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This study investigates the onset of linear instabilities and their later nonlinear interactions
in the shear layer of an initially laminar jet using high-fidelity simulations. We present a
quantitative analysis of the vortex-pairing phenomenon by computing the spatial growth
rates and energy budget of the dominant frequencies. Compared with a turbulent jet,
the hydrodynamic instabilities and vortex pairing are enhanced in an initially laminar
jet. Using local linear theory, we identify the fundamental as the frequency with
the largest spatial growth rate, and its exponential growth causes the shear layer to
roll up into vortices. Visualisations and conditional x–t plots reveal that fundamental
vortices pair to form subharmonic vortices, which then merge to produce second
subharmonic vortices. The energy transfer during this process is evaluated using the
spectral turbulent kinetic energy equation, focusing on dominant coherent structures
identified through spectral proper orthogonal decomposition. Spectral production and
nonlinear transfer terms show that the fundamental frequency gains energy solely from
the mean flow, while subharmonics gain energy both linearly from the mean flow and
nonlinearly through backscatter from the fundamental frequency. Our results confirm
Monkewitz’s theoretical model of a resonance mechanism between the fundamental and
subharmonic, which supplies energy to the subharmonic. We highlight the energetic versus
dynamical importance of tonal frequencies. The second subharmonic corresponds to the
largest spectral peak, while the fundamental, though the fourth largest spectral peak, is
dynamically dominant, as it determines all other spectral peaks and supplies energy to the
subharmonics through a reverse energy cascade.
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1. Introduction
The hydrodynamic near-field and the far-field acoustics of jets are significantly influenced
by the inflow conditions and the state of the boundary layer at the nozzle exit. In particular,
the flow field is sensitive to parameters such as momentum thickness and fluctuation level,
and whether the boundary layer is laminar or turbulent. Several experimental (Hill Jr
et al. 1976; Hussain & Zedan 1978a,b; Husain & Hussain 1979; Zaman 1985; Bridges
& Hussain 1987; Zaman 2012; Fontaine et al. 2015) and numerical (Bogey & Bailly 2005;
Kim & Choi 2009; Bogey & Bailly 2010; Bogey, Marsden & Bailly 2012; Brès et al. 2018)
studies have explored the effect of these parameters. For a jet with a laminar boundary
layer at laboratory-scale Reynolds number, the flow emerging from the nozzle mixes with
the surrounding fluid and transitions to turbulence within the first few jet diameters. This
rapid mixing results in roll-up and pairing of vortices, consequently leading to an increase
in the radiated noise (Zaman 1985; Bridges & Hussain 1987; Bogey & Bailly 2010). Zaman
(1985) showed that an initially laminar jet exhibits a 4 dB increase in the radiated noise
compared with its turbulent counterpart. Bogey & Bailly (2010) demonstrated that initially
laminar jets with larger momentum thickness exhibit stronger vortex pairing that increases
the sound pressure levels in the sideline direction.

Vortex pairing is a main characteristic of mixing layers (Brown & Roshko 1974;
Winant & Browand 1974; Ho & Huang 1982; Metcalfe et al. 1987; Moser & Rogers
1993) and jet flows (Becker & Massaro 1968; Hussain & Zaman 1980; Zaman &
Hussain 1980; Meynart 1983). It significantly contributes to turbulent mixing (Brown &
Roshko 1974), the production of Reynolds stresses (Zaman & Hussain 1980), entrainment
(Winant & Browand 1974) and triggers the transition to turbulence (Ho & Huang 1982;
Moser & Rogers 1993). Given its importance, vortex pairing has been the subject of
numerous studies. In jets, it was first visualised by Becker & Massaro (1968). In the
seminal study by Crow & Champagne (1971), pairing was found to be more regular at
low Reynolds numbers and became increasingly chaotic at higher Reynolds numbers.
Detailed experimental studies on forced jets conducted by Zaman & Hussain (1980)
and Hussain & Zaman (1980) reveal that pairing occurs at two distinct frequencies:
one around Stθ = f θ/U ≈ 0.012, termed the shear-layer mode, and the other around
St D = f D/U ≈ 0.85, referred to as the jet-column mode. Here, f is the frequency,
U is the jet velocity, D is the diameter and θ is the momentum thickness. Kibens (1980)
forced a jet at the shear-layer instability frequency Stθ and found that this forcing results in
three successive vortex pairings, producing the subharmonic frequencies Stθ /2, Stθ /4 and
Stθ /8. Similarly, in mixing layers, Ho & Huang (1982) observed multiple pairing when
the flow was forced at the subharmonic frequency.

Vortex pairing is a nonlinear process that involves the merging of two smaller vortices
into a larger vortex with half the frequency. The nonlinear mechanisms behind the growth
of the subharmonic during this process have been the focus of many studies (Kelly
1967; Monkewitz 1988; Paschereit, Wygnanski & Fiedler 1995; Husain & Hussain 1995).
Kelly (1967) proposed a resonance mechanism that provides energy to the subharmonics.
Monkewitz (1988) used weakly nonlinear spatial theory to further support Kelly’s (1967)
resonance mechanism. It was demonstrated that the fundamental mode needs to reach a
critical amplitude before both the fundamental and subharmonic can phase lock, resulting
in an energy transfer to the subharmonic. Cohen & Wygnanski (1987) demonstrated that
fundamental–subharmonic interactions occur only when both waves propagate at the same
phase velocity, allowing sufficient time for the transfer of energy between the two waves.
Experiments by Hajj, Miksad & Powers (1992) show that the subharmonic gains energy
through this resonance mechanism. Works by Husain & Hussain (1995) and Cho, Yoo
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& Choi (1998) demonstrate that vortex pairing can be either enhanced or attenuated by
controlling the phase difference between the fundamental and the subharmonic. Mankbadi
(1985) employed an energy-integral method to show that the subharmonic gains energy
from both the fundamental and the mean flow. Paschereit et al. (1995) estimated the energy
transfer to the subharmonic wave based on the production terms. Their findings reveal that
the subharmonic primarily gains its energy from the mean flow, with the fundamental
wave acting as a catalyst. This catalytic role refers to the scenario where the fundamental
promotes subharmonic growth while remaining largely unaffected itself. This concept
is consistent with Monkewitz’s (1988) theoretical framework and is, in fact, a common
characteristic of resonant wave interactions in shear flows (see e.g. Wu, Stewart & Cowley
2007).

Using classical linear theory and spectral modal analysis, this work answers the
following questions: How does the growth of the shear layer differ between an initially
laminar jet and a turbulent jet? What is the influence of vortex pairing on the development
of the shear layer? What should be considered as the fundamental frequency in a multi-
tonal flow? In particular, our study sheds light on the ambiguity of energetic versus
dynamical significance in this context. We further demonstrate how the energy transfer
during vortex pairing can be quantified.

Linear stability theory (LST) has been used in the past with great success, first
by Michalke (1964, 1965) on a hyperbolic tangent profile. Here, we apply LST to
the temporally averaged mean flow of a jet. This approach corresponds to applying
the parallel flow assumption locally to the zero-frequency component, which has been
utilised in cylinder wakes (Pier 2002; Barkley 2006) and jets (Suzuki & Colonius 2006;
Gudmundsson & Colonius 2011; Schmidt et al. 2017). Recent studies (Wu & Zhuang
2016; Zhang & Wu 2020, 2022) have also examined the effects of non-parallelism and
nonlinearity, finding both to be important. The mathematical framework of spectral proper
orthogonal decomposition (SPOD) dates back to the work of Lumley (1967, 1970). SPOD
identifies the most energetic coherent structures at each time scale. Early applications of
SPOD include the work of Glauser, Leib & George (1987), Glauser & George (1992)
and Delville (1994). More recently, this method has attracted significant interest following
its application to large flow databases by Schmidt et al. (2018) and the establishment
of its relationship to other methods by Towne, Schmidt & Colonius (2018). Since then,
SPOD has become a mainstay of physical exploration, in particular for identifying
different modal and non-modal instabilities (Schmidt et al. 2018; Nogueira et al. 2019;
Pickering et al. 2020). While SPOD does not provide a priori insights, it helps reveal the
underlying physics of turbulent flows in a statistical sense, particularly when combined
with nonlinear analysis. In contrast, LST offers predictive capabilities, providing a priori
insights. Therefore, in this study, we employ both LST and SPOD to characterise the
vortex-pairing process.

