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Summary
The impacts of long-term warming on soil physical structure and soil organic carbon (SOC) pools are
currently disputed and uncertain. We conducted an eleven-year warming experiment in wheatland field in
Henan, China. We found that long-term warming significantly increased soil bulk density by 4.5%, and
significantly decreased total porosity and non-capillary porosity by 3.4% and 5.0%, respectively. Besides,
long-term warming decreased the >2 mm fraction proportion and increased<0.053 mm fraction
proportion of dry and wet aggregates. The mean weight diameter value for dry and wet aggregates in long-
term warming treatment was significantly decreased by 7.0% and 6.7%, respectively. Moreover, long-term
warming significantly decreased the total SOC, very labile pool (F1) and labile pool (F2) content by 10.6%,
30.6%, and 43.6%, and significantly increased the less labile pool (F3) and non-labile pool (F4) content by
94.2% and 21.1%, respectively. Long-term warming increased the passive carbon pool percentage but
decreased the active carbon pool (ACP) percentage. Our results suggest that long-term warming negatively
affected the soil's physical structure and impaired soil ACP accumulation. The findings of this study help
improve our understanding of the response of farmland soils in northern China to climate change and
provide scientific basis for establishing carbon management measures in farmland.
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Introduction
The global surface temperature has risen by about 1°C than the preindustrial level and is expected
to increase by 1.5°C from 2030 to 2052 (IPCC, 2022). Global warming can profoundly impact
carbon (C) cycle of terrestrial ecosystems (Crowther et al., 2016; Koven et al., 2017; Lavallee et al.,
2020). Soils have the largest terrestrial C pool, which is about three times that of the atmosphere C
pool and four times that of biotic C pool (Lal, 2016). Small changes in soil organic carbon (SOC)
stock can have a significant impact on atmospheric CH4 and CO2 concentrations, thus influencing
global climate change (Cox et al., 2013). In addition to regulating climate, organic carbon is also
important in ecosystem health and function, providing nutrients and energy for plants and
microorganisms (Milne et al., 2015). Thus, understanding the impact of climate warming on soil
organic carbon pools is essential for accurately predicting carbon-climate models and better
ecosystem management to alleviate the negative effects of global change.

Soil physical structure refers to the arrangement of the soil solid particles and the pore spaces,
and plays a vital role in soil organic carbon dynamics (Bronick and Lal, 2005; Mustafa et al., 2020).
Soil aggregates are the basic components of soil structure. Good soil aggregate structure is essential
for promoting fertility and plant growth, and maintaining appropriate environmental quality,
especially for soil carbon sequestration (Ma et al., 2020; Six et al., 2002). Climate change has a
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significant impact on the formation and development of soil structure (Lal, 2020). Increasing
greenhouse gas concentrations and global warming can influence soil aggregation by altering
temperature and moisture conditions (Comegna et al., 2012). Some studies observed that short-
term warming (<5 a) increased the non-aggregate silt� clay fractions, and the aggregate stability
decreased (Guan et al., 2018). In the medium and long-term warming process (5–10 a),
accelerated soil evaporation led to soil drying, which increased soil runoff and erosion, and then
hindered the development of soil aggregate structure (Bronick and Lal, 2005; Xue et al., 2011). In
addition, some researches indicated that warming reduced SOC content and its availability,
thereby reducing aggregate stability (Guo et al., 2022). However, other researches have also shown
that long-term warming had no effect on soil nutrients, meaning no effect on soil structure (Zhou
et al., 2013). In general, soil properties do not respond quickly when the surrounding environment
changes (Guo et al., 2022). Therefore, long-term warming experiments (>10 a) are more
appropriate to study the influence of warming on soil structure, as they can more accurately reflect
the variation of soil properties.

