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Abstract

A monic polynomial f (x) ∈ Z[x] of degree N is called monogenic if f (x) is irreducible over Q and
{1, θ, θ2, . . . , θN−1} is a basis for the ring of integers of Q(θ), where f (θ) = 0. We use the classification
of the Galois groups of quartic polynomials, due to Kappe and Warren [‘An elementary test for the Galois
group of a quartic polynomial’, Amer. Math. Monthly 96(2) (1989), 133–137], to investigate the existence
of infinite collections of monogenic quartic polynomials having a prescribed Galois group, such that each
member of the collection generates a distinct quartic field. With the exception of the cyclic case, we provide
such an infinite single-parameter collection for each possible Galois group. We believe these examples are
new and we provide evidence to support this belief by showing that they are distinct from other infinite
collections in the literature. Finally, we devote a separate section to the cyclic case.
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1. Introduction

We say that a monic polynomial f (x) ∈ Z[x] is monogenic if f (x) is irreducible over Q
and {1, θ, θ2, . . . , θdeg f−1} is an integral basis for the ring of integers ZK of K = Q(θ),
where f (θ) = 0; that is, ZK = Z[θ]. We let Δ( f ) and Δ(K) denote the discriminants
over Q respectively of f (x) and the number field K. From [3], when f (x) is irreducible
over Q,

Δ( f ) = [ZK : Z[θ]]2Δ(K),

so that, in this situation, f (x) is monogenic if and only if Δ( f ) = Δ(K). We also say that
a number field K is monogenic if there exists a power basis for ZK . We point out that,
while the monogenicity of f (x) implies the monogenicity of K = Q(θ), where f (θ) = 0,
the converse is not necessarily true. For example, let f (x) = x2 − 5 and K = Q(θ),
where θ =

√
5. Then, easy calculations show that Δ( f ) = 20 and Δ(K) = 5. Thus, f (x)

is not monogenic, but nevertheless, K is monogenic since {1, (θ + 1)/2} is a power basis
for ZK . In fact, g(x) = x2 − x − 1, the minimal polynomial for (θ + 1)/2, is monogenic.
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2 J. Harrington and L. Jones [2]

It is the goal of this article to determine new families of monogenic quartic
polynomials that have a prescribed Galois group over Q. A ‘family’ here means an
infinite collection of polynomials, such that for any two polynomials f (x) and g(x) in
the family, we haveQ(α) � Q(β), where f (α) = g(β) = 0. For quartic polynomials f (x)
that are irreducible over Q, there are five possibilities for the Galois group Gal( f ) over
Q, namely

C4, C2 × C2, D4, A4 and S4, (1.1)

where Cn denotes the cyclic group of order n, Dn denotes the dihedral group of order
2n, An denotes the alternating group on n letters of order n! /2 and Sn denotes the
symmetric group on n letters of order n!. With the exception of the cyclic case C4, we
provide a single-parameter family of monogenic quartic polynomials for each group
in (1.1), while also providing evidence in a separate section (see Section 4) to support
our belief that these families are actually new. Finally, we devote a separate section to
a discussion concerning the cyclic case (see Section 5).

The new results are presented in the following main theorem.

THEOREM 1.1.

(1) C2 × C2. Let t ∈ Z and let ft(x) := x4 + 4tx2 + 1. Then:

(a) ft(x) is irreducible and Gal( ft) � C2 × C2;
(b) ft(x) is monogenic if and only if (2t − 1)(2t + 1) is squarefree;
(c) F2 := { ft(x) : 4t2 − 1 is squarefree} is an infinite family of monogenic

C2 × C2-quartics.

(2) D4. Let t ∈ Z and let ft(x) := x4 + 24tx3 + (12t + 4)x2 + 4x + 1. Then:

(a) ft(x) is irreducible and Gal( ft) � D4;
(b) ft(x) is monogenic if and only if (6t − 1)(6t + 1) is squarefree;
(c) F3 := { ft(x) : 36t2 − 1 is squarefree} is an infinite family of monogenic

D4-quartics.

(3) A4. Let t ∈ Z and let ft(x) := x4 + 2x3 + 2x2 + 4tx + 36t2 − 16t + 2. Then:

(a) ft(x) is irreducible and Gal( ft) � A4;
(b) ft(x) is monogenic if and only if (4t − 1)(108t2 − 54t + 7) is squarefree;
(c) F4 := { ft(x) : (4t − 1)(108t2 − 54t + 7) is squarefree} is an infinite family of

monogenic A4-quartics.

