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Abstract

Robots need a sense of touch to handle objects effectively, and force sensors provide a straightforward way to measure
touch or physical contact. However, contact force data are typically sparse and difficult to analyze, as it only appears
during contact and is often affected by noise. Therefore, many researchers have consequently relied on vision-based
methods for robotic manipulation. However, vision has limitations, such as occlusions that block the camera’s view,
making it ineffective or insufficient for dexterous tasks involving contact. This article presents a method for robotic
systems operating under quasi-static conditions to perform contact-rich manipulation using only force/torque
measurements. First, the interaction forces/torques between the manipulated object and its environment are collected
in advance. A potential function is then constructed from the collected force/torque data using Gaussian process
regression with derivatives. Next, we develop haptic dynamic movement primitives (Haptic DMPs) to generate robot
trajectories. Unlike conventional DMPs, which primarily focus on kinematic aspects, our Haptic DMPs incorporate
force-based interactions by integrating the constructed potential energy. The effectiveness of the proposed method is
demonstrated through numerical tasks, including the classical peg-in-hole problem.

Impact Statement

Visual simultaneous localization and mapping (SLAM) has been intensively studied and widely adopted over the
years, becoming a key component of mobile robot navigation. However, when it comes to robotic manipulation
—where navigation involves moving the arm and end-effector through contact-rich environments to accomplish
tasks—vision-only approaches can easily fall short. Humans, on the other hand, can perform dexterous
manipulation tasks using only haptic sensing. Inspired by the environment mapping technique in visual SLAM,
this article proposes to establish a potential energy distribution via premeasured contact forces and torques. Using
this distribution, the robot’s trajectory can be generated, helping it navigate the contact-rich environment and
accomplish the task. The approach has the potential to change the way contact-rich tasks are executed in the
future.

1. Introduction

In robotics, physical contact (or simply contact) occurs when a part of the robot or the object it handles
touches other objects, humans, or the environment. Depending on the application, this contact can be
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accidental or intentional. Avoiding unwanted contact is crucial in applications such as collision avoidance
(Koptev et al., 2021), whereas in other cases, contact is either inevitable or deliberately introduced
(Suomalainen et al., 2022). In robotic assembly, maintaining contact with objects is essential for executing
tasks such as insertion and drilling (Suomalainen et al., 2022; Yang etal., 2025; Yang et al., 2025). Robotic
maneuvring that involves contact requires careful trajectory planning to ensure successful task execution.
However, traditional planning methodologies often focus on avoiding direct contact, aiming for collision-
free navigation (LaValle, 2006). In contact-rich manipulation, while preventing accidental collisions is
crucial, occasional or deliberate contact is essential for task completion. Proper contact modeling can
enhance contact-rich manipulation planning, but modeling contact between objects remains challenging
due to its complex and nonlinear nature (Wirnshofer et al., 2019). Therefore, it is important to establish a
systematic framework for modeling and planning in contact-rich manipulation, enabling robots to
effectively navigate contact-rich environments during manipulation tasks.

Vision-based approaches for robotic mapping, planning (Garg et al., 2020), and manipulation (Ehsani
et al., 2021) have attracted much attention from roboticists, aligning with the rapid development of
computer vision applications in the last decade. The use of cameras has also led to the emergence and
growth of visual simultaneous localization and mapping (Kazerouni et al., 2022; Kok et al., 2024).
However, vision systems are prone to failure in many scenarios, such as poor lighting conditions or visual
obstructions. These drawbacks are more apparent during contact, as the geometries or shapes of objects
can create shadows on themselves and affect the cameras’ field of view. In such cases, other sensing
techniques, such as haptics, may help. Humans also rely on haptics, or the sense of touch, to handle
objects, especially when visibility is limited.

