
TPLP 24 (4): 844–862, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000280

844

Early Validation of High-Level System Requirements
with Event Calculus and Answer Set Programming∗

ONDŘEJ VAŠÍČEK
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

(e-mail: ivasicek@fit.vut.cz)

JOAQUIN ARIAS
Universidad Rey Juan Carlos, Móstoles, Spain

(e-mail: joaquin.arias@urjc.es)

JAN FIEDOR
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Honeywell International S.R.O., Brno, Czech Republic

(e-mail: ifiedor@fit.vutbr.cz)

GOPAL GUPTA
Computer Science Department, UT Dallas, Richardson, TX, USA

(e-mail: gupta@utdallas.edu)

BRENDAL HALL
Ardent Innovation Labs, Eden prairie, MN, USA

(e-mail: bren@ardentinnovationlabs.com)

BOHUSLAV KŘENA
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

(e-mail: krena@fit.vutbr.cz)

BRIAN LARSON
Multitude Corporation, St Paul, MN, USA

(e-mail: brl@multitude.net)

∗ We are grateful to anonymous reviewers for their insightful comments and suggestions for improve-
ment. The Czech team was supported by the project 23-06506S of the Czech Science Foundation
and the FIT BUT internal project FIT-S-23-8151. Joaquin Arias was supported by grant VAE
(TED2021-131295B-C33) funded by MCIN/AEI/10.13039/501100011033 and by the “European Union
NextGenerationEU/PRTR”, by grant COSASS (PID2021-123673OB-C32) funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”. Gopal Gupta was partially sup-
ported by US NSF Grants IIS 1910131 and grants from industry through the UT Dallas Center for
Applied AI and Machine Learning.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000280
https://orcid.org/0000-0002-4944-2198
mailto:ivasicek@fit.vut.cz
https://orcid.org/0000-0003-4148-311X
mailto:joaquin.arias@urjc.es
mailto:ifiedor@fit.vutbr.cz
mailto:gupta@utdallas.edu
mailto:bren@ardentinnovationlabs.com
mailto:krena@fit.vutbr.cz
mailto:brl@multitude.net
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000280&domain=pdf
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 845

SARAT CHANDRA VARANASI
GE Aerospace Research, Niskayuna, NY, USA

(e-mail: SaratChandra.Varanasi@ge.com)

TOMÁŠ VOJNAR
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Faculty of Informatics, Masaryk University, Brno, Czech Republic

(e-mail: vojnar@fi.muni.cz)

submitted 20 August 2024; accepted 13 September 2024

Abstract

This paper proposes a new methodology for early validation of high-level requirements on
cyber-physical systems with the aim of improving their quality and, thus, lowering chances of
specification errors propagating into later stages of development where it is much more expen-
sive to fix them. The paper presents a transformation of a real-world requirements specification
of a medical device—the Patient-Controlled Analgesia (PCA) Pump—into an Event Calculus
model that is then evaluated using Answer Set Programming and the s(CASP) system. The
evaluation under s(CASP) allowed deductive as well as abductive reasoning about the specified
functionality of the PCA pump on the conceptual level with minimal implementation or design
dependent influences and led to fully automatically detected nuanced violations of critical safety
properties. Further, the paper discusses scalability and non-termination challenges that had to
be faced in the evaluation and techniques proposed to (partially) solve them. Finally, ideas for
improving s(CASP) to overcome its evaluation limitations that still persist as well as to increase
its expressiveness are presented.

KEYWORDS: requirements validation, event calculus, answer set programming, s(CASP)

1 Introduction and background

Early validation of specifications describing requirements placed on cyber-physical sys-

tems (CPSs) under development is essential to avoid costly errors in later stages of the

development, especially when the systems undergo certification. However, there is a lack

of suitable automated tools and techniques for this purpose. A crucial need here is that

of a small semantic gap between the requirements and the formalism used to model them

for the purposes of validation. A larger semantic gap makes it more difficult to transform

the requirements into a model, and, most importantly, any validation on such a model

drifts away from validating the requirements themselves and closer to validating that par-

ticular model—influenced by design and implementation decisions. Furthermore, when

reasoning about safety-critical systems, it is necessary—both from engineering and legal

points of view—that the tools used must be able to explain the result of the validation.

As described by Mueller (2014), Event Calculus (EC) is a formalism suitable for com-

monsense reasoning. The semantic gap between a requirements specification and its

EC encoding is near-zero because its semantics follows how a human would think of

the requirements. Using Answer Set Programming (ASP) and the s(CASP) system for

goal-directed reasoning in EC, the work Varanasi et al. (2022) has demonstrated the

versatility of EC for modeling and reasoning about CPSs while providing explainable

results. However, the CPS presented is still a rather toy system only.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

mailto:SaratChandra.Varanasi@ge.com
https://orcid.org/0000-0002-2746-8792
mailto:vojnar@fi.muni.cz
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.846

In this work, we develop a model, presented in Section 3,1 of the core operation of the

Patient-Controlled Analgesia (PCA) Pump by Hatcliff et al. (2019)—a real safety-critical

device. The model operates in a way similar to an early prototype of the system and,

thus, can be used to reason about its behavior. However, due to the nature of EC, the

behavior of the model is very close to the behavior described by the requirements them-

selves. This allows us to reason about the requirements without tainting the reasoning

by implementation or design decisions, which would be necessary when using lower-level

models or a physical prototype.

Our work has resulted in the discovery of a number of issues in the PCA pump spec-

ification. Using automated reasoning, we were able to discover inconsistencies between

the requirements specification and the use cases and exception cases based on which the

requirements were created (Section 4.1). We were further able to detect a safety property

violation which can lead to an overdose of the patient (Section 4.2). Such discoveries

could otherwise occur much later in the development process. We have discussed and

confirmed the issues with the authors of the specification.

We present a number of challenges encountered during the translation of the require-

ments to EC encoded in s(CASP) and during the subsequent evaluation, based on

deductive as well as abductive reasoning, which was often too costly or non-terminating.

We have applied and, in multiple cases, also newly developed various techniques that

helped us resolve many of these challenges. These include extensions of the axioma-

tization of the EC and special ways of translating certain parts of the specifications

(Sections 5.1 and 5.2), which we believe may be inspiratory when modeling and evaluat-

ing other systems too. Further, we present an original approach to abductive reasoning

with incrementally refined abduced values in order to assure consistency of the abduced

values whenever abduction on the same value is used multiple times in the reasoning

tree (Section 5.3). Next, we proposed a mechanism for caching predicate evaluations

(failure-tabling and tabling of ground sub-goal success) that was added into s(CASP)

as a prototype leading to a significant increase in performance (Section 5.4). We also

describe a way of separating the reasoning about the trigger and the effect of certain

complexity-inducing triggered events into multiple reasoning runs where each run pro-

duces new facts to be used in the subsequent ones (Section 5.5), which reduces their

performance impact. Finally, we propose two new lines of work (Section 6), including a

more systematic treatment of caching.