(4) S4. Let t ∈ Z and let ft(x) := x4 − 2x3 − 2x2 + 6x + 4t − 2. Then:

(a) ft(x) is irreducible and Gal( ft) � S4;
(b) ft(x) is monogenic if and only if 4t + 1, 4t − 7 and 64t + 13 are squarefree;
(c) F5 := { ft(x) : 4t + 1, 4t − 7 and 64t + 13 are squarefree} is an infinite family

of monogenic S4-quartics.
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[3] Monogenic quartic polynomials 3

To the best of our knowledge, the families given in Theorem 1.1 are new and in
Section 4, we show that these families contain no overlap with all explicit families that
we found in the literature.

REMARK 1.2. Gaál [4] has recently given a description of the generators of power
integral bases in the number fields generated by a root of the monogenic polynomials
in Theorem 1.1.

2. Preliminaries

The following theorem is due to Kappe and Warren [11].

THEOREM 2.1 [11]. Let f (x) = x4 + ax3 + bx2 + cx + d ∈ Q[x] be irreducible over Q.
Let r(x) := x3 − bx2 + (ac − 4d)x − (a2d − 4bd + c2) with splitting field L. Then
Gal( f ) �

(1) C4 if and only if r(x) has exactly one root s ∈ Q and

g(x) := (x2 − sx + d)(x2 + ax + (b − s)) (2.1)

splits over L;
(2) C2 × C2 if and only if r(x) splits into linear factors over Q;
(3) D4 if and only if r(x) has exactly one root s ∈ Q and g(x), as defined in (2.1), does

not split over L;
(4) A4 if and only if r(x) is irreducible over Q and Δ( f ) is a square in Q;
(5) S4 if and only if r(x) is irreducible over Q and Δ( f ) is not a square in Q.

REMARK 2.2. The polynomial r(x) in Theorem 2.1 is known as the cubic resolvent
of f (x).

The following theorem, known as Dedekind’s index criterion, or simply Dedekind’s
criterion if the context is clear, is a standard tool used in determining the monogenicity
of an irreducible polynomial.

THEOREM 2.3 (Dedekind, see [3]). Let K = Q(θ) be a number field, T(x) ∈ Z[x] the
monic minimal polynomial of θ and ZK the ring of integers of K. Let q be a prime
number and let ∗ denote reduction of ∗ modulo q (in Z, Z[x] or Z[θ]). Let

T(x) =
k∏

i=1

τi(x)ei

be the factorisation of T(x) modulo q in Fq[x] and set

h1(x) =
k∏

i=1

τi(x),
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4 J. Harrington and L. Jones [4]

where the τi(x) ∈ Z[x] are arbitrary monic lifts of the τi(x). Let h2(x) ∈ Z[x] be a monic
lift of T(x)/h1(x) and set

F(x) =
h1(x)h2(x) − T(x)

q
∈ Z[x].

Then,

[ZK : Z[θ]] � 0 (mod q)⇐⇒ gcd(h1, h2, F) = 1 in Fq[x].

3. The proof of Theorem 1.1

PROOF. For each case, we let K = Q(θ), where ft(θ) = 0, and we let ZK denote the ring
of integers of K.

3.1. C2 × C2. Since ft(x−1)= x4−4x3+ (4t+6)x2− (8t+4)x+4t+2 is 2-Eisenstein,
we conclude that ft(x) = x4 + 4tx2 + 1 is irreducible over Q. The cubic resolvent of
ft(x) is

rt(x) = x3 − 4tx2 − 4x + 16t = (x − 2)(x + 2)(x − 4t).

By Theorem 2.1, it follows that Gal( ft) � C2 × C2, which proves item (1a).
For item (1b), a straightforward calculation reveals that

Δ( ft) = 28(4t2 − 1)2. (3.1)

To establish the monogenicity of ft(x), we use Theorem 2.3 with T(x) := ft(x) and we
examine the prime divisors q of Δ( ft).

First, let q = 2. Then T(x) = (x + 1)4 and we can let h1(x) = x + 1 and
h2(x) = (x + 1)3. Then,

F(x) =
(x + 1)4 − ft(x)

2
= 2x3 − (2t − 3)x2 + 2x ≡ x2 (mod 2).