For contact-rich robotic manipulation, haptic information plays an essential role in perception,
planning, and control (Diana and Marescaux, 2015; Dawson-Elli and Adamczyk, 2020). Various devices
provide haptic feedback, including tactile sensors and force/torque sensors. Tactile sensors are designed to
mimic the sense of touch in human skin, often incorporating specialized materials and techniques (Girdo
et al., 2013). They are mostly used for in-hand robotic perception, allowing robots to recognize objects
through touch, similar to how humans explore their environment. For example, Bhattacharjee et al. (n.d.)
combined tactile sensing with vision to label pixels on visible surfaces using hidden Markov models.
Another study (Strub et al., n.d.) used tactile data from a two-fingered robotic hand manipulating a
polygon to infer the object’s shape. On the other hand, force/torque sensors measure the magnitude of
contact forces and torque. Unlike tactile sensors, which typically generate high-dimensional outputs,
force/torque sensors provide much lower-dimensional data (typically six-dimensional) and are commonly
integrated into robot arms by manufacturers. Force measurements are particularly important in force-
based control strategies, such as impedance control (Caccavale etal., 1999), and in manipulation tasks that
require precise force regulation, such as robotic assembly of delicate objects. However, force feedback is
typically sparse as it is only available upon contact. This contrasts with vision-based data, where cameras
can continuously capture a scene from a wide range of distances. Moreover, force data are often noisy due
to factors, such as torque ripple, mechanical vibrations, and electrical interference (Katsura et al., 2007;
Turlapati et al., 2024). Therefore, constructing an environment map solely from force feedback is a
challenging task. Some recent studies have explored the use of force/torque sensors to infer geometric
information. For instance, Turlapati and Campolo (2022) estimate object kinematics by integrating haptic
feedback at contact points with an initial vision-based pose estimate. Another work (Suresh et al., 2021)
employs Gaussian process (GP) implicit surfaces on contact data to infer object geometry from planar
pushing. While these approaches demonstrate the potential of haptics for geometric reasoning, a fully
realized environment map derived purely from force/torque sensors, particularly for general manipulation
tasks involving motion planning, has yet to be developed.

When a map is created that captures all objects in the robot’s operating space with which the robot can
interact, trajectory planning can be performed for a manipulation task. Dynamic movement primitives
(DMPs) (Ijspeert et al., 2013) have been widely adopted as an effective method for robot trajectory
generation. DMPs model complex movements as nonlinear dynamical systems, incorporating stable
behavior while allowing flexibility to follow learnt trajectories. DMPs have demonstrated robustness and
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generalizability properties, especially in the context of learning from demonstration (LfD) (Saveriano
etal., 2023). By adding a coupling term, DMPs can also be adapted for learning the feedback force during
interactions. For instance, Gams et al. (2014) showed that this coupling term allows DMPs to handle
interaction forces from the environment or another robot arm. However, their work did not address more
complex tasks, such as assembly, which may involve multiple contact points or intermittent contact. It has
also been shown that assembly tasks can be accomplished through DMPs and LfD (Wang et al., 2022;
Zhao et al., 2023). While LfD is an effective method for quick imitation of a task, the underlying policy,
intention, or skill is difficult to extract from L{D, making it challenging to generalize to a broader class of
similar tasks. This challenge arises because LfD primarily replicates movements from kinematic dem-
onstrations, rather than teaching a systematic strategy for why one trajectory is chosen over another.
Another approach for learning the parameters of the DMPs is through black-box optimization (BBO)
(Stulp and Sigaud, 2013). A recent study demonstrated that a peg-in-hole task can be accomplished by
combining DMPs with BBO algorithms (Yang et al., 2023, 2025).

In modeling manipulation tasks, a commonly used method is the quasi-static assumption, where the
system is assumed to be in equilibrium and inertial effects are minimal (Whitney et al., 1982; Katayarna
etal., 2022). Under this assumption, Campolo and Cardin (Campolo and Cardin, n.d., 2025) introduced a
potential-based framework for quasi-static manipulation that conceptualizes it as a planning problem on
an implicit manifold. In this framework, the configuration space is split into two types of variables:
directly controllable variables (or control inputs) and indirectly controllable variables (or internal states).
The core concept revolves around the system’s total potential energy, represented as a function of these
variables. Under quasi-static conditions, the planning problem is reduced to finding trajectories on an
equilibrium manifold (EM), a set of points where the gradient of the potential energy with respect to the
internal states equals zero. Using this framework, contact-rich manipulation can be smoothly analyzed in
the space of directly controllable variables. The internal states then adjust to follow these variables along
the EM. This approach differs from traditional methods that rely on predefined discrete stages or contact
modes, such as the four-stage framework (approaching, searching, aligning, and inserting) with a different
number of contact points (e.g., no contact, two-point contact, and three-point contact) (Lee et al., 2022).

