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Abstract
This study formally links the literature on R&D-driven productivity growth to studies which examine
GHG emission benefits from increased farm productivity growth. Using a global agricultural model and
estimates from the literature, this study examines the impact of greater US public agricultural R&D
spending over 2025−2035. The results show that roughly doubling public R&D investments in US
agriculture could provide greater economic gains relative to its costs over the period 2017−2050. The GHG
mitigation co-benefits from these investments also can be enhanced by combining R&D policies with
strategies aimed at directly reducing farm inputs.
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Introduction
Sustained productivity growth in US agriculture is crucial to ensure competitiveness in the world
market. US farm output has grown remarkably since the 1950s – by more than two-fold and this
historic rise was mainly driven by productivity growth (USDA ERS, 2021). Efforts to develop and
disseminate new technologies can be traced back to public research and development (R&D)
activities conducted in universities and government institutions. To ensure long-term farm
productivity growth, continued investments in public agricultural R&D are needed. The economic
gains from R&D-driven productivity growth are well researched (Alston et al., 2011; Andersen
and Song, 2013; Fuglie, 2017; Jin and Huffman, 2016; Plastina and Fulginiti, 2011; Wang et al.,
2017). In a recent meta-analysis of 492 studies, Rao et al. (2019) estimated that the median internal
rate of return from agricultural R&D is around 34.0% per year for developed countries. Similarly,
the meta-analysis of Alston et al. (2022) found that past investments in international agricultural
research for developing regions indicate benefit-cost ratios at around 10:1.

However, there has been a slowdown in investments in the US public agricultural R&D systems
(Fuglie et al., 2017; Nelson and Fuglie, 2022). The stagnation of public funding for US agricultural
scientific research is alarming when contrasted with the growth in R&D investments in middle-
income countries, particularly in China which has surpassed US research spending in recent years
(Clancy, Fuglie, and Heisey, 2016; Pardey et al., 2018). Less R&D spending at home and greater
investments abroad could erode the competitiveness of US farm exports in the coming decades.

In addition to the economic benefits, agricultural productivity growth from R&D investments
can also offer GHG mitigation co-benefits. Several studies which use global models of the
agricultural sector – models which explicitly incorporate drivers of agricultural demand and
supply, farm input use, and agricultural trade – have shown that greater agricultural productivity
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could dampen future agricultural land expansion and farm greenhouse gas (GHG) emissions.
Valin et al. (2013) examined the global GHG emissions impacts of productivity growth in several
crop and livestock sectors as well as other land-based sectors. The authors focused on methane
emissions from paddy rice and livestock, emissions from fertilizer use, as well as land-use change
emissions. They found that under business as usual, world agricultural GHG emissions are
expected to increase by around 30% between 2000 and 2050, from 3.5 to 4.6 gigatons (Gt) carbon
dioxide-equivalent per year (CO2-eq/year). The authors also found that greater productivity
through higher yield growth and yield convergence across crops and livestock sectors could reduce
global farm GHG emissions by roughly 10% relative to the 2050 baseline. Jones and Sands (2013)
estimated that without total factor productivity growth in crop and livestock production, global
farm GHG emissions would rise by 47% between 2004 and 2034. WRI (2019) used a global
agricultural model to calculate future changes in agricultural production, land use, and greenhouse
gas emissions between 2010 and 2050. The authors estimated several scenarios using different
assumptions regarding future diets, food waste mitigation, productivity growth, and emission
reduction in agriculture. Under business as usual, the authors estimated that GHG emissions from
global agricultural production and land-use change are expected to increase by around 25%
between 2010 and 2050, from 12 to 15 Gt CO2-eq/year. If productivity remains flat over this
period, future emissions are projected to rise to 33 Gt CO2-eq/year, primarily due to increased
emissions from land-use change.

This study formally links the literature on R&D-driven productivity growth to previous work
on the GHG mitigation benefits from increased productivity growth. By connecting agricultural
productivity directly to R&D spending, it is possible to calculate the economic costs and benefits of
productivity-based GHG mitigation strategies. Specifically, this study examines the economic and
GHG mitigation benefits from increased public agricultural R&D investments in the US over
2025–2035. This study focuses on US agriculture and directly calculates the implied growth in
agricultural productivity from US R&D spending using statistically estimated parameters from a
historical analysis of the gains from US public R&D spending (Baldos et al., 2018). It also uses
technological spillover estimates from the literature (Fuglie, 2017). These productivity changes are
then used in a global economic model of agriculture to see how future increases in US R&D
investments change the trajectories of agricultural production, land use, and GHG emissions at
the global level and in the US. A farm input reduction scenario is also estimated to show how
policies directly mitigating land use and GHG emissions in US agriculture affect production and
price outcomes.