Thus, gcd(h1, h2, F) = 1 and [ZK : Z[θ]] is not divisible by q = 2.
Next, we give details only for the case when a prime q divides 2t − 1 since the case

when q divides 2t + 1 is similar. Since t ≡ 1/2 (mod q), it follows that

T(x) =
{

(x2 + 1)2 if q ≡ 3 (mod 4),
(x − y)2(x + y)2 if q ≡ 1 (mod 4),

where y ∈ Z such that y2 ≡ −1 (mod q). If q ≡ 3 (mod 4), we can let h1(x) = h2(x) =
x2 + 1. Then,

F(x) = −2
(2t − 1

q

)
x2

so that gcd(h1, h2, F) = 1 if and only if [ZK : Z[θ]] is not divisible by q if and
only if q2 � (2t − 1). If q ≡ 1 (mod 4), then y2 = zq − 2t for some integer z since
−2t ≡ −1 (mod q). Then,
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F(x) = −2z(x2 + 1) +
(4t2 − 1

q

)
,

from which we see that

F(±y) =
(4t2 − 1

q

)
� 0 if and only if q2 � (2t − 1).

Thus, we conclude that ft(x) is monogenic if and only if 4t2 − 1 is squarefree,
completing the proof of item (1b).

For item (1c), we note first that F2 is an infinite set since there exist infinitely
many integers t such that 4t2 − 1 is squarefree [1]. To see that the fields generated
by the elements ft(x) of F2 are all distinct, we proceed by way of contradiction. We
assume for integers t1 � t2, that K1 = K2, where K1 = Q(α1) and K2 = Q(α2) with
ft1 (α1) = 0 = ft2 (α2). Since both ft1 (x) and ft2 (x) are monogenic by item (1b), it follows
that Δ( ft1 ) = Δ( ft2 ). Consequently, from (3.1),

8(t1 − t2)(t1 + t2)(2t2
1 + 2t2

2 − 1) = 0.

Hence, t1 = −t2. Without loss of generality, we may assume that t1 > 0 so that t2 < 0.
Since the zeros of ft(x) are√
−2t +

√
4t2 − 1,

√
−2t −

√
4t2 − 1, −

√
−2t +

√
4t2 − 1, −

√
−2t −

√
4t2 − 1,

it follows that all zeros of ft(x) are real if t < 0, while all zeros of ft(x) are nonreal if
t ≥ 0, which contradicts the assumption that K1 = K2.

3.2. D4. Note that f0(x − 1) = x4 − 4x3 + 10x2 − 8x + 2 is 2-Eisenstein. Hence, f0(x)
is irreducible overQ. Suppose next that t � 0. Then, |t| > 10/12, from which we deduce
that

|24t| = |12t| + 12|t| > |12t| + 10 ≥ |12t + 4| + 6.

Thus, ft(x) = x4 + 24tx3 + (12t + 4)x2 + 4x + 1 is irreducible over Q when t � 0 by
Perron’s irreducibility criterion [16].

To determine Gal( ft), we use Theorem 2.1. The cubic resolvent of ft(x) is

rt(x) = x3 − (12t + 4)x2 + (96t − 4)x − (576t2 − 48t)

= (x − 12t)(x2 − 4x + (48t − 4)).

Since

Δ(x2 − 4x + (48t − 4)) = −192t + 32 = 16(−12t + 2),

and −12t + 2 ≡ 2 (mod 4), we conclude that rt(x) has exactly the one rational zero
x = 12t. Consequently, the splitting field of rt(x) is L = Q(

√
−2(6t − 1)). Then, in

Theorem 2.1, we have g(x) = g1(x)g2(x), where

g1(x) = x2 − 12tx + 1 and g2(x) = x2 + 24tx + 4.
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6 J. Harrington and L. Jones [6]

Since Δ(g1) = 4(6t − 1)(6t + 1) and Δ(g2) = 16(6t − 1)(6t + 1), it follows that both
g1(x) and g2(x) are irreducible over L. Hence, Gal( ft) � D4 by Theorem 2.1, which
proves item (2a).

To establish item (2b), we use Theorem 2.3 with T(x) := ft(x). A straightforward
calculation yields

Δ( ft) = −29(6t − 1)3(6t + 1)2.

First let q = 2. Then, T(x) = (x + 1)4, and we can select

h1(x) = x + 1 and h2 = (x + 1)3. (3.2)

Thus,

F(x) =
(x + 1)4 − ft(x)

2
= (2 − 12t)x3 + (1 − 6t)x2 ≡ x2 (mod 2).

Therefore, gcd(h1, F) = 1 so that [ZK : Z[θ]] is not divisible by q = 2.
When q is a prime divisor of 6t − 1, we also get

T(x) = x4 + 4x3 + 6x2 + 4x + 1 = (x + 1)4,

with hi(x) as in (3.2). Then,

F(x) =
(x + 1)4 − ft(x)

2
=
−2(6t − 1)

q
(2x + 1)x2,

and it follows that

gcd(h1, F) = 1 if and only if q2 � (6t − 1).