Vortex pairing is a nonlinear process involving energy transfer between different
frequencies or scales. This interscale energy transfer arises from the quadratic nonlinearity
of the Navier–Stokes equations, leading to triadic interactions. Various approaches have
been employed to analyse the energy transfer between different scales, including the
Karman–Howarth equation (Von Karman & Howarth 1938; Danaila et al. 1999; Hill
2001) and bispectrum analysis (Lii, Rosenblatt & Van Atta 1976; Kim & Powers 1979;
Herring 1980). The former is based on structure functions, and the latter is the frequency-
domain representation of third-order moments. Recently, a modal decomposition based on
bispectral analysis was developed by Schmidt (2020). Consistent with our data analysis
approach, we quantify the production, dissipation and nonlinear transfer between the
leading SPOD modes associated with different harmonics and the mean flow, based on
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the spectral turbulent kinetic energy (TKE) equation. Previous studies (Mizuno 2016;
Cho, Hwang & Choi 2018; Lee & Moser 2019; Gomé et al. 2023) have investigated
interscale energy transfer in turbulent channel flows using the spectral TKE equation.
Additionally, researchers have employed various bases, such as resolvent modes (Symon,
Illingworth & Marusic 2021; Jin, Symon & Illingworth 2021), Fourier modes (Nekkanti
et al. 2023a), dynamic mode decomposition modes (Kinjangi & Foti 2023) and optimal
mode decomposition modes (Biswas, Cicolin & Buxton 2022), to estimate the spectral
energy budget.

The paper is organised as follows. In § 2, the methodologies of LST, SPOD and SPOD-
based spectral energy budget analysis are discussed. Results focusing on shear-layer
instability, vortex pairing and spectral energy transfer are presented in § 3. The paper
concludes with discussions and conclusions in § 4.

2. Methodology

2.1. Linear stability theory
We employ the spatial form of LST. This LST determines the spatial growth rates of the
corresponding frequency. Here, we use it to identify the most unstable frequency. The
LST is also referred to as local linear theory, and throughout this paper, we will use the
terms LST and local linear theory interchangeably. In LST, the frequency ω is assumed to
be real, and the eigenvalue problem is solved for a complex α. The real part of α is the
streamwise wavenumber and the imaginary part is its amplification rate. We start off with
the Reynolds decomposition, q(x, r, θ, t) = q̄(x, r) + q ′(x, r, θ, t), where q̄ is the mean
flow and q ′ is the fluctuation. The basic assumption of the local linear theory that the flow
is locally streamwise parallel, i.e. the flow is homogeneous in the streamwise direction.
Using the normal mode ansatz, the fluctuation is expressed as

q ′(x, r, θ, t) = q̃(r)ei(αx+mθ−ωt), (2.1)

where the streamwise wavenumber α is complex and q̃ is the radial profile. Linearising
the Navier–Stokes equation about the base flow yields the equation

(iωI + L) q̃ = 0, (2.2)

where I is the identity matrix and L is the linearised compressible Navier–Stokes
operator. The domain is extended to the far field by mapping the original domain r ∈
[0, 6] to r ∈ [0, ∞) by the mapping function suggested by Lesshafft & Huerre (2007).
Dirichlet boundary conditions are used for a far-field boundary, and the radial direction is
discretised using Chebyshev collocation points. Finally, the eigenvalue problem is solved
using the methodology of Maia et al. (2021, 2022). Solving this eigenvalue problem
yields monochromatic amplification rates, αi . For αi < 0, the disturbances will grow
exponentially downstream, whereas for αi > 0, they will decay downstream.

2.2. Spectral proper orthogonal decomposition
SPOD decomposes stationary flow data into monochromatic modes that represent
the spatial flow structures optimised in terms of the flow’s energy. The eigenvalues
corresponding to these modes represent their energy. We employ a SPOD algorithm
based on Welch’s method (Welch 1967). For the mathematical derivation and
computational details, we refer the reader to Towne et al. (2018) and Schmidt & Colonius
(2020). The SPOD modes and eigenvalues are obtained by solving the eigenvalue
problem
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Journal of Fluid Mechanics∫
Ω

S
(
x, x ′, f

)
W

(
x ′) φ

(
x ′, f

)
dx ′ = φ (x, f ) λ( f ), (2.3)

where S is the cross-spectral density matrix, W the positive-definite matrix that accounts
for component-wise and numerical quadrature weights, φ the SPOD modes and λ
the eigenvalues. At each frequency, the eigenvalue decomposition of the cross-spectral
density matrix S yields a countably infinite number of SPOD modes, φ(i)(x, f ), and
corresponding eigenvalues, λ(i)( f ), where i is the mode number index. The modes are
sorted by energy: λ(1)( f )� λ(2)( f )� · · ·� 0. At each frequency, the SPOD modes are
orthogonal in space: ∫

Ω

φ(i)(x, f )W (x) φ( j)(x, f )dx = δi j , (2.4)

where δi j is the Kronecker delta function. Recently, Nekkanti & Schmidt (2021) proposed
a convolution approach that computes time-continuous expansion coefficients:

a(i)( f, t) =
∫

�T

∫
Ω

(
φ(i)(x, f )

)∗
W (x)q(x, t + τ)e−i2π f τ dx dτ, (2.5)

which facilitates obtaining the time-continuous Fourier modes:

q̂(x, f, t) ≈
∑

i

a(i)( f, t)φ(i)(x, f ). (2.6)

2.3. SPOD-based spectral energy budget
The optimality of the SPOD expansion, (2.6), can be leveraged to quantify the nonlinear
interactions between the most salient flow features and their global energy budget. We
specifically focus on production and nonlinear energy transfer. The starting point is the
spectral TKE equation:

∂ k̂

∂t
=R

⎡
⎢⎢⎢⎢⎣−ūi

∂ k̂

∂xi
− û∗

j

̂

ui
∂u j

∂xi︸ ︷︷ ︸
Tnl

− û∗
j ûi

∂ ū j

∂xi︸ ︷︷ ︸
P

− 2
Re

ŝ∗
i j ŝi j︸ ︷︷ ︸

D

− ∂

∂x j

(
û∗

j p̂
)+ 2

Re

∂

∂xi

(
û∗

j ŝi j
)
⎤
⎥⎥⎥⎥⎦ ,

(2.7)
where ŝi j = 1/2(∂ ûi/∂x j + ∂ û j/∂xi ) is the spectral strain rate, R denotes the real part
and k̂( f, m) = û∗

i ( f, m)ûi ( f, m)/2. Readers are referred to Bolotnov et al. (2010) and
Cho et al. (2018) for the derivation of the spectral TKE equation, with a detailed derivation
provided in Appendix B for completeness. For brevity, we suppress the spatial dependence
of all quantities. For statistically stationary flows, the left-hand side goes to zero. In this
work, we focus on the spectral production term

P ( f, m) = −R
[

û∗
j ( f, m) ûi ( f, m)

∂ ū j

∂xi

]
, (2.8)

the spectral dissipation term

D ( f, m) = − 2
Re

R
[(

∂ û∗
i

∂x j
( f, m) + ∂ û∗

j

∂xi
( f, m)

)(
∂ ûi

∂x j
( f, m) + ∂ û j

∂xi
( f, m)

)]
(2.9)
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and the spectral nonlinear transfer term

Tnl ( f, m) = −R
[

û∗
j ( f, m)

̂

ui
∂u j

∂xi
( f, m)

]
. (2.10)

