed in [1] to the groups

SL(2,q) and PSL(2, q). We will show that lim % =1, where G = PSL(2, gq). The
q—00

quantities p(G) for the finite simple groups are known and can be found in [5].

2. Algorithm for p(G), ¢(G) and ¢(G).

LeEmMA 2.1. Let G be a finite group with a unique minimal normal subgroup. Then
p(G) is the smallest index of a subgroup with trivial core (that is, containing no non-
trivial normal subgroup ).

Proof. See [1, Corollary 2.4].

DEerFINITION 2.2. Let x be a character of G such that, for all g € G, x(g) € Q and
x(g) > 0. Then we say that x is a non-negative rational valued character.

NotaTIOoN. Let T'(x) be the Galois group of Q(x) over Q.
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DEFINITION 2.3 Let G be a finite group. Let x be an irreducible complex char-
acter of G. Then define

(1) d(x) = [TGO|x(D),

5 _fo ifx=1g
(2) m() = |min{ Zeernx“(g) : g € G}| otherwise,

(3) c(x) = Baerpx™ +m(x)1c.

COROLLARY 2.4. Let x € Irr(G). Then Zyerx® is a rational valued character of
G. Moreover ¢(x) is a non-negative rational valued character of G and c(x)(1) =

d(x) + m(x).
Proof. See [1, Corollary 3.7].

Now we will give algorithms for calculating ¢(G) and ¢(G) where G is a finite
group with a unique minimal normal subgroup.

LEMMA 2.5. Let G be a finite group with a unique minimal normal subgroup. Then

(1) «(G)= min{c(X)(l) : x is a faithful irreducible complex character of G};

2) q(G) = min{m@( x)c(x)(1) : x is a faithful irreducible complex character of G }

Proof. See [1, Corollary 3.11].

LEMMA 2.6. Let x € Irr(G), x # 1. Then c(x)(1) > d(x) + 1 > x(1) + 1.

Proof. From Definition 2.3 it follows that ¢(x)(1) is a non-negative rational
valued character of G so, by [1, Lemma 3.2], m(x) > 1. Now the result follows from

Definition 2.3.

LeEmMA 2.7. Let x € Irr(G). Then
(1) G = d(x) = x(1);
(2) cGo) = 2d(x).

Equality occurs if and only if Z(x)/kerx is of even order.

Proof. (1) follows from the definition of ¢(x)(1) and d(x).
(2) See [1, Lemma 3.13].
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LEmMA 2.8. Let G be a finite group. If the Schur index of each non-principal
irreducible character is equal to m, then q(G) = mc(G).

Proof. See [1, Corollary 3.15].

3. Permutation representations.

THEOREM 3.1. Let G = PSL(2, q), where q = p". Then G contains only the fol-
lowing subgroups.

(1) elementary abelian p-groups of each order dividing g;

(2) cyclic groups of each order | with [ |qkil where k = (q — 1, 2);

(3) dihedral groups of each order 21 with l as in (2);

(4) alternating group A4 forp >2orp=2andn=0 (mod 2);

(5) symmetric group Sy for ¢ —1 =0 (mod 16);

(6) alternating group As for p=5or¢>—1=0 (mod 5);

(7) semidirect products of an elementary abelian group of order p™ and a cyclic
group of order 1 for each m,1 < m < n, and each t such that t|p™ — 1 and t|q — 1;

(8) the groups PSL(2, p™) for any m such that m|\n and PGL(2, p™) for any m such
that 2min.

Proof. See [3, p. 213].

LeEmMA 3.2. Every proper normal subgroup of G = SL(m, K) is in Z(G) except
when m = 2 and |K| = 2 or 3.

Proof. Let N« G, let Z = Z(G) and let N £ Z. Since G/Z = PSL(n, K), so G/Z
is a simple group by [3, p. 182].

Now consider NZ. It is a normal subgroup of G and 1 # NZ/Z < G/Z. Since
G/Z is simple, NZ=G. And G/N = NZ/N = Z/ZN N, so G/N is abelian. Hence
N > G’ and by [3, p. 181] we have G’ = G except when m =2 and |K| =2 or 3.
Therefore N = G. Hence the result follows.

LEmMMA 3.3. Let G = SL(2, K) and char(K) # 2. Then G has a unique involution.
Proof. The proof is easy.