Thus, q � [ZK : Z[θ]] if and only if q2 � (6t − 1).
Suppose next that q is a prime divisor of 6t + 1. Then, t ≡ −1/6 (mod q) and

T(x) ≡ (x2 − 2x − 1)2 (mod q).

If x2 − 2x − 1 is irreducible over Fq, then we can let h1(x) = h2(x) = x2 − 2x − 1. In this
case, we get

F(x) =
(x2 − 2x − 1)2 − ft(x)

2
= −2

(6t + 1
q

)
x2(2x + 1),

so that

gcd(h1, F) = 1 if and only if q2 � (6t + 1).

If x2 − 2x − 1 is reducible over Fq, then

x2 − 2x − 1 = (x − (1 + y))(x − (1 − y)),

where y ∈ Z with y2 ≡ 2 (mod q). Then, we can select

h1(x) = h2(x) = (x − (1 + y))(x − (1 − y)),
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so that

F(x) = −4
(6t + 1

q

)
x3 − 2

(6t + 1
q
+

y2 − 2
q

)
x2 + 4

(y2 − 2
q

)
x + y2

(y2 − 2
q

)
.

Then, computer calculations reveal that

F(1 ± y) = 2
(6t + 1

q

)
(∓12y − 17).

If ∓12y − 17 ≡ 0 (mod q), then, since y2 ≡ 2 (mod q),

288 ≡ 144y2 ≡ (∓12y)2 ≡ 172 ≡ 289 (mod q),

which yields the contradiction that 0 ≡ 1 (mod q). Hence,

gcd(h1, F) = 1 if and only if q2 � (6t + 1),

completing the proof that ft(x) is monogenic if and only if 36t2 − 1 is squarefree.
For item (2c), we proceed as in the case of C2 × C2. The set F3 is infinite since

there exist infinitely many values of t such that 36t2 − 1 is squarefree [1]. We assume
for integers t1 � t2 that K1 = K2, where K1 = Q(α1) and K2 = Q(α2) with ft1 (α1) =
0 = ft2 (α2). Since both ft1 (x) and ft2 (x) are monogenic by item (2b), it follows that
Δ( ft1 ) = Δ( ft2 ). Solving this discriminant equation using Maple shows that 6t1 must be
a zero of the polynomial

G(X) := X4 + (6t2 − 1)X3 + (36t2
2 − 6t2 − 2)X2 + (216t3

2 − 36t2
2 − 12t2 + 2)X

+ 1296t4
2 − 216t3

2 + 12t2 − 72t2
2 + 1,

which is impossible since G(0) � 0 (mod 6). This contradiction completes the proof of
item (2c) for the case of D4.

3.3. A4. Since ft(x) is 2-Eisenstein, ft(x) is irreducible over Q. Straightforward
calculations using Maple give

Δ( ft) = 26(4t − 1)2(108t2 − 54t + 7)2

and the cubic resolvent of ft(x) as

rt(x) = x3 − 2x2 − (144t2 − 72t + 8)x + 128t2 − 64t + 8.

If rt(x) is reducible over Q, then

rt(x) = (x + z)(x2 + Ax + B) = x3 + (A + z)x2 + (Az + B)x + Bz,

for some integers A, B, z. Hence, by equating coefficients, we see that

A + z = −2

Az + B = −(144t2 − 72t + 8)

Bz = 128t2 − 64t + 8.
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8 J. Harrington and L. Jones [8]

Solving this system in Maple yields

B = (8z2 + 16z + 8)/(9z + 8).

Let d := gcd(8z2 + 16z + 8, 9z + 8). Then, easy greatest common divisor (gcd) calcu-
lations show that d | 8. Since B is an integer, d = 9z + 8. Hence, the only possibilities
for z are z = 0 and z = −1. However, checking the values of −z in rt(x) gives
r(0) = 8(4t − 1)2 � 0 and r(1) = −(4t − 1)2 � 0, since t ∈ Z. Hence, rt(x) is irreducible
over Q, and it follows from Theorem 2.1 that Gal( ft) � A4, which proves item (3a).

For item (3b), we use Theorem 2.3 with T(x) := ft(x) to check the prime divisors
q of Δ( ft). Suppose first that q = 2. Then, T(x) = x4, so that we can let h1(x) = x and
h2(x) = x3, and we get

F(x) = −x3 − x2 − 2tx − 18t2 + 8t − 1 ≡ x3 + x2 + 1 (mod 2).