Soil organic carbon is a complex compound with varying turnover times. According to the
turnover time of organic carbon, the C fractions can be divided into labile or active carbon pool
(ACP) and stable or passive carbon pool (PCP) (Liu et al., 2021; Majumder et al., 2008). The labile
or ACP has a short turnover time, is the main nutrient source of plants and the main energy
source of soil microorganisms, and is susceptible to management measures and climatic
conditions (Sahoo et al., 2019). Compared with labile or aACP, stable or PCP has a longer
turnover time, which is recalcitrant and is often used as a reliable index of C sequestration
potential of a system (Song et al., 2018). With global warming, soil carbon pools are significantly
affected. At present, a large number of studies have reported the impact of global warming on soil
organic carbon pools and obtained inconsistent conclusions. For example, Xu et al. (2015) and
Samal et al. (2020) found that the ACP was very sensitive to temperature warming. In contrast,
Lefevre et al., 2014) reported that PCP was more sensitive to elevated temperature. Other studies
suggested that ACP and PCP had similar responses to temperature increase (Fang et al., 2005;
Leifeld and Fuhrer, 2005). The highly incompatible results suggest that more attention should be
paid to the effects of warming on soil organic carbon pools.

Wheat is one of the world’s important food crops, and about 21% of the world’s food comes
from wheat (Ortiz et al., 2008). China is the country that produces and consumes the most wheat
in the world, and wheat is the third major production crop in China. In 2010, China’s wheat
production accounted for 17.6% (115 million metric tons) of the world, and wheat harvest area
accounted for 11.2% (24 million hectares) of the world (FAO, 2013). Due to the pivotal status of
wheat in the grain industry, the importance of maintaining the safety of wheat production cannot
be overlooked, and the importance of soil physical structure and soil carbon pools in crop growth
and nutrient supply cannot be ignored in the context of global warming. Our study aimed to
identify the influence of long-term warming on the soil’s physical structure, including soil pore
and aggregate characteristics, and soil carbon pools in wheatland fields.

Materials and Methods
Experimental site

The long-term warming experiment was initiated in August 2012 in the Kaiyuan campus farm of
Henan University of Science and Technology, Luoyang, Henan Province, China (34°38 0N, 112°
22 0E). The climate at the study site was a warm temperate semi-arid semi-humid monsoon
climate with a mean annual temperature of 13.7°C, and a mean annual precipitation of 650.2 mm.
The soil at our site is a typical cinnamon soil with a medium loam texture. The main soil
properties are as follows: pH (1:5, soil: H2O) 7.4, bulk density 1.01 g cm-3, soil organic matter
10.7 g kg−1, total N 1.06 g kg−1, available P 3.46 mg kg−1, and available K 135.8 mg kg−1.
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Experimental design

Random block design was used in this field experiment, which included two treatments: warmed
and unwarmed control (unwarmed) (Fig. 1). Each treatment had three replicates. The area of each
replicate plot was 8 m2 (2 m× 4 m). In order to avoid heating contamination, adjacent plots were
separated by 10 m.

The field warming device used in this study was similar to the device shown by Chen et al.
(2014) and Zheng et al. (2017). Briefly, it consisted of horizontal steel tubes with adjustable height
and reflective curtain fixed on the steel tubes. Except for rainy and snowy days, the warmed plots
were covered with curtains from sunset (around 19:00) to sunrise (around 07:00). The unwarmed
plots were not covered by curtains. The distance between curtains and wheat canopy was kept at
20–25 cm to reduce the influence of curtains on air exchange. Using a digital temperature monitor
(ZDR–41, Beijing Jingcheng Huatai Instrument Co., Ltd., China) to automatically monitor the
temperature of 0–10 cm soil layer every 20 minutes during the whole growth period.