COROLLARY 3.4. Let G = SL(2,K) and char(K) # 2. Then Z(G) = {x£L,} and
|Z(G)| = 2. Moreover Z(G) is the unique minimal normal subgroup of G and the core
of any subgroup of even order is non-trivial.

Proof. By [3, p. 181] we know that Z(G) = {£1,}. Since G has a unique involution
so by Lemma 3.2 when ¢ # 3 the unique minimal normal subgroup of G is Z(G).

Now let ¢ = 3. Since in this case the order of G is 24, any non-trivial subgroup
of G has order 3 or even order. If its order is 3, then in the notation of [2, 38.1] we
have two different classes in which the elements have order 3 (namely ¢ and d). Since
(¢) = (d) and also ¢ and d are not conjugate, the subgroups of order 3 are not nor-
mal. When its order is even it contains an element of order two. Since G has a
unique involution, Z(G) is contained in such a subgroup. Therefore Z(G) is the
unique minimal normal subgroup of G.
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LeEmMA 3.5. Let G = SL(2, q) where q = p" is odd. Then the odd order subgroups
of G are as follows:

(1) cyclic subgroups of each odd order dividing q + 1;

a b
0 a!

is the finite field of q elements (note that |T(2, q)| =(qg—1g).

(2) subgroups of odd order of T(2, q) = {( ) ra,beFy,a# O}, where F,

Proof. Let H<G and let Z=Z(G). Let |H| be odd. We know that
ZH/Z = H/ZNH. Since |H| is odd so ZNH={1}. But ZH/Z < G/Z. So odd
order subgroups of G are isomorphic to odd order subgroups of PSL(2, gq), and by
Theorem 3.1 the odd order subgroups are of type (1), (2) and (7). Since p is odd, in
Theorem 3.1 part (2), we have k =2 and l’ %1 Hence l{qﬂ: 1. So G has cyclic
subgroups of each odd order dividing ¢ £ 1.

Now we want to prove that each odd order subgroup of type (7) in Theorem 3.1
is isomorphic to a subgroup of T'= T(2, g). In fact we will show that it is conjugate
to a subgroup of 7.

Let H be an odd order subgroup of PSL(2, g) of type (7). Then H = L/Z where
L < G. Since the order of H is odd so (|L/Z , |Z|) = 1. So by Schur—Zassenhaus
[7, Theorem 10.30] we have L = Z x H| where Hy < L and L/Z = H,. So H = H,.
Hence H, = B x A where B is an elememtary abelian group p” and A4 is a cyclic
subgroup of order 7 such that 7|p™ — L and 7| p" — 1.

0 1

Theorem [7, 5.9] there exists g € G such that B¢ < U. So H = B¢ x A%. Now we
have to show that Hf < T. Hence it is enough to prove that 4% = A; < T. Let

Let U= {(1 b) b e Fq}. Then U is a Sylow p-subgroup of G. By the Sylow

g;(? Z>€A1 and ":<(1) /1\>€Bg and A #0, Then &ng~' e B But

_ 2
[ (l_cz)fak ‘fica/\). So ¢*A = 0. Therefore ¢ =0, and & € T.

Case (1) is similar to (7).

THEOREM 3.6. Let G = SL(2, q) where q is odd. Then

P(G) = (g — D)(g+1).

Proof. By Lemma 2.1 we have to find a subgroup of G with maximal order and
trivial core, say H. If | H| be even then by Corollary 3.4 its core is not trivial. So |H|
is odd. Conversely by Corollary 3.4 every subgroup of odd order has trivial core.

We will use Lemma 3.5 frequently . Let ¢ = 3 (mod 4), that is, % =1 (mod 2).
By Lemma 3.5 we have |H| = ¢(43%) and p(G) = 2(q + 1).

Let ¢g=1 (mod 4), that is, % =0 (mod 2) and %1 =1 (mod 2). But
q > qTH > q;—l (as g > 3). Thus, the Sylow p-subgroup of G has order exceeding
that of any odd order subgroup of type (1). On the other hand, if
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H= {<g Zl> ca,beFyd = 1}, where ¢ — 1 = (¢ — 1),/, then H is of type (2)

and of order ¢/ which is maximal. Hence p(G) = (¢ — 1),(g + 1).

