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Abstract

Background. Studies suggest severe mental disorders (SMDs), such as schizophrenia, major
depressive disorder and bipolar disorder, are associated with common alterations in brain
activity, albeit with a graded level of impairment. However, discrepancies between study find-
ings likely to results from both small sample sizes and the use of different functional magnetic
resonance imaging (fMRI) tasks. To address these issues, data-driven meta-analytic approach
designed to identify homogeneous brain co-activity patterns across tasks was conducted to
better characterize the common and distinct alterations between these disorders.
Methods. A hierarchical clustering analysis was conducted to identify groups of studies
reporting similar neuroimaging results, independent of task type and psychiatric diagnosis.
A traditional meta-analysis (activation likelihood estimation) was then performed within
each of these groups of studies to extract their aberrant activation maps.
Results. A total of 762 fMRI study contrasts were targeted, comprising 13 991 patients with
SMDs. Hierarchical clustering analysis identified 5 groups of studies (meta-analytic groupings;
MAGs) being characterized by distinct aberrant activation patterns across SMDs: (1) emotion
processing; (2) cognitive processing; (3) motor processes, (4) reward processing, and (5) visual
processing. While MAG1 was mostly commonly impaired, MAG2 was more impaired in
schizophrenia, while MAG3 and MAG5 revealed no differences between disorder. MAG4
showed the strongest between-diagnoses differences, particularly in the striatum, posterior
cingulate cortex, and ventromedial prefrontal cortex.
Conclusions. SMDs are characterized mostly by common deficits in brain networks, although
differences between disorders are also present. This study highlights the importance of study-
ing SMDs simultaneously rather than independently.

Introduction

Schizophrenia spectrum disorder (SCZ), bipolar disorder (BD), and major depressive disorder
(MDD) are major causes of disability and premature death and are associated with impaired
activities of daily living, and thus are referred to as severe mental disorders (SMDs) (National
Institute of Mental Health, 1987). Although these three disorders are defined as distinct
entities in clinical practice, SMDs share neurobiological alterations (McTeague et al., 2017,
2020) and significant levels of comorbid symptoms (Baethge et al., 2005). This has led a grow-
ing number of investigators to adopt a transdiagnostic approach to study the neurobiological
bases of SMDs. This approach promises to help identify the neurobiological impairments
shared by SMDs, and those that differ between them.

A growing body of research shows that SMDs share transdiagnostic genetic variants (The
Brainstorm Consortium et al., 2018), risk factors (e.g. childhood adversity) (Xie et al., 2018) as
well as overlap in pharmacological treatment. For example, atypical antipsychotics are primar-
ily used for treating SCZ, but they can be used as main treatment for BD (Keramatian,
Chakrabarty, Saraf, & Yatham, 2021) and as adjunctive treatment at lower doses for MDD
(Mulder et al., 2018). SMDs share comorbidities, namely anxiety and depressive symptoms.
Comorbidity rates for any anxiety disorder are estimated as high as 38%, 41%, and 75% for
SCZ, BD, and MDD, respectively (Achim et al., 2011; Lamers et al., 2011; Yapici Eser,
Kacar, Kilciksiz, Yalçinay-Inan, & Ongur, 2018). The majority of SCZ patients also experience
mild to severe depressive symptoms (Herniman et al., 2019). It is also well established that BD
patients will experience depressive symptoms a significant part of their life (Judd et al., 2003).
Therefore, this shared symptomatology could possibly be explained by transdiagnostic neuro-
biological alterations.

Despite similarities across SMDs, differences can be noted between these disorders. For
instance, there is reliable evidence of increased dopamine release in the associative striatum
in psychosis, which is one of the main pillars of the aberrant salience hypothesis of psychosis
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(McCutcheon, Abi-Dargham, and Howes, 2019); by comparison,
studies on dopamine alterations in MDD have produced mixed
results (Belujon & Grace, 2017). Despite the high rates of poly-
pharmacy in SMDs, there are differences in the pharmacological
management of SMDs. For instance, antidepressants are not
known to produce antipsychotic effects, and some antidepressants
can increase the risk of experiencing a (hypo)manic episode
(Bond, Noronha, Kauer-Sant’Anna, Lam, & Yatham, 2008).
While mania, delusions and hallucinations can be noted in the
three disorders, their prevalence, persistence, and severity differ
from one to another. More specifically, the prevalence and sever-
ity of manic symptoms can be depicted as BD > SCZ >MDD
(Angst et al., 2018; Malhi, Green, Fagiolini, Peselow, & Kumari,
2008), while the prevalence and persistence of delusions and hal-
lucinations can be portrayed as SCZ > BD >MDD (Baethge et al.,
2005). Finally, SMDs are all associated with global cognitive and
theory of mind deficits, but significant variations in severity are
observed between them (SCZ > BD >MDD) (Sheffield, Karcher,
& Barch, 2018; Van Neerven, Bos, & Van Haren, 2021).

Structural neuroimaging studies highlighted abnormalities in
the same regions across SMDs; however, effects were generally
larger in SCZ compared to MDD (Cheon et al., 2022). In a cross-
disorder review of ENIGMA findings, analyses on subcortical
volumes, cortical thickness, cortical surface area, and diffusion ten-
sor imaging metrics showed deficits in similar brain regions and
pathways across SMDs. However, these abnormalities were scaled
in severity across SMDs with SCZ showing moderate effects, BD
intermediate effects and MDD minimal effects (Cheon et al.,
2022). In regard to task-based functional neuroimaging studies,
McTeague et al. (McTeague et al. 2017) conducted a meta-analysis
of cognitive control tasks in SMDs and other psychiatric disorders,
which highlighted common hypoactivation of the dorsal anterior
cingulate cortex and common hyperactivation in the (right) ventro-
lateral prefrontal cortex (vlPFC). Hypoactivation was also observed
in the (left) dorsolateral prefrontal cortex (dlPFC), but the effect
was significantly larger in SCZ than other disorders. McTeague
et al. (McTeague et al. 2020) conducted another meta-analysis
with the same diagnosis groups but focusing on emotion process-
ing tasks. Their results showed common aberrant activations in the
amygdala, the (para-)hippocampus, the thalamus, the medial pre-
frontal cortex, the vlPFC, and the fusiform gyrus. While all three
disorders contributed similarly to the medial prefrontal cortex clus-
ter, differences were observed between SMDs in the case of the
thalamus and the vlPFC. Finally, a transdiagnostic meta-analysis
of 226 neuroimaging studies focusing on mood and anxiety disor-
ders found common abnormal activation of limbic regions during
affective and social processing experiments in mood disorders
(Janiri et al., 2020).