1.1 Related work

Above, we have emphasized the suitability of EC for reasoning about requirements spec-

ifications due to its low semantic gap against them. In comparison, the semantics of

automata-based approaches, such as timed automata in UPPAAL by Larsen et al. (2018),

require one to “design” explicit states and transitions and may lead to decomposition of

the system into sub-systems each with their own automaton. Current industrial model-

based engineering approaches, such as those based, for example, on Matlab Simulink

models and tools like HiLiTE by Bhatt et al. (2010), are only suitable for validation

1 For the reader’s convenience, the files described/used in the paper are available and linked to a GitHub
repository available at https://github.com/ovasicek/pca-pump-ec-artifacts/.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 847

of low-level requirements. This is due to the low-level nature of the models they use,

especially when automated generation of code from the models is required.

Apart from the EC-based approach introduced by Varanasi et al. (2022), which this

work builds upon, there are other ones which aim to target automated validation of

high-level requirements put on CPSs. The work by Crapo et al. (2017) is based on

ontologies and uses theorem proving, which traditionally requires significant manual

work. The work by Arnaud et al. (2021) is based on transforming CPS specifications

from templated-English into process algebras extended with real-time aspects, however,

no continuous variables (apart from time) are dealt with and no experimental results

are presented, which makes it difficult to judge the scalability of this approach. A more

detailed comparison of the approaches is an interesting future work.

A transformation of a CPS into EC was considered in the already mentioned work

by Varanasi et al. (2022). However, it considered a simple Train-Gate-Controller system

only. We expand on that work by transforming a more complex, real-life specification of

the PCA pump, which has led to the discovery of a number of issues that did not man-

ifest in the simpler system. We tackle the issues by introducing techniques for avoiding

non-termination and improving performance when reasoning about EC in s(CASP). In

addition, we further propose a way to check consistency between levels of the specification

and to leverage abductive reasoning.

Finally, we note that there are of course other ASP solvers than the s(CASP) system we

used. Notably, grounding-based ASP solvers, such as Clingo by Gebser et al. (2019), are

well known. However, such solvers are, unfortunately, not suitable for reasoning about

fluents with large or continuous value domains due to the explosion in the grounding

and a need to discretize the time. In our preliminary attempts at modeling the PCA

pump using Clingo, the solver could only reason about narratives with very restricted

value domains of all fluents and with a small number of large time steps without running

out of memory on a machine with 64GB of RAM while taking close to an hour of

execution time. Further, the need to discretize time requires approximation of time steps

for reaching exact values of continuous fluents during periods of continuous change, which

can lead to inaccurate behavior of the model. In comparison, the grouding-free nature

of s(CASP) supported by constraint solvers allowed us to reason over continuous time,

and increasing the value domain of a fluent typically did not affect the solution time

needed. Consequently, s(CASP) was able to reason about the same narratives as our

preliminary Clingo model using only up to 50MB of memory and around 5 min of

execution time. A thorough comparison of the solvers is out of scope of this work. Some

comparisons have already been made by Arias et al. (2018) and by Varanasi et al. (2022).

A very interesting future work would be revisiting the PCA pump model using Clingo

once sufficient advancements are made in avoiding the explosion in the grounding size,

especially since Clingo does not suffer from non-termination issues, which make things

much more complicated in s(CASP).

2 Preliminaries

This section describes (i) s(CASP), a goal-directed implementation of ASP with

Constraints, and the Event Calculus (EC), a formalism for reasoning about events and

change, and (ii) an open-source PCA pump specification, which we use as a real use case.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.848

2.1 The s(CASP) system and the Event Calculus

The s(CASP) system, presented by Arias et al. (2018), extends the expressiveness of

ASP systems, based on the stable model semantics by Gelfond and Lifschitz (1988), by

including predicates, constraints among non-ground variables, uninterpreted functions,

and, most importantly, a top-down, query-driven execution strategy. These features make

it possible to return answers with non-ground variables (possibly including constraints

among them) and to compute partial models by returning only the fragment of a stable

model that is necessary to support the answer to a given query. Answers to all queries

can also include the full proof tree, making them fully explainable.

In s(CASP), thanks to the constructive negation, not p(X) can return bindings for

X for which the call p(X) would have failed. Thanks to the interface of s(CASP) with

constraint solvers, sound non-monotonic reasoning with constraints is possible.

Like other ASP implementations and unlike Prolog, s(CASP) handles non-stratified

negation and returns the corresponding (partial) stable models, for example, for the pro-

gram p :- not q. q :- not p, under the stable model semantics there are two possible

models for this even loop (Lifschitz, 2019), with either p or q being true. Even loops are

used in s(CASP) to implement abductive reasoning via the #abducible directive, where

we automatically search for suitable values of the predicates in the corresponding even

loop so we can satisfy the main query. We use abduction in Section 4.2 to detect a

violation of a critical safety property in the PCA pump requirements.

The Event Calculus (EC) is a formalism for reasoning about events and change by

Mueller (2014), of which there are several axiomatizations. There are three basic concepts

in EC: events , fluents , and time points : (i) an event is an action or incident that may

occur in the world, for example, the dropping of a glass by a person is an event, (ii) a

fluent is a time-varying property of the world, such as the altitude of a glass, (iii) a time

point is an instant of time. Events may happen at a time point; fluents have a truth value

at any time point, and these truth values are subject to change upon an occurrence of

an event. In addition, fluents may have quantities associated with them as parameters,

which change discretely via events or continuously over time via trajectories.

For example, the event of dropping a glass initiates the fluent that captures that the

glass is falling , which enables a trajectory that determines the decreasing value of a

fluent that represents the glass’s height above the ground, and the event of catching a

glass terminates the fluent that the glass is falling , which disables the trajectory. An

EC description consists of a universal theory and a domain narrative (see the book by

Mueller (2014) for details). The theory is a conjunction of EC axioms, for example, axiom

BEC6 states that a fluent f is true at a time t2 if it is initiated by some event e occurring

at some earlier time t1 and it is not stopped between t1 and t2:

HoldsAt(f, t2)←Happens(e, t1)∧ Initiates(e, f, t1) ∧ t1 < t2 ∧¬StoppedIn(t1, f, t2).
The domain narrative consists of the causal laws of the domain and the known events

and fluent properties. Mueller (2014), in his book in Example 14, reasons about turn-

ing a light switch on and off using the event Happens(e, t) ≡ (e=TurnOn ∧ t= 1/2)

∨ (e=TurnOff ∧ t= 4) that states that the TurnOn event will happen exclusively at

time t= 1/2 and that TurnOff will happen exclusively at t= 4.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 849

Two key factors contribute to the s(CASP)’s ability to model EC: the preservation of

non-ground variables during the execution and the integration with constraint solvers.