LEmMMA 3.7. Let G = SL(2, q) where g = 2". Then SL(2, q) is a simple group when
n # 1, and when n = 1 it has a unique minimal normal subgroup, which has order 3.

Proof. See [3, p. 182].
THEOREM 3.8. Let G = SL(2, q) where g = 2". Then p(G) = q + 1.

Proof. We show that every proper subgroup H of G has order less than or equal
to g(q — 1). Let p" = g and t = ¢ — 1. Then by Theorem 3.1 a subgroup of type (7)
exists whose order is equal to ¢(qg — 1).

Let n = 1. Then |G| = 6 and it has a subgroup of order 2 with trivial core and a
normal subgroup of order 3. So p(G) =$ = 3.

Now let n # 1. Note that {SL(Z, 4)r: 60 and SL(2,4) = A4s. So subgroups of
type (6) cannot be considered when n = 2. We will use Theorem 3.1 frequently.

Subgroups of type (1), (2), (3), (7). By Theorem 3.1 part (1), (2), (3), (7) the
orders of such subgroups of G are less than or equal to ¢,g+1,2(¢% 1) and
g(q — 1) respectively. But 2(¢ + 1) < ¢(¢ — 1) because ¢> — 3¢ —2 > 0 when ¢ > 4.
So among these subgroups of G' the maximal order is g(g — 1).

Subgroup of type (4). Let n = 2k, that is, ¢ = 4. Then G has a subgroup of
order 12 by Theorem 3.1 part (4). But g(¢ — 1) > 12 (as k > 1 and ¢g > 4).

Subgroup of type (5). As ¢ is a power of 2, 16 t¢g> — 1. So Sy is not a subgroup

of G.
Subgroup of type (6). Let 2% = 1 (mod 5). Then by an earlier remark, we may
assume that n > 3. Further, if n = 3,2% = 64 = —1 (mod 5) so that we may assume

thatnz4.Nowq224= 16 and g(¢ — 1) > 16 x 15 > |A5| = 60.
Subgroup of type (8). We will consider two different cases.
Let m|n and 2m¢n, that is, n = m(2k + 1). Theorem 3.1 part (8) implies that
PSL(2,2™) is a subgroup of G, and ‘PSL(Z, 2’”)’ =™ —1)2"(2" 4+ 1). We have
(2171 _ 1)(2m + 1) < (2mk _ 1)(2)11k + 1) — 22mk -1 < 2111(2k+1)7l

SO
(2m _ 1)2;11(2171 + 1) < 2n7(2r71(2k+1) _ 1) < 2m(2k+1)(2m(2k+1) _ 1) — c](q _ 1)

Now let 2m | n. Then n = 2mk. We know that |PGL(2,2™)| = (2™ — 1)2"(2" + 1)
and (2m _ 1)(2;11 4 1) < 22mk _ 1 g0

(2m _ 1)2171(2m 4 1) < 2111(22mk _ 1) < 22mk(22mk _ 1) — q(q _ 1)

Therefore in both cases (2" — 1)2"(2" 4+ 1) < g(q¢ — 1). Hence p(G) = q + 1.

THEOREM 3.9. Let G = PSL(2, q) where q is odd. Then p(G) = q + 1 except when
q=>5,7,9, 11 and in these cases p(G) = 5,7, 6, 11 respectively.
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Proof. When ¢ > 5, the result follows from [3, 11.8.27 and I1.8.28] because G is
simple so that every non-trivial permutation representation is faithful.

When ¢ = 3, G is isomorphic to the alternating group 44 of degree 4 in which a
Sylow 3-subgroup is core-free and of minimal index among such subgroups.

4. Quasi-permutation representations. We begin with a brief summary of facts
relevant to our treatment of the special linear and projective special linear groups.

THEOREM 4.1. Let F be the finite field of ¢ = p" elements, p an odd prime, and let v
be a generator of the cyclic group of F* = F — {0}. Let

L (DO (=1 0 N (10 (10 (v O
=lo 1) =\o 1 )=1 1)9=\y 1)%= o !

in G = SL(2, F). G contains an element b of order q + 1.