Classical meta-analytic approaches consist of conducting
meta-analyses on similar task-contrasts, as previously done
(Janiri et al., 2020; McTeague et al., 2017, 2020). One key limita-
tion of such study is that researchers manually classify task-
contrasts and assume that these expert-driven categories rely on
distinct brain networks, which is not always supported by the lit-
erature (Chen, Chaudhary, & Li, 2022; Lindquist, Wager, Kober,
Bliss-Moreau, & Barrett, 2012). More importantly, this manual
annotation can lead to jingle-jangle fallacy, preventing us to delin-
eate the shared/distinct neural correlates in SMDs. Others rather
perform task-independent analyses (i.e. across tasks) to identify
whole-brain alterations (Schumer, Chase, Rozovsky, Eickhoff, &
Phillips, 2023). However, this approach does not allow to investi-
gate the heterogeneity of aberrant co-activation networks across

studies, which may be of relevance to better clarify brain-behavior
relationships in SMDs. In order to overcome these methodo-
logical limits, investigators performed cluster analyses to identify
groups of experiments sharing similar aberrant co-activation pat-
terns, regardless of the task in non-clinical participants
(Bottenhorn et al., 2019; Dugré & Potvin, 2023; Laird et al.,
2015) and in youth with psychiatric disorders (Dugré, Eickhoff,
& Potvin, 2022). To the best of our knowledge, no transdiagnostic
meta-analysis on SMDs has adopted this latter approach.

Using a data-driven meta-analytic approach designed to identify
brain activity networks, we aimed to study brain activity alterations
across and between SMDs, regardless of the experimental context.
We focused on BD, MDD, and SCZ since these SMDs seem to pre-
sent both shared and distinct neural alterations (Gong et al., 2020;
Qi et al., 2022; Wang et al., 2021). Moreover, these SMDs have been
widely studied, meaning that a sufficiently large number of studies
will be available to run the planned clustering analyses. We
hypothesized that at least three neural networks will be identified,
involved in emotion, cognitive and reward processing. Coherently
with the past literature, we expected to observe common effects
across SMDs, especially in limbic regions (amygdala, hippocam-
pus) (Sprooten et al., 2017), but specific alterations in some regions
(e.g. thalamus in SCZ, ventrolateral prefrontal cortex in BD)
(McTeague et al., 2020). Moreover, we expected a graded level of
impairment in the dlPFC, which plays a key role in executive func-
tions, with common alterations in the dorsal anterior cingulate cor-
tex (McTeague et al., 2017).

Methods

Identification of studies

Since transdiagnostic meta-analyses have been published recently
and therefore have conducted systematic literature searches up to
2018, we first extracted data from reference lists (Janiri et al., 2020;
Sprooten et al., 2017). We also extracted data from the BrainMap
database. We then conducted a literature search in accordance
with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses criteria (http://www.prisma-statement.org/)
to include studies published between 2018 and April 2022.
The literature search was conducted on April 25th, 2022, in
Embase (via Ovid), PubMed, and Web of Science (see online
Supplementary Figure 1 and online Supplementary Figure 2 for
the PRISMA flowcharts). The keywords used were as follow:
‘(schizophrenia OR psychosis OR bipolar OR depression) AND
(fMRI OR functional magnetic resonance imaging) AND (task
OR paradigm OR performance OR event-related)’. Results were
restricted to studies published in 2018 or later and written in
English or French. Inclusion criteria were: (1) original manuscript
from a peer-reviewed journal, (2) functional magnetic resonance
imaging (fMRI) studies that included a fMRI task, (3) whole-
brain between-diagnoses results, (4) participants meeting DSM/
ICD criteria for SCZ, MDD or BD. Included studies from the lit-
erature search can be found in online Supplementary Table 1 with
the studies included based on reference lists from previous
meta-analyses (Janiri et al., 2020; Sprooten et al., 2017).

Meta-analytic approach

The task contrasts from each experiment were manually anno-
tated and sorted in four non-mutually exclusive categories: (1)
positive affect (i.e. response to positive stimuli); (2) negative affect
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(i.e. response to negative stimuli); (3) cognitive component (i.e.
working memory processes, attentional processes, etc.); (4) social
processes (i.e. social cognition task) (Sanislow et al., 2010;
Sprooten et al., 2017).

Modeled activation map was created for each meta-analytic
experiment (2 mm3 resolution), converted into a 1D feature vector
of voxel values (2 mm3 grey matter mask in Montreal Neurological
Institute (MNI) space), and concatenated together to form an
experiment (e) by voxel (v) matrix (762 experiments by 226 654
voxels). Pairwise correlation was conducted between the 1D feature
vector of each experiment to obtain spatial similarity between
maps. Then, we identified meta-analytic experiments that showed
similar brain topographic map, namely meta-analytic groupings
(MAGs), through a Correlation-Matrix-Based Hierarchical
Clustering (see (Dugré et al., 2022; Laird et al., 2015)). The
hierarchical clustering was carried out using correlation distance
(1 – r) and complete linkage method. We examined the most opti-
mal number of clusters using the silhouette, Calinski–Harabasz
indices, and adjusted rand index for a k range of 2–15 clusters
(Eickhoff, Thirion, Varoquaux, & Bzdok, 2015). More precisely,
at each k, metrics were compared against a null distribution of ran-
dom spatial arrangement. To do so, 2500 datasets were created arti-
ficially by shuffling foci locations across meta-analyses but
preserving original meta-analyses’ properties (e.g. number of foci,
sample size). The average of each metric (i.e. silhouette and
Calinski–Harabasz indices) derived from true dataset, was com-
pared against the artificially created null distribution and then plot-
ted for k range of 2–15 clusters. This improves our ability to select
the most optimal k by considering the probabilities of getting a cer-
tain metric value in a random spatial arrangement. Given that the
ground truth class labels are unknown, we compared, for each k,
the consistency (adjusted rand index) between LabelTRUE with
the LabelNULL then averaged across the 2500 iterations. A local
minimum in the plots suggests a decrease in overlap between
both sets of labels. We tested the best solution across different cor-
relation distance (i.e. Spearman, Pearson) and linkages (i.e. average,
complete). Each author gave their interpretation of the best fit for
all three indices and metrics until a consensus was reached. After
having found the optimal number of clusters, we randomly
removed 10% of the meta-analyses and re-ran the clustering algo-
rithm until the labels replicated in at least two consecutive itera-
tions of 1000 repetitions, as a stopping rule. This was done to
select the most stable labeling solution for a final hierarchical clus-
tering (online Supplementary Figure 3). All these analyses were
performed using Scikit-learn (version 0.21.3) in Python (version
3.7.4) (Pedregosa et al., 2012). Finally, clusters involving less than
1% were removed from subsequent analyses.