Hence, we see quite easily that gcd(h1, F) = 1, from which we conclude that
[ZK : Z[θ]] is not divisible by q = 2.

Next, let q be a prime divisor of 4t − 1. Then, t ≡ 1/4 (mod q) and

T(x) ≡ (x2 + x + 1/2)2 (mod q).

Suppose first that x2 + x + 1/2 is irreducible over Fq. Note that in this situation, we
must have q ≡ 3 (mod 4) since −1 is not a square. Then we can let

h1(x) = h2(x) = x2 + x + (q + 1)/2,

which yields

F(x) = x2 −
(4t − 1

q
− 1
)
x −
( (4t − 1)(36t − 7) − q2 − 2q

4q

)

= x2 −
(4t − 1

q
− 1
)
x −
( (4t − 1)(36t − 7)

4q

)
+

1
2

.

Note that 36t − 7 ≡ 2 (mod q) so that q � (36t − 7). Hence, it follows that
gcd(h1, F) � 1 if and only if F(x) = h1(x), which is true if and only if q2 | (4t − 1).

Suppose next that x2 + x + 1/2 is reducible over Fq. Then, q ≡ 1 (mod 4) and

x2 + x + 1/2 ≡
(
x −
(−1 + y

2

))(
x −
(−1 − y

2

))
(mod q),

where y2 ≡ −1 (mod q). Choosing y ≡ 1 (mod 2), we can let

h1(x) = h2(x) =
(
x −
(−1 + y

2

))(
x −
(−1 − y

2

))
.

Then, computer calculations produce

F(x) =
(−y2 − 1

2q

)
x2 +

(1 − y2 − 8t
2q

)
x +
(y4 − 2y2 − 576t2 + 256t − 31

16q

)
,
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so that

F((−1 ± y)/2) =
−(4t − 1)(9(4t − 1) ± 2y)

q
+

(y2 + 1)2

4q
= ∓2y

(4t − 1
q

)
.

Hence, we see that F((−1 ± y)/2) = 0 if and only if q2 | (4t − 1), which completes the
proof when q | (4t − 1).

Now, suppose that q is a prime divisor of 108t2 − 54t + 7. Note that q � {2, 3}. Then,
it follows that

T(x) = (x − (18t − 5))(x − (1 − 6t))3,

and therefore, we can let

h1(x) = (x − (18t − 5))(x − (1 − 6t)) and h2(x) = (x − (1 − 6t))2. (3.3)

Observe from (3.3) that we only need to check F(1 − 6t) to determine gcd(h1, h2, F).
More precisely,

[ZK : Z[θ]] ≡ 0 mod q if and only if F(1 − 6t) = 0. (3.4)

Straightforward calculations yield

F(x) =
(108t2 − 54t + 7

q

)
(−2x2 − 2(8t − 1)x − (36t2 − 10t + 1)),

so that

F(1 − 6t) = −
(108t2 − 54t + 7

q

)
(12t2 − 6t + 1) = −2

9

(108t2 − 54t + 7
q

)
,

since

9(12t2 − 6t + 1) − 2 = 1082 − 54t + 7 ≡ 0 (mod q).

Hence,

F(1 − 6t) = 0 if and only if 108t2 − 54t + 7 ≡ 0 mod q2.

Consequently, from (3.4),

[ZK : Z[θ]] ≡ 0 mod q if and only if 108t2 − 54t + 7 ≡ 0 mod q2.

Since gcd(4t − 1, 108t2 − 54t + 7) = 1, the proof of item (3b) for A4 is complete.
For item (3c), we proceed as in the previous cases. The set F4 is infinite since

there exist infinitely many values of t such that (4t − 1)(108t2 − 54t + 7) is squarefree
[1]. We assume for integers t1 � t2 that K1 = K2, where K1 = Q(α1) and K2 = Q(α2)
with ft1 (α1) = 0 = ft2 (α2). Since both ft1 (x) and ft2 (x) are monogenic by item (3b), it
follows that Δ( ft1 ) = Δ( ft2 ). Using Maple to solve this equation, we get six possible
solutions. One solution has t1 = t2, which we are not considering. A second solution
has t1 = 1/2 − t2, which is impossible in integers t1 and t2. The remaining four

solutions contain the expression
√
−255 + 1944t2 − 3888t2

2. Thus, for one of these
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10 J. Harrington and L. Jones [10]

solutions to be viable, −255 + 1944t2 − 3888t2
2 must be a perfect square. However,

it is easy to see that −3888x2 + 1944x − 255 < 0 for all x ∈ R, and this fact completes
the proof of item (3c) for the case of A4.