For any x € G, let (x) denote the conjugacy class of G containing x. Then G has
exactly g+ 4 conjugacy classes (1), (z), (c¢), (d), (zc), (zd), (a), (az),...,(a?),
(b), (b?),....(b'T), satisfying

Table of Conjugacy Classes of SL(2,p")

x 1 z ¢ d ze zd d b

) 11 3F=-1) 3@P-1 3P-1) @ -1) qg+1) qlg—1)

for1 <l<(¢g—3)/2,1 <m=<(q-—1)/2.
Put e =(—=1)9"Y2. Let p € C be a primitive (¢ — 1)-th root of 1,0 € C a primi-
tive (q + 1)-th root of 1. Then the complex character table of G is

Character Table of SL(2,p™)

1 z c d a b"
lg 1 1 1 1 1 1
W q q 0 0 1 —1
xi g+1 (=D(qg+1) 1 1 o+ p 0
6 g—1 (=1Y(g—1) —1 —1 0 (o + o7m)
5+ de(g+l)  sO0+vE)) 3(1-vEg) (1) 0
&g+ felq+1)  f0-yE)  0+yEg) (-1 0
m3(g—1) —zelg—1) 3(-1+2q) 3(-1-eq) 0 (-1
m3(g—1) —zelg—1) 5(=1-&q) 5(=1+/q) 0 (-1

for 1<i<(q—3)/2,1<j<(q—1/2,1<1<(q—-3)/2,1<m=<(q—1)/2. (The
columns for the classes (zc) and (zd) are missing in this table. These values are obtained
from the relations
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x(2) _ x(@)
A XD =5

x(ze) =

x(d),

for all irreducible characters x of G.)

Proof. See [2, 38.1].

THEOREM 4.2. Let F be the finite field of ¢ = 2" elements, and let v be a generator
of the cyclic group F* = F — {0}. Let

L1 O (10 (v O
=lo 1)=\1 1)%= o !

in G = SL(2, F). G contains an element b of order q + 1.
For any x € G, let (x) denote the conjugacy class of G containing x. Then G has

exactly g+ 1 conjugacy classes (1),(c), (a), (@), ..., (@972 (b), (b, ..., (b7?),
where

Table of Conjugacy Classes of SL(2,2")

x 1 ¢ d b

[CoIN SN q(g+1) q(g—1)

Jor1 =1=<(¢g—-2)/2,1 =m=gq/2
Let p € C be a primitive (¢ — 1)-th root of 1. The table of G over C is

Character Table of SL(2,2")

1 ¢ a b
lo 1 1 1 |
v q 0 1 ~1
Xi q+1 1 pl 4 p 0
0 q—1 -1 0 — (o™ + o7Im)

Jor1<i<(q—2)/2,1<j<q/2,1<1<(g—2)/2,1 <m=<q/2.

Proof. See [2, 38.2].

THEOREM 4.3. Let G = SL(2, q). If q is a power of 2, then the Schur index of any
irreducible character of G over the rational numbers Q is 1. If q is a power of an odd

prime p, then the Schur indices of the irreducible characters of G over the rational
numbers Q are as follows:
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Table of Schur Indices

g =1 (mod 4) g = 3 (mod 4)
lg 1 1
¥ 1 1
Xi 2 (i odd) 2 (i odd)
1(i even) 1 (i even)
0; 2 (j odd) 2 (j odd)
1 (j even) 1 (j even)
& 1 1
& 1 1
m 2 1
m 2 1

Proof. See [8].

LeEmMA 4.4. Let G be a finite group and let N < G.
(1) Let x be a character of G. Define x(Ng) = x(g). Then x is a character of G/N.
(2) x € Irr(G/N) if and only if x € Irr(G/N).

Proof. See [4, 2.22].

Let x be a character of G and N a normal subgroup of G. As x(Ng) = x(g) for
all g € G, it is convenient to use the notation x in place of x for this character of

G/N.

THEOREM 4.5. All irreducible characters of PSL(2, q) have Schur index 1 over Q
The irreducible characters of PSL(2, q) where q is odd are:

5.02,04,...0,1,61,& if g =1 (mod 4);

(1) 19¢7X25X47""Xq; q—1
2 2

() LY, X200 Xds - s Xg=3: 02, 04, ..., O3, 1, 12 if ¢ = 3 (mod 4).
2 2

Proof. Since PSL(2, q) = SL(2, q)/Z(SL(2, q)), we can find the irreducible char-
acters of PSL(2, ¢q) from the non-faithful irreducible characters of SL(2, ¢) by using
Lemma 4.4.