The results show that over the period 2017 to 2050, greater public R&D investments in US
agriculture could significantly boost crop and livestock production, limit agricultural land
expansion and GHG emissions, and reduce food prices globally. However, the reduction in US
farm input use and associated GHG emissions from R&D is dampened by increased price
competitiveness of US agricultural commodities in the world market and resulting expansion in
US production. Reducing farm input use alone can drastically reduce US agricultural GHG
emissions, but at the cost of lower farm output and higher commodity prices. Substantial
reductions in US GHG emissions and greater agricultural production can only be achieved when
both R&D investment and farm input constraint policies are implemented.

Models and methods
Modeling R&D investments and knowledge stock accumulation

The empirical literature on the linkages between the flow of R&D spending, the stock of
accumulated knowledge capital, and subsequent productivity growth is well established (Alston
et al., 2011; Griliches, 1979; Heisey, Wang, and Fuglie, 2011; Huffman, 2009). The framework
involves two main stages. In the first stage, knowledge capital stocks are constructed from the
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stream of R&D spending using R&D lag weights. Knowledge capital consists of the technological
and human capital needed to develop and propagate high-yielding crop varieties as well as
modern farm management techniques and machineries. Initially, the R&D spending contributes
little to knowledge capital accumulation, but its effect builds over time as technology arising from
that research matures and is eventually disseminated to farmers. Eventually, the effects peak when
technology is fully disseminated, and then wane due to technology obsolescence. In the second
stage, after converting the R&D spending flows to knowledge capital stocks, the growth in stocks is
then linked to growth in agricultural total factor productivity (TFP) growth via elasticities which
describe the percent rise in TFP given a 1 percent rise in knowledge capital stock. TFP growth is a
measure of productivity which accounts for growth in total output given growth in overall input
use, including land, labor, capital, and intermediate inputs such as fertilizer.

The functional form and length of the R&D lag weights have been extensively examined by
Alston et al. (2010). The authors estimated the productivity returns in R&D investments and
extension spending using US state-level data. The authors calculated knowledge stocks using the
50-year gamma distribution which is their base case. The authors argued that imposing shorter lag
length could result in overstating the impacts of R&D spending. They also explored different lag
lengths (20 and 35 years) and compared the results with the trapezoidal distribution – the
recommended distribution based on the previous studies. The authors then estimated returns to
R&D and extension by estimating the elasticity of multifactor productivity to knowledge stocks
using both linear and log model specifications. The authors found that the elasticities estimated
under the gamma distribution are less sensitive to longer lag lengths. It also results in smaller
errors when predicting changes in multifactor productivity under the log model specification.

Baldos et al. (2018) examined the historical gains in national US R&D spending using Bayesian
econometrics. The authors compiled annual public agricultural R&D expenditures (in billion 2005
USD) from spending data by USDA intramural research agencies in particular the Agricultural
Research Service and the Economic Research Service, State Agricultural Experiment Stations, and
Schools of Veterinary Medicine. Following Alston et al. (2010), the authors used the gamma
structure with a 50-year lag span when calibrating the R&D lag weights. However, unlike previous
studies, the authors estimated the parameters of the gamma distribution under different model
specifications of the impact of R&D stocks to TFP. The results of the study suggest that the
estimated parameters governing the gamma distribution are around δ = 0.74 and λ = 0.86 with
the estimated TFP R&D stock elasticity at around α = 0.34 (i.e. a 0.34 percent rise in TFP given a
1 percent rise in knowledge capital stock).

This study borrows heavily from the data and parameter estimates from Baldos et al. (2018).
Equation 1.a shows the R&D lag weight (βRD, i) in year i gamma distribution given lag length
L = 50 and gamma distribution parameters δ and λ for each time period. Equation 1.b requires
that the sum of the lag weights is equal to 1. Once computed, R&D knowledge stocks (RDUS, i) are
computed by multiplying the R&D lag weight (βRD, i) and R&D spending (XDUS, i) in year i
(Equation 2). Equation 3 defines the year-on-year percent changes in TFP (Δ%TFPUS, i) which are
calculated from the annual percent changes in R&D stocks (Δ%RDUS, i) using the TFP R&D stock
elasticity (αUS)

βRD;i � i� 1� � δ
1�δ λ� �i=

XL

i�0

i� 1� � δ
1�δλi (1a)

XL

i�0

βRD;i � 1 (1b)

RDUS;i �
XL

i�0

βRD;iXDUS;i (2)
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Δ%TFPUS;i � αUSΔ%RDUS;i (3)

Figure 1 shows the distribution of R&D knowledge stocks from R&D investments given the
parameters of the lag weights adopted in this study. Note that the R&D lag weights are used to
capture the temporal dynamics of technological development, adoption, and obsolescence
from public agricultural R&D spending. After a decade from the initial expenditure (Year 0 to
Year 10), only 6% of the R&D spending is converted into knowledge capital. After 20 years
(Year 0 to Year 20), roughly 45% of the R&D spending in the initial period is transformed to
knowledge capital. This suggests that, although some types of R&D such as highly applied
research may have near-term benefits, in the near term, R&D spending generally provides
minimal gains and that the gains from these investments should be evaluated for several
decades.