Crop management

In this experiment, the local drought-resistant and high-yield wheat variety Luohan 11 (Triticum
aestivum L. cv Luohan 11) was selected. Wheat seeds were sown in November by hand at a density
of 225 plants m-2 with a row spacing of 20 cm. In June of the second year, the wheat was harvested
piece by piece according to different maturity dates of each treatment. The fertilizer application rates
of N, P, and K in each plot were 220, 75, and 75 kg ha−1, respectively. Two days before sowing, total
P, total K, and 40% N were applied as basal dressing. The remaining 60% of N fertilizer was applied
at 30% and 30% ratios at the wheat jointing and heading stages. To maintain the same agronomic
management system among different treatments, the same fertilizer was applied to each plot on the
same date. If irrigation was required according to soil moisture, the same irrigation system was
applied to each plot. Other field management measures, such as weed, pest control, and pesticide
application, were implemented according to local wheat planting methods.
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Figure 1. Differences in soil temperature between the warmed and unwarmed plots over the 2012–2022 growing seasons.
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Soil sampling and analysis

Soil samples were collected in June 2019 after wheat harvest. Five undisturbed soil samples were
collected with a hand auger (5 cm in diameter) at a depth of 0–15 cm surface layer in each plot.
Then the five undisturbed samples were thoroughly mixed into one sample. At the same time,
three core samples were obtained from the center of the 0–15 cm layers in each plot with ring
knives for soil bulk density measurement. Finally, all soil samples were transferred to the
laboratory to determine the soil physicochemical properties.

Soil bulk density, total porosity, capillary porosity, and non-capillary porosity were determined
by the conventional core method (**Hao et al., 2018; Peng et al., 2020). The separation and
stability of soil aggregates were determined by conventional dry and wet sieving methods (Kemper
and Rosenau, 1986; Yoder, 1936). The detailed determination process was consistent with that of
Wu et al. (2018). The wet oxidation method was used to analyze the content of SOC (Walkley and
Black, 1934). The modified Walkley and Black method described by Chan et al. (2001) was
adopted to determine the different pools of SOC. Briefly, three acid aqueous solution ratios of
0.5:1, 1:1, and 2:1 were prepared with 5, 10, and 20 ml of concentrated sulfuric acid solution
(corresponding to 12 N, 18 N, and 24 N of H2SO4, respectively). Four different SOC pools were
extracted according to the order of reduced oxidation capacity:

F1 (very labile carbon pool): organic C oxidized under 12 N H2SO4.

F2 (labile carbon pool): difference of oxidizable under 18 N and 12 N.

F3 (less labile carbon pool): difference of oxidizable under 24 N and 18 N.

F4 (non-labile carbon pool): difference of total SOC and oxidizable under 24 N.

Active carbon pool (ACP) is the cumulative value of F1 and F2, and passive carbon pool (PCP) is
the sum of F3 and F4 (Chan et al. 2001).

Soil aggregate stability index calculation

The mean weight diameter (MWD), geometric mean diameter (GMD), and fractal dimension (D)
were adopted to quantify soil aggregate stability. The larger the MWD and GMD, the stronger the
stability of aggregates. The smaller the D, the better soil structure and higher soil stability. R0.25 is
the mass percentage of the >0.25 mm aggregates. These indexes were calculated using the
following equations (Cao et al., 2021; Kemper and Rosenau, 1986; Tyler and Wheatcraft, 1992):
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Where xi denotes the mean diameter of each aggregate fraction (mm); wi denotes the proportion
of ith size fraction (%); m(i< xi) denotes the mass of aggregates smaller than ith size fraction (g);
mt denotes the total mass of aggregates (g); and xmax denotes the maximum diameter of the soil
aggregate fractions (mm).
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Data analysis

All data analyses were performed with Excel 2007 and SPSS 19.0. Two-way analysis of variance
with least significant difference test was used to determine the differences among treatment means
with probability level <0.05. All data were tested by Shapiro-Wilk and Levene for normality and
homogeneity of variance. Origin 9.0 was employed to visualize the data.