The term
∧

ui∂u j/∂xi in (2.10) entails the contributions from all other frequencies and
azimuthal wavenumbers to frequency f and azimuthal wavenumber m. Following Cho
et al. (2018), we isolate the energy transfer of individual triads, i.e. frequency and
wavenumber triplets related by the resonance conditions, m1 ± m2 ± m3 = 0 and f1 ±
f2 ± f3 = 0, by splitting

∧

ui∂u j/∂xi using the discrete convolution to obtain

Tnl ( f3, m3) = −R

⎡
⎢⎢⎣û∗

j ( f3, m3)
∑

f1+ f2= f3
m1+m2=m3

ûi ( f1, m1)
∂ û j

∂xi
( f2, m2)

⎤
⎥⎥⎦ . (2.11)

To obtain a bispectral representation of the energy transfer, we further split the sum
in (2.11) into individual frequency and wavenumber components that are triadically
compatible:

tnl ( f1, f2, m1, m2) = −R
[

û∗
j ( f1 + f2, m1 + m2) ûi ( f1, m1)

∂ û j

∂xi
( f2, m2)

]
, (2.12)

such that Tnl( f3, m3) =∑
f1+ f2= f3

m1+m2=m3

tnl( f1, f2, m1, m2).

At each frequency, the dominant flow structure is represented by the leading SPOD
mode. To characterise the production and nonlinear kinetic energy transfer of these
structures, we use a rank-1 approximation of the velocity field, following (2.6). As the
focus is on self-interactions of the axisymmetric component, we further suppress the
azimuthal wavenumber and SPOD mode number dependence with the understanding
that m1 = m2 = m3 = 0 and i = 1. We have confirmed that higher azimuthal wavenumber
components with m > 0 do not play a significant role in the dynamics of interest.
Substituting (2.6) into (2.8), (2.9), (2.11) and (2.12) we get

Prank-1 ( f1) = −a∗ ( f1) a ( f1)φ
∗
j ( f1) φi ( f1)

∂ ū j

∂xi
= −λ( f1)φ

∗
j ( f1) φi ( f1)

∂ ū j

∂xi
,

(2.13)

Drank-1 ( f1) = −λ( f1)

(
∂φ∗

i

∂x j
( f1) + ∂φ∗

j

∂xi
( f1)

)(
∂φi

∂x j
( f1) + ∂φ j

∂xi
( f1)

)
, (2.14)

trank-1
nl ( f1, f2) = −R

(
a∗ ( f1 + f2) a ( f1) a ( f2)φ

∗
j ( f1 + f2) φi ( f1)

∂φ j

∂xi
( f2)

)
,

(2.15)

T rank-1
nl ( f3) = −R

⎛
⎝ ∑

f1+ f2= f3

a∗ ( f3) a ( f1) a ( f2)φ
∗
j ( f3) φi ( f1)

∂φ j

∂xi
( f2)

⎞
⎠ .

(2.16)
The term Prank-1( f1) signifies energy transfer from frequency f1 to the mean

flow, Drank-1( f1) represents energy dissipation at f1, trank-1
nl ( f1, f2) denotes nonlinear
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interactions between f1 and f2 and T rank-1
nl ( f3) indicates net nonlinear energy transfer

into f3. In § 3.4, we use these equations to shed light on the energy transfer during the
vortex-pairing process.

3. Results
This study investigates the nonlinear dynamics of the initially laminar shear layer of
jets at laboratory-scale Reynolds numbers. To validate against experiments and contrast
to jets with different shear layers, two large-eddy simulations (LES) of subsonic jets
are conducted at a Reynolds number of Re = U j D/ν = 50 000. Here, U j is the jet exit
velocity, D is the diameter and ν is the kinematic viscosity. In both simulations, the jet
plume is turbulent. The main difference between the two cases is the state of the boundary
layer inside the nozzle and, consequently, the initial free shear layer over the first few
jet diameters downstream of the nozzle. In the first case, the boundary layer inside the
nozzle is laminar but quickly transitions within the first jet diameter. In the second case,
the boundary layer is tripped inside the nozzle and, hence, turbulent from the start. We
refer to the first case as the initially laminar jet and the second case as the turbulent jet.
Independent of the boundary-layer tripping, both jets exhibit a potential core length that
extends over several jet diameters.

The LES are performed using the compressible flow solver ‘Charles’ developed at
Cadence, formerly Cascade Technologies (Brès et al. 2017, 2018), and the reader is referred
to Brès et al. (2017, 2018) for further details on the numerical method and validation on jet
flows. To ensure the accuracy of our simulations, we first validate them by comparing
them against companion experiments conducted by Maia, Jordan & Cavalieri (2022).
This experimental nozzle geometry is meshed using the same strategy as that of Brès
et al. (2018), resulting in a total grid size of 16.6 million control volumes. The LES
are performed at the experimental Reynolds number. The Mach number is artificially
increased to M j = 0.4 to avoid the very small explicit time steps associated with the
incompressible limit. It has been confirmed by comparison with the experimental data
that the effects of compressibility at this relatively small Mach number are negligible for
the purpose of this study (see figure 2).

3.1. Turbulent jets
We compare the initially laminar and turbulent jets using instantaneous visualisations and
root mean square (RMS) of the fluctuating streamwise velocity in figure 1. The 95 %
(white solid) and 5 % (white dashed) contour lines of the mean streamwise velocity
outline the potential core and the jet plume, respectively. We refer to the initial shear
layer as the free shear layer between the potential core and the ambient free stream,
extending over about five jet diameters downstream of the nozzle exit. The instantaneous
streamwise velocity fluctuating fields shown in figure 1(a,b) reveal that the initially laminar
jet exhibits a shorter potential core and larger jet width. The initial shear layer over the
first two jet diameters is highlighted in the insets of figures 1(a) and 1(b). The hallmark
of the untripped jet is the initially laminar shear layer that is easily distinguished from the
turbulent shear layer by its spreading rate; the laminar shear layer exiting the nozzle has a
significantly lower spreading rate until x ≈ 0.8, where its spreading rate rapidly increases
after it transitions to turbulence. This distinction between the laminar and turbulent
portions of the shear layer is quantitatively confirmed by the RMS profiles in figure 1(c–g).
At the nozzle exit in figure 1(c), the RMS profile of the turbulent jet peaks at � 10 % of the
free-stream velocity close to the nozzle wall. On the other hand, expectedly, the laminar
shear layer of the untripped jet has zero RMS. By x = 1, the RMS profile of the initially
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Figure 1. Comparison of the initially laminar and turbulent jets: instantaneous fluctuating streamwise velocity
field of (a) initially laminar jet and (b) turbulent jet. The RMS of streamwise velocity at (c) x = 0; (d) x = 1;
(e) x = 2; (f ) x = 5; (g) x = 15. The potential core and the jet width are indicated as lines of constant ux at
95 % and 10 % of the jet velocity U j , respectively.
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LES turbulent

LES initially laminar 

Zaman & Hussain, Re = 1.2 × 104

Bogey & Bailly, Re = 105

0 2 4

Figure 2. Experimental validation of turbulent jet LES and comparison of initially laminar jet LES with the
literature (Zaman & Hussain 1980; Bogey & Bailly 2010): (a) mean and (b) RMS of the streamwise velocity
on the centreline. The intersection of the black dashed line at ux/U j = 0.95 with the mean streamwise velocity
defines the length of the potential core.

laminar jet already resembles that of the turbulent jet. Further downstream, at x = 5, the
RMS of the initially laminar jet surpasses that of the turbulent jet, and eventually, in
the region of self-similarity, the RMS profiles become nearly identical again. We later
show that the rapid growth of the shear layer is associated with exponential growth of
the hydrodynamic instability modes supported by the initially laminar shear layer. We
explore the nonlinear dynamics of the jet that leads this rapid growth and explain previous
observations (Zaman & Hussain 1980; Kim & Choi 2009; Bogey & Bailly 2010).