An activation likelihood estimation (ALE) meta-analysis was
conducted on experiments within each of the resulting MAGs to
extract their aberrant activation maps (see online Supplementary
Material). Then, results within each MAG were thresholded
using p < 0.001 uncorrected at a voxel-level with a family-wise cor-
rection p < 0.05 at a cluster-level. Between-group differences in
probabilities of activation were tested at a network-level and region-
level for hyperactivation and hypoactivation studies separately
using Kruskal–Wallis with a threshold of p < 0.05 uncorrected.
False-discovery rate (FDR) corrected results are also available in
online Supplementary Material (Benjamini & Hochberg, 1995).

To allow comparison between results from the data-driven and
the classical approaches, we conducted a meta-analysis on each
disorder across tasks (see online Supplementary Material for
more details and results).

To investigate the effect of confounding variables on the
results, we extracted probabilities of activation for each region
of each MAG. We performed Spearman rank correlations to
assess potential relationships between results and age, sex, and
medication rate.

Functional decoding of meta-analytic groupings

The resulting MAGs were functionally characterized by Neurosynth
meta-analytic term-based decoding (Yarkoni, Poldrack, Nichols,
Van Essen, & Wager, 2011). This method uses Pearson correlation
between two vectorized maps (user input and the Neurosynth
meta-analytic maps). Top 10 most correlated terms were extracted.

Furthermore, we sought to examine the contribution of canon-
ical networks in the resulting MAGs. We conducted network
mapping approach to investigate the connectivity network linking
peak coordinates of studies within each MAG (Peng, Xu, Jiang, &
Gong, 2022; Stubbs et al., 2023). Briefly, a 4-mm sphere was cre-
ated around each coordinate from each study to create a study-
level mask. Then, we computed the normative functional con-
nectivity map of each study-level mask using preprocessed
resting-state data of 1000 healthy subjects (ages 18 to 35 years
old, 50% females) of the Brain Genomics Superstruct Project
(Holmes et al., 2015; Thomas Yeo et al., 2011). Information
about preprocessing steps are available elsewhere (Thomas Yeo
et al., 2011). First, we averaged the time-course of voxels within
each of the study-level mask (4 mm spheres) to the time course
of every other voxel in the brain for each of the 1000 healthy par-
ticipants, yielding a subject-level study map (1000 participants ×
MAGstudies). A group-level connectivity map was then computed
using a voxel-wise one-sample t test across the 1000 participants
for each study within a MAG. A subsequent voxel-wise one-
sample t test using the unthresholded study-level maps was con-
ducted to generate a resting-state connectivity map per MAG that
is more consistent than expected by chance through permutation
testing (Winkler, Ridgway, Webster, Smith, & Nichols, 2014).
Contribution of each Schaefer’s seven networks (Schaefer et al.,
2018) and subcortex (Fischl et al., 2002) was then examined by
computing its effect size compared to what was found outside a
given network (Cohen’s d).

Results

Meta-analytic groupings

Literature search yielded 762 experiments derived from 566 ori-
ginal fMRI studies (see online Supplementary Figure 1 and 2
for the PRISMA flowcharts and online Supplementary Table 1
for more details on the included studies). Most experiments
included fMRI tasks associated with cognitive systems (k = 494),
negative valence (k = 191), positive valence (k = 180), and social
cognition (k = 180). Included studies involved 13 991 patients
with a mean age of 34.33 years old (S.D. = 7.13). The average sex
ratio across studies was 56.20% female, and the average rate of
medication was 76.69%. Details on demographic per psychiatric
disorder can be found in Table 1.

As mentioned earlier, we investigated the clustering solutions
for a range of k = 2–15 MAGs. Based on consensus, the
Silhouette, the Calinski–Harabasz and the adjusted rand indices,
clustering analyses revealed that the 7-MAG and the 11-MAG
solutions were the most optimal. Stable label solutions were
found after 10 and 31 iterations, respectively. We focused on
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the 7-MAG solution for parsimonious reasons (see Table 2 and
Fig. 1 for results of the 7-clusters solution, online Supplementary
Figure 3 and 4 and online Supplementary Table 2 for results of
the metrics, and online Supplementary Figure 5 and online
Supplementary Table 3 for details on the 11-MAG solution).
However, due to the limited number of studies of two MAGs
(<5%), only findings on the five MAGs are reported. The metrics
for the 7-MAG solution were as follow: Silhouette z = 1.32,
Calinski z = 1.62, and adjusted rand index z = 0.47. No differences
were found across MAGs for age distribution (F(4, 736) = 1.59,
p = 0.174), sex ratio (F(4, 728) = 2.07, p = 0.083), and rate of medi-
cation (H(4, 676) = 2.59, p = 0.629). MAGs did significantly
differ in experiments annotated as part of cognitive systems
(X2(4, 752) = 19.42, p < 0.001; MAG2 > MAG1 >MAG5), negative
valence systems (X2(4, 752) = 11.08, p = 0.026; MAG3 >MAG2),
and social processes (X2(4, 752) = 14.85, p = 0.005; MAG4 and
MAG2 > MAG1), but not positive valence systems (X2(4, 752) =
6.78, p = 0.148).

MAG1
The MAG1 was characterized by 99 experiments (2356 patients).
Mean age of patients was 34.18 years old (S.D. = 7.36), the average
sex ratio across studies was 54.25% female, and the average rate of
medication was 81.40%.

It was mainly composed by impaired activity in bilateral amyg-
dala & hippocampus, lobule V, inferior parietal lobule, and mid-
dle temporal gyrus. Associations with Neurosynth meta-analytic
terms revealed that this MAG was mainly linked to terms
including memories, encoding, episodic, retrieval, neutral, fearful,
episodic memory, autobiographical, memory, and happy. This
MAG also showed associations with the limbic network and the
subcortex (Fig. 2).