Using the translation rules introduced by Arias et al. (2022), one can translate the BEC

axioms by Mueller (2014) into s(CASP) programs that follow the logic programming

convention: constants and predicate symbols start with a lowercase letter, variables start

with an uppercase letter, and constraints can be written with a prefix (#<). For example,

the BEC6 axiom and events are translated as:

1 holdsAt(F, T2) :- T1 #< T2, initiates(E, F, T1),

2 happens(E, T1), not stoppedIn(T1, F, T2).

3 happens(turn_on, 1/2).

4 happens(turn_off, 4).

2.2 The Patient-Controlled Analgesia (PCA) Pump project

The Open PCA Pump Project, introduced by Hatcliff et al. (2019) and available at

https://openpcapump.santoslab.org/, provides a full set of realistic artifacts used in the

development process of a Patient-Controlled Analgesia Infusion Pump, which is a safety-

critical medical device. The artifacts were created at the behest of the US Food and Drug

Administration to provide an open-source example of model-based systems engineering

for industry, and a subject matter for researchers. The primary function of the device

is to automatically and safely deliver the appropriate amount of pain-relief drugs to a

patient via infusion into their bloodstream. The pump needs to do so without delivering

an amount that would harm the patient, it needs to notify clinicians about hazards,

and it needs to maintain safe operation even when failures occur or when hazards are

detected. The delivery parameters, such as drug flow rates or maximum safe doses, are

either prescribed by a physician or specified in a drug library.

In this paper, we use version 1.0.0 of the PCA specification (Open-PCA-Pump-

Requirements.pdf in GitHub, which we reference as [PCA page N] in the following when

referring to page N). The PCA pump delivers drug using four different types of delivery:

(i) Basal delivery is the baseline which delivers drug using a small flow rate during normal

operation. It is the initial type of delivery after starting the pump. (ii) Patient-requested

bolus is an extra dose which can be requested by the patient via a button. Upon a valid

request, the PCA pump delivers a prescribed amount of drug called VTBI (volume-to-

be-infused) using a higher flow rate in addition to the baseline basal flow rate and then

returns to basal delivery. (iii) Clinician-requested bolus is a second, similar, extra dose of

the same VTBI spread over many minutes. It differs in that it can only be requested by

a clinician and that they can select a duration for the bolus. (iv) KVO delivery (Keep-

Vein-Open) is an emergency delivery with the smallest flow rate to prevent clotting of

the needle in response to certain alarms.

The specification defines a number of alarms and how the PCA pump should respond

to them. Most of the alarms are related to hardware failures or physical issues detected

by sensors, while others are raised by the logic of the PCA pump, for example, to prevent

an overdose of the patient.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/Open-PCA-Pump-Requirements.pdf
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/Open-PCA-Pump-Requirements.pdf
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.850

3 Modeling the PCA pump requirements in EC under s(CASP)

The requirements are specified in unconstrained natural language, which makes auto-

mated processing difficult, and so their transformation to an EC model was done

manually. An automated transformation from more structured requirements is part of

our future work. We have modeled the PCA pump based on Chapter II. Requirements

[PCA page 54]. Our main focus was on the core functionality of the PCA pump,

defined in Section 5 PCA Pump Function [PCA page 55], and we omitted a por-

tion of requirements stated in other sections (e.g., non-essential features and physical

properties). We do not cover the entire transformation here due to space limita-

tions. Below, we demonstrate it on several representative examples. All source files are

available at https://github.com/ovasicek/pca-pump-ec-artifacts/, general principles of

modeling using EC are explained by Mueller (2014), and a similar transformation of the

Train-Gate-Controller has been shown by Varanasi et al. (2022).

The centerpiece of the PCA pump is the total amount of drug that has been delivered.

We represent it by a continuous fluent total drug delivered(X). Its value is constant

while the pump is stopped, and it changes gradually at a given rate while the pump is

running. The gradually changing value is given by the chosen type of drug delivery—

pump stopped (no delivery), basal, patient bolus, clinician bolus, or KVO (Section 2.2).

Each of the delivery types needs to be represented by an EC trajectory and the logic of

the PCA pump then determines which trajectory is active at what time.

We demonstrate the transformation on requirements defined for the delivery of a

patient-requested bolus [PCA page 55] (implemented in 04-patient bolus trajectory.pl).

Other delivery modes were transformed in a similar fashion.2

R1: Upon patient’s press of the PCA pump’s patient-button, a prescribed bolus volume-to-
be-infused, VTBI, of the drug loaded in the pump is delivered to the patient.

R1 introduces the patient bolus delivery mode in general. We define a fluent to represent

the delivery state, and its start/end events and their effects. Then, we define a trajectory

to determine the value of the total drug delivered(X) fluent while this delivery is active.

R1a1 fluent(patient_bolus_delivery_enabled).

2 event(patient_bolus_delivery_started). event(patient_bolus_delivery_stopped).

3 initiates(patient_bolus_delivery_started, patient_bolus_delivery_enabled, T).

4 terminates(patient_bolus_delivery_stopped, patient_bolus_delivery_enabled, T).

5

6 trajectory(patient_bolus_delivery_enabled, T1, total_drug_delivered(Total), T2) :-

7 basal_and_patient_bolus_flow_rate(FlowRate),

8 holdsAt(total_drug_delivered(StartTotal), T1),

9 Total #= StartTotal + ((T2 - T1) * FlowRate).

And finally, we define that the bolus ends automatically once it delivers the full

VTBI. This is represented by a patient bolus completed event and its trigger rule.

2 See 04-basal delivery trajectory.pl, 04-clinician bolus trajectory.pl, 04-kvo delivery trajectory.pl,
04-pump state.pl, and other relevant files at https://github.com/ovasicek/pca-pump-ec-artifacts/.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=64
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=65
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=65
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-patient_bolus_trajectory.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-basal_delivery_trajectory.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-clinician_bolus_trajectory.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-kvo_delivery_trajectory.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-pump_state.pl
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 851

R1b10 event(patient_bolus_completed).

11 happens(patient_bolus_completed, T2) :- initiallyP(vtbi(VTBI)),

12 holdsAt(patient_bolus_drug_delivered(VTBI), T2).

13 happens(patient_bolus_delivery_stopped, T) :- happens(patient_bolus_completed, T).

14

15 fluent(patient_bolus_drug_delivered(X)).

16 trajectory(patient_bolus_delivery_enabled,T1, patient_bolus_drug_delivered(X),T2):-

17 patient_bolus_only_flow_rate(FlowRate),

18 X #= (T2 - T1) * FlowRate.

The patient bolus completed event triggers once the amount of drug delivered via the

bolus delivery rate reaches VTBI. This value is represented by a new fluent and its

trajectory, which allow easier tracking of the progress of the bolus by counting its value

from zero. The new fluent is not affected by any events, it is given by the trajectory only.

R2: A patient-requested bolus shall be delivered at its prescribed rate, Fbolus, in addition to
the basal flow rate, Fbasal, but no more than the max. flow rate for the pump, Fmax.