Figure 2 shows a four-way comparison between initially laminar jet, turbulent jet, LES
and experiments. The mean and RMS streamwise velocities on the centreline are shown
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Figure 3. Premultiplied radially integrated PSD,
∫

r St · P SDr dr , along x for initially laminar jet (a,b) and
turbulent jet (c,d). (a,c) Streamwise velocity, ux ; (b,d) radial velocity, ur . Dashed lines indicate the three tones
of the initially laminar jet, and the dotted line corresponds to the most energetic frequency of the turbulent jet.

in figures 2(a) and 2(b), respectively. In the absence of the initially laminar jet for the
considered nozzle geometry, the turbulent jet is used to validate the numerical setup. Good
agreement is observed for the turbulent jet in terms of the mean and RMS streamwise
velocities, but the LES of the initially laminar jet shows significant differences. Along
the centreline, the mean flow of the initially laminar jet exhibits a dip at x ≈ 2 (see the
inset of figure 2a) and decays rapidly beyond the end of the potential core. The mean flow
velocity profile of Bogey & Bailly (2010) exhibits the same phenomenon. The RMS of
the initially laminar jet in figure 2(b) is notably higher than the fully turbulent case and
exhibits a distinct hump at x ≈ 2.8. This hump, to a certain degree, was also observed
by Zaman & Hussain (1980) and Bogey & Bailly (2010). This hump and elevated RMS
were previously associated with vortex pairing by Kim & Choi (2009), Bogey & Bailly
(2010) and Bogey et al. (2012). The authors also demonstrated that both these phenomena
strongly depend on the initial shear-layer thickness, with a thicker shear layer growing
faster and exhibiting enhanced vortex pairing. In contrast, a thinner shear layer will grow
earlier but slower, resulting in lower urms

x on the centreline (Bogey & Bailly 2010).
In the remainder of this paper, we go beyond this phenomenological description and
analyse the underlying nonlinear mechanism in detail. To this end, we use spectral modal
decomposition techniques and local LST.

3.2. Shear-layer instability
Figure 3 shows the premultiplied power spectral density (PSD) of the streamwise and
radial velocities for the initially laminar and turbulent jets, respectively. The PSD is
computed at each spatial location and integrated radially for each streamwise location.
For the initially laminar jet, the PSDs of ux and ur show the prominence of three
frequency components: St = 1.76, 0.88 and 0.44. The three peaks are located at (St , x)

= (1.76, 1.0), (0.88, 1.45) and (0.44, 2.4). The most upstream peak occurs at St = 1.76
as a result of the convective Kelvin–Helmholtz instability of the initial shear layer.
Notably, it is an integer multiple of the second and third peaks. This observation suggests
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Figure 4. Total RMS velocities and selected contributing frequency components along x : (a) urms
x on the

centreline, r = 0; (b) urms
x on the lipline, r = 0.5; (c) urms

r on the lipline. The total RMS (black curve) is
plotted on the left ordinate, and the remaining curves are plotted on the right ordinate. The red curve is the sum
of five frequencies St = 1.76, 0.88, 0.44, 0.22 and 0.11.

that St = 1.76 is the fundamental frequency. We later confirm this using LST and
demonstrate in § 3.3 that the second and third peaks arise from vortex pairing, i.e. due to
nonlinearity as opposed to hydrodynamic instability. The fundamental frequency translates
to Stθ = f θ/U j = 0.0132, which closely matches that of the shear-layer mode observed
in forced-jet experiments (Zaman & Hussain 1980). For all three frequencies, the PSD of
the ur component is greater than that of the ux component. The PSDs for the turbulent
jet in figure 3(c,d) are significantly lower than those for the initially laminar jet. For
the turbulent jet, the first tonal component is observed at x ≈ 2.6 and St = 0.56 (exact
frequency determined from figure 6), denoted by the dotted line. No peaks are observed
at St = 1.76 and 0.88, indicating that the dynamics associated with these frequencies is
absent in the fully turbulent jet. Bridges & Hussain (1987) demonstrated that tripping the
boundary layer suppresses the development of shear-layer instabilities and eliminates the
associated vortex pairing.

Figure 4 shows the contribution of tonal frequencies to the total RMS of the initially
laminar jet. This contribution is shown for the streamwise velocity on the centreline (r = 0)
in figure 4(a), the streamwise velocity on the lipline (r = 0.5) in figure 4(b) and the radial
velocity on the lipline in figure 4(c). The total RMS is plotted on the left ordinate, whereas
the RMS of five frequencies and their sum (denoted by a red line) are plotted on the
right ordinate. In all cases, the frequency St = 0.44 exhibits the maximum RMS. The
lower frequencies are more significant on the centreline, whereas the higher frequencies
are dominant on the lipline. In figure 4(a), the curve representing the sum of the five
frequencies, while of a lower magnitude, closely resembles the shape of the total RMS.
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Upon comparing the sum curve with the individual frequencies, it becomes evident that
the frequencies St = 0.44 (magenta) and St = 0.22 (cyan) correspond to the accumulation
of RMS at x ≈ 2.8 and x ≈ 6, respectively.

Along the lipline, the total RMS of streamwise and radial velocity peaks at x ≈ 1.8.
The curve representing the sum of five frequencies matches the shape of the total curve
only up to x � 1.8. This is because the flow downstream exhibits a broadband-like
nature, necessitating more frequencies to capture the fluctuating dynamics. The higher
frequencies, St = 1.76, 0.88 and 0.44, are more prominent on the lipline than on the
centreline. In figure 4(c), these three frequency components peak successively as the
preceding frequency starts to decline. This observation is consistent with the expectation
that lower-frequency components peak at more downstream locations where the shear layer
is thicker. Our findings indicate energy transfer between the fundamental and subharmonic
modes. Later, in § 3.4, we investigate this transfer using the spectral kinetic energy
equation.

Next, we perform local linear stability analysis to understand the origin of the
fundamental frequency. In particular, we seek a quantitative comparison between the
empirical growth rates deduced from data and theory. We define the local amplitude of
q̂ as

A(x, m, ω) =
√∫

r
q̂∗q̂rdr =

√
kLES, (3.1)

where kLES is the turbulent kinetic energy computed from the data. Using (3.1) and the
normal mode ansatz (2.1) allows us to compute the empirical growth rate as

α
emp
i = − 1

A

dA

dx
. (3.2)

The TKE can also be predicted from the local linear theory by integrating and squaring
the theoretical amplification rate:

kL ST = exp
{

2
∫ x

α(x)dx

}
(3.3)

In the absence of an amplitude in local linear theory, only a qualitative comparison of the
TKE distribution can be made. Here, we choose to normalise kL ST by the maximum kLES

of each frequency.
Figure 5 shows the TKE (figure 5a,b) and spatial growth rate (figure 5c–f ) for the

axisymmetric component m = 0 in both jets. The spatial growth rate is computed from
local linear theory in figure 5(c,d) and empirically using (3.2) in figure 5(e,f ). The black
line represents the neutral stability curve, while the green line denotes the frequency
associated with the largest growth rate at each streamwise location. The TKE for St = 1.76,
0.88 and 0.44 in the initially laminar jet and for St = 0.56 in the turbulent jet is shown
in figures 5(a) and 5(b), respectively. The TKE estimated from LST (kL ST ), denoted
by the dotted-dashed lines, is also shown, demonstrating a good fit with the data. It is
observed that the TKE peak of each frequency is approximately located on the neutral
stability curve. This observation is in agreement with the fact that the local growth
rate at the maximum is zero. As a visual aid, dashed lines indicating the locations of
the maximum TKE extend into figures 5(c) and 5(d), which show the spatial growth
rates of the initially laminar and turbulent jets, respectively. Figure 5(c) reveals that
St ≈ 1.76 is the most unstable frequency at the nozzle’s exit for the initially laminar
jet. The coalescence of the observations that St = 1.76 is the most unstable frequency
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Figure 5. Comparison of TKE and amplification rate predicted from LST with empirical data: TKE of the
dominant frequencies for (a) initially laminar jet and (b) turbulent jet. Amplification rate predicted from LST
(c,d) and empirically from data (e, f ), using (3.2), for the initially laminar jet (c,e) and turbulent jet (d,f ). The
solid and dash-dotted lines in (a,b) represent the TKE computed from data and LST using (3.3), respectively.
The green line in (c) denotes the most unstable frequency at each streamwise location. The neutral stability
curve is represented by the black line in (c–f ). The rightward-pointing green triangle in (d) denotes the most
unstable frequency, St = 0.9, for the turbulent jet.