Results
Long-term warming affects soil bulk density and porosity

Soil bulk density, porosity, and solid, liquid, and gas ratio in the unwarmed and warmed
treatments are presented in Table 1. The soil bulk density in the warmed treatment was
significantly higher by 4.5% (p < 0.05) than that in the unwarmed treatment. The total porosity
and non-capillary porosity in the warmed treatment significantly decreased by 3.4% and 5.0%
(p< 0.05), respectively, when compared with those of the unwarmed; but the capillary porosity
showed no significant difference between the two treatments (p> 0.05). Compared with
unwarmed treatment, warmed treatment increased the proportion of solids.

Long-term warming affects size distribution and structural stability characteristics
of soil aggregates

Figure 2 shows the size distribution of dry and wet aggregates in the unwarmed and warmed
treatments. For dry aggregates, the 2–0.25 mm size fraction exhibited the highest proportion
(60.3–61.1% of the total aggregates), followed by the >2 mm (24.2–29.5%) and 0.25–0.053 mm
(8.1–11.6%) size fractions, the <0.053 mm fraction had the lowest proportion (2.1–3.1%) in the
two treatments. Besides, the warmed treatment significantly decreased the >2 mm dry aggregates
by 17.8% (p< 0.05), and significantly increased the 0.25–0.053 mm and <0.053 mm dry
aggregates by 29.7% and 24.2% (p< 0.05), when compared with the unwarmed. For wet
aggregates, the proportion of <0.053 mm size fraction (33.5–43.2%) was the dominant size class,
followed by the 2–0.25 mm (30.2–31.8%) and 0.25–0.053 mm (16.4–25.8%) size fractions, the
>2 mm fraction had the lowest proportion (8.6–10.4%) in the two treatments. Furthermore, the
warmed treatment significantly decreased the >2 mm and 0.25–0.053 mm wet aggregates by
16.9% and 36.7% (p < 0.05), and significantly increased the 2–0.25 mm and <0.053 mm wet
aggregates by 5.2% and 28.8% (p< 0.05), respectively, when compared with the unwarmed.

Table 2 shows the structural stability characteristics of soil aggregates in the unwarmed and
warmed treatments. For dry aggregates, the warmed treatment significantly decreased the MWD,
GMD, and R0.25 by 7.0%, 12.3%, and 4.9% (p< 0.05), and significantly increased the D by 4.0%
(p< 0.05), respectively, when compared with the unwarmed. For wet aggregates, the warmed
treatment significantly decreased the MWD and GMD by 6.7% and 15.4% (p< 0.05), respectively,
when compared with the unwarmed. The D and R0.25 of wet aggregates showed no significant
difference between the two treatments (p> 0.05).

Table 1. Soil bulk density, porosity, and solid: liquid: gas ratio in the unwarmed and warmed treatments

Treatment Bulk density (g cm−3)

Sil porosity (%)

solid: liquid: gas ratioTotal porosity Capillary porosity Non-capillary porosity

unwarmed 1.12 ± 0.01b 57.55 ± 0.29a 24.43 ± 1.07a 33.12 ± 1.05a 1.65:1.22:1
warmed 1.17 ± 0.03a 55.60 ± 0.42b 24.15 ± 0.59a 31.45 ± 0.55b 1.74:1.23:1

Note: Values are means ± standard errors (n= 3). Different lowercase letters (a, b) in the same column denote a significant difference
between treatments (p< 0.05).
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Long-term warming affects soil carbon pools

Table 3 shows the content of different soil carbon pools in the unwarmed and warmed treatments.
The SOC content in the warmed treatment was significantly lower by 10.6% (p< 0.05) than that
in the unwarmed treatment. The F1 and F2 content in the warmed treatment were significantly
lower by 30.6% and 43.6% (p< 0.05), respectively, than those in the unwarmed treatment. The F3
and F4 content in the warmed treatment were significantly higher by 94.2% and 21.1% (p< 0.05),
respectively, than those in the unwarmed treatment. Compared with the unwarmed, the warmed
significantly decreased the ACP by 40.0% (p< 0.05), and significantly increased the PCP by 38.2%
(p< 0.05), respectively.