For R2, we define a predicate which computes the flow rate based on the values of system

parameters which are represented using constant fluents.

R21 basal_and_bolus_flow_rate(Cropped) :- initiallyP(pump_flow_rate_max(Max)),

2 initiallyP(patient_bolus_flow_rate(Bolus)), initiallyP(basal_flow_rate(Basal)),

3 Combined #= Bolus + Basal, min(Combined, Max, Cropped).

4

5 patient_bolus_only_flow_rate(BolusOnly) :- basal_and_bolus_flow_rate(Cropped),

6 initiallyP(basal_flow_rate(Basal)), BolusOnly #= Cropped - Basal.

R6: Any alarm stops patient-requested bolus delivery either halting pump or switching to

KVO rate as defined in Table 4 [PCA page 59].

To implement R6, we trigger the occurrence of the end of the bolus when any alarm

happens (which is itself triggered by specific alarms) while the bolus is active.

R61 happens(patient_bolus_halted, T) :- happens(any_alarm, T),

2 holdsAt(patient_bolus_delivery_enabled, T).

3 happens(patient_bolus_delivery_stopped, T) :- happens(patient_bolus_halted, T).

R3: Patient-requested bolus shall not be delivered more often than a prescribed minimum
time between patient-requested bolus, Δprb.

R5: Patient-requested bolus shall not be delivered if infusing prescribed VTBI will exceed
hard limits retrieved from the drug library for the volume of drug infused over a period
of time. Pump rate shall be reduced to KVO and a max dose warning be issued.

R3 and R5 define cases when a requested bolus should be denied. This can be

implemented by making the occurrence of patient bolus delivery started conditional.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=69
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.852

R3/51 happens(patient_bolus_delivery_started, T) :-

2 happens(patient_bolus_requested, T),

3 not_happens(patient_bolus_denied_too_soon, T),

4 not_happens(patient_bolus_denied_max_dose, T).

R3 is implemented by checking if any bolus delivery was enabled in the past while too

close to the current request.

R35 happens(patient_bolus_denied_too_soon, T) :-

6 happens(patient_bolus_requested, T),

7 initiallyP(min_t_between_patient_bolus(MinGap)),

8 TLast #< T, TLast #> T - MinGap,

9 holdsAt(patient_bolus_delivery_enabled, TLast).

R5 is implemented by checking the total amount of drug delivered within the max dose

time window (e.g., in the last hour). The delivery mode needs to be changed accordingly

when a warning is triggered. The code below is simplified for space reasons, details can

be found in 04-patient bolus trajectory.pl.

R510 happens(patient_bolus_denied_max_dose, T) :-

11 happens(patient_bolus_requested, T),

12 initiallyP(vtbi_hard_limit_over_time(VtbiLimit, TimePeriod)),

13 holdsAt(total_drug_delivered(CurrentTotal), T),

14 TstartPeriod #= T - TimePeriod,

15 holdsAt(total_drug_delivered(TotalAtStartPeriod), TstartPeriod),

16 TotalInPeriod #= CurrentTotal - TotalAtStartPeriod,

17 TotalInPeriod #> VtbiLimit.

18

19 happens(max_dose_warning,T) :- happens(patient_bolus_denied_max_dose, T).

20 happens(basal_stopped,T) :- happens(patient_bolus_denied_max_dose, T),

21 holdsAt(basal_delivery, T).

22 happens(kvo_started,T) :- happens(max_dose_warning, T).

4 Reasoning about the PCA pump requirements using s(CASP)

The specification defines a number of use cases (UC) and exception cases (ExC) in

Section 4 System Operational Concepts [PCA page 13]. The requirements and the

UC/ExCs should be mutually consistent. We simulate the behavior of UC/ExCs using

the EC model, which was created based on the requirements, with the expectation that

the model should behave exactly as defined in the UC/ExCs. An example is shown in

Section 4.1. If the behavior of the model is inconsistent with the UC/ExCs, then we

have produced evidence of the requirements being inconsistent with the UC/ExCs (up

to correctness of the transformation). The capabilities of s(CASP) are not limited to

simulating the behavior of the pump but allow us to reason about its general proper-

ties. In Section 4.2, we reason about preventing an overdose of the patient—a critical

safety property.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-patient_bolus_trajectory.pl#L32
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=23
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 853

4.1 Validating consistency of use/exception cases and the requirements

We show an example of using s(CASP) reasoning to simulate UC2: Patient-Requested

Bolus in order to validate its consistency with the requirements specification.

UC2: Patient-Requested Bolus
Pre: 1. Steps 1 to 14 of Normal Operation Use Case (UC1) completed.

2. Basal rate being infused.
3. Prescribed minimum time between boluses has elapsed.

Post: 1. Resume basal rate infusion.
Step: 1. Patient presses bolus request button.

2. Time since last bolus compared with prescribed min. time between boluses (see ExC1).
3. If not too soon, begin infusing VTBI (unless ExC13: Maximum Safe Dose).
4. After prescribed VTBI has been infused, resume basal rate infusion.

A use case consists of pre-conditions, a sequence of steps, and post-conditions. We create

a narrative of event occurrences based on the pre-conditions and input events from the

steps. Then, we form a query based on the post-conditions and triggered events from the

steps. The below excludes the initialization of system parameters, for example, that the

VTBI is 1ml and the bolus flow rate is 1ml.min−1. The implementation can be found

in uc2.pl and general utils.pl (utility predicates holdsIn/3 and holdsAfter/2).

UC21 happens(start_button_pressed, 60). % Pre 1

2 happens(patient_bolus_requested, 120). % Step 1

3 ?- holdsIn(basal_delivery_enabled, 60, 120), % Pre 2

4 initiallyP(min_t_between_patient_bolus(MinT)), T1 #= 120 - MinT, % Pre 3

5 not_holdsIn(patient_bolus_delivery_enabled, T1, 120), % Pre 3

6 not_happens(patient_bolus_denied_too_soon, 120), % Step 2

7 not_happens(patient_bolus_denied_max_dose, 120), % Step 3

8 happens(patient_bolus_delivery_started, 120), % Step 3

9 initiallyP(vtbi(VTBI)), happens(patient_bolus_completed, T2), % Step 4

10 holdsAt(patient_bolus_drug_delivered(VTBI), T2), % Step 4

11 happens(basal_delivery_started, T2), % Step 4

12 holdsAfter(basal_delivery_enabled, T2). % Post 1

The occurrence times of input events are randomly chosen. The model should behave

according to the UC for any event times. In the future, we plan on allowing nar-

ratives with events at variable timepoints T (currently, fixed narratives are required).

The above query succeeds, meaning that the model and the requirements are consistent

with UC2.

4.1.1 Results of experiments with consistency validation

We have simulated all relevant UCs and ExCs from the PCA pump specification on a

2.67GHz Xeon CPU, using at most 40MB of memory. Selected representative results

are shown in Table 1, the rest can be found in Appendix A.3 (available online as

supplementary material at the TPLP archive).