LEmMMA 4.6. If G = SL(2, q) where q is odd, and if x is a faithful irreducible
character of G, then m(x) = 2d(x). It follows that

«(G) = 2min{d(x) : x € Irr(G), x faithful};

q(G) = 2min{ma(x)d(x) : x € Irr(G), x faithful}.
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Proof. As y is faithful and z2 = 1, x(z) = —x(1). Thus z € Z(x)/kery. Therefore
Z(x)/kery is of even order. Hence by Lemma 2.7, m(x) = 2d(y).

As G has a unique minimal normal subgroup by Corollary 2.5, the result follows
from Corollary 3.4.

LEMMA 4.7. Let & be a primitive nth root of unity. Then &+ &' is rational if and
onlyifn=1,2,3,4,6. The values which occur are as follows:

n 1 2 3 4 6
g4 ¢! 2 -2 -1 0 1

Proof. The result is clear for n = 1 or n = 2 so that we may assume that n > 3.

As X*—(E+E x4+ 1=(x—&(x—&"), the index (QF) :QE+£"))=2
unless £ € Q, that is, unless n = 1 or 2. It follows that £+ £ ! € Q if and only if
o(n) = (Q) : Q) = 2. Examination of the possibilities shows that ¢(n) = 2 if and
only if n = 3,4 or 6.

COROLLARY 4.8. Let & be a primitive nth root of unity and m € Z. If € + &' € Q,
then so is " + &7,

Proof. This follows from Lemma 4.7.

COROLLARY 4.9. Let n = 2k and & be a primitive nth root of unity. Then & + £ is
rational if and only if k =1, 2, 3.

Proof. 2k =1,2,3,4,6 by Lemma 4.7. So k =1, 2, 3.

COROLLARY 4.10. Let & be a primitive nth root of unity. Let 1 <j <n. Then
& + &7 is rational if and only if n = J, 2j, 3/, 4j, 6/, 3], %], ¢;.

Proof. Let (j, n) denote the greatest common divisor of j and n. Write j = a(j, n)
and n = b(j, n) so that a and b are coprime and 0 < § < I.

As &/ is a primitive bth root of unity, Lemma 4.7 shows that & + £~/ is rational
if and only if » = 1, 2, 3, 4 or 6. For these values of b, the corresponding possibilities
forgarel, 3,3, % 3 3 5 and % As j = ¢n, the result follows.

LeEmMA 4.11. Let o be a primitive (q 4+ 1)th root of unity and let ¢ = p”* where p is
an odd prime. Suppose that ¢ = T(mod 8) and that j=1,3, ..., % Then o/ + o7/ is
not rational.

Proof. Suppose that o/ +07 € Q. As 1 <j < %, Corollary 4.10 implies that
j= % for d = 3,4 or 6. By hypothesis, 8]q + 1 so that % is even for d = 3,4 or 6.
This contradicts the assumption that j is odd.

LEMMA 4.12. Let g be a power of an odd prime. Let & be a primitive (q + 1)th root
g+1 g+l
of unity. If ¢ = 3(mod 8) and [ is a positive integer, then & 4 Z~|— & 4 ! is rational.
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Proof. This follows from Corollary 4.10 and Corollary 4.8.

COROLLARY 4.13. Let G = SL(2, q) where q is odd. If ¢ = 3(mod 8) then 9q+1 isa
faithful irreducible rational valued character.

Proof. This follows from Lemma 4.12 and the character table of G.

THEOREM 4.14. Let G = SL(2, q) where ¢ = p" is odd. If ¢ =1 (mod 4) then

B _f2g—1) ifniseven
q(G) =2¢(G) = { 4q—1) otherwise

If q =3 (mod 4) then

_J2(q+1) ifg=T(mod )
«(G) = { 2Ag—1) if g =3(mod 8)

and

9(G) =2(q+1).