and occurs most upstream at the nozzle’s exit confirms our previous interpretation of
St ≈ 1.76 as the fundamental frequency. The absence of a peak at St = 0.88 and 0.44
indicates that these frequencies are not a result of purely linear hydrodynamic instability.
Despite being spatially unstable in their own right, these tonal frequencies arise from the
nonlinearity involving the fundamental frequency. On the other hand, for the turbulent
jet (figure 5d), the growth rates are much lower in magnitude, and the most unstable
frequency is St ≈ 0.90. The differences in the most amplified frequencies for the laminar
and turbulent jet are in accordance with the findings of Morris & Foss (2003). The
empirical spatial growth rates in figure 5(e,f ) are similar to those estimated by local linear
theory. In particular, the most unstable frequencies St ≈ 1.76 and 0.9, for the initially
laminar and turbulent jet, respectively, are well estimated. The notable similarity between
the empirical and theoretical results reveals two key points: first, it confirms the validity
of the assumption of local linear theory; second, it supports the physical interpretation
that the observed amplitude disturbances of individual frequency components represent
hydrodynamic instability waves. Note that the TKE predicted by LST deviates from the
LES data beyond the neutral point, where nonlinear effects become significant. Beyond
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this location, nonlinear stability theory can potentially offer a more accurate estimate of
the LES data (Zhang & Wu 2020, 2022). Nevertheless, the good agreement between the
growth rates estimated from LST of the mean flow and those empirically derived from
data up to the neutral point aligns with the findings of Pier (2002) and Barkley (2006).
They demonstrated that for flow past a cylinder, LST of the mean flow can accurately
predict nonlinear vortex shedding. The LST of the time-averaged mean flow indirectly
incorporates nonlinear interactions through mean flow deformations, which arises from
the self-interaction of each mode with its conjugate. In weakly nonlinear regimes, the
dominant contribution is at quadratic order, such as the self-difference interaction of the
fundamental frequency that contributes to mean flow distortion.

Recent works, such as the Floquet analysis of Shaabani-Ardali, Sipp & Lesshafft (2019)
and the harmonic resolvent analysis of Padovan & Rowley (2022), use a time-varying base
flow to capture first-order triadic interactions at specific frequencies, showing remarkable
agreement between linear models and fully nonlinear direct numerical simulation. These
methods account for the periodic structure induced by the fundamental wave, whereas
LST captures only the indirect nonlinear effects associated with mean flow deformation.
Similarly, the close correspondence between growth rates estimated from local linear
theory and those derived from LES data in figure 5 supports this observation. Overall,
these results indicate that while the linear instabilities initiate and drive the vortex-
pairing process, the process itself is inherently nonlinear. As shown later in figure 10,
the production term, associated with the linear effects, is energetically more significant,
which explains why the linear model can effectively approximate the overall behaviour.
Nevertheless, direct nonlinear interactions are dynamically important and essential for the
vortex-merging process.

As both jets are statistically stationary flows, we use SPOD to extract the spatiotemporal
coherent structures. To emphasise the dynamics in the initial shear layer, SPOD is
computed using a weighting function that assigns zero weights to the region we wish
to exclude. Specifically, zero weights are assigned to the areas outside the shear layer and
beyond the end of the potential core. These weighting functions are shown in the top row
of figure 6, where the black regions represent zero weights. Figure 6 shows the SPOD
eigenspectra of the initially laminar and turbulent jets. Corresponding to the previously
observed tones in figure 3, SPOD identifies the tonal peaks at St = 1.76, 0.88 and 0.44
for the initially laminar jet in figure 6(a). Interestingly, a broader peak is observed at
the fundamental frequency St = 1.76, which has lower energy compared with the two
subharmonics. Additionally, the spectra reveal the presence of ultra- and superharmonics
at St ≈ 2.7 and 3.5, respectively. We have confirmed from the spatial linear theory that
St = 3.5 is indeed a higher harmonic, as there was no associated peak in the amplification
rate. No distinct peaks are observed at the ultraharmonic frequencies St = 0.66 and
1.32 (denoted by grey dotted lines). Later, in figure 12, we demonstrate that despite not
being energetically important, they play an active role in triadic interactions. The SPOD
spectrum of the turbulent jet is relatively broadband and exhibits a low-rank behaviour for
0.3 � St � 1 (Schmidt et al. 2018). Overall, figure 6 indicates that the presence of discrete
tones leads to a much higher fluctuation level than the turbulent case.

The leading SPOD modes associated with St = 1.76, 0.88, 0.44, 0.22 and 0.11 are
shown in figure 7. Due to the spreading of the shear layer, structures with lower frequencies
are supported farther downstream than those associated with higher frequencies. At the
fundamental frequency, the leading SPOD mode materialises as a Kelvin–Helmholtz
wavepacket with compact support in the region 0.8 � x � 1.2 around the lipline. At a lower
frequency of St = 0.44, the leading SPOD mode exhibits larger spatial support within the
range 1 � x � 6 and 0 � r � 1. Notably, it exhibits high amplitude in 2 � x � 3, where
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Figure 6. SPOD eigenspectra with a focus on the shear layer until the end of the potential core:
(a) initially laminar jet; (b) turbulent jet. The white-shaded area in the top row denotes the focus region of
SPOD. Dashed lines indicate the three tones of the initially laminar jet. Dotted lines in (a) correspond to the
ultraharmonics St = 0.66 and 1.32, and the dotted line in (b) to the most energetic frequency of the turbulent
jet.
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Figure 7. Leading SPOD modes of the fundamental and four of its subharmonic frequencies: (a,b) St =
1.76; (c,d) St = 0.88; (e,f ) St = 0.44; (g,h) St = 0.22; (i,j) St = 0.11. The left-hand column represents the
streamwise velocity component ux and the right-hand column represents the radial velocity ur . The potential
core and the jet width are indicated as lines of constant ux at 95 % and 10 % of the jet velocity U j , respectively.
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Figure 8. (a–h) Time traces exemplifying two successive vortex-pairing events are visualised in terms of the
azimuthal vorticity for the m = 0 component. The green, blue and magenta rectangles enclose the fundamental,
subharmonic and second subharmonic vortices, respectively.

the streamwise velocity is concentrated on the centreline and the radial velocity on the
lipline. Furthermore, the presence of this Kelvin–Helmholtz-type wavepacket structure
is responsible for the accumulation of the RMS streamwise velocity on the centreline at
x ≈ 3. Similarly, the structures at other frequencies are also associated with the peaks of
the RMS velocities in figure 7. For instance, the global maximum of the spatial structure
of the radial velocity for St = 0.88 is at (x, r) ≈ (1.5, 0.5), corresponding to the peak of
the blue curve in figure 4(c).