R&D investments in the US also result in technical improvements which are transmitted to
the rest of the world. To explore the impact of technological spillovers to the rest of the world
from US R&D investments, the methods and parameters from Fuglie (2017) are used. The
author reviewed the literature on the estimated R&D stock TFP elasticities as well as R&D
spillover elasticities for key regions. The author also calculated the international R&D stocks –
which generate R&D spillovers – from the R&D spending in the developed world. Since the
full data used by Fuglie (2017) is not publicly available, side calculations are necessary to
calculate the international R&D stocks from the available US data. Shares of R&D stocks for
US (θUS, 2011 = 0.335) and other key regions in the developed world (1 − θUS, 2011) from Fuglie
(2017) are combined with the estimated US R&D knowledge capital stocks (RDUS, 2011) in this
study to calculate total international R&D stocks (RDINTL, 2011) in year 2011 (Equation 4). This
study assumes that future contributions of R&D stocks from non-US regions are fixed (i.e.
international R&D stocks are mainly driven by R&D stocks from the US) (Equation 5).
Regions which historically benefited from R&D spillovers include Western Europe, Oceania +
South Asia, Developed Asia and Latin America. Actual agricultural TFP data for these regions
(j) for year 2011 are taken from USDA ERS (2021) and are projected to 2050 using the year-
on-year change in international R&D stocks (Δ%RDINTL, i) and R&D spillover TFP elasticities
(αj) from Fuglie (2017) (Equation 6). These regional elasticities are based on country and

Figure 1. Distribution of R&D knowledge stock from R&D investments over a 50-year period.
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regional estimates in the literature. Specifically, the TFP R&D elasticities are 0.24, 0.12, and
0.36 for Western Europe, Oceania + South Africa, and Latin America, respectively. Due to lack
of regional data, the average elasticity for the Develop Regions (0.21) is applied to Developed
Asia.

RDINTL;2011 � RDUS;2011
1� θUS;2011

θUS;2011
(4)

RDINTL;i � RDUS;i � RDINTL;2011 (5)

Δ%TFPj;i � αjΔ%RDINTL;i (6)

Projecting global agriculture using the SIMPLE Model

To quantify economic and environmental impacts from increased US R&D spending, the SIMPLE
model is used (a Simplified International Model of agricultural Prices, Land use, and the
Environment) (Appendix 1). As the name suggests, SIMPLE focuses on the key drivers and
economic responses which govern long-run developments in the farm and food system (U.L.C.
Baldos and Hertel, 2013). In the model, per capita food demands are driven by exogenous per
capita income growth and respond to endogenous changes in food prices with these responses
varying by income level. Consumers in wealthy regions are less responsive to price and income
changes than those residing in low-income regions. Aggregated food commodities in SIMPLE
include crops, livestock products, and processed foods. Consumption patterns evolve to reflect
observed shifts in dietary preferences – moving away from crops towards livestock and processed
foods as incomes rise.

Regional production systems in SIMPLE are modeled using a constant elasticity of substitution
production framework. Crops are produced by combining land and an aggregate noncropland
input, with the latter input representing all other factors of production used by the crop sector,
including fertilizer, labor, and machinery, among other farm inputs. Crop outputs are demanded
in four uses, namely: direct food consumption, feed use in the livestock sectors, raw input use in
the processed food industries, as well as feedstocks in the biofuel sector in each region. The
capacity for input substitution between land and noncropland inputs makes it possible to
endogenously increase crop yields. Livestock and processed food sectors use crop and non-crop
inputs. Crop outputs are traded within regions and in the international market. The standard
model assumes that livestock and processed foods are traded only within a region, but in this study
the model is modified to incorporate international trade for these commodities. Specifically, local
and global markets for these commodities are defined using value of consumer purchases and
producer supply from GTAP V.10 (Aguiar et al., 2019). Demand and supply equations for
livestock and processed foods in the local and global market are added to the model as well as
additional local and global market clearing equations (see Appendix 1). This allows consumers
and producers of these products to purchase in the local and global markets. The evolution of the
global farm system is also driven by exogenous productivity trend effects owing to endogenous
productivity responses to past and future investments in agricultural R&D.