This study employs the framework where the potential energy is assumed to comprise two parts:
(1) internal control energy, which results from the displacement between the desired (directly controllable)
and actual (indirectly controllable) positions of the object, and (ii) external interaction energy, which
arises from interactions such as elastic contact with the environment or gravitational forces. The external
potential is built from premeasured forces/torques via GP regression (GPR) with derivatives (Solak et al.,
2002). Haptic-DMPs are proposed to generate manipulation trajectories based on the constructed
potential function, guiding the robot to accomplish the manipulation tasks. In summary, the contributions
of this study are as follows:

- The development of a haptic potential map of the environment based on observations of contact
forces at various positions in space, using GPR with derivatives. The use of GPR to derive energy
from forces makes the model resemble a physics-based machine.

- The development of haptic DMPs (Haptic-DMPs that account for elastic interactions between the
robot and the object, as well as the object and the environment. Haptic-DMPs solve ordinary
differential equations (ODEs) to determine the object’s path from the control trajectory.

- A systematic framework for trajectory generation in contact-rich manipulation tasks through the
combination of GPR, Haptic-DMPs, and BBO.

2. Quasi-static mechanical manipulation

Consider a mechanical system governed solely by conservative forces (an example of such a system is
shown in Figure 1). Adopting the framework proposed by Campolo and Cardin (n.d., 2025), where the
configuration space can be divided into directly controllable and indirectly controllable variables, with
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Figure 1. A robot manipulating an object while trying to maintain the objects contact with the wall. Our
framework considers both the indirectly controllable variable (state z) and the directly controllable
variable (control input w). In this specific problem, u = [ux, uy] " is the desired position of the robot s end
effector, 7 = [zx, 2y Zg] is the pose of the object (its xy-coordinates and O-rotation), and ¢(z) is the function
that converts the pose of the object to the location of the contact point with the robot's end effector.

z€ Z c RY denoting the internal states (indirectly controllable) and u € U c RX being the control inputs
(directly controllable), there exists a total potential energy of the system as

W(z.u): ZxU—R—2mm 2.1

This total potential can be partitioned into W.,;(z,u)—the elastic energy arising from the displacement
between the control inputs u and the object’s states z, and U(z)—the energy resulting from the interaction
between the object and its environment.

W(z,u) =Wep(z,u)+ U(z) (2.2)

The term W ,;(z,u) in Equation (2.2) can be described as
1 1
W (z.u) =5l = e(2) 1325 (u = e(2)) K (u —e(2) 23)

where K is the stiffness matrix of the virtual spring and ¢(z) : Z — U is a conversion function.

The term U(z) includes components such as gravitational potential U, and elastic contact potential U..
This study focuses on contact interactions, so we consider scenarios where U, hardly changes during tasks
and can thus be treated as negligible. For example, in tasks where manipulated objects are restricted to a
horizontal surface, the vertical position (z;), which represents the object’s position along the vertical axis,
does not change. This allows U, typically expressed as mgz, +{ (where m is the mass of the object, g is
the gravitational acceleration, and { is a constant offset), to be set to zero by choosing an appropriate
constant ({). In contrast, the contact potential, U, depends on various factors, such as the materials of the
object and its environment, and their shapes or geometries, making it very difficult to compute U.(z)
explicitly. Therefore, we rely on GPR to approximate U, (z), which is presented in the next section. For
simplicity, throughout the rest of the article, U refers to U..

2.1. Equilibrium manifold

Once the potential function W(z,u) is explicitly defined, we can consider quasi-static manipulation as
maneuvring on the so-called EM, which contains all mechanical equilibria z* as the solutions of
V.W(z,u) =0. In other words,
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V.W(z.u)=0€R". (2.4)
We define V, W = [0,] W, ..o, W] T, where the nabla (column) operator is defined as V,, = [()ql Y e ()q“] T.
Meanwhile, we define the shorthand notation V2 = (V.V!) = V_V! for Hessians and mixed-derivative
operators. Here, the subscript m represents possibly different solutions for a single value of u. This means
that for the same control input, the object can have different positions or states in equilibrium. As such, the
EM is defined when u is seen as a parameter, that is,

M2 {(z.u) € ZXUIVW(z,u) = 0} )

is a smooth embedded submanifold in the ambient space Z % I/. The state transitions are controlled purely
by the robotic agent u. Meanwhile, a point is strictly stable when its Hessian is positive definite, that is,
VZW|, >0.