3.3. Vortex pairing
The vortex-pairing process is visualised in figure 8. Eight time instances of the
vorticity ωθ for the axisymmetric component m = 0 are shown. These snapshots follow
two successive vortex-pairing events, where four fundamental vortices merge into
two subharmonic vortices, eventually coalescing into a single vortex corresponding to
the second subharmonic frequency. This process involves the formation of a larger
vortex associated with half the frequency and half the wavenumber of the previous
vortices. The highlighted vortical structures are unambiguously associated with their
respective frequencies. This association is determined by considering their spatial
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Figure 9. The x–t plots along the lipline showing the vorticity fluctuations, ω′
θ : (a) representative time interval;

(b) conditional average of the SPOD-band filtered data about the spatial location x ≈ 3.5. The successive
vortex-pairing events shown in figure 8 are enclosed by the yellow box in (a). The green, blue and magenta
lines correspond to the fundamental, subharmonic and second subharmonic vortices, respectively.

support consistently with figures 4(c), 5(a) and 7(a–f ). The first snapshot highlights two
developing and two developed vortices enclosed in green rectangles, corresponding to a
frequency of St = 1.76. These vortices are formed due to the roll-up of the shear layer. The
following three snapshots show the pairing of these vortices in the region 1.2 � x � 2.1,
denoted by the blue rectangle in figure 8(b–d). This vortex pairing results in the formation
of the St = 0.88 vortex. Another instance of vortex pairing is evident in figure 8(c–e).
Next, the two St = 0.88 vortices, denoted by blue rectangles in figure 8(e), undergo pairing
to form the St = 0.44 vortex. Figure 8(e–f ) demonstrates this process. In this process,
the vortex at a more upstream location accelerates and catches up with the decelerating
downstream vortex. Eventually, they wrap around each other and form a single vortex at
x ≈ 3.5. These consecutive vortex-pairing events are qualitative evidence of an inverse
cascade, transferring energy from smaller to larger structures.

A different perspective on vortex pairing is presented in terms of the x–t plots in
figure 9. Figure 9(a) shows the vorticity fluctuations, ω′

θ , of the m = 0 component along
the lipline in the time interval 35 � t � 65. Merging lines with slopes greater than zero
indicate the pairing of vortices. For instance, the vortex-pairing process in figure 8 is
highlighted in yellow dashed lines. However, note that this represents a single event of
vortex pairing chosen for its clarity in figure 8. In order to confirm that this vortex-pairing
sequence is indeed a prevailing flow feature, we deploy a statistical perspective. To this
end, we use conditional averaging and SPOD-band-pass filtering developed by Nekkanti
& Schmidt (2021). To isolate the two successive vortex-pairing events, we band-pass-
filter the data using SPOD, retaining only the fundamental frequency and its first two
subharmonics. Next, we select the location x = 3.5, r = 0.5 and extract all local peaks
that exceed 25 % of their global maximum. We obtain the i th realisation of the vortex-
pairing sequence by collecting all the snapshots in the interval [t (i)0 − 20, t (i)0 + 10], where
t (i)0 is the time instant of the i th local peak. Finally, the statistical representation of the
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vortex-pairing sequence is obtained by averaging over all realisations. The x–t plot along
the lipline obtained from this conditional averaging is shown in figure 9(b). Evident
here are the first and second vortex-pairing events at x ≈ 1.5 and x ≈ 3, respectively. For
illustrative purposes only, we use a polynomial curve fitting to demonstrate this process.
The merging of two lines indicates the acceleration and deceleration of the vortices in
the vortex-pairing event. We observe that the phase speed outside of the vortex-pairing
events is constant. This is expected, as these result from the Kelvin–Helmholtz-type
instability waves governed by the dispersion relation ω/k = cph . Here, for the second
subharmonic frequency, cph = 0.55. The constant phase speeds of the fundamental wave
and its subharmonics indicate phase locking, confirming the resonance condition of Cohen
& Wygnanski (1987) that both waves must propagate at the same speed to interact and
exchange energy.

3.4. SPOD-based spectral energy transfer
We now investigate the spectral energy balance of TKE as outlined in § 2.3. In particular,
we use it to identify the net production and nonlinear transfer of TKE associated with the
frequencies involved in the vortex-pairing process. This nonlinear transfer term quantifies
the direct nonlinear effects. The nonlinear energy transfer term could alternatively be
estimated using bispectral mode decomposition (BMD) (Schmidt 2020). However, to
maintain consistency with the modes employed in this analysis, we estimate the nonlinear
energy transfer using the leading SPOD modes. Moreover, employing the SPOD modal
basis ensures direct comparability among different terms such as production, nonlinear
transfer and dissipation. In Appendix A, we tailor BMD to estimate nonlinear energy
transfer and compare it with those estimated from SPOD. We find that both methods yield
qualitatively similar results.

Figure 10 shows the production and nonlinear energy transfer at frequencies St =
1.76, 0.88 and 0.44. These terms are radially integrated and plotted as a function of the
streamwise location. The production term is computed using (2.13). Positive production
indicates energy gain from the mean flow, and negative production represents energy loss
to the mean flow. Figure 10(a) shows that St = 1.76 is the earliest to gain energy from
the mean flow, and as it saturates, St = 0.88 begins its growth. Subsequently, St = 0.88
attains its global maximum at x = 1.25, which also corresponds to the location of the
global minimum of St = 1.76. Similarly, the global maximum of St = 0.44 and the
global minimum of St = 0.88 are in close proximity. The saturation of the subharmonic
frequency has been linked to the onset of vortex pairing by Ho & Huang (1982) and was
confirmed by Hajj et al. (1992, 1993). Our findings are in agreement with those studies.
The production curves, in combination with figure 8, demonstrate this, where the location
corresponding to the peak production of the subharmonic also marks the beginning of
the merging process. Furthermore, the production of St = 1.76, 0.88 and 0.44 becomes
negative at x = 1.07, 1.64 and 2.64, respectively. These locations closely correspond to
the location of the neutral stability points as predicted by LST (denoted by dashed lines;
also see figure 5). The correspondence is expected as positive production is associated
with the amplification rate and negative production is associated with the decay rate of
each frequency.

The net nonlinear energy transfer, computed using (2.16), is shown in figure 10(b).
The net nonlinear energy transfer is always negative for St = 1.76. On the other hand,
for St = 0.88 and 0.44, the energy is initially transferred into these frequencies and as
the flow evolves downstream, energy is extracted from these frequencies. The blue and
magenta curves in the region 1.3 � x � 2.3 exhibit a similar shape but are opposite in
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Figure 10. (a) Production and (b) nonlinear energy transfer terms for St = 1.76, 0.88 and 0.44 integrated in
r and as a function of streamwise location. Dashed lines indicate neutral stability points, predicted by LST, of
the corresponding frequency. The black dotted line indicates the onset of nonlinear interactions.

sign, indicating that nonlinear interactions result in energy loss for St = 0.88 and energy
gain for St = 0.44. This phenomenon is expected for a vortex-pairing process, as the
energy is transferred from St = 0.88 to its subharmonic, St = 0.44. The black dotted line
denotes the location for the onset of nonlinearity at x = 0.72. This also corresponds to the
location where St = 0.88 starts to grow (see figure 10a), implying that the direct nonlinear
effects trigger the growth of the subharmonic. Overall, these observations suggest that
the spatially unstable fundamental grows linearly, gaining energy from the mean flow,
followed by successive nonlinear growth and decay of its subharmonics. As pointed out
earlier, this successive growth and decay is characteristic of the vortex-pairing process.

The production curves in figure 10 are significantly larger than the nonlinear transfer
curves, indicating that subharmonic frequencies gain more energy from the mean flow than
from their harmonics. Paschereit et al. (1995) suggested that the subharmonic derives most
of its energy from the mean flow, with fundamental–subharmonic interactions serving
as a catalyst. However, they did not quantify these contributions. Our analysis bridges
this gap by providing clear, quantitative evidence that the energy transfer from the mean
flow to the subharmonic is energetically dominant. Additionally, both production and
nonlinear transfer for the fundamental frequency are smaller in magnitude than those
for the subharmonics, reaffirming that the fundamental is not energetically dominant.
However, the nonlinear transfer curves show that quadratic interactions extract energy from
the fundamental and supply energy to the subharmonic. This highlights the fundamental’s
dynamical importance as it supplies energy to the subharmonic through these direct
nonlinear interactions.