Appendix 1 shows the mathematical description of SIMPLE. In the model, exogenous
productivity growth from greater R&D spending is modeled using the input neutral productivity
parameter in the crop sector and in the livestock sector (ao(Crops,g), ao(Lvstck,g)). Greater
productivity growth has the direct effect of reducing the derived demand for inputs in these
sectors (see derived demand equations in Appendix 1) which leads to lower input use. However,
greater productivity growth also has the direct effect on boosting the per unit revenue for these
commodities (pS(Crops,g) + ao(Crops,g), pS(Lvstck,g) + ao(Lvstck,g)) which encourages greater production
(see zero profit equations in Appendix 1).
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In this study, the SIMPLE model is also modified to report changes in agricultural GHG
emissions, specifically emissions from crop and livestock production as well as land-use change
emissions due to cropland expansion. Country-level data on GHG emissions from agricultural
production are based on the GTAP v.10 standard database (Aguiar et al., 2019) which reports CO2

emissions from fossil fuel combustion using detailed energy volume data from the International
Energy Agency (IEA, 2016) and combustion factors from the Revised, 1996 IPCC Guidelines for
National Greenhouse Gas Inventories (IPCC/OECD/IEA, 1997). These emissions are aggregated
to the SIMPLE regions and are linked to changes in non-feed inputs and non-land inputs. GHG
emissions from methane, nitrous oxide, and fluorinated gases are based on the non-CO2 GTAP
database (Chepeliev, 2020) which use FAO data (2020) for agricultural emissions for both inputs
and outputs. These input and output emissions are linked to changes in crop and livestock outputs
and inputs in SIMPLE. Land-use change emissions from converting natural land into cropland
rely on the global carbon stocks calculated by West et al. (2010). These carbon stocks are
constructed using spatially explicit datasets on potential vegetation and soil carbon and are linked
to regional changes in cropland area.

Experimental design for future projections

Projections for the period 2017 to 2050 using the SIMPLE model require future growth rates in
population, income, biofuel demand, and total factor productivity in the crops, livestock, and
processed food sectors. In this study, sources of these future growth rates are as follows (Table 1).
The population and income growth rates are based on the Shared Socio-economic Pathways (SSP)
Database v.2 (Gidden et al., 2019; Riahi et al., 2017; Rogelj et al., 2018). The SSPs are a range of
pathways, developed for use in climate modeling, that describe alternative trends in global socio-
economic development. In this study, SSP2 is used, a “middle of the road” scenario in which

Table 1. Summary of scenarios

Scenario
Code Scenario Name Description

S1 Business-As-Usual Baseline Scenario for the period 2017 to 2050 given growth rates in
population and income based on SSP2 “Middle of the Road” scenario1,
biofuel demand under “Current Policies” scenario2 and historical growth
rates in total factor productivity3 in the crop, livestock, and processed food
sectors.

S2 Reduced US Input Use Growth rates in Baseline scenario and 10% reduction in US cropland and
non-land inputs

S3 Greater US R&D
spending

Growth rates in Baseline scenario and 7% per year increase in real US R&D
spending over the period 2025 and 2035

S4 No R&D Spillovers S3 and removal of international R&D spillovers from US R&D investments

S5 Combined Policy Growth rates in Baseline scenario, 10% reduction in US cropland and non-
land inputs, and 7% per year increase in real US R&D spending over the
period 2025 and 2035

S6 Combined Policy –
Upper Bound

S5 + Greater parameter values for R&D stock TFP elasticities and R&D stock
elasticities4

S7 Combined Policy –
Lower Bound

S5 + Lower parameter values for R&D stock TFP elasticities and R&D stock
elasticities4

1Shared Socio-economic Pathways (SSP) Database v.2 (Gidden et al., 2019; Riahi et al., 2017; Rogelj et al., 2018).
2World Energy Outlook (IEA, 2019).
3Crop, livestock, and processed food TFP growth taken from Fuglie (2012), Ludena et al. (2007), and Griffith et al. (2004), respectively.
4The upper and lower bound values of the estimated US R&D stock TFP elasticities (0.27 and 0.43, respectively) are taken from Baldos et al
(2018). The extreme values and mean estimates are used to rescale the R&D spillover elasticities from Fuglie (2017).
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historical patterns of development continue, income growth proceeds unevenly, and global
population growth is moderate (Riahi et al., 2017). In addition to population and income, future
food demand will also be affected by crop feedstock demand for biofuel production. Projections of
regional biofuel consumption are based on the “Current policies” scenario published in the World
Energy Outlook (IEA, 2019), which serves as a business-as-usual-scenario. In this study, regional
TFP growth rates for the crops and livestock sectors are based on adjusted historical estimates
from Fuglie (2012) and projections from Ludena et al. (2007), respectively. Lacking detailed TFP
projections for the processed food sector, historical rates from Griffith et al. (2004) are used,
assuming that these rates apply in the future and across all regions. These growth rates are used to
generate the “S1 Baseline” which is the business-as-usual-scenario. The baseline scenario also
assumes real US R&D spending increases by 1.9% per year, the average annual growth rate from
1971 to 2010 (Baldos et al., 2018).