The percentage of different soil C pools to total SOC in the unwarmed and warmed treatments
is shown in Fig. 3. Compared with the unwarmed, the warmed decreased the percentage of F1 and
F2 from 44.3 to 33.4%, and from 22.3 to 14.1%, but increased the percentage of F3 and F4 from 7.8
to 16.9%, and from 25.5 to 34.6%, respectively. The warmed increased the PCP percentage but
decreased the ACP percentage compared with the unwarmed.

Discussion
In the present study, long-term warming increased soil bulk density of wheatland field (Table 1). A
similar result was reported by Bryk et al. (2017), who found that soil bulk density of the upper 0–5
cm layer was significantly negatively correlated with air temperature. This phenomenon is mainly
due to the fact that soil bulk density is closely related to SOC content, and higher temperature
tends to result in lower standing stock of SOC (Franzluebbers et al., 2001), thereby leading to the
decrease of soil bulk density. Soil pore system is an important aspect of soil structure, affecting the
transport of water, solutes, and air (Kuncoro et al., 2014; Menon et al., 2020). Long-term warming
decreased soil total porosity and non-capillary porosity (Table 1). Similar trends in the USA Great
Plains were reported by Xue et al. (2011). The decrease in soil porosity in the warming system is
due to the fact that increasing soil temperature reduces soil moisture (Scharn et al., 2021). Dry soil
usually has an unstable and poorly developed structure, resulting in high apparent density
(compaction) and low porosity (Wen et al., 2022). As the soil porosity decreased in the warmed
treatment, the ratio of soil solids increased (Table 1).

Soil aggregate is an important index reflecting soil structure. The particle size distribution of
soil aggregates influences material circulation and energy flow (Polakowski et al., 2021). Long-
term warming altered the particle size distribution of soil aggregates. Specifically, warming
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Figure 2. Soil aggregate size distribution in the unwarmed and warmed treatments. Different lowercase letters denote a
significant difference between treatments (p< 0.05). Bars represent standard errors (n= 3).
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decreased the >2 mm fraction proportion and increased<0.053 mm fraction proportion of dry
and wet aggregates (Fig. 2). This indicated that warming promoted the breakdown of
macroaggregates (>2 mm) into silt � clay-sized aggregates (<0.053 mm). This phenomenon is
partly due to warming leading to soil drying, preventing soil aggregation and structural
development (Bronick and Lal, 2005; Guan et al., 2018). In addition, aggregate breakdown is a
good measure for soil erodibility, because it increases the proportion of finer, more easily
transportable microaggregates, thereby increasing the risk of soil erosion. Therefore, climate
warming may increase the risk of soil erosion.

The stability of soil aggregates is a good indicator of soil degradation (Six et al., 2004). Long-
term warming decreased the MWD and GMD, and increased the D of dry and wet aggregates
(Table 2), indicating that warming decreased the aggregate stability and corrosion resistance. This
result was consistent with the findings of Guan et al. (2018) and Guo et al. (2022). Soil organic
matter is very important for the formation of soil aggregates, which combine with small particles
to form stable aggregate structures and promote the development of soil structures (Six et al.,
2004; Tisdall and Oades, 1982). Warming will increase the turnover rate of soil organic carbon and
the consumption of unstable carbon pools (Guo et al., 2022), leading to a decline in soil organic
matter content. Therefore, the stability of soil aggregates will decrease under warming conditions.

Climate change significantly affects soil organic carbon pools (Sahoo et al., 2019; Samal et al.,
2020). Our result suggested that long-term warming significantly decreased the SOC content
(Table 3). This was consistent with previous researches suggesting that the increase in temperature
had a negative impact on soil organic carbon content (Qi et al., 2016; Wang et al., 2016). This
result can be attributed to the increase in the soil respiration rate and the utilization efficiency of
soil microbes for SOC with increasing temperature (Allison et al., 2010; Hou et al., 2016; Lefevre
et al., 2014).