Figure 11 shows the spatial fields of production, dissipation and net nonlinear transfer
at St = 1.76, 0.88 and 0.44. These fields are computed using (2.13), (2.14) and (2.16),
respectively. As in figure 10, the production fields in figure 11(a,d,g) indicate that the
fundamental frequency and its subharmonics initially gain energy from the mean flow and
subsequently transfer energy back to the mean flow. These fields also reveal that this energy
transfer from the mean flow is localised in the region about the lipline. Figure 11(b,e,h)
shows that the spatial dissipation fields are significantly lower in magnitude and, hence,
have minimal impact on the energy budget of the vortex-pairing process. The net nonlinear
energy transfer fields, shown in figure 11(c,f ,i), exhibit multilobe structures. These fields
elucidate the spatial dependence of the nonlinear kinetic energy transfer. Figure 11
highlights that individual terms in the spectral TKE budget can exhibit high local values,
yet their overall contributions may remain small when integrated across the entire spatial
domain.
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Figure 11. Spatial fields of production (a,d,g), dissipation (b,e,h) and net nonlinear energy transfer (c,f ,i).
These are computed using a rank-1 approximation based on (2.13), (2.14) and (2.16), respectively.
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Figure 12. Nonlinear energy transfer using SPOD: transfer term bispectrum for (a) entire domain and (b)
shear-layer subdomain Ωr . Spatial fields for the triads (c) (1.76, −0.88, 0.88) and (d) (0.88, −0.44, 0.44) are
compared with the radially integrated TKE of St = 1.76, 0.88 and 0.44.

Figures 12(a) and 12(b) show the triadic energy transfer obtained by integrating (2.15)
over the entire spatial domain and a domain Ωr that focuses on the initial shear layer
within the first two jet diameters in x, r ∈ [0, 2] × [0, 6], respectively. In this bispectral
representation, the abscissa represents the first frequency of the triad, St1, corresponding
to contributions from û(St1). On the ordinate, the second frequency of the triad,
St2, is depicted, whose contribution arises from ∂ û/∂x j (St2). The third (or resulting)
frequency is determined by the sum of these two frequencies, St3 = St1 + St2. Different
combinations of frequencies (St1, St2) interact to generate the same frequency (St1 +
St2 = constant) along the diagonals of slope −1 in this representation. In figure 12(a,b),
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positive values (red colour) denote energy transfer to frequency St3 from frequencies
St1 and St2, while negative values (blue colour) indicate the extraction of energy from
St3 by St1 and St2. The two triads with the highest positive and negative intensity
are (0.88, −0.44, 0.44) and (0.44, 0.44, 0.88). These triads exhibit positive and negative
energy transfer, respectively. However, both triads convey the same information. The triad
(0.88, −0.44, 0.44) has a positive value, signifying the transfer of energy to St = 0.44.
On the other hand, the triad (0.44, 0.44, 0.88) has a negative value, indicating that
St = 0.44 extracts energy from St = 0.88. These triads clearly suggest that the energy is
transferred from the subharmonic to the second subharmonic frequency. Other significant
triads include (0.44, 0.88, 1.32), (1.32, −0.44, 0.88) and (1.32, −0.88, 0.44), highlighting
the presence of the ultraharmonic frequency St = 1.32. The occurrence of St = 1.32 is
interesting in itself as its relevance was not apparent from the SPOD analysis, i.e. no
distinct peak was found at St = 1.32. The nonlinear energy transfer analysis reveals that
the ultraharmonic St = 1.32 is created from the sum interaction of 0.44 and 0.88.

In figure 12(a), the triads (1.76, −0.88, 0.88) and (0.88, 0.88, 1.76) exhibit lower
amplitudes. This is because the fundamental frequency St = 1.76 is dynamically
significant but not energetically dominant. Therefore, to shed light on the direct nonlinear
interactions of the fundamental frequency, we narrow our focus to the first two jet
diameters. Figure 12(b) now illuminates the triad (0.88, 0.88, 1.76). This triad exhibits
energy transfer behaviour characteristic of the vortex-pairing process, with a loss of energy
at St = 1.76 and a gain at St = 0.88. These findings, in combination with observations
from figures 5, 8 and 9, suggest that during the vortex-pairing process, the nonlinear
interactions cause the energy to be initially transferred from the fundamental (St = 1.76)
to its first subharmonic (St = 0.88), and then from the first subharmonic to the second
subharmonic (St = 0.44). Our study, for the first time, quantifies the triadic energy transfer
between the fundamental and its subharmonic waves.

The spatial fields of trank-1
nl for the dynamically dominant and energetically significant

triad are shown in figures 12(c) and 12(d), respectively. The TKE of the fundamental,
subharmonic and second subharmonic frequencies are overlaid on the contours of the
trank-1

nl field. For the (1.76, −0.88, 0.88) triad, the trank-1
nl field is concentrated in the

region 0.95 � x � 1.4, corresponding to where the fundamental frequency decays and the
subharmonic frequency grows. A similar trend is evident in figure 12(d), demonstrating
that the nonlinear energy transfer of the triad (0.88, −0.44, 0.44) is localised to the region
of subharmonic decay and second subharmonic growth. In summary, SPOD-based transfer
analysis allowed us to systematically catalogue the triadic energy transfer among the SPOD
modes, thus establishing a direct link between energy flow analysis and the phenomenon
of vortex pairing.

4. Discussion and conclusions
Many studies have investigated the vortex-pairing process in mixing layers, free shear
layers and natural and forced jets. It is a nonlinear process that involves the merging
of two smaller vortices into a larger vortex with half the frequency. Previous studies
have focused on hydrodynamic instabilities (Michalke 1965; Kelly 1967), phase locking
of vortices (Monkewitz 1988; Husain & Hussain 1995) and specific aspects of energy
transfer (Mankbadi 1985; Paschereit et al. 1995) during the vortex-pairing process. This
study presents a detailed quantitative analysis of the vortex-pairing process using high-
fidelity simulations of initially laminar jets and provides direct data-driven verification of
previous experimental and theoretical results, particularly Monkewitz’s (1988) parametric
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resonance mechanism. While recent methods aim to characterise or optimise triadic
interactions, including BMD (Schmidt 2020), triadic orthogonal decomposition (Yeung,
Chu & Schmidt 2024) and related approaches (Jin et al. 2021; Biswas et al. 2022; Kinjangi
& Foti 2023; Freeman, Martinuzzi & Hemmati 2024), the present analysis focuses on
nonlinear interactions of the statistically most energetic coherent structures.

The analysis was conducted for two LES of initially laminar and turbulent jets at Re =
50 000. The PSDs and local linear theory confirm the expectation that the hydrodynamic
instabilities are more pronounced in the initially laminar jet. These instabilities cause the
initially laminar jet to transition quickly into turbulence within the first two jet diameters.
A comparison of the two jets shows that the initially laminar jet starts to develop from
a more downstream location but grows more rapidly. This delayed but faster growth is
triggered by the hydrodynamic instabilities. The boundary layer of the turbulent jet is
tripped inside the nozzle, and the shear layer is already fully turbulent at the nozzle’s
exit. Therefore, the spreading rate of its shear layer is more gradual compared with that of
the initially laminar jet. Additionally, vortex pairing is present and strongly influences
the dynamics for the initially laminar jet but it is not observed in the turbulent jet.
Local linear theory identifies the fundamental frequency, i.e. the frequency with the
largest spatial growth rate, as St = 1.76 for the initially laminar jet. At this frequency, the
shear layer rolls up into vortices. The tones at St = 0.88 and 0.44 are not distinguished
as distinct peaks in the local linear theory and are therefore a consequence of the
nonlinear interactions between the fundamental frequency and the subharmonic frequency,
and between the subharmonic and the second subharmonic frequency, respectively.
A remarkable agreement was found between the spatial growth rates predicted from
theory and empirically from data. This validates the parallel flow assumption and strongly
suggests that the purely empirical approach can be utilised to estimate spatial growth rates
in turbulent flows. Similarly, LST can provide an accurate prediction of growth rates of
coherent structures, even when weak nonlinear effects are present, particularly in the initial
shear layer.