Some of the cases appear in multiple variants of the narrative. For instance, in UC3, a

clinician-requested bolus can be delivered uninterrupted (UC3a) or it may be suspended

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/uc2.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_utils/general_utils.pl#L81
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.854

Table 1. Results of simulation of relevant use cases and exception cases

Use case name Variant Result Time (s)

UC2 Patient-requested bolus No variants OK 3.17
UC3a Clinician-requested bolus Not suspend OK 2.84
UC3b Clinician-requested bolus Suspended and resumed OK 37.13
ExC7a-f Over-flow rate alarm Defined in ExC step 1 FAIL 1.53-4.62
ExC13a Maximum safe dose During basal delivery FAIL 25.62
ExC13b-c Maximum safe dose During each bolus OK 31.61-53.45
ExC21 Reservoir empty No variants OK 40.99

by a patient-requested bolus and resumed afterward (UC3b). To save space, we aggre-

gate the measurements of variants of the same case that led to the same result. All

implementations can be found in the narratives and queries folder.

All UCs were simulated successfully, but quite a few ExCs failed. This has led to

the discovery of a number of issues in the specification, such as inconsistencies in alarm

responses or defined constants. In particular, Step 1 of ExC7c [PCA page 34] says that an

alarm should be raised if the drug flow rate exceeds the prescribed rate for longer than 10

seconds , while the requirement R6.4.0(4) [PCA page 58] defines 1 minute instead. Very

similar issues were found in ExC7e and other ExCs. Further, the second post-condition

of all variants of ExC7 expects infusion to be halted , but Table 4 [PCA page 59] requires

a switch to KVO delivery.

Cases UC3b and ExC13a-c are significantly slower than the others due to their narra-

tives containing multiple bolus requests (2–3), while the others only contain one or none.

In general, we have observed the biggest (exponential) increase in execution time when

increasing the number of bolus requests, that is, the number of system input events.

ExC21 is also slower despite featuring no bolus requests due to its use of full reasoning

about the level of the drug reservoir, which is discussed in Section 5.5.

4.2 Validating the requirements wrt. general properties

We use ExC13: Maximum Safe Dose as an example of reasoning about general properties

of the system and, later, to demonstrate abductive reasoning capabilities of s(CASP).

ExC13 defines that the pump should prevent an overdose of the patient by reducing

the drug flow rate. This is a general property, and so ExC13 had to be implemented in

three narratives based on whether the overdose would occur during (a) basal delivery,

(b) a patient-requested bolus, or (c) a clinician-requested bolus. The implementations

can be found in ec13a.pl, ec13b.pl, and ec13c.pl . For example, ExC13b contains 3

patient bolus requests, while the max dose prescription is defined to allow 2.5 boluses in

4 hours. The implemented narrative consists of happens(start button pressed,60) and

three instances of happens(patient bolus requested,T) for T equal to 300, 340, and 380.

The third bolus would cause an overdose if delivered. This overdose is prevented by

the requirement R5.2.0(5) (discussed as R5 in Section 3), according to which the bolus

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/uc2.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/uc3a.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/uc3b.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec7a.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec13a.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec13b.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec21.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=44
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=68
https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=69
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec13a.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec13b.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/ec13c.pl
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 855

will be denied. A similar measure is defined for a clinician-requested bolus by R5.3.0(7)

[PCA page 56].

The query ?- vtbi hard limit exceeded at T by X(T, X) (implemented in

analysis utils.pl) checks the amount of drug delivered within the max dose time

window with the end of the window at time T. It succeeds if the maximum dose was

exceeded and will return by how much via X. This query returns no models on ExC13b

meaning that an overdose did not happen at any time T. However, if we modify the

narrative by changing the bolus request times to 100, 140, and 180 (switching from

ExC13b to ExC13a), then the query succeeds with bindings T #>295,T #< 681/2 and

X #>0,X #<1/2. This overdose happens during basal delivery due to a missing requirement

(discussed in Section 4.2.2).

4.2.1 Utilizing abductive reasoning

In order to detect the basal overdose issue in the previous section, we had to be “lucky”

enough to define a narrative in which the violation manifests, in the same way as

with regular testing. To address this, we utilize the abductive reasoning capabilities

of s(CASP).

Ideally, we would like abduction to check whether an overdose can occur in some nar-

rative without any prior restrictions. However, this is currently not possible in s(CASP)

due to non-termination issues related to reasoning in continuous time. Such abduction

is part of our future work. Instead, we fix a skeleton of a narrative (i.e., a sequence

of input events to happen) and abduce values of various parameters of the narrative.

In particular, we abduce the overdose parameters of the PCA pump via the predicate

initiallyP(vtbi hard limit over time(VtbiLimit, TimePeriod)), that is, we abduce both

the max dose volume and the size of the max dose window, which allows the reasoner to

explore a broad spectrum of overdose scenarios despite being restricted to a fixed narra-

tive of event occurrences. We also apply restrictions on the abducible values in order to

keep them meaningful, such as that the time period must be longer than the duration

of a single bolus and that the max dose volume must be big enough to fit a full period

of basal delivery. Using such abduction, we run the overdose query on UC2 (discussed in

Section 4.1) to demonstrate that a regular “sunny day” narrative can be used to detect

the overdose issue (implemented in overdose-uc2-abduction.pl). The query returns 4 dif-

ferent worlds of possible overdose. One of them, as an example, uses abduced values

initiallyP(vtbi hard limit over time(91/10 #=< V #< 101/10, 91)) with 3 query bind-

ings, one of which is 141 #< T #=< 151 and 0 #< X #=< 1. The max dose was abduced so

that less than one bolus was allowed. However, the bolus requested in UC2 was delivered,

which caused an overdose during subsequent basal delivery.

4.2.2 An overdose error in the PCA pump requirements

The overdose issue is caused by enough boluses being delivered early in the timeline,

particularly, close to the start of the pump. The cause of the issue is that there is no

overdose protection measure specified for basal delivery. This is a missing requirement

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://ovasicek.github.io/pca-pump-ec-artifacts/Open-PCA-Pump-Requirements.pdf#page=66
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_utils/analysis_utils.pl#L14
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/overdose-uc2-abduction.pl
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.856

Table 2. Overdose querying on ExC13 and UC2

Use case name Variant Model Result Time (m)

ExC13b Maximum safe dose Patient bolus Original OK 14.11
ExC13c Maximum safe dose Clinician bolus Original OK 20.85
ExC13a Maximum safe dose During basal Original Overdose 15.29

fixed OK 3.34
UC2 Patient-requested bolus Abduction Original Overdose 38.01

fixed OK 48.11

that causes a violation of a critical safety property potentially causing harm to the patient

depending on the overdose volume and the particular drug used. According to the authors

of the PCA pump this is an unintentional omission.