According to the turnover rate of SOC pools, SOC pools can be divided into ACP and PCP. The
ACP, represented by the very labile (F1) and the labile pool (F2), refers to the fraction of organic C
that is easily decomposed and poorly stable and is strongly influenced by microbial activity (Sahoo
et al., 2019). The PCP, represented by the less labile pool (F3) and the non-labile pool (F4), is
considered to be the more stable form of organic C, and is insensitive to soil and crop management
(Hazra et al., 2018). In this study, long-term warming significantly decreased the content of F1 and

Table 2. Soil aggregate structural stability characteristics in the unwarmed and warmed treatments

Sieving method Treatment MWD (mm) GMD (mm) D R0.25 (%)

Dry sieving Unwarmed 1.28 ± 0.02a 1.06 ± 0.04a 2.26 ± 0.03a 89.71 ± 1.55a

Warmed 1.19 ± 0.03b 0.93 ± 0.05b 2.35 ± 0.03b 85.33 ± 1.95b

Wet sieving Unwarmed 0.60 ± 0.02a 0.26 ± 0.01a 2.80 ± 0.01a 40.62 ± 1.24a

Warmed 0.56 ± 0.01b 0.22 ± 0.00b 2.83 ± 0.02a 40.43 ± 0.44a

Note: MWD, mean weight diameter; GMD, geometric mean diameter; D, fractal dimension; R0.25 is the mass percentage of the >0.25 mm
aggregates. Values are means ± standard errors (n= 3). Different lowercase letters (a, b) in the same column denote a significant difference
between treatments (p< 0.05).

Table 3. The content of different soil carbon pools in the unwarmed and warmed treatments

Treatment SOC (g kg-1) F1 (g kg-1) F2 (g kg-1) F3 (g kg-1) F4 (g kg-1) ACP (g kg-1) PCP (g kg-1)

unwarmed 13.34 ± 0.40a 5.91 ± 0.27a 2.98 ± 0.14a 1.04 ± 0.19b 3.41 ± 0.39b 8.89 ± 0.26a 4.45 ± 0.32b

Warmed 11.93 ± 0.51b 4.10 ± 0.35b 1.68 ± 0.21b 2.02 ± 0.35a 4.13 ± 0.32a 5.78 ± 0.18b 6.15 ± 0.34a

Note: SOC, soil organic carbon, F1, very labile pool; F2, labile pool; F3, less labile pool; F4, non-labile pool; ACP, active carbon pool; PCP,
passive carbon pool. Values are means ± standard errors (n= 3). Different lowercase letters (a, b) in the same column denote a
significant difference between treatments (p< 0.05).
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F2, while increasing the content of F3 and F4, suggesting that long-term warming decreased the
ACP, and increased the PCP (Table 3). This finding was in conformity with Samal et al. (2020),
who observed that under increased temperature, soil ACP was depleted, while PCP was enriched,
and soil total organic carbon declined in subtropical humid climatic regions. The soil’s ACP
decreased in response to increased temperature due to the higher decomposition of labile carbon.
The PCP increased in response to increased temperature may be due to the reduction of substrates
available to microorganisms, resulting in a decrease in the temperature sensitivity of the remaining
organic carbon, limiting further decomposition (Moinet et al., 2018; Thiessen et al., 2013). This
leads to the accumulation of more PCP in warm.

Conclusion
An eleven-year warming experiment was conducted in wheat field. Our results indicated that
long-term warming negatively impacted on soil’s physical structure. The soil bulk density
increased, while the total porosity and non-capillary porosity decreased in warmed treatment.
Long-term warming treatment promoted the breakdown of macroaggregates (>2 mm) into silt�
clay-sized aggregates (<0.053 mm), and decreased the soil aggregate stability of wheat field.
Besides, long-term warming decreased the total SOC content and ACP, while increasing the PCP.
Our study demonstrates that long-term warming may alter the soil’s physical structure and affect
the distribution and turnover of different soil organic carbon pools of wheatland field.
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