3.4. S4. For item (4a), ft(x) is irreducible over Q for all t ∈ Z since ft(x) is
2-Eisenstein. Using Maple, we calculate

Δ( ft) = 16(4t + 1)(4t − 7)(64t + 13).

Since gcd(4t + 1, 4t − 7) = 1 with 4t + 1 and 4t − 7 squarefree, it follows that
(4t + 1)(4t − 7) divides 64t + 13 if Δ( ft) is a square. Observe then that 64t + 13 =
16(4t + 1) − 3 implies that 4t + 1 divides 3, from which we conclude that t ∈ {−1, 0}.
However, 64t + 13 = 16(4t − 7) + 53 implies that 4t − 7 divides 5, which in turn
implies that t ∈ {2, 3}. This impossibility shows that Δ( ft) is not a square. The cubic
resolvent of ft(x) is

rt(x) = x3 + 2x2 − 4(4t + 1)x − 12(4t + 1).

If rt(x) is reducible over Q, then

rt(x) = (x + z)(x2 + Ax + B) = x3 + (A + z)x2 + (Az + B)x + Bz

for some integers A, B, z. Equating coefficients,

A + z = 2, Az + B = −16t − 4 and Bz = −48t − 12.

Thus,

B := −3z(z − 2)
z − 3

= −3(z + 1) − 9
z − 3

∈ Z,

which implies that z − 3 divides 9, and hence, −z ∈ {−12,−6,−4,−2, 0, 6}. However,
solving rt(−z) = 0 for t for each of these values of −z yields

t ∈ {39/4, 11/4, 7/4, −1/4},

which contradicts the fact that t ∈ Z. Therefore, rt(x) is irreducible for all t ∈ Z, and
we deduce from Theorem 2.1 that Gal( ft) � S4.

To establish item (4b), we use Theorem 2.3 with T(x) := ft(x) to check the prime
divisors q of Δ( ft). Since the details are similar for any prime divisor q of Δ( ft), we
only give details in the case when q divides 4t − 7. Then, t ≡ 7/4 (mod q) and

T(x) ≡ (x2 − 4x + 5)(x + 1)2 (mod q).

Since x = −1 is a zero of x2 − 4x + 5 if and only if q = 5, we have three cases to
consider:

T(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(x + 1)3 if q = 5,
(x2 − 4x + 5)(x + 1)2 if x2 − 4x + 5 is irreducible over Fq,
(x − A)(x − B)(x + 1)2 if x2 − 4x + 5 is reducible over Fq,

(3.5)
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where A and B are integers with A, B � −1 (mod q). We see in all of these cases
that h2(x) = x + 1 so that gcd(h1, h2, F) can be determined by calculating F(−1). Thus,
more precisely,

gcd(h1, h2, F) = 1⇐⇒ F(−1) � 0⇐⇒ [ZK : Z[θ]] is not divisible by q.

Straightforward calculations reveal in all cases of (3.5) that

F(−1) = −
(4t − 7

q

)
.

Consequently, we deduce that

[ZK : Z[θ]] � 0 (mod q) if and only if 4t − 7 is squarefree.

For item (4c), we first note that there exist infinitely many integers t such that

(4t + 1)(4t − 7)(64t + 13)

is squarefree [1]. Hence, there are infinitely many integers t such that 4t + 1, 4t − 7 and
65t + 13 are simultaneously squarefree. Thus, the set F5 is infinite. To see that each
such value of t generates a distinct field, we proceed as in previous cases, and let Maple
solve the equation Δ( ft1 ) = Δ( ft2 ). In all solutions given by Maple, other than t1 = t2,
we see that W(t2) := −12288t2

2 + 10624t2 + 19049 must be a perfect square. It is easy
to verify that W(t2) < 0 for all integers t2 � {0, 1}. Since neither W(0) = 19 049 nor
W(1) = 17 385 is a square, the proofs of item (4c) and the theorem are complete. �

4. Comparing the families in Theorem 1.1 to known families

4.1. C2 × C2. The literature on quartic polynomials with Galois group C2 × C2 is
fairly extensive, with some authors addressing the issue of monogenicity [2, 7, 9,
14, 20]. However, we found only one explicit two-parameter family of monogenic
C2 × C2-quartic polynomials [9], given by