MAG2
The MAG2 was characterized by 383 experiments (8402 patients).
Mean age of patients was 33.88 years old (S.D. = 6.87), the average
sex ratio across studies was 57.01% female, and the average rate of
medication was 76.22%.

The MAG2 was represented by altered brain functioning in
dlPFC, bilateral anterior insula, bilateral superior parietal lobule,
thalamus, and anterior median cingulate cortex (Table 2 and
Fig. 1). Main Neurosynth meta-analytic terms included task,
gain, working memory, working, demands, word, phonological,
mood, reading, and load. MAG2 was also linked to the fronto-
parietal network and the ventral attention network (Fig. 2).

MAG3
The MAG3 was composed of 60 experiments (1373 patients).
Mean age of patients was 35.29 years old (S.D. = 5.94), the average
sex ratio across studies was 51.46% female, and the average rate of
medication was 73.43%.

The MAG3 was characterized by aberrant activity mostly in
angular gyrus, frontal eye field, intra-calcarine cortex, and precen-
tral gyrus (Table 2 and Fig. 1). Voxelwise associations with
Neurosynth decoding revealed that this MAG correlated with
touch, episodic, retrieval, retrieved, tasks, memory retrieval, con-
flict, audiovisual, tactile, and episodic memory. This MAG
showed associations with two connectivity networks namely the
dorsal attention network and the somatomotor network (Fig. 2).

MAG4
The MAG4 included 183 experiments (4445 patients). Mean age
of patients was 34.93 years old (S.D. = 7.32), the average sex ratio
across studies was 52.53% female, and the average rate of medica-
tion was 76.10%.

The MAG4 was mainly composed by abnormal activity in the
mesolimbic system, more precisely in the bilateral associative stri-
atum, the posterior cingulate cortex, perigenual anterior cingulate
cortex/ventromédian prefrontal cortex (pgACC/vmPFC), and the
central opercular (Table 2 and Fig. 1). Neurosynth meta-analytic
terms indicated strong association between this MAG and reward,
mood, default mode, valence, default, value, referential, emo-
tional, self-referential, and gain. This MAG was linked to the
default mode network and the subcortex (Fig. 2).

MAG5
The MAG5 was composed of 27 experiments (483 patients).
Mean age of patients was 36.42 years old (S.D. = 6.05), the average
sex ratio across studies was 62.77% female, and the average rate of
medication was 77.70%.

MAG5 included lingual gyrus, posterior hippocampus, and
lateral prefrontal cortex. Associations were found between
MAG5 and Neurosynth meta-analytic terms such as place, per-
ception, encoding, navigation, auditory, listening, audiovisual,
voice, virtual, and sounds. Associations were made between
MAG5 and the visual network and the subcortex (Fig. 2).

Differences between psychiatric disorders

Descriptive and task domains
There were differences in number of studies per diagnosis for
positive valence systems (X2(2, 762) = 54.64, p < 0.001), negative
valence systems (X2 = 37.81 p < 0.001), and cognitive systems
(X2 = 47.43, p < 0.001) but not social processes (X2 = 1.24,
p = 0.539) (Table 3). For positive valence systems, distribution
of experiments was equivalent to MDD > SCZ > BD. Moreover,
SCZ has higher rates of studies involving negative valence systems,
whereas MDD has lower rates in cognitive systems. It is important
to note this information to ensure there is not a bias in the type of
task administered, which could skew the results.

After Bonferroni correction, post hoc analyses revealed that
disorders significantly differed in the number of experiments

Table 1. Demographic and clinical characteristics of participants per psychiatric disorder

SCZ MDD BD Statistic p-Value Post-hoc

n cases 7948 3659 2384

Mean age 33.50 35.84 35.10 F(2, 593) = 6.18 0.002 MDD > SCZ ( p = 0.003)

Sex ratio (% male) 64.91 38.91 49.04 F(2, 587) = 72.52 <0.001 SCZ > BD > MDD ( p < 0.001)

Medication rate (% medicated) 90.82 40.09 75.82 H(2, 537) = 175.21 <0.001 SCZ > BD > MDD ( p < 0.001)
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coded as positive valence systems in MAG4 (X2(2, 762) = 7.88, p
= 0.019). Also, the between-diagnoses effect found for negative
valence systems was driven by MAG2 (X2(2, 762) = 11.31, p =
0.004) and MAG4 (X2(2, 762) = 7.88, p < 0.019). Finally, between-
diagnoses effect observed for cognitive systems was not mainly
driven by any MAG.

Neurobiological differences between psychiatric disorders
MAG1. At a network-level, psychiatric disorders did not signifi-
cantly differ in the probabilities of combined hyper and hypoac-
tivation (H(2, 99) = 4.20, p = 0.122). At a region-level, differences
were observed in probabilities of activation only in the inferior
parietal lobule (H(2, 99) = 12.79, p = 0.002) (Fig. 3). Inspection

Table 2. Meta-analytic grouping results (five-cluster solution)

Regions L/R

MNI coordinates

ALE values Cluster size (mm3)