Proof. By Lemma 4.6 we need to look at each faithful irreducible character y,
say, and calculate d(y).
By Lemma 2.7(1) we have

d(xi) = q+ 1.

d6) = |Ij|(g—1) = g—1 where T';=T(Q(0)): Q). Hence d(6)>q¢— 1. But by
Lemma 4.11 we can sharpen this inequality when ¢ =7 (mod 8) and j = 1,3, ..., 474
as || > 2. So in this case d(6;) > 2(q — 1). Also, when ¢ = 3 (mod 8), then £ is odd

and 1 < "jl <= ! so by Corollary 4.13 the character 6441 is an irreducible rdtlonal

4

valued character. Therefore =1land d@y1) =g — 1.
4

Cott
4
d(€) = d(&) = 5|T¢|[(q + 1) where I's = I(@Q(§) : @) = T(Q(&) : Q).

d(m) = d(n2) = $|Ty|(¢ — 1) where T, = [(Q(m1) : @) = T(Q(n) : Q).
Moreover

1 ifnisevenande=1
|F‘§| - |F | - {2 otherwise.
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First let ¢ = 1 mod 4. Then by [2, 38.1] we have ¢ = 1. Hence the faithful irreducible

characters are 1y, 72, X1, X3 - - -

1Xﬁ791763"'
2

., 8,_3. Also by [8] the Schur index for

each faithful irreducible character is equal to 2 so by Lemma 2.8 we have

q(G) = 2¢(G).

For n even we have d(n) = d(n,) = %(q — 1) and this is the minimal value.
For n odd we have d(n,) = d(n) = q — 1.
Next let ¢ =3 (mod 4). Then by [2, 38.1] we have ¢ = —1. Hence the faithful

irreducible characters are &, &, x1, x3, - - -

’Xﬂa 915935 .
2

Oyt

2

In this case d(&)) = d(&) = ¢+ 1 and mg(&)) = mg(&) = 1.
Finally, note that, when ¢ =3 (mod 8), 6,4 is rational valued and d(6,+1) =

g — 1, the minimal value. When ¢ = 7 (mod 8),4then by Lemma 4.11, the migimal
value is achieved by & as 2(¢ — 1) > g + 1.

An overall picture is provided by the tables, compiled using Lemma 4.6, [2, 38.1]
for the Schur indices and the preceding arguments.

q =1 (mod 4) =3 (mod 4)

q n even n odd =3 (mod 8) =7 (mod 8)
d(xi) >q+1 >q+1 >q+1 >q+1
d(6;) zq—1 >q-1 >q-1 >2(q—1)
d(&)) not faithful not faithful q+1 q+1
d(n) Hg—=1) g—1 not faithful not faithful
c(G) g-—1 2(q—1) 2(g—1) 2(g+1)

q =1 (mod 4) =3 (mod 4)

q n even n odd =3 (mod 8) =7 (mod 8)
mao(x:)d(x:) >2(q+1) >2(q+1) >2(q+1) >2(q+1)
mg (6;)d(6)) >2(q—1) >2(q—1) >2(q—1) >4(q—1)
mq(&)d(&) not faithful not faithful q+1 q+1
mg(m)d(m) (g—1) 2(¢g-1) not faithful not faithful

q(G) 2(g—1) 4(g—1) 2(g+1) 2(g+1)

LeEmMA 4.15. Let G = SL(2,2). Then

d(y) = 2;
c(¥)(1) = 3;

q(G) = ¢(G) = 3.

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma

2.8 we have ¢(G) = ¢(G).

Since the only faithful irreducible character of G is v, the result follows.
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LEMMA 4.16. Let G = SL(2, q) where ¢ = 2" and n > 2. Then for each j,1 <j <4
(1) 6; is rational if and only if ¢ = —1(mod 3) and j = 4%,
(2) d6)) = q — 1, and equality holds if 0; is rational,

(3) c(6)(1) = q + 1, and equality holds if 6; is rational.

Proof. As 1 <j<%< % and as o is a primitive (¢ + 1)th root of unity, Cor-
ollaries 4.10 and 4.8 imply that 6; is rational if and only if j = %1%1% Since
g+ 1is odd, % and # are not integers. Thus, o/ + 07 € Q if and only if 3|(g + 1)
and j = q%l This proves (1).

If 6; is not rational, then |I'| =2 where I' =T'(Q(6)) : @) so that ¢(6;)(1) >
d®;) > 2(¢ — 1) > g+ 1 by Lemma 2.7. On the other hand if3|(q + 1), then 8 < ¢ so

that 3 <4; but 9L+1(b3) = —2 < 0441(g) for all g€ G so that m<0ﬂ> = 2. Thus
3 3 3

d(9(1+1) =¢q—1and c(é’qH)(l) = g + 1. This completes the proofs of (2) and (3).