44 *

3. GPR with derivatives for mapping the environment

In this section, we map the environment by means of potential energy. More specifically, we aim to
approximate U(z) in Equation (2.2) from observations of contact forces/torques. Now, let us consider a
general case, an unknown but differentiable scalar function f : RN — R; zf(z) for which readings are
available at specific locations. Normal regression can be used to estimate the function y =f(z) by using its
observed values. However, in some scenarios, the observations of y can be difficult to obtain or even
infeasible, but the observations of derivatives dy/dz; are abundant. The contact energy U(z) in
Equation (2.2) is an example where direct measurement is infeasible, but its derivatives, forces, and
torques collectively denoted as F, are measurable, noting that —VU(z) = F in conservative systems. In
this case, GPR can be used. We will look at how this can be done, from reviewing normal GPR using
function value measurements to adapting to deal with function derivative measurements.
A GP is normally described as

f(z) ~GP(u(z).x(z.2)) (3.1

where x#:RY — R is the mean function, and x:RY x RV — R is the covariance function (or kernel)
x(z,2') =cov(f(z),f(z')). Additionally, for any finite set of input points, the corresponding function
values follow a multivariate normal (Gaussian) distribution (Williams and Rasmussen, 2006). Using the
concept of GP, the GPR can be formulated as follows:

Given S noisy observations y,,,...,ys of f(z) at corresponding points z,22,...,25, we want
to estimate the unknown function f(z) by regression. In this case, we can consider that f(z) follows
a GP with zero mean, that is, f(z) ~ GP(0,x(z,2')). Denoting y = [y; v, ... y5]" €RS*!, the predicted
value y* at a new input z* are then given by its mean y* and variance V[y*], or y* ~ N (y*,V[y*]),
calculated as

V=kT(K+d) 'y (3.2)

V] =k — kT (K +021) " k* (3.3)

Here, K = [x;; ] € R®*S with x;y = x(z:,27),1 <i,i’ < is the covariance matrix; k* = [x}] € R®*! with
ki =k(z%2) ER1<I<S; k™ =x(z%,2") €R; aﬁ is the variance of the noise in the observations; and
I eR5"S is the identity matrix.

Remark 1: For simplicity, this study assumes a zero mean function a priori. This assumption is
particularly suitable when no prior knowledge of the function to be approximated is available. However, if

f follows Equation (3.1) with a nonzero prior mean function u, a change of variable to f' = f — i ensures
that 1’ follows GP(0,x).
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3.1. GPR with derivatives

An important and favorable property of GPs is their closure under linear operations (De Roos etal., 2021).
As differentiation is a linear operator, the derivative of a GP is also a GP (Solak et al., 2002). Taking into
account the derivatives of f(z), the covariance functions in Equation (3.1) should follow the equations
below for each element z; of vector z and elements z; and z} of vector 7’

o) o) @) (UG FE) (D)
cov( 0z; Sz )) T o ,cov( oz 3 )— 52,02, 34

Applying for the vector z results in the gradient vector V and the Hessian matrix V2. Now, we can rewrite
Equation (3.1) as

z z x(z,7) Vik(z,7
[f()}NgPQﬂ()]’[ ( )/ zz( /)]) 35)
Vf(z) Vu(z)] [ Vk(z.2) Vix(z,2)

With this in mind, now assume that we have S scalar (noisy) readings {y,,...,ys} at S locations
{z1,....zs}, and M (noisy) gradients {Vy,...,Vy;, } at M locations {z},...,z3, }. The extended obser-
vation vector is now y2 [y, y, ... ys V¥$ ... Vy5,]m € REFMVI*1 The covariance matrix is now
built as follows

K= [K " K”} EREFMNX(SHMN) where (3.6)
K> Kx»n

K]l = [Kii/] ERSXSWithKii/ :K(Zl’,zi’> S R,l Si,i/SS,

K= [x,j] eRstNwithxg:V;K(zi,zj‘?) eR"N 1 <i<§,1<j<M,
°J

Ko = [K;1] ERMNXSWithlqji:VziK<z;,zi) eRV 1< <M, 1<i<8,
<

K> = [kjj'] (S RMNXMN with Ky = VZK(Z

o NxN .
,,zj/) eR" L), 7 LM.