Alternative scenarios are simulated to show the implications of input restrictions and greater
US R&D spending over the future baseline. “S2 – Restricted Input Use” assumes a 10% reduction
in US cropland and non-land inputs supply using cropland and non-land input supply shifters in
the model (sL(g) and sNL(g), respectively in Appendix 1). It represents a hypothetical policy which
directly curbs GHG emissions in the US crop sector via lower input use.1 In “S3 –Greater US R&D
spending,” real US R&D spending increases by 7% per year over the baseline rate between 2025
and 2035, nearly doubling over the 10-year period. Given the structure of the R&D lag weights, the
most of the investments over this period will be converted to R&D stocks and to productivity
growth by 2050. “S4 – No R&D Spillovers” builds on S3 and shows the impacts of ignoring
international R&D spillovers from US R&D investments. “S5 Combined Policy” shows the
outcomes when both input restrictions and increased US R&D policies are pursued to reduce US
agricultural GHG mitigation. Finally, the last two scenarios consider the uncertainty in the
transmission of R&D spending to agricultural productivity growth. The upper and lower bound
values of the estimated US R&D stock TFP elasticities (0.27 and 0.43, respectively) from Baldos
et al. (2018) are used. Also, the R&D spillover elasticities from Fuglie (2017) are adjusted based on
scalars calculated using the mean and extreme values of US R&D stock TFP elasticities.

Results and discussion
Productivity impacts and gross economic gains from increased US R&D spending

Increasing US R&D spending over the period 2025 to 2035 is expected to boost US R&D
knowledge stocks and raise long-run US agricultural productivity growth. Figure 2 shows the
annual changes in the knowledge stocks and agricultural TFP growth for the US by taking the
differences between “S1 – Baseline” and “S3 –Greater US R&D spending” scenarios. Though R&D
spending increases by 7% per year from 2025 to 2035 in scenario S3, notable changes in the
knowledge stocks only occur after 2035 and beyond. The change in US knowledge stocks in 2035
is just around 0.07 billion USD, increasing to 3.23 billion by 2050. The changes in US agricultural
TFP depend on the changes in US R&D knowledge stocks and the mean, upper and lower values
of the R&D stock TFP elasticities. In 2040, the mean, upper, and lower US agricultural TFP growth
rates are around 3.0%, 3.9%, and 2.3%, respectively. These rates increase to 17.6% 23.6% and
13.4% in 2050, respectively. Given the distribution of R&D knowledge stocks in Figure 1, most of
the gains from greater US R&D investments over the period 2025 to 2035 are likely to be realized
after 2050.

Despite the lagged effect of R&D spending on productivity growth, greater R&D spending over
this period is expected to provide economic gains. Table 2 shows the gross economic benefits
under scenario “S3 – Greater US R&D spending” relative to the baseline (S1), evaluated over the

1The US does not have explicit policies which restrict farm input use. However, there are land retirement policies such as
the Conservation Reserve Program which provide incentives to farmers for setting aside environmentally sensitive lands.
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period 2017 to 2050. It reports the net present cost and net present benefits of a 7% per year
increase in US R&D spending over 2025 to 2035 assuming a discount rate of 3%. The net present
cost of scenario S3 is around 85.8 billion USD. The net present benefits are calculated by boosting
value of agricultural output in 2017, taken from USDA ERS (2021), using the predicted increase in
US agricultural TFP shown in Figure 2. The mean value of the net present benefit is around 173.8
billion USD and is bounded at around 226.9 to 134.6 billion USD. The calculated gains are larger
than the costs which suggests that investments in US public agricultural R&D provide gross
economic gains. On average, the benefit-cost ratio of this policy is around 2.0 while the internal
rate of return (IRR) and modified internal rate of return (MIRR) are around 13.7% and 6.8%,
respectively. The range of the benefit-cost ratio is around 2.6 to 1.6. For the IRR and MIRR, the
ranges for these rates are around 17.3% and 10.1% and 8.0% and 5.5%, respectively.

Increasing US R&D spending is expected to generate spillover effects in the rest of the world.
Figure 3 shows the changes in agricultural TFP for several regions, indicating that Latin America
and Western Europe are expected to benefit more from the R&D spillovers compared to
Developed Asia and Oceania + South Asia. These TFP projections depend on the growth in
international R&D knowledge stock, which is determined by changes in US R&D spending, and
on the regional R&D spillover elasticities.

Changes in US agricultural production and GHG emissions from 2017 to 2050

Changes in US agricultural production and GHG emissions over the period 2017–2050 under
different scenarios are summarized in Table 3. Under the baseline scenario (S1), US agricultural
productivity rises by 38.7% while farm output grows by 50.0%. US crop and livestock output
expand by about 58.4% and 38.6%, respectively, despite falling supply prices (by −19.0% and
−28.7%, respectively). These results show strong farm productivity growth under the baseline
improves US producers’ competitiveness and incentivizes agricultural output expansion.
However, output expansion results in more land being used in agriculture. Under the baseline,
US cropland area expands by 6.7 million hectares (M ha) (by 4.2% relative to 2017). Average
annual agricultural GHG emissions in the baseline are around 490.4 million metric tons (M MT)
CO2-eq/year, or 1.57 kilograms (kg) CO2-eq/year per USD in farm output.