Different visualisation techniques give a clear phenomenological understanding of
the vortex-pairing process, wherein the accelerating upstream vortex and decelerating
downstream vortex merge to form a larger vortex with twice the wavelength of the
preceding ones. The process starts upstream with two vortices associated with the
fundamental frequency merging to form a vortex associated with the subharmonic
frequency. Subsequently, the two subharmonic vortices merge to result in a second
subharmonic vortex. The second subharmonic frequency is energetically the most
significant, while the fundamental frequency, despite its low energy, is dynamically the
most important as it dictates the entire nonlinear dynamics. This dynamical significance
can be inferred from (i) LST and (ii) the three-way resonance between the fundamental and
its subharmonics, which determines the other frequencies observed further downstream.
While LST predicts the fundamental frequency to have the highest amplification rate,
it does not indicate the presence of any other peaks. As the flow is convectively
dominated, the fundamental frequency primarily influences the dynamics, confining it
mainly to the subharmonic frequencies, which result from direct nonlinear interactions.
The fundamental and subharmonic waves propagate at the same phase speed, allowing
sufficient time for interaction, consistent with the resonance condition proposed by Cohen
& Wygnanski (1987). This is a manifestation of the importance of distinguishing between
dynamical relevance and energetic significance, as highlighted, among others, by Schmid
(2010).
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SPOD-based spectral TKE analysis was performed to characterise the energy transfer
during the vortex-pairing process. The focus was on the interactions between the mean
flow, fundamental frequency and subharmonic frequencies. The production and nonlinear
transfer terms are major contributors to energy transfer, while the effect of dissipation
is negligible. The energy transfer between non-zero frequencies and the mean flow is
quantified using the production term, while the triadic energy transfer among different
frequencies is measured using the nonlinear transfer term. The fundamental frequency
gains energy from the mean flow, while its subharmonics gain energy from both the
mean flow and their harmonic. Quantitatively, the energy gained from the mean flow is
greater than from its harmonic. As two fundamental vortices merge, there is a backscatter
of energy from the fundamental to its subharmonic. This process repeats itself for higher
subharmonics. The backscatter of energy from the fundamental to the subharmonic occurs
when the fundamental wave saturates, initiating direct nonlinear interactions. During
this process, the subharmonic wave simultaneously gains energy both from the mean
flow and through direct nonlinear interactions with the fundamental wave. A few studies
(Hajj et al. 1992, 1993) show that the dominant interaction during vortex pairing is
between the subharmonic and the fundamental frequency, and other studies (Mankbadi
1985; Paschereit et al. 1995) show that the subharmonic gains most of its energy from
the mean flow and the fundamental–subharmonic interaction only acts as a catalyst.
Our findings agree with all these studies and present a comprehensive analysis of the
vortex-pairing process. In an energetic sense, the energy extracted by the subharmonic
from the mean flow is more significant. However, from a dynamical perspective, the
fundamental–subharmonic interaction is more significant.

This study provides a quantitative analysis that supports the previous findings outlined
below from a data-driven perspective:

(i) The hydrodynamic instabilities initiate the transition into turbulence, causing the
shear layer to grow rapidly.

(ii) Through exponential growth, the fundamental frequency attains significant amplitude
and triggers the roll-up of the shear layer. As the fundamental frequency grows, it
extracts energy from the mean flow.

(iii) The saturation and subsequent decay of the fundamental frequency mark the onset of
vortex pairing.

(iv) As the vortex pairing continues, the subharmonic frequency acquires energy linearly
from the mean flow and nonlinearly through backscatter from the fundamental
frequency. The eventual saturation of the subharmonic frequency signals the
completion of the vortex-pairing process.

(v) Processes analogous to steps (ii) and (iii) then repeat to create higher subharmonics.
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Appendix A. Nonlinear energy transfer using SPOD and BMD
Here, we qualitatively compare the nonlinear energy transfer estimated from SPOD and
BMD. BMD is a modal decomposition technique that can be understood as an extension
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Figure 13. Comparison of nonlinear energy transfer: (a) SPOD; (b) BMD.

of classical bispectral analysis to multidimensional and multivariate data. It identifies
the spatially coherent structures associated with triadic interactions by maximising the
integrated point-wise bispectrum:

b( fk, fl) = E

[∫
Ω

q̂∗
1 (x, fk) ◦ q̂∗

2 (x, fl) ◦ q̂3(x, fk + fl)dx

]
. (A1)

For further details on computing the mode bispectrum, the reader is referred to Schmidt
(2020). Recently, BMD has been applied to identify the triadic energy cascade in forced
jets (Nekkanti et al. 2022, 2023b) and to investigate the interplay between streaks and
Kelvin–Helmholtz wavepackets (Nekkanti et al. 2025). Here, we tailor BMD to estimate
the nonlinear energy transfer by maximising the following point-wise integral:

bBMD
nl ( fk, fl) = E

[∫
Ω

û∗
i (x, fk) ◦ ∂ û j

∂xi

∗
(x, fl) ◦ û j (x, fk + fl)dx

]
. (A2)

Figure 13 shows the nonlinear energy transfer estimated using SPOD (2.15) and BMD
(A2). Qualitatively similar trends are observed. In particular, the direction of energy
transfer is the same for both methods, i.e. all the significant triads exhibit the same sign.
Additionally, the triad with highest intensity for both methods is (0.88, −0.44, 0.44), which
is representative of energy transfer from subharmonic to second subharmonic. Note that
the BMD-based nonlinear energy transfer exhibits more noise in comparison with that of
the SPOD-based tnl . This is because the BMD in comparison with SPOD requires more
data for convergence.

Appendix B. Spectral TKE derivation
We start with the momentum equation:

∂u j

∂t
+ ui

∂u j

∂xi
= − ∂p

∂x j
+ 2

Re

∂si j

∂xi
. (B1)

By substituting the Reynolds decomposition, u = ū + u′, into the momentum
equation (B1) and taking its mean, we obtain the mean-momentum equation:

∂ ū j

∂t
+ ūi

∂ ū j

∂xi
+ ∂

∂xi
u′

i u
′
j = − ∂ p̄

∂x j
+ 2

Re

∂ s̄i j

∂xi
. (B2)
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Next, subtracting (B2) from (B1), we obtain the fluctuating-momentum equation:

∂u′
j

∂t
+ ūi

∂u′
j

∂xi
+ u′

i

∂u′
j

∂xi
= −u′

i
∂ ū j

∂xi
+ ∂

∂xi
u′

i u
′
j − ∂p′

∂x j
+ 2

Re

∂s′
i j

∂xi
. (B3)

For statistically stationary, azimuthally homogeneous flows, (B3) can be Fourier-
transformed in both time and the azimuthal direction, such that u′(x, r, θ, t) =∑

f
∑

m û(x, r)ei(mθ−2π f t), which results in the spectral momentum equation for each
azimuthal wavenumber m and frequency f :[

∂ û j

∂t
+ ūi

∂ û j

∂xi
+ ̂

ui
∂u j

∂xi
= −ûi

∂ ū j

∂xi
− ∂ p̂

∂x j
+ 2

Re

∂ ŝi j

∂xi

]
m,ω

. (B4)

Here, the term
∧

ui∂u j/∂xi is a nothing but a Fourier transform of the convective term.
Finally, the spectral TKE equation at each azimuthal wavenumber m and frequency f can
be obtained by multiplying (B4) with û∗

j (m, f ) and invoking continuity, ∂ û j/∂x j = 0:

∂ k̂

∂t
=R

[
−ūi

∂ k̂

∂xi
− û∗

j

̂

ui
∂u j

∂xi
− û∗

j ûi
∂ ū j

∂xi
− 2

Re
ŝ∗

i j ŝi j − ∂

∂x j

(
û∗

j p̂
)

+ 2
Re

∂

∂xi

(
û∗

j ŝi j

)]
,

(B5)
where k̂ = û j (m, f )û j (m, f ) and R[·] denotes the real part.
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