Assuming that the prior unknown function y =f(z) follows a GP with zero mean, that is, x(z) = 0 and
Vu(z) =0, similar to Equation (3.2), the mean of the posterior y* can be calculated as

T 2 -1
v=k (K+ad) y.with 3.7

—xT
k=T ki) er! S (3.8)
where k{7 =[x} ] € R"*S with xf =x(z;,5*) €R,1 <i< S, and
k;T = [kﬂ € RVMN with xf = ng(zj‘?,z*) eRVN 1<j<M. »
Given a fixed set of observations, it should follow that a = (K +02 ) y € REFMV) L i5 3 constant

vector. We can rewrite Equation (3.7) as
—xT

Y=k xa 3.9)

- _«T — -
Taking derivatives with respect to z* gives V-y* = Vz*k* x g and V;y* = Vf*k* ® a. Simplifying the
notations

R —xT Nx1
Vy*=Vk xaeR (3.10)

_ —*T
Viy =Vk QacRVY (3.11)
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_xT —*T
where Vk = € RV*+MN) and V2k e RV *N*(S+MN) (Dattorro, 2010). Here, ® denotes tensor multi-

—*T )
plication, which contracts the third dimension of V2k  with the first dimension of a.

3.2. Approximation of U(z) using GPR with derivatives

In this work, the force/torque observations are obtained by maneuvring the object within the environment
and recording the corresponding positions and forces/torques. This data collection involves instances
where the object is either in free space, that is, no contact, or in contact with the environment. These force
and torque observations represent derivatives of U(z), as —VU(z) = F. The energy function U(z) is then
constructed using GPR. The incorporation of derivatives makes the GPR resemble a physics-based model
(Cross et al., 2024). Using Equation (3.5), U(z) is modeled as a GP with zero mean,

{ U(z) } ng([O} { x(z,7) ng(z,z/)}> 3.12)
VU(z) 0] | Vk(z.2) Vik(z.7)

Using Equations (3.9), (3.10), and (3.11), we can estimate the function U(z) and its first- and second-order
gradients VU(z), V>U(z) respectively.

Remark 2: The current study represents an initial exploration in which we primarily utilize the
posterior predictive mean of GPR to map the environment and derive a control policy for robot
manipulation tasks. Incorporating the posterior predictive covariance within this framework can enhance
uncertainty-aware decision-making in these tasks and remains an open area for further investigation.

Remark 3: A key limitation of conventional GPR is its computational complexity, which scales poorly
with the number of observations and may become a bottleneck in large-scale scenarios. The current
framework focuses on offline training of the GPR model using pre-collected data, followed by an offline
policy search based on the posterior predictive mean using Haptic-DMPs (as depicted in Figure 2). Policy
execution, however, can be performed in real time. Reducing computational complexity remains an
important consideration, and approaches such as scalable GPR (Liu et al., 2020) offer potential solutions.

4. Haptic-DMPs

With the contact potential U(z) serving as an environment map and now approximated using GPR on
contact force/torque observations (left part of Figure 2), we are ready to plan the robot’s motion. In this
section, we introduce Haptic-DMPs and the BBO technique used to train their parameters (right part of
Figure 2). The key idea is to plan within the space of directly controllable variables while ensuring that the
entire system (both # and z) remains on the implicitly defined EM, following an approach similar to our

Haptic-DMP + BBO

forces/torques

observations 1 initial & final! u

' :
| [ H
i I i
i b 1 conditions 1 rollout random :
! DN S r sampler deviations !
! GPR Compute i i Haptic-DMP |1 ©: ( 2 i
V| U@, VU@), V() [ Eq.(47) i ]| 7= LR HN (0i-1,99) ] !
' (Eq.(3.9),(3.10), (311) | 1 1 \— J K h '
! o ¢ | 1
\ bl Ea(7dly bl H
: . ( R 2|1 1
i 'y [ BBO o i
! Vo . Select i-1 I
! Vot Selectr® = !
: Lo = &hold -
' GPRwith derivatives I argmin, ¢ :
1

Figure 2. Planning framework with GPR, Haptic-DMPs, and BBO. BBO selects the optimal parameter ©
Jfrom R random deviations from the optimal parameter ®}_, of the previous iteration.
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previous work on continuation (Yang et al., 2025). Before introducing Haptic-DMPs, we briefly revisit
the standard DMP formulation.