Restrictions on farmer input use (S2) result in environmental benefits, but at the expense of
lower agricultural output growth and higher food prices. When US crop input use is reduced by
10%, US cropland use contracts by around −7.9 M ha (−4.9%) from 2017 to 2050 and average
farm GHG emissions and emissions per output are much lower, at 416.3 M MT CO2-eq/year and
at 1.39 kg CO2-eq/year per USD, respectively. However, compared to the baseline, US farm output

Figure 2. Annual changes in US knowledge stocks and agricultural TFP growth.
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growth is much slower (growing by 44.3%). US crop production increases by 49.1 % but this is less
than the growth under baseline. Livestock output growth is roughly the same as in S1 since input
restrictions are only applied to the crop sector. Crop and livestock supply prices still fall (by
−15.8% and −28.5%), but less than under the baseline.

With a 7% per year increase in US agricultural R&D spending from 2025 to 2035 (S3), US
agricultural productivity and output increase more and prices fall more than under the baseline,
but with environmental tradeoffs since increased price competitiveness incentivizes farmers to
expand production and use more land and non-land inputs. US agricultural productivity is

Figure 3. Annual changes in agricultural TFP growth in key regions due to US R&D spillovers.

Table 2. Greater US R&D spending at 7% per year over 2025 to 2035

2017 to 2050 Mean Upper Lower

Net Present Benefit, Billion $2017 173.8 226.9 134.6

Net Present Cost, Billion $2017 85.8 85.8 85.8

Benefit-Cost Ratio 2.0 2.6 1.6

Internal Rate of Return 13.7% 17.3% 10.1%

Modified Internal Rate of Return 6.8% 8.0% 5.5%
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expected to grow by 62.1%, resulting in significantly faster output growth and declines in supply
prices than in the baseline (S1) or reduced input use scenarios (S2). Though average agricultural
GHG emissions and emissions per farm output, 486.2 M MT CO2-eq/year, are modestly lower
than in S1, US cropland area expands by around 7.0 M ha (by 4.4%). These results suggest that
increasing productivity alone is not sufficient to substantially reduce input use and GHG
emissions in US agriculture. However, greater productivity leads to much greater GHG efficiency
with 1.38 kg CO2-eq/year per USD farm output.

Scenario S4 is a counterfactual scenario of S3 and shows how the absence of international R&D
spillovers from US public R&D spending affects the agricultural sector. Without these spillovers,
other regions do not benefit from US R&D spending. This results in greater expansion in
agricultural production, cropland use, and GHG emissions within the US than under the baseline,
as well as a slower decline in crop and livestock prices.

Combining increased R&D spending with reduced farm input use (S5) avoids the adverse
tradeoffs of implementing either policy alone. Agricultural output, including crop and livestock
production, increases more than under the baseline or reduced input scenarios, though slightly
less than under the greater R&D scenario. A similar trend is seen for crop and livestock prices.
Unlike S3 where only R&D investment policies are considered, cropland area in S5 contracts by
−4.9% (decreasing by 7.8 M ha) as crop producers face constraints in land and non-land input use.
Average agricultural GHG emissions are around 410.5 M MT CO2-eq/year while average GHG
emissions per output are at 1.22 CO2-eq/year per USD, much lower than under S2 and S3.

Building on S5, scenarios S6 and S7 show the uncertainty in the impact of R&D spending on
agricultural productivity growth. These scenarios represent the upper and lower bounds on the
expected farm productivity growth from R&D spending, respectively. The results show that US
agricultural productivity growth is between 69.7% and 56.7% given a 7% per year increase in US
R&D spending over 2025 to 2035. Agricultural output growth is around 68.3% and 58.0% under
S6 and S7, respectively. Under S6 where the productivity gains are greater, US crop and livestock
output expands by 83.3% and 54.7%, respectively. But even with lower benefits from R&D
investments, crop and livestock output growth are still above the baseline at 68.5% and 47.9%,
respectively. US crop supply price reduction is between −30.9% and −25.4% while for livestock
the change between −42.2% and −37.1%. Note that input restrictions are also imposed under S6
and S7 scenarios. Given this policy, US cropland contracts by around −7.7 and −7.9 M ha,
respectively. The upper and lower bounds of average agricultural GHG emissions are around
410.0 and 411.3 M MT CO2-eq/year, respectively. For GHG emissions per output, the bounds are
at 1.17 and 1.25 kg CO2-eq/year per USD. The results show that even under the lower bound
scenario there are substantial gains in agricultural production and reduction in GHG emissions
from the combined policy of increased R&D spending and farm input reduction.

Changes in global agricultural production and GHG emissions from 2017 to 2050

Global markets adjust to changes in US agriculture. Productivity gains from US R&D spending
increase the competitive advantage of US farm products while input restrictions make farmers less
competitive. At the same time, the rest of the world also benefits from US R&D investments via
knowledge spillovers. Table 3 reports the global changes in agricultural production and GHG
emissions over the period 2017–2050 under different scenarios.