3 3

Since PSL(2,2") = SL(2,2"), we will calculate ¢(G) and ¢(G) for SL(2, 2").
THEOREM 4.17. Let G = SL(2, q) where g = 2". Then

«G) =¢q(G)=q+1.

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma
2.8 we have ¢(G) = ¢(G).

(a) Let ¢ = 2. Then by Lemma 4.15, ¢(G) = ¢(G) = 3.
(b) Lemma 2.7(1) shows that d(x;) > ¢+ 1, while Lemma 4.16 has dealt with 6;.

The values are set out in the following tables.

Table (1)

q 2 =—1 (mod 3) otherwise
d(y) 2 q q
d(x:) no x; exists >q+1 >q+1

d(6,)(1) not faithful >q—1 >q—1
q 2 =—1 (mod 3) otherwise
c(¥)(1) 3 g+1 qg+1
c(xi)(1) no x; exists >q+1 >q+1
c(6)(1) not faithful >q+1 >q+1
c(G) 3 q+1 q+1
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The next result concerns the groups PSL(2, g) for ¢ odd. Aside from the case
q = 3, these groups are simple so that their non-trivial irreducible characters are
faithful. As explained in Lemma 4.4, the characters of PSL(2, q) are obtained from
those of SL(2, ¢) and we will use the names of its characters as given in [2, 38.1] in
what follows.

LEmMA 4.18. Let G = PSL(2, q) where q = p" and q is odd. Let n be odd and
q & C=13,57,11}. Then c(8)(1) = ¢+ 1 for j,0 < j < ",

Proof. If 6; is not rational valued, then |I'|>2,T'=T(Q(): Q), so that
c@)(1) = d©) = T'6;(1) = 2(¢ — 1) = ¢ + 1.

If it is rational valued, then, by Lemma 4.10, j = "+1 for d =3, 4 or 6 and
0; (bd) = —2 where b denotes the image of b in PSL(2, ¢). As g > 11,b% # z so that
m(@_) =2and c(0)(1)=g—14+2=q+1.

THEOREM 4.19. Let G = PSL(2, q) where g = p" is odd. Then

(1) «(G) = ¢(G) = {%(4+ﬂ) if n is even,

qg+1 otherwise,

ifq&{57 11}

2) «G)=q(G)=5,7,11ifqg=15,7,11, respectively.

Proof. From [8] the Schur index of each irreducible character is 1. So by Lemma
2.8 we have ¢(G) = ¢(G).
By [8], ¥ is an irreducible rational valued character of G. So

cPp)) =g+ 1

From Lemma 2.7(1), for all i,

c(x)(l) =g+ 1.

That ¢(6;)(1) = ¢ + 1 for all j was shown in Lemma 4.18.
Let ¢ ¢ {3,5,7,11}. If ¢ = 1 (mod 4) then, by [8],

c&)(1) = c(&)(1) = { £l 4 Y7L = ST if peven,

qg+3 otherwise.
If ¢ = 3 mod 4 then ¢ = —1 and, by [§],

cm)(1) = c(m)(1) = g + 1.
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Asqg+2> /g, q+1> %. This establishes (1) as can be seen in the summary
tables which follow.

Table (2)
q¢{3,57,11}

q =1 (mod 4) =3 (mod 4)

q n even n odd =3 (mod 8) =7 (mod 8)
d(y) q q q q
dx) =q+1 >q+1 >q+1 >q+1
o) >q-1 >q—1 >q—1 >q—1
d&)  Lg+1) g+1 no & exsists  no & exists
d(m) mnom exists 1no 7 exists qg-—1 qg-—1

q¢{3,57,11}

q =1 (mod 4) =3 (mod 4)

q n even n odd =3 (mod 8) =7 (mod 8)
c(y)(1) q+1 q+1 q+1 q+1
cx)(1)  =q+1 >q+1 >q+1 >q+1
c@)(1)  >g+1 >q+1 >q+1 >q+1
c(&1)(1) w g+3 no & exists no & exists
c¢(m)(1) no n exists no n; exists g+1 g+1

c(G) % q+1 qg+1 qg+1

Now let ¢ € {3, 5,7, 11}. We will show that when ¢ € {5, 7, 11} then c(6,)(1) = ¢
and this value is minimal. From Lemma 2.7(1) we have

Table (3)

q 3 5 7 11
d(y) 3 5 7 11
d(x;) no y; exists no x; exists >8 >12
d(6;)  no 6 exists 4 6 10
d(&) no & exists 6 no & exists no & exists
d(n) 2 no 7; exists 6 10

Let ¢ = 3. Then ¢, n; and n;, are the faithful irreducible characters of G. Note
that d(n;) = d(n2) = 2 and m(n;) = m(n,) = 2. Therefore ¢(G) = 4.