According to the requirement R5.2.0(5) (discussed as R5 in Section 3), when a patient

requests a bolus, the pump should reason about how much drug would be delivered within

the max dose time window at the end of the currently requested bolus if it was delivered.

However, such reasoning only considers the contents of the max dose window in the past

and does not consider what will follow in the future under normal operation. When a

patient requests a bolus at a time close enough to the start of the pump, then the max

dose window starts at a time smaller than the start time of the pump and, thus, includes

a period of zero drug delivery. With a large enough max dose time window, enough

boluses could be delivered to get close to the maximum safe dose. However, as the max

dose window moves forward with time, the period of zero drug delivery is pushed out by

the now in-progress basal delivery. And since basal delivery has no overdose protection

measures, then it will keep running even if the maximum safe dose is exceeded.

After fixing this issue by implementing the missing requirement (discussed in

Appendix A.1, available online as supplementary material at the TPLP archive), the

abductive query on UC2 no longer succeeds, meaning that an overdose was not found

in the fixed model. The two versions of the model can be found in model-original.pl and

model-fixed.pl. Of course, this is not a sound proof of no overdose being possible—a

different overdose might be discoverable via different abducibles or narrative.

4.2.3 Results of experiments with validation of general properties

Table 2 shows results and execution times of querying overdose on variants of ExC13

(discussed in Section 4.2) and of using abduction on UC2 (discussed in Section 4.2.1).

Execution of the overdose queries takes much longer than the simulation queries from

Table 1 (minutes instead of seconds) due to the higher complexity of the overdose query.

However, the abductive queries are the slowest ones due to the higher complexity of

abduction in general but also due to the limitations of its current implementation in

s(CASP), discussed in Section 5.3.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/overdose-ec13b.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/overdose-ec13c.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/overdose-ec13a.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/overdose-uc2-abduction.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model-original.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model-fixed.pl
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 857

5 Techniques used to empower s(CASP) reasoning

This section describes the techniques that we apply to avoid non-termination of s(CASP)

reasoning (Sections 5.1 and 5.2), the approach that we have proposed to overcome lim-

itations of s(CASP) abduction (Section 5.3), and techniques proposed to significantly

improve reasoning performance (Sections 5.4 and 5.5).

5.1 Improved implementation of the Event Calculus axioms

Our implementation of the BEC axioms (in bec scasp-pca pump.pl) differs from the

one by Arias et al. (2022) in two aspects in order to avoid non-termination. First,

inspired by Varanasi et al. (2022), we use a custom implementation of the not keyword.

Namely, we implement negated predicates, such as not stoppedIn/3, as simplified ver-

sions of the dual rules that s(CASP) generates to compute the negated predicates. These

simplified versions contain only the dual rules that are relevant for the intended evalua-

tion of the negated predicates. Second, we introduce new predicates can initiates/2,

can terminates/2, can releases/2, and can trajectory/4. These are created by pre-

processing the source code and introducing a new fact can initiates(E,F). for each

fact and/or rule initiates(E,F,T) :- some body(E,F,T). (and likewise for others). Our

implementation of the BEC6 axiom (cf. Section 2.1) using these new predicates follows:

1 holdsAt(Fluent, T2) :- T1 #< T2, can_initiates(Event, Fluent),

2 happens(Event, T1), initiates(Event, Fluent, T1), not_stoppedIn(T1, Fluent, T2).

This construction is motivated by an observation that, in our experiments, proving the

original predicate initiates first often leads to non-termination due to its sub-goals, while

proving happens first often leads to non-termination and enlarges the search space due

to the unconstrained Event. On the other hand, proving the sub-goal-free can initiates

first has proven reliable in avoiding non-termination and pruning the search space by

constraining Event. A similar approach was used by Shanahan (2000).

5.2 Modeling non-termination-prone self-ending trajectories

The main challenge during the modeling of the PCA pump was non-termination

caused by trajectories which we refer to as self-ending. A trajectory, defined by a

rule with a head trajectory(F1,T1,F2,T2), starts when its control fluent F1 is initi-

ated at some time T1, and the body of the rule then determines how the value of

its continuous fluent F2 may be computed for any time T2, where T1 #< T2, until F1

is terminated. The trajectory is self-ending if F1 may be terminated at some time

T2 while the trajectory is active by some event E that gets triggered when the value

of F2 satisfies a certain predefined condition. We call such an event a self-end event

of the given trajectory. In the PCA pump, almost all trajectories are self-ending,

for example, bolus deliveries terminate themselves based on how much drug they

deliver. For example, the trajectory(clinician bolus delivery enabled(Duration),T1,

total drug delivered(X),T2), defined in a similar way as was shown in Section 3,

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/ec_theory/bec_scasp-pca_pump.pl
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.858

is self-ending, and one of its self-end events is clinician bolus halted max dose because

its trigger rule depends on the value of total drug delivered (the code below is simplified

for space reasons, details can be found in 04-clinician bolus trajectory.pl):

1 happens(clinician_bolus_halted_max_dose, T2) :-

2 initiallyP(vtbi_hard_limit_over_time(VtbiLimit, TimePeriod)),

3 T1 #= T2 - TimePeriod, holdsAt(total_drug_delivered(TotalT1), T1),

4 VtbiLimit #= TotalT2 - TotalT1, holdsAt(total_drug_delivered(TotalT2), T2).

The above rule will, currently, cause non-termination in s(CASP) (trace on GitHub). It

is triggered when the amount of drug delivered within the max dose time window reaches

the maximum allowed dose. The cause of the issue is that a different trajectory, in this case

representing KVO delivery, can be used to determine the value of total drug delivered

while at the same time the start event of that trajectory, KVO started, is triggered by

the event clinician bolus halted max dose. This particular loop is created because KVO

delivery is being considered as a way to prove the value of total drug delivered at time

T2. However, clinician bolus delivery is the only type of delivery which can lead to success

because only one delivery can be active at a time, and if clinician bolus delivery was not

active, then we would not need to reason about triggering its halt.

To avoid this issue, we introduce a new predicate holdsAt/3 and a new axiom

for EC. We use the new predicate to force the use of the right trajectory when

proving the value of total drug delivered at T2 at line 4 (defined above) by adding

clinician bolus delivery enabled() as a parameter to holdsAt. The new axiom is the

same as the BEC3 axiom, except for the addition of Fluent1 as the third parameter:

1 holdsAt(Fluent2, T2, Fluent1) :-

2 can_trajectory(Fluent1, T1, Fluent2, T2), can_initiates(Event, Fluent1),

3 happens(Event, T1), initiates(Event, Fluent1, T1),

4 trajectory(Fluent1, T1, Fluent2, T2), not_stoppedIn(T1, Fluent1, T2).

Specifying Fluent1 ensures that only the trajectories controlled by that fluent will be

considered when trying to prove Fluent2. In general, the holdsAt/3 predicate should be

used in self-end event trigger rules when one needs to prove the value of a continuous

fluent while its self-ending trajectory is active.