Under the baseline (S1), global agricultural productivity increases by 40.0% while total farm
output rises by 56.2%. World production of livestock grows faster than crop, which shows the
impact of changing diets on the composition of agricultural production (around 61.6% and 54.2%,
respectively). World supply prices for these commodities are also expected to fall (by −21.8% and
−30.2%, respectively). Globally, cropland area is expected to rise by 93.6 M ha (by 6.0% relative to
2017 area). World agricultural emissions from 2017 to 2050 are around 8218.6 M MT CO2-eq/
year while GHG emissions per output are at 2.13 kg CO2-eq/year per USD. Note that the global
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Table 3. Changes in US and World agricultural production and GHG emissions from 2017 to 2050

United States

Agricultural
Productivity

Agricultural
Output

Crop
Output

Livestock
Output

Crop
Price

Livestock
Price

Cropland
Use

Average Annual
Agricultural GHG Emissions

Average Annual Agricultural GHG
Emissions per Output

Scenarios % % % % % %
Million
ha Million MT CO2-eq/year kg CO2-eq/year per USD

S1 Business-As-Usual 38.7 50.0 58.4 38.6 −19.0 −28.7 6.7 490.4 1.573

S2 Reduced US Input
Use

38.7 44.3 49.1 38.5 −15.8 −28.5 −7.9 416.3 1.388

S3 Greater US R&D
spending

62.1 69.5 86.2 50.9 −30.4 −39.5 7.0 486.2 1.380

S4 No R&D Spillovers 62.1 73.8 93.2 54.6 −28.1 −39.4 8.9 502.5 1.391

S5 Combined Policy 62.1 62.3 74.7 50.7 −27.9 −39.4 −7.8 410.5 1.217

S6 Combined Policy –
Upper Bound

69.7 68.3 83.3 54.7 −30.9 −42.2 −7.7 410.0 1.172

S7 Combined Policy –
Lower Bound

56.7 58.0 68.5 47.9 −25.4 −37.1 −7.9 411.3 1.252

World

Agricultural
Productivity

Agricultural
Output

Crop
Output

Livestock
Output

Crop
Price

Livestock
Price

Cropland
Use

Average Annual
Agricultural GHG Emissions

Average Annual Agricultural GHG
Emissions per Output

Scenarios % % % % % %
Million
ha Million MT CO2-eq/year kg CO2-eq/year per USD

S1 Business-As-Usual 40.0 56.2 54.2 61.6 −21.8 −30.2 93.6 8218.6 2.131

S2 Reduced US Input
Use

40.0 56.1 54.0 61.6 −21.1 −30.2 81.5 8167.2 2.120

S3 Greater US R&D
spending

44.3 57.7 55.5 63.5 −28.2 −32.7 76.7 8005.2 2.056

S4 No R&D Spillovers 42.1 56.9 54.8 63.0 −24.7 −30.9 86.1 8132.1 2.100

S5 Combined Policy 44.2 57.6 55.3 63.5 −27.3 −32.7 64.9 7957.1 2.046

S6 Combined Policy –
Upper Bound

45.6 58.0 55.7 64.0 −29.1 −33.4 60.0 7895.7 2.025

S7 Combined Policy –
Lower Bound

43.3 57.2 55.0 63.0 −26.0 −32.2 68.5 8003.0 2.062
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GHG emissions per output are roughly 36%more than the US estimates under S1. This shows that
US agriculture is more efficient in terms of GHG emissions per output relative to the world
average.

At the global level, the magnitude of the changes across alternative scenarios is much smaller. This
is expected since only the US and a few regions benefit from US R&D policies while farm input
restriction mandates under S2 and S5 are limited to the US. With limited input use in the US (S2),
growth in global agricultural output and declines in prices are comparable to the baseline scenario,
though crop prices are projected to be slightly higher. With international trade, the impacts of lower
US output growth in the world markets are partly offset by output expansion in the rest of the world.
In terms of input use, the restrictions implemented in the US are effective in slowing down global
cropland expansion at 81.5 M ha. Under S2, world average agricultural GHG emissions are at 8167.2
M MT CO2-eq/year while GHG emissions per output are at 2.12 kg CO2-eq/year per USD.

Greater US R&D spending results in higher global productivity and production, reduced land
use, and GHG emissions, and lower prices than either the baseline or reduced input scenarios.
Global farm productivity under S3 increases by 44.3% which leads to output expansion at 57.7%.
World livestock production rises faster than crop output with greater US R&D spending (63.5%
and 55.5%, respectively). Global average supply prices for these commodities also fall faster than in
the baseline (−32.7% and −28.2%, respectively). Even with the expansion in US cropland area in
S3, global cropland expansion under this scenario is 18% lower (at 76.7 M ha) than under the
baseline. Similarly, average agricultural emissions between 2017 and 2050 are 213.4 MMT
CO2-eq/year lower than under the baseline, and emissions per output are 3.5% lower. Global land
use and GHG emissions are also lower than in the input restriction scenario (S2). These results
show that the accounting of the economic and environmental benefits from US R&D spending
policies should consider the production gains and GHG reductions achieved beyond its borders.