Hyper-hypoactivation combined

x y z Statistic p-Value uncorrected

MAG1

Network H(2, 99) = 4.20 0.122

AMY/aHIP R 26 −4 −16 0.02956 4552 H(2, 99) = 4.55 0.103

AMY/aHIP L −26 −10 −18 0.02734 7600 H(2, 99) = 1.74 0.418

Lobule V R 2 −58 −16 0.02297 1328 H(2, 99) = 2.78 0.25

MTG R 56 −8 −16 0.02219 2112 H(2, 99) = 0.82 0.664

IPL R 50 −60 20 0.02413 5880 H(2, 99) = 12.79 0.002**

MAG2

Network H(2, 395) = 6.50 0.039**

dlPFC L −46 8 32 0.04794 8264 H(2, 395) = 2.28 0.32

Ains L −38 24 −2 0.04324 5368 H(2, 395) = 7.59 0.022*

SPL L −34 −56 46 0.04139 3872 H(2, 395) = 0.14 0.932

Thalamus L −4 −8 6 0.04063 6576 H(2, 395) = 5.80 0.055

aMCC - 0 16 42 0.04595 9720 H(2, 395) = 3.41 0.182

aINS R 34 22 −2 0.04506 25 288 H(2, 395) = 3.39 0.184

SPL R 34 −54 50 0.04482 7288 H(2, 395) = 1.87 0.393

MAG3

Network H(2, 60) = 1.52 0.468

AG L −44 −60 28 0.02048 2720 H(2, 395) = 0.47 0.792

Frontal eye field L −30 10 52 0.02032 6312 H(2, 395) = 0.06 0.969

Intra-calcarine cortex L −10 −66 8 0.01831 2336 H(2, 60) = 2.87 0.238

Precentral gyrus R 40 −16 46 0.02185 1776 H(2, 60) = 2.55 0.279

MAG4

Network H(2, 183) = 11.45 0.003**

Striatum L −16 12 10 0.03271 4592 H(2, 183) = 12.96 0.003**

pgACC/vmPFC L −2 42 4 0.03099 19 184 H(2, 183) = 12.96 0.002**

Striatum R 18 2 10 0.02753 3000 H(2, 183) = 5.91 0.51

PCC L −4 −40 30 0.03032 3192 H(2, 183) = 9.32 0.009**

Central opercular R 42 4 10 0.02733 2960 H(2, 183) = 2.01 0.366

MAG5

Network H(2, 27) = 2.93 0.231

Lingual gyrus L −28 −54 2 0.01308 4616 H(2, 27) = 3.02 0.222

pHIP R 28 −34 0 0.01417 4552 H(2, 27) = 1.56 0.458

Lateral PFC L −34 50 −12 0.01367 1392 H(2, 27) = 1.21 0.546

Note. MNI, Montreal Neurological Institute; MAG, Meta-analytical Grouping; L, Left; R, Right; FDR, False-Discovery Rate; AMY, Amygdala; aHIP, Anterior Hippocampus; pHIP, Posterior
Hippocampus; MTG, Middle Temporal Gyrus; pgACC/vmPFC, Perigenual Anterior Cingulate Cortex and Ventromedial Prefrontal Cortex; dlPFC, Dorsolateral Prefrontal Cortex; aMCC, Anterior
Midcingulate Cortex; SPL, Superior Parietal Lobule; AG, Angular Gyrus; IPL, Inferior Parietal Lobule; PCC, Posterior Cingulate Cortex; aINS, Anterior Insula. ALE values, measure of coherency
across experiments. *Significant with a threshold of p < 0.05 uncorrected, **Significant with a corrected threshold of pFDR<0.05 (See online Supplementary Table 4 for more details).
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of probabilities of activation indicated higher probabilities of
decreased activation in SCZ compared to BD ( p = 0.002). No
other significant between-diagnoses differences were observed.
For all MAGs, results from between-diagnoses comparison cor-
rected with FDR are available in online Supplementary Table 4.

We found no significant association with age, sex or medica-
tion rate and regions of this MAG (all psFDR > 0.1) (online
Supplementary Table 5).

MAG2. At a network-level, psychiatric disorders significantly
differed in the probabilities of combined hyper-hypoactivation
(H(2, 383) = 6.50, p = 0.039). Breakdown of this results high-
lighted higher probabilities of decreased activation in SCZ com-
pared to MDD ( p = 0.036). At a region-level, a significant
between-diagnoses difference was observed for the right anterior
insula extending to the inferior frontal gyrus (H(2, 383) = 7.59,
p = 0.022) (Fig. 3). This cluster was associated with higher prob-
abilities of decreased activation in the SCZ group compared to
the MDD group ( p = 0.038).

We found no significant association with age, sex, or medica-
tion rate and regions of this MAG (all psFDR > 0.056) (online
Supplementary Table 5).

MAG3. At a network-level, psychiatric disorders did not sig-
nificantly differ in the probabilities of activation across combined
hypo-hyperactivation studies (H(2, 60) = 1.52, p = 0.468). At a
region-level, no differences were noted (all ps > 0.1). However, it
should be noted that MAG3 only relied on 60 experiments in
total, regardless of diagnosis.

We found no significant association with age, sex, or medica-
tion rate and regions of this MAG (all psFDR > 0.1) (online
Supplementary Table 5).

MAG4. At a network-level, psychiatric disorders did signifi-
cantly differ in the probabilities of activation for the combined

hyper-hypoactivation (H(2, 183) = 11.45, p = 0.003).
Breakdown of the direction highlighted higher probabilities of
hyperactivation of this network in BD compared to SCZ ( p =
0.002). At a region-level, psychiatric disorders did significantly
differ in the voxel-wise probabilities of activation in the
vmPFC/pgACC (H(2, 183) = 12.96, p = 0.002), the left striatum
(H(2, 183) = 11.58, p = 0.003), the posterior cingulate cortex
(H(2, 183) = 9.32, p = 0.009), and the right striatum cluster
(H(2, 183) = 5.951, p = 0.051). Regarding the vmPFC/pgACC
cluster, breakdown of direction and posthoc comparisons
revealed that probabilities of hyperactivation were significantly
greater in BD than SCZ ( p = 0.001) as well as BD compared to
MDD ( p = 0.020). Probabilities of hyperactivation were also
noted for BD compared to SCZ for the left striatum. SCZ dis-
played higher probabilities of hypoactivation of the posterior
cingulate cortex compared to both BD and MDD ( p = 0.041
and p = 0.034, respectively). Posthoc analyses showed greater
probabilities of activation in SCZ within the right striatum, com-
pared to MDD ( p = 0.021).

We found an association between age and probabilities of
activation of the network (r =−0.205, pFDR = 0.036) (online
Supplementary Table 5).

MAG5. At a network-level, psychiatric disorders did
not significantly differ in the probabilities of activation
across combined hypo-hyperactivation studies (H(2, 27) =
2.93, p = 0.231). At a region-level, no differences were
noted (all ps > 0.2). However, it should be noted that
MAG5 only relied on 27 experiments in total, regardless
of diagnosis.

We found no significant association with age, sex, or medica-
tion rate and regions or network of this MAG (all psFDR > 0.1)
(online Supplementary Table 5).