5.3 Abduction using incremental refinement to enforce consistent models

Abductive reasoning in s(CASP) can abduce a different value of an abducible every time

the abducible is reached in the reasoning tree. This is, however, unsuitable when some

constant or a tuple of constants, representing, for example, values of some parameters of

the modeled system or of some scenario in which it is evaluated, is to be abduced.

Since the above problem appears in our model, we have proposed its solution suitable

for abducing numerical values. It is based on repeatedly refining the values abduced

at different points in the reasoning tree—through repeatedly tightening constraints on

possible values of the abducibles—until the same values are obtained everywhere (or the

abduction fails). The solution consists of two phases; the first one follows:

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/04-clinician_bolus_trajectory.pl#L128
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/archived-test-run/loop-trace-for-clinician-halt-and-kvo-on-uc3a-outline.txt
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 859

1. Run an abductive query of predicate(p1, ..., pn) where pi are variables to abduce.
2. For each model m produced by the query:

(a) For each parameter pi, the model m will contain some number y of value intervals
Ipi
1 , ..., Ipi

y abduced at different points of the reasoning tree.
(b) For each pi, compute the intersection Ipi = Ipi

1 ∩ ... ∩ Ipi
y .

(c) If Ipi is empty for some pi or if the exact combination of Ip1 , ..., Ipn has been seen
before (globally across Step c) or if a predefined cut-off depth has been reached, then
discard m and end recursion.

(d) Else if for all pi, Ipi
1 = ... = Ipi

y , then m is a consistent model with intervals of
values Ip1 , ..., Ipn for p1, ..., pn. Add (m, Ip1 , ..., Ipn) to the result and end recursion.

(e) Else make a new query by restricting the abducible value of each parameter pi to Ipi ,
and recursively perform Steps 1 and 2 using the new query.

The result of the first phase will be a set of models, each containing a tuple of intervals

Ip1 , . . . , Ipn of possible values of p1, . . . , pn. However, in order to obtain one concrete

witness of the result of the query, one cannot just take any tuple of values v1, . . . , vn,

where vi ∈ Ipi , since the values of the different parameters may depend on each other.

Therefore, in the second phase of our solution, for each of the models, we proceed as

follows. We select a value vn ∈ Ipn and repeat the first phase with this value fixed,

leading to new intervals Jp
1 ⊆ Ip1 , . . . , J

p
n−1 ⊆ Ipn−1. We then likewise gradually select and

fix values for the parameters pn−1, . . . , p2. For p1, it is not needed to repeat the process

since it is the last interval to pick a value from and, therefore, any choice will be valid.

We use the above approach in Section 4.2.1 to abduce the initial value of a con-

stant fluent initiallyP(vtbi hard limit over time(V,P)) with two variable parameters

(the implementation is available in incremental abduction.sh). The described approach

can find witnesses of a property violation but, due to the cutoff bound in Step 2(c) of the

first phase, it cannot guarantee that the property is not violated. It is also inefficient due

to repeated executions which explore nonrealistic parts of the state space, and, further,

each execution is slower than our other experiments because it cannot use the experi-

mental cache we introduced to optimize s(CASP) reasoning (discussed in Section 5.4).

However, despite the inefficiency, it was able to detect an error in the requirements spec-

ification (discussed in Section 4.2.2) in reasonable time. Introducing an efficient solution

to this problem into s(CASP) is part of our future work.

5.4 Prototype cache for predicate proof results

The runtimes presented in Tables 1 and 2 (except for abduction) were measured using

s(CASP) version 0.24.04.04 under a new, preliminary implementation of tabling that

caches the first (un)successful evaluation of specific predicates. These predicates are

selected using the #table once directive, in a similar way as mode-directed tabling,

described by Guo and Gupta (2008) and Arias and Carro (2019b), and implemented

in several Prolog interpreters. Under this cache mode, when one of the selected pred-

icates fails to be proved as a ground sub-goal of any rule, s(CASP) caches the failure

(failure-tabling), and similarly, when the evaluation of the sub-goal succeeds, the success

is cached. Subsequent attempts at proving the ground cached predicate will then use

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/incremental_abduction.sh
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.860

these results instead of attempting to prove it again. Note that since s(CASP) imple-

ments non-monotonic reasoning, the result is only valid while the current assumptions

are valid—therefore, the result stays cached until current assumptions change.

Using the cache on our test suite, we have observed a reduction of execution time by

up to 95 % on individual test narratives with an overall average of 66 % across the whole

test suite while still obtaining the same models (up to the cached parts of the proof

tree). We believe that a more sophisticated implementation of tabling, based on TCLP

by Arias and Carro (2019a), would increase the performance without losing soundness

(note that for non-grounded sub-goals, we may lose other valid answers by storing only

one answer, affecting the soundness of negated sub-goals) or completeness.

In our experiments, we cached all EC predicates by including the file cache.pl with

the corresponding directives. Due to the nature of EC, proving anything at a time-

point requires reconstructing the whole history from time zero to the given timepoint.

Therefore, the history which had to be proven for the value of a fluent at T1 will potentially

have to be re-proven again for T2 where T1 < T2. The new cache is especially useful to pre-

vent repeated failing attempts to prove a predicate such as not stoppedIn. We found that

even reasoning about simple narratives would attempt and fail to prove not stoppedIn

many times for the exact same parameters. When using cache, the predicate will only

fail to be proven once for each set of parameters.

5.5 Decoupling triggers and effects of events into multiple executions

Based on our experiments, we believe that triggered events, especially the ones that

can terminate a trajectory, very significantly contribute to the solving complexity. This

holds even for narratives in which such events are never actually triggered—because the

reasoning keeps trying to prove their trigger due to their potential effects. To reduce

the performance impact of triggered events, we propose below an approach that targets

particularly those of such events that may only trigger once per narrative, such as certain

alarms in the PCA pump. The idea is to use a multi-run reasoning in which we decouple

the trigger of such an event E from its effect. This is done by removing all effects of

E and moving them to a newly introduced event E EFFECT instead (see an example in

Appendix A.2, available online as supplementary material in the TPLP archive). We

then use one dedicated run to check whether E happens at some time T in the given

narrative. If not, E EFFECT will stay undefined in further reasoning. If E does happen at

T, we introduce a fact happens(E EFFECT,T)., which will then allow further reasoning to

take the effect of E into account without having to reason about its trigger.