F (x) = x4 + (36rp − 1)x2 + 1,

where r ≥ 3 and p are primes, such that r is a primitive root modulo 9 and

(12rp − 1)(12rp + 1)(36rp − 1)(36rp + 1)

is squarefree. Suppose that F (α) = 0 and ft(θ) = 0. To see that K � L, where
K := Q(α) and L := Q(θ), suppose to the contrary that K = L. Since both F (x) and
ft(x) are monogenic, it follows that

144(36rp + 1)2(12rp − 1)2 = Δ(F ) = Δ(K) = Δ( ft) = 256(2t − 1)2(2t + 1)2,

which is clearly seen to be impossible by examining the power of 2 dividing each side.
Hence, K � L.
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4.2. D4. Several authors have investigated integral bases for D4-quartic number
fields [8–10, 12], but we found only two (two-parameter) families of monogenic quartic
D4-polynomials [9], given by

F +(x) = x4 + x3 + (100rp + 1)x2 + x + 1 and

F −(x) = x4 − x3 + (100rp + 1)x2 − x + 1,

where r ≥ 3 and p are primes, such that r is a primitive root modulo 25 and

(20rp + 1)(100rp + 1)(80rp − 1)

is squarefree. Note that, for fixed values of r and p, F +(x) and F −(x) generate the same
field. Since

Δ(F ±) = 53(20rp + 1)(100rp + 1)(80rp − 1)2 and Δ( ft) = −29(6t − 1)3(6t + 1)2,

an argument similar to that given for C2 × C2 easily shows that the family F +(x) differs
from the family given in Theorem 1.1 for D4.

4.3. A4. The only monogenic A4-quartic family of polynomials we could find in the
literature is the single-parameter family

Fm(x) = x4 + 18x2 − 4mx + m2 + 81,

where m(m2 + 108) is squarefree [18]. Note that m is odd. To see that the family Fm(x)
has no overlap with the family presented in this article, we assume for some integers
m and t for which Fm(x) and ft(x) are respectively monogenic, that K = L, where
K := Q(α) and L := Q(θ) with Fm(α) = 0 and ft(θ) = 0. Then,

28m2(m2 + 108)2 = Δ(F ) = Δ(K) = Δ( ft) = 26(4t − 1)2(108t2 − 54t + 7)2.

Using Maple to solve this equation, we find that any solution must have

z2 = 11664m6 + 2519424m4 + 136048896m2 + 1 (4.1)

for some integer z. Multiplying both sides of (4.1) by 4 shows that (x, y) = (36m2, 2z)
is an integral point on the elliptic curve

y2 = x3 + 7776x2 + 15116544x + 4. (4.2)

Using Sage to find all integral points (x, y) (with y ≥ 0) on (4.2), we find

(x, y) ∈ {(0, 2), (−3888, 2), (14281868898720, 53973124902433105922)}.

Since x = 36m2 with m odd, it is easy to see that none of these points yields a valid
solution to (4.1). That is, there is no overlap with these two families.

4.4. S4. We found two families of monogenic S4-quartic trinomials in [17] and one
family in [5]. The first family in [17] is

Fb(x) = x4 + bx + b ∈ Z[x] with Δ(Fb) = (256 − 27b)b3, (4.3)
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where b � {3, 5}, and both b and 256 − 27b are squarefree, and the second is

Gd(x) = x4 + x3 + d ∈ Z[x] with Δ(Gd) = (256d − 27)d2, (4.4)

where d � −2, and both d and 256d − 27 are squarefree. The family in [5] is

Hm(x) = x4 − 6x2 − mx − 3 ∈ Z[x] with Δ(Hm) = −27(m − 8)2(m + 8)2. (4.5)

Recall that ft(x) := x4 − 2x3 − 2x2 + 6x + 4t − 2, with

Δ( ft) = 16(4t + 1)(4t − 7)(64t + 13).

The question is whether ft(x) and Fb(x) (or Gd(x) or Hm(x)) generate the same
quartic field for some integers t and b (or d or m). If so, then K = L, where
K = Q(α), L = Q(θ), ft(θ) = 0 and Fb(α) = 0 (or Gd(α) = 0 or Hm(α) = 0). More
importantly in this situation, since all of these polynomials are monogenic, their
respective discriminants must be equal. In each case, we assume that these polynomial
discriminants are equal and proceed towards a contradiction.

We begin with Fb(x) in (4.3). Here we are assuming that

(256 − 27b)b3 = 16(4t + 1)(4t − 7)(64t + 13)

for some integers b and t. Since 4t + 1, 4t − 7 and 64t + 13 are all odd and squarefree,
it follows that b = 2. Then, Maple tells us that P(t) = 0, where

P(x) := 128x3 − 166x2 − 95x − 24.