Figure 1. Summary of the meta-analytic groupings. (a) Calculating Similarity between Aberrant Activation Maps, (b) Identifying Main Meta-Analytic Groupings.
Note. Wordclouds represent associations between MAGs and Neurosynth meta-analytic terms. Only the top 10 terms are shown. Font size illustration correlational
strength.
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Discussion

In this meta-analysis, we conducted hierarchical clustering ana-
lysis of abnormal task-related brain activity in SMDs to take
into account heterogeneity between studies. This resulted in a
5-cluster solution. MAG1 was mainly associated abnormal brain
activity of the limbic system (amygdala, hippocampus, etc.).
MAG2 was linked to cognitive functions and was characterized
by abnormal activity in bilateral anterior insula and left dorsolat-
eral prefrontal cortex, while MAG3 was mostly associated with
altered activity in motor regions (precentral gyrus, intra-calcarine
cortex). MAG4 was linked to reward processing and abnormal
activity of the mesolimbic system. MAG5 was associated with
three regions namely the lingual gyrus, the parahippocampal
gyrus and the lateral prefrontal cortex. For most regions of
MAG1, no differences were noted between groups. MAG2 dif-
fered at a network-level, with SCZ displaying greater probabilities
of hypoactivation than MDD. MAG3 and MAG5 displayed com-
mon alterations which may be due to the lack of power for these
specific analyses. MAG4 revealed that BD was associated with
greater probabilities of activation of the vmPFC/pgACC and the
left striatum in comparison to SCZ, and greater probabilities of
activation of the right striatum in SCZ in comparison to BD.

SCZ showed higher level of hypoactivation than MDD in the pos-
terior cingulate cortex. MAG4 differed at a network level, with BD
presenting higher probabilities of hyperactivation of the whole
network compared to SCZ.

Coherently with the past literature, SMDs depicted mostly
common disruptions in MAG1 associated with emotion process-
ing. MAG1 included bilateral amygdala and hippocampus, pos-
terior middle temporal gyrus, lobule V, and inferior parietal
lobule. However, differences were noted for the inferior parietal
lobule which was hypoactivated in SCZ compared to BD. The
inferior parietal lobule is implicated in self-other discrimination
which is known to be altered in SCZ (Uddin, Molnar-Szakacs,
Zaidel, & Iacoboni, 2006). On the other hand, the amygdala
plays a key role in emotion processing, especially in rapid process-
ing of facial expression and identification of negative stimuli
(Davis & Whalen, 2001). Alertness of the amygdala is known to
be in response to a fearful or unpleasant stimulus which can be
modulated by the vmPFC via its direct projections (Diekhof,
Geier, Falkai, & Gruber, 2011). Reactivity of the amygdala appears
to be linked to automatic negative evaluations of facial expressions
(negative bias) (Dannlowski et al., 2007). Notably, SMDs are asso-
ciated with more negative rating tendencies (negative bias) that

Figure 2. Summary of MAGs and their connectivity network (t-maps). Contribution of each of the Schaefer-400 7 Networks is represented by Cohen’s d.
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can be seen when evaluating neutral, ambiguous, negative stimuli,
or even positive stimuli (Suslow, Roestel, & Arolt, 2003).
Neuroimaging studies including patients with SMDs suggested
the amygdala-hippocampal interaction could play a role in

strengthening memory for negative information and increasing
negative bias (Hamilton & Gotlib, 2008). Therefore, MAG1 defi-
cits may represent the mechanisms underlying impaired emo-
tional reactivity and/or negative bias across SMDs. Common

Table 3. Distribution of disorder experiments across task domains per meta-analytic groupings

Disorders by domains Total MAG1 MAG2 MAG3 MAG4 MAG5

Social processes 180 (23.6%) 38 (38.4%) 79 (20.0%) 16 (26.7%) 40 (21.9%) 5 (18.5%)

Schizophrenia 105 (24.1%) 24 (44.4%) 49 (20.3%) 6 (21.4%) 21 (23.3%) 3 (18.8%)

Major depressive disorder 38 (20.8%) 9 (31.0%) 16 (21.1%) 5 (23.8%) 6 (12.8%) 2 (33.3%)

Bipolar disorder 37 (25.7%) 5 (31.3%) 14 (21.2%) 5 (45.5%) 13 (28.3%) 0 (0.0%)

Positive valence systems 180 (23.6%) 28 (28.3%) 86 (21.8%) 18 (30.0%) 43 (23.5%) 2 (7.4%)

Schizophrenia 64 (14.7%) 10 (18.5%) 37 (11.5%) 5 (17.9%) 10 (11.1%) 0 (0.0%)

Major depressive disorder 77 (42.1%) 13 (44.8%) 33 (15.4%) 11 (52.3%) 17 (36.2%) 2 (33.3%)

Bipolar disorder 39 (27.1%) 5 (31.3%) 16 (24.2%) 2 (18.2%) 16 (34.8%) 0 (0.0%)

Negative valence systems 191 (25.1%) 31 (31.3%) 82 (20.8%) 23 (38.3%) 47 (25.7%) 5 (18.5%)

Schizophrenia 74 (17.0%) 10 (18.5%) 37 (15.4%) 7 (25.0%) 18 (20.0%) 1 (6.3%)

Major depressive disorder 72 (39.3%) 15 (51.7%) 27 (35.5%) 11 (52.4%) 13 (27.7%) 4 (66.7%)

Bipolar disorder 45 (31.3%) 6 (37.5%) 18 (27.3%) 5 (45.5%) 16 (34.8%) 0 (0.0%)

Cognitive systems 449 (58.9%) 45 (45.5%) 236 (59.7%) 27 (45.0%) 112 (61.2%) 22 (81.5%)

Schizophrenia 289 (66.4%) 26 (48.1%) 166 (68.9%) 17 (60.7%) 61 (67.8%) 15 (93.8%)

Major depressive disorder 68 (37.2%) 11 (37.9%) 25 (32.9%) 5 (23.8%) 22 (46.8%) 2 (33.3%)

Bipolar disorder 92 (63.9%) 8 (50.0%) 45 (68.2%) 5 (45.5%) 29 (63.0%) 5 (100.0%)

Total experiments 762 (100.0%) 99 (13.0%) 395 (51.8%) 60 (7.9%) 183 (24.0%) 27 (3.5%)

Schizophrenia 435 (100.0%) 54 (12.4%) 241 (55.4%) 28 (6.4%) 90 (20.7%) 16 (3.7%)

Major depressive disorder 183 (100.0%) 29 (15.8%) 76 (41.5%) 21 (11.5%) 47 (25.7%) 6 (3.3%)

Bipolar disorder 144 (100.0%) 16 (11.1%) 66 (45.8%) 11 (7.6%) 46 (31.9%) 5 (3.5%)

Note. MAG, meta-analytical grouping.