We use the above approach for alarms related to the drug reservoir contents—

empty reservoir alarm and low reservoir warning (defined in 08-drug

reservoir.pl).3 Each of the alarms can only happen once in a narrative in response

to the level of drug in the reservoir reaching a certain threshold since the reservoir

cannot be refiled during a narrative. This approach was needed because implementing

alarms related to the drug reservoir contents caused an unbearable slowdown for some

narratives—the worst case in our test suite was a slowdown from 6.7 mins to 6.3 hours,

3 Implemented in such a way that, for each narrative, we can choose to ignore the drug reservoir reasoning
(when deemed not relevant), or to use the multi-run approach, or to re-enable the full (slow) reasoning.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_utils/cache.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/08-drug_reservoir.pl#L16
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/model_sources/08-drug_reservoir.pl#L16
https://doi.org/10.1017/S1471068424000280

Early Validation of High-Level System Requirements with EC and ASP 861

in a narrative where neither of the alarms happens. This is due to the fact that prior

to implementing these alarms the PCA model only contained three triggered events

that could terminate a trajectory, each terminating only one trajectory, and adding

the new alarms introduced two new triggered events which together can terminate all

trajectories. Indeed, the effect of low reservoir warning is stopping any drug delivery

and switching to KVO delivery and the effect of low reservoir empty is stopping the

pump entirely.

We use the proposed approach for both the low reservoir warning and the empty

reservoir alarm at the same time for a total of three executions (cf. three runs.sh): the

first query introduces a new fact for the low reservoir, the second one introduces a new fact

for the empty reservoir while using the fact from the first query, and the third and final

query considers both of the new facts. For a narrative based on UC2 which reasons about

both the low reservoir warning and the empty reservoir alarm, the three run approach

takes 12 s while a single run with full reasoning takes 35 minutes (cf. empty reserv-

uc2-multirun-* and empty reserv-uc2-onerun.pl). We are experimenting with a similar

approach for incremental reasoning about all triggered events as future work.

6 Conclusions and future lines of work

Our work demonstrated that Event Calculus (EC) can be used to model the requirements

specification of a non-trivial, real-life cyber-physical system in s(CASP) and the reasoning

involved can lead to discovering issues in the requirements while producing valuable

evidence toward their validation. Indeed, we have discovered a violation of a critical

safety property in a well-studied specification, acknowledged by its authors.

Our future work involves two directions. The first includes improvements to s(CASP)

by integration and efficient implementation of our abductive reasoning semantics,

improvements to prototype caching, and avoiding non-termination. A common non-

termination case is the “toggle” scenario where a system toggles between two fluents

affected by respective toggle events. A meta-reasoner in s(CASP) specialized to EC would

be more efficient and better at avoiding non-termination. The second direction involves

software engineering to make our approach more general and practically usable, includ-

ing the replacement of unconstrained natural language requirements with structured

languages like MIDAS, by Hall et al. (2020), for capturing requirements of industrial

projects. This should provide enough structure and context to the requirements in order

to enable a more general and at least semi-automated transformation of the requirements

into EC, which would make our approach easier to adopt and use.

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1017/

S1471068424000280.

References

ARIAS, J. AND CARRO, M. 2019a. Description, implementation, and evaluation of a generic
design for tabled CLP. Theory and Practice of Logic Programming 19a, 3, 412–448.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/three_runs.sh
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/empty_reserv-uc2-multirun-1.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/empty_reserv-uc2-multirun-1.pl
https://github.com/ovasicek/pca-pump-ec-artifacts/blob/master/narratives_and_queries/empty_reserv-uc2-onerun.pl
https://doi.org/10.1017/S1471068424000280

O. Vaš́ıček et al.862

ARIAS, J. and CARRO, M. 2019b. Incremental evaluation of lattice-based aggregates in logic
programming using modular TCLP. In Proc. of PADL’19 – 21st International Symposium on
Practical Aspects of Declarative Languages, Springer, Vol.11372, LNCS, 98–114.

ARIAS, J., CARRO, M., CHEN, Z. AND GUPTA, G. 2022. Modeling and reasoning in event
calculus using goal-directed constraint answer set programming. Theory and Practice of Logic
Programming 22, 1, 51–80.

ARIAS, J., CARRO, M., SALAZAR, E., Marple, K. AND Gupta, G. 2018. Constraint
answer set programming without grounding. Theory and Practice of Logic Programming 18,
3-4, 337–354.

ARNAUD, M., BANNOUR, B., LAPITRE, A. AND GIRAUD, G. 2021. Investigating
process algebra models to represent structured requirements for time-sensitive CPS. In
Proc. of SEKE’21 – The 33rd International Conference Software Engineering & Knowledge
Engineering , Pittsburgh, (Virtual Conference) United States.

BHATT, D., MADL, G., OGLESBY, D. AND Schloegel, K. 2010. Towards scalable
verification of commercial avionics software. In Proc. of AIAA Infotech@Aerospace.

CRAPO, A., MOITRA, A., MCMILLAN, C. AND RUSSELL, D. 2017. Requirements cap-
ture and analysis in ASSERT(TM). in Proc. of RE’17 – 25th International Requirements
Engineering Conference, IEEE.

GEBSER, M., KAMINSKI, R., KAUFMANN, B. AND SCHAUB, T. 2019. Multi-shot ASP
solving with clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming.
In Proc. of 5th International Conference on Logic Programming , 1070–1080.

GUO, H.-F. ANDGUPTA, G. 2008. Simplifying dynamic programming via mode-directed
tabling. Software: Practice and Experience 38, 1, 75–94.

HALL, B., FIEDOR, J. AND JEPPU, Y. 2020. Model integrated decomposition and assisted
specification (MIDAS). INCOSE International Symposium 30, 1, 821–841.

HATCLIFF, J., LARSON, B., CARPENTER, T., JONES, P., ZHANG, Y. AND JORGENS,
J. 2019. The open PCA pump project: an exemplar open source medical device as a community
resource. ACM SIGBED Review 16, 2, 8–13.

LARSEN, K. G., LORBER, F. and NIELSEN, B. 2018. 20 Years of UPPAAL enabled indus-
trial model-based validation and beyond. In ISoLA’18 – 8th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation 2018, Springer, 11247,
LNCS,

LIFSCHITZ, V. 2019. Answer Set Programming. Cham: Springer Cham.

MUELLER, E. T. 2014. Commonsense Reasoning: An Event Calculus Based Approach.
Burlington, MA: Morgan Kaufmann.

SHANAHAN, M. 2000. An abductive event calculus planner. The Journal of Logic Programming
44, 1-3,207–240.

VARANASI, S. C., ARIAS, J., SALAZAR, E., LI, F., BSUA, K. AND GUPTA, G. 2022.
Modeling and verification of real-time systems with the event calculus and s(CASP). In
Proc. of PADL’22 – Practical Aspects of Declarative Languages, LNCS, Vol. 13165. Springer,
181–190.

https://doi.org/10.1017/S1471068424000280 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000280

	Introduction and background
	Related work

	Preliminaries
	The s(CASP) system and the Event Calculus
	The Patient-Controlled Analgesia (PCA) Pump project

	Modeling the PCA pump requirements in EC under s(CASP)
	Reasoning about the PCA pump requirements using s(CASP)
	Validating consistency of use/exception cases and the requirements
	Results of experiments with consistency validation