In the absence of R&D spillovers (S4), the global gains from US R&D investments are
dampened which shows that knowledge transfers to the rest of the world are important co-benefits
of any agricultural R&D policy. Global farm productivity and output grow at a slower rate under
S4 than under S3. Likewise, the decline in crop and livestock prices is smaller. The environmental
gains are also reduced. For instance, global cropland use grows by 86.1 M ha, which is 12% more
than when spillovers are considered.

The global outcomes in S5 show that the combined R&D and input restriction policies result in
similar or greater output growth and price reduction compared to S1 but greater gains in terms of
avoided GHG emissions and cropland expansion compared to S2 and S3 – scenarios where these
policies are implemented separately. These results are robust to uncertainties in the productivity
gains from US R&D spending, as the outcomes for S6 and S7 indicate (Table 3). Under S5, world
agricultural output expands by 57.6% with faster growth in livestock than in crop production
(63.5% and 55.3%, respectively). Relative to the baseline, global average supply prices for these
goods fall faster over this period (−32.7% and −27.3%, respectively). Around 64.9 M ha of
additional cropland (expanding by 4.1%) is needed globally but this is roughly 31% less than the
expansion in S1. The rise in agricultural GHG emissions and emissions per output are also
dampened (7957.1 MMT CO2-eq/year and 2.05 kg CO2-eq/year per USD). This indicates that the
global environmental gains from the combined R&D and input restriction policy are much larger
than if these policies were pursued individually even with uncertainty in the impacts of US R&D
spending on farm productivity.

Summary and Conclusions
In this study, the economic and environmental benefits from increased US public R&D
investments are examined. Empirical estimates from a historical analysis of US R&D spending and
agricultural productivity growth as well as technological spillover parameters for selected regions
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are used. Increasing the growth rate of US R&D investments over the period 2025−2035 by 7% per
year could boost US agricultural TFP by 17.6% in 2050. This is projected to generate economic
gains within the US over the period 2017 to 2050, accounting for net present benefits and costs.
And with technical spillovers, US R&D spending can also be an additional source of farm TFP
growth in key world agricultural regions. The impacts of increased US R&D spending at home and
abroad are then calculated using a global economic model of agriculture. In addition to the future
baseline for period 2017−2050, alternative scenarios are estimated in this study.

In the future baseline, US and global agricultural output are expected to increase, resulting in
declining commodity prices, growing cropland area, and GHG emissions. Increasing US R&D
spending increases output and price reductions further, while reducing global cropland expansion and
GHG emissions. Technological spillovers from the US are important sources of farm productivity for
other regions, and these spillovers can enhance the economic and environmental outcomes at the
global level. However, as US productivity increases, the competitiveness of US commodities in the
world market also improves. This results in greater production and cropland use, limiting the domestic
environmental benefits from R&D. Within the US, agricultural GHG emissions can only be reduced
effectively when stringent input restrictions are implemented. But by itself, these restrictions can have
adverse impacts on US farm production and prices. Greater R&D spending combined with restrictions
in input use in the US provide both economic gains from increased production as well as reduced US
and global GHG emissions from lower input use. These results show support to strengthen US R&D
investment policies, as these show the direct economic benefits from continued agricultural
productivity growth and potential synergies with policies that reduce agricultural GHG emissions.
These economic and environmental gains are robust even with parameter uncertainties.

Finally, it is important to highlight key limitations of this study for future work. First, the
evaluation of the gains in R&D spending is limited. Note that given the 50-year duration of the
R&D lag weights, investments in the period 2025−2035 are only fully realized by 2075−2085.
Given this, future work should extend the evaluation of the benefits and cost flows and its impact
on global agriculture over a longer time horizon. Second, the input restrictions are only
implemented in the crop sector which is too narrow since the livestock sector is an important
source of farm GHG emissions. Future work should extend input restriction to the livestock sector
and explicitly model ruminants and nonruminant livestock since these sectors have different GHG
emissions intensities. Ruminants also interact with the crop sector indirectly via competition for
land resources. Third, market distortions such as export taxes and import tariffs are not explicitly
incorporated in the SIMPLE model. These distortions could likely limit US agricultural trade flows
and dampen the indirect impacts of increased US R&D policies via international commodity
markets. Finally, there is a need to provide separate estimates of R&D-led TFP growth for the
livestock and crop sector. The state-of-the-art focuses on all agriculture. Farming is a multi-output
and multi-input activity, and it is quite difficult to isolate the contribution of specific inputs to
output growth in the livestock and crop sector. However, developing separate R&D TFP
parameter estimates could be useful in justifying how R&D spending in agriculture is optimized
across these sectors to curb overall farm GHG emissions.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/aae.2023.29.
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