Figure 3. Significant differences between psychiatric disorders regarding their probabilities of activation.
Note. vmPFC = ventromedial prefrontal cortex; pgACC = perigenual anterior cingulate cortex. Bars represent standard error.
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alterations of the MAG1 are consistent with the shared anxio-
depressive symptomatology observed across SMDs (Achim
et al., 2011; Lamers et al., 2011; Yapici Eser et al., 2018).

Based on clinical observations, one may expect to observe lar-
ger alteration in mood disorders compared to SCZ; however, the
evidence supporting this assumption remains unclear. In the
meta-analysis from McTeague et al. (2020), no direct comparison
was performed between MDD and the other two SMDs, since no
spatial convergence was observed in MDD. Sprooten et al. (2017)
also conducted a meta-analysis in SMDs, which adopted a similar
approach to ours in that they performed analyses regardless of the
tasks used in the scanner. Their results were similar to ours in that
they found common alterations in the amygdala and hippocam-
pus (among others), and that no differences between SMDs
were observed in these regions when restricting analyses to whole-
brain fMRI studies.

MAG2 included dlPFC, thalamus, anterior midcingulate cor-
tex, bilateral superior parietal lobule, and anterior insula extend-
ing to the inferior frontal gyrus. These regions have been
previously linked to cognitive functions such as cognitive control,
response inhibition, semantic processing, and working memory
(Levy & Wagner, 2011). Such functions are known to be impaired
at varying degrees in SMDs (Sheffield et al., 2018). Notably, SCZ
showed higher probabilities of hypoactivation of the overall net-
work in comparison to MDD, which is coherent with past litera-
ture suggesting more severe cognitive deficits in SCZ than in
mood disorders (Sheffield et al., 2018). Moreover, we found
hypoactivation of a cluster located in the left anterior insula
extending to the inferior frontal gyrus in SCZ compared to
MDD. Notably, this cluster plays an important role in language
functions, which are known to be altered and associated with for-
mal thought disorder in SCZ (Maderthaner et al., 2023). Indeed, a
recent meta-analysis from our team found alterations of the left
inferior frontal gyrus in patients with SCZ during verbal tasks
(Pilon, Boisvert, & Potvin, 2024). In theory, it has been proposed
the prefrontal alterations underlying the cognitive deficits of SCZ
would result from an imbalance between glutamatergic and
GABAergic neurotransmission (Xu & Wong, 2018). In their neu-
roimaging meta-analysis on cognitive control studies, McTeague
et al., found that the impaired activation of the left lateral pre-
frontal cluster was mostly associated with SCZ in comparison to
other disorders (McTeague et al., 2017). Although our results
appear similar to the results obtained by McTeague et al.
(2017), it is important to point out that our left lateral prefrontal
cluster was more ventral. A potential reason for this small discrep-
ancy is that the meta-analysis of McTeague et al. (2017) focused
on cognitive control tasks, while our analyses were performed
in a task-blind manner.

MAG3 was linked to visual/motor regions and regions impli-
cated in attention such as the frontal eye field, the angular
gyrus, the intra-calcarine cortex and the precentral gyrus.
MAG5 was also associated with a visual region (lingual gyrus),
and cognitive regions such as the lateral prefrontal cortex and
the para-hippocampal gyrus. At the network and the region levels,
groups did not differ. However, this may be due to the lack of
power induced by the lack of studies in these MAGs (60 and 27
experiments, respectively).

MAG4 was associated with default-mode network and reward
processing and included fronto-limbic regions such as the bilat-
eral striatum, the pgACC/vmPFC, the posterior cingulate cortex,
and the central opercular. BD showed greater probabilities of
hyperactivation of the whole network as well as of clusters located

in the vmPFC/pgACC and the left striatum in comparison to
SCZ. The vmPFC and the striatum are one of the core regions
of the mesocorticolimbic brain reward system, and are known
to play an important role in social decision-making, processing
of social reward and making value-based decisions (Hiser &
Koenigs, 2018). Hyperactivation of these regions could be asso-
ciated with the higher reward sensitivity and responsiveness char-
acterizing BD (Alloy, Olino, Freed, & Nusslock, 2016). This
neurobiological mechanism may provide an explanation for the
(hypo)manic symptoms of BD, which are characterized by feel-
ings of euphoria, grandiosity, and behavioral impulsivity (com-
pulsive spendings, etc.). The vmPFC and the pgACC are also
related to the processing of negative valence stimuli, such as pun-
ishment (Santesso et al., 2012). Notably, it has been suggested that
both unipolar and bipolar depression was associated with higher
sensitivity to punishment (Adida et al., 2011; Eshel & Roiser,
2010). Taken together, the vmPFC/pgACC results are coherent
with reward/punishment sensitivity model, which has been pro-
posed to significantly distinguish BD from SCZ. The fact that a
difference was noted between the BD and MDD suggests that
the reward/punishment model may apply more closely to BD
than MDD. It must be noted that the difference in vmPFC activa-
tion between BD and SCZ may stem from an increased probabil-
ity of hyperactivation in BD as well as an increased of
hypo-activation in SCZ. This latter result is coherent with a pre-
vious meta-analysis from Kuhn and Gallinat (2013), which
showed a reduced vmPFC activity at rest in SCZ. Finally,
Sprooten et al. (2017) performed a large-scale meta-analysis of
fMRI studies performed across psychotic, mood and anxiety dis-
orders. Although they did not adopt clustering approaches, they
also observed an effect of diagnosis on medial prefrontal results,
which were also influenced by task domain. However, this result
was no longer significant when restricting analyses to fMRI stud-
ies using whole-brain rather than region-of-interest approaches.