Since Δ(P) < 0, we know that P(x) has exactly one real zero, and since P(1) < 0 while
P(2) > 0, it follows that P(t) has no integer zero, which contradicts the fact that t ∈ Z.

For Gd(x) in (4.4), a similar argument shows that d = 4 and P(t) = 0, where

P(x) := 128x3 − 166x2 − 95x − 136.

As before, P(x) has exactly one real noninteger zero between 1 and 2, which contradicts
the fact that t ∈ Z.

Finally, we addressHm(x) in (4.5). We assume that

−27(m − 8)2(m + 8)2 = 16(4t + 1)(4t − 7)(64t + 13) (4.6)

for some integers m and t. An examination of each of the factors A := 4t + 1,
B := 4t − 7 and C := 64t + 13 modulo 3 produces

[A mod 3, B mod 3, C mod 3] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1, 2, 1] if t ≡ 0 mod 3,
[2, 0, 2] if t ≡ 1 mod 3,
[0, 1, 0] if t ≡ 2 mod 3.

Thus, since A, B and C are squarefree, it follows that ABC � 0 (mod 27), and so there
are no solutions to (4.6).

5. The cyclic case C4

The case of monogenic quartic polynomials f (x) such that Gal( f ) � C4 seems to
be quite different from the other possible quartic Galois groups. Gras [6] showed that
there are only two distinct imaginary monogenic cyclic quartic fields
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Q(ζ5) and Q(ζ16 − ζ−1
16 ),

where ζn is a primitive nth root of unity. Respective corresponding monogenic poly-
nomials are Φ5(x) = x4 + x3 + x2 + x + 1 and x4 + 4x2 + 2. Gras [6] also found twelve
real monogenic cyclic quartic fields, but she did not provide explicit corresponding
monogenic polynomials generating these fields.

Olajos [15] proved for the simplest quartics

Fk(x) = x4 − kx3 − 6x2 + kx + 1, k � {±3, 0},

there are only two values of k, namely k ∈ {2, 4}, for which there exists a power integral
basis for the field Q(α), where Ft(α) = 0. Since these fields are real, they represent
fields distinct from the two imaginary monogenic cyclic quartic fields found by Gras.
Note, however, that F2(x) and F4(x) are not monogenic. Nevertheless, from [15], we
can easily construct two monogenic quartic polynomials f2(x) and f4(x) corresponding
respectively to the two real monogenic cyclic quartic fields of Olajos:

f2(x) = x4 − 10x3 + 25x2 − 20x + 5 and f4(x) = x4 − 8x3 + 16x2 − 8x − 2.

Straightforward calculations show that

Δ( f2) = 24 · 53 and Δ( f4) = 211.

While we could not find a family of real monogenic C4-quartic polynomials, a
computer search revealed four additional distinct real monogenic quartics:

g1(x) = x4 + 9x3 + 19x2 + 9x + 1 with Δ(g1) = 32 · 133,
g2(x) = x4 + 5x3 + 5x2 − 5x − 5 with Δ(g2) = 32 · 53,
g3(x) = x4 + 11x3 + 31x2 + 11x + 1 with Δ(g3) = 53 · 112 and
g4(x) = x4 + 7x3 + 9x2 − 7x + 1 with Δ(g4) = 53 · 72.

Using Maple and Theorem 2.3, it is straightforward to verify that the polynomials
f2(x), f4(x), g1(x), g2(x), g3(x) and g4(x) are all monogenic. By comparing discrimi-
nants and using Maple, it is also easy to see that these polynomials generate distinct
real fields. It was brought to our attention by Paul Voutier (private communication)
that these six polynomials actually generate six of the twelve real monogenic cyclic
quartic fields given by Gras in [6].

The authors of [13] have outlined two approaches to generate distinct monogenic
cyclic quartic fields, and they claim to prove that the number of such fields is infinite by
providing an argument to show that the set of these fields from their second approach
has positive density. However, we believe their density argument is incorrect. This
has been corroborated by analytic number theorists, Daniel White and Stanley Xiao,
in independent private communications. Thus, it appears that the existence of an
infinite family of monogenic cyclic quartic polynomials is still unresolved, at least
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unconditionally. Very recently, while this article was still under review, Paul Voutier
informed us that he has been able to construct a family of totally real cyclic quartic
monogenic polynomials, under the assumption of the abc-conjecture for number
fields [19].
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