Let ¢ = 5. Then the irreducible characters of G are ¥, 65, & and &,. Here 6, is
rational valued. Also m(6,) = 1 so ¢(6,)(1) = 5. Therefore ¢(G) = 5.

Let ¢ = 7. Then the irreducible characters of G are ¥, x»,0,,n, and n,. But
m(@;) =1 so c(6,)(1) =7. Also by Lemma 2.6 we have c(n;)(1) = c(n2)(1) > 7.
Therefore ¢(G) = 7.

https://doi.org/10.1017/S0017089599000567 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599000567

QUASI-PERMUTATION REPRESENTATIONS 407

Let ¢ = 11. Then the irreducible characters of G are v, x1, x4, 02, 64, 11 and ;.
But m(6;) =1 so ¢(6;)(1) = 11. Also by Lemma 2.6 we have c(64)(1) > 11 and
c(m)(1) = ¢(n2)(1) > 11. Therefore ¢(G) = 11.

5. Rational valued characters.

LeMMA 5.1. Let G be a finite group. Let G have a unique minimal normal sub-
group. Then

r(G) = min{d( X) : x is a faithful irreducible character of G}.

Proof. Let x € Irr(G). Then Zycrx*, where I' = I'(Q(x) : Q) is an irreducible
rational valued character by [4. Corollary 10.2].

Let ¢ be a faithful rational valued character such that r(G) = ¢(1). Since G has a
unique minimal normal subgroup, there exists a faithful irreducible character, say ,
such that [¢, x] #0. So ¢ = Zperx® + ¥, for some rational valued character .
Hence ¢(1) = Zoerx“(1) = d(x). So r(G) = d(x).

LEMMA 5.2. Let G = SL(2, q) where q is odd. Then ‘Egg =2.

Proof. This follows from Corollary 4.6.

LEmMMA 5.3. Let G = SL(2, q) = PSL(2, gq) where ¢ = 2". Then

(G) = {6]—1 lqufl(mOd 3)andn > 1,
q otherwise.

Proof. This follows from Table (1) and Lemma 4.16.
LEMMA 5.4. Let G = PSL(2, q) where q is odd, g = p".

(1) If ¢ = 3(mod 4), then r(G) = q — 1.
(2) If ¢ = 1(mod 4), then

g+ 1) ifniseven,
HG)=1qg—1 if nis odd and ¢ = —1(mod 3),
q otherwise.

Proof. This follows from Tables (2) and (3) except for the case ¢ = 1(mod 4) and
n odd. In this case, d(6;) > ¢ — 1 for 1 <j <%= L jeven. Thus, using Corollaries 4.10
and 4.8, we see that r(G) = g — 1 precisely when one of ‘” ,d=3,4o0r 6, is an even
integer. As ¢ = 1(mod 4) neither d =4 nor d =6 is poss1ble But q+1 is an even
integer if and only if ¢ = —1(mod 3).

THEOREM 5.5. Let G = PSL(2, q). Then

«6) _

lim 0 =

q—> 00
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Proof. Let G = PSL(2, q) where ¢ =2". Then G = SL(2, ¢). By Lemma 5.3 we
have ¢ — 1 < r(G) < ¢q. Also by Theorem 4.17 we have ¢(G) = g + 1 for ¢ # 2. Hence
g+l Q) L g+l

q — I(G) =g
Let G = PSL(2, q) where ¢ is odd. By Lemma 5.4 we have r(G) = %(q —1ifnis

@) _

even; otherwise ¢ — | < r(G) < ¢. By Theorem 4.19 we have 0=

«(G) q+1 q+1 ) fl+«/—
S0 S . Hence in all cases S Sa and so llm

+ /7 . .
qu@ if n is even;

a6

e
otherwise . o) =
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