For MAG4, a higher probability of hypoactivation of the pos-
terior cingulate cortex was found in SCZ compared to MDD. This
region is a core region of the default-mode network (Greicius,
Krasnow, Reiss, & Menon, 2003), as confirmed by the association
that we found between MAG4 and the resting-state functional
connectivity maps. Considering that the posterior cingulate cortex
plays a key role in social cognition, the increased probability of
hypo-activations observed in SCZ in this region is coherent
with the fact that socio-cognitive deficits are more severe in this
disorder, including deficits in theory of mind (Van Neerven
et al., 2021). At the neural level, however, results have been
equivocal thus far. Indeed, a recent meta-analysis of 428 resting-
state functional connectivity studies performed in SMDs showed
no significant differences between disorders when examining
the whole default-mode network (Grot et al., 2024). However,
sub-analyses on specific brain regions belonging to the default-
mode network showed a larger proportion of studies reporting
alterations in SCZ as compared to BD and MDD. Moreover,
some evidence suggests that the posterior default-mode network
may be more prominently impaired in SCZ in reward-related con-
texts (Segarra et al., 2016).

SCZ depicted greater probabilities of hyperactivation of the
right associative striatum cluster in comparison to MDD. The stri-
atum plays an important role in reward processing, associative
learning and voluntarily movement (Delgado, 2007). In SCZ, sev-
eral positron emission tomography studies have shown that dopa-
mine release is increased in the associative part of the striatum
(McCutcheon, Beck, Jauhar, and Howes, 2018). The associative

3620 Mélanie Boisvert et al.

https://doi.org/10.1017/S003329172400165X Published online by Cambridge University Press

https://doi.org/10.1017/S003329172400165X


striatum translates motivational states into behavior while taking
perceptual information into account (Liljeholm & O’Doherty,
2012). Thus, increased dopamine release in this part of the stri-
atum could lead to an aberrant attribution of motivational value
to irrelevant stimuli by making inappropriate associations
(McCutcheon et al., 2019). In turn, such aberrant experiences
may give rise to psychotic symptoms (Kapur, 2003;
McCutcheon et al., 2019). While the brain regions of MAG4
were mostly associated with reward processing, it is noteworthy
that MAG4 emerged from experiments related mostly to cognitive
systems (see Table 3). Taken together, these results are consistent
with the aberrant salience hypothesis of psychosis, as they show
hyperactivations of the associative striatum in SCZ during cogni-
tive contexts having no inherent motivational value (Kapur, 2003;
McCutcheon et al., 2019). Methodologically speaking, these
results might not have been found had we adopted a classic
meta-analysis approach examining task-specific effects.

The data-driven meta-analytical approach adopted here has two
main strengths. The first is that it directly tackles heterogeneity
across studies. In classical approaches, analyses are based on diag-
noses, and results are interpreted as though they had been present
in each study involving the disorder of interest. However,
meta-analytic findings are frequently driven by a limited number
of studies. In fact, a growing number of fMRI meta-analyses
found no spatial convergence in pediatric psychiatric disorders
(Dugré et al., 2022), attention-deficit-hyperactivity disorder
(Samea et al., 2019) and major depression disorder (Gray,
Müller, Eickhoff, & Fox, 2020; Müller et al., 2017). Clustering
brain alterations based on their similarity, regardless of diagnosis,
helps circumvent this regional heterogeneity. Another strength of
the approach adopted here is that in SMDs, alterations are fre-
quently observed in brain regions that are not task-related
(Taylor et al., 2012). This could be explained by the fact that experi-
mental tasks are rarely purely cognitive or emotional. Coherently
with this view, most experiments in each MAG used cognitive
tests, even in the case of the MAG1 and MAG4, which elicited lim-
bic and brain reward alterations, respectively. In terms of functional
decoding, we identified a cognitive MAG (MAG2) which referred
to both language and cognitive control functions, which are nor-
mally considered as close but separate functions (De Baene,
Duyck, Brass, & Carreiras, 2015). This may explain why we
observed a hypo-activation of the language-related left inferior
frontal gyrus in schizophrenia. As for MAG4, it comprised altera-
tions of regions of the brain reward system and the default mode
network, which are usually considered as separate networks
(Dobryakova & Smith, 2022). In this context, we were able to
show that the vmPFC is hyperactived in BD, a result consistent
with the seminal reward / punishment model of BD.

However, this study has also limitations that should be
acknowledged. First, the number of studies available for certain
task domains was limited. For instance, there was very few studies
on auditory processing, and this may explain why no results were
found in auditory cortices which are frequently reported as show-
ing aberrant activity in hallucinated SCZ patients (Ćurčić-Blake
et al., 2017). Second, some of the differences between diagnoses
were noted at an uncorrected threshold but could not survive cor-
rection for multiple comparisons. Moreover, we could not observe
differences in MAG3 and MAG5 which could suggest the
meta-analysis was underpowered for certain subanalyses examin-
ing differences between disorders. Although the current
meta-analysis has included 566 studies, several subanalyses had
to be performed (5 MAGs × hyper- v. hypo-activations × 3

SMDs). Third, it would be ideal to perform the analyses with a
second sample to replicate the results (e.g. split into two halves).
However, at full capacity, we already lacked power to detect differ-
ences in some MAGs, and therefore we could not perform this
analysis. Fourth, ALE only focuses on significant between-
diagnosis results, and therefore does not consider negative results.
This may have inflated the results and should be taken into
account when interpreting the results. Finally, the rate of task
domains differed between diagnosis, and this may have con-
founded results. It is important to point out, however, that the
most robust between-diagnosis differences occurred in regions
that were not related to the most prevalent task domain used in
this subset of experiments (MAG4). As such, this pattern makes
it unlikely that results were explained by a task domain confound.

Using a transdiagnostic approach focusing on SMDs, and clus-
ter analyses seeking to handle the heterogeneity of fMRI results,
our meta-analysis showed common brain alterations in an emo-
tional network, subtle differences in an attentional network and
graded levels of impairment in a cognitive control network
(SCZ >MDD and BD). SCZ was associated with increased altera-
tions in the (associative) striatum, a result consistent with the
aberrant salience hypothesis of psychosis, while BD was asso-
ciated with increased alterations in the vmPFC, a result consistent
with the reward/punishment model of this mood disorder.
Further fMRI studies are required using a transdiagnostic
approach in SMDs. In that venue, the spectrum of the emotional
or cognitive processes to be investigated will need to be broa-
dened. The clinical characteristics (comorbid symptoms) will
need to be better described to be able to perform finer investiga-
tions. Finally, additional fMRI task studies need to be carried out
in a larger number of psychiatric disorders to enable the pursuit
of data-driven meta-analyses using a fully transdiagnostic
approach, while performing clustering analyses on neural altera-
tions evoked by specific task categories.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172400165X.
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