4.1. Dynamic movement primitives

DMPs have been introduced (Ijspeert et al., 2013) as an attractor for a simple second-order linear system,
such as a damped spring model 7y = a, (,[)’Z(g —-y)— y) +f with y is the position and g is the goal position.
With z being the velocity, the dynamic equation can be rewritten in first-order notation as

{r§=az(ﬁz(g—y)—Z) +f @l
Ty=2
where 7>0 is a time scaling constant, o, and §, are positive constants, and f is a forcing term. f can be
chosen as a linear combination of P nonlinear radial basis functions:
P
—1 Yi(x)0;
f(x) — Zl:Pl (‘x) X (42)
>z Yi(x)

with 0; being adjustable weights (or parameters), and the basis functions as ¥;(x) = exp (—hi(x — c,»)z),

where h; and ¢; are constants that determine the width and centers of the basis functions, and x is a phase
variable, as the solution of the canonical system 7x = —a,x.

The weights @ = [6),...,0p]" of the DMP can be learnt or calculated such that the resulted trajectory
meets the task requirements.

4.2. Haptic-DMPs for quasi-static systems
For a quasi-static system with the total energy described by Equation (2.2), we will perform motion
planning for directly controllable variables u. This approach is necessary because the EM is implicitly
defined, meaning that the state variables z(u) are not explicitly known. In real-world scenarios, this
reflects the fact that the exact state z of objects cannot be determined before issuing the control command
u. Therefore, a method is required to explore and compute z(7).

Given any control state uy € RX, our goal is to compute the equilibrium state z* satisfying the quasi-
static condition VzW(zg, uo) = 0. Starting from an initial guess zy, z* can be computed by an ODE using
Newton’s method (or natural gradient) as below:

d -1
0= —n(VLW) V.W

2(0)=2zo

where 7 is a positive scalar representing step size in the ODE (Schneebeli and Wihler, 201 1), influencing
the convergence of the ODE. If 7 is too small, the ODE may not converge in a given time. Conversely, if
is too large, the ODE could jump to a different branch of the EM. This ODE is presented by the red vector
from (zo,u) to (zz‘), uo) in Figure 3(a).

Since all valid states must remain on this manifold, finding a control policy requires exploration within
it. However, we can only directly control , while z(#) remains implicit. Therefore, we need an approach
that enables evolution on the EM. For nonconstant u(z), from the equilibrium condition V,W(z,u) =0,
differentiating with respect to time ¢, we have

4.3)

V2 Wor+V, Wou=0 4.4)

= 0z=—(V2W) VX Wou 4.5)

which describes the tangent variation. This behavior is represented by the blue vector in Figure 3(a),
which lies in the tangent space at the point (z;';,uo), depicted as the blue plane in Figure 3(a).
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N
RV R
(Zo,uo)
2 —1y2
_(vzzW) Vuzm/ v !
i *
5 ) (20, uo)
(Zo, wo)—n(VZ,W) 1V, W 6t \,\J_
*
W/ (2 ur)
ue- z'(u)
uw- z'(u
uy v Uy ‘/_\
— ¢ ur
RK R¥
(a) Blue arrow denotes z linear approximation as the variation (b) Haptic-DMPs consist of classical DMPs, which
of u, red arrow represents Newton-Raphson ‘infinitesimal’ is the curve on control space, generating control pol-
adjustment. icy u (t). Haptic-DMPs utilize Eq. (4.6) to compute

the corresponding state z (¢) on EM. ¢ is the hap-
tic cost in control space.

Figure 3. lllustrations of Haptic-DMPs: the left figure illustrates the concept described in Equation (4.6);
the right figure explains how Haptic-DMPs compute the control policy u(t) and the object’s state z(t)
simultaneously given an initial position wy and a target position ur. Once the computation is complete,
each policy returns a haptic cost, as defined in Equation (4.7).

By combining both behaviors described in Equations (4.3) and (4.5), we can determine z(¢) using the
following equation, ensuring that the state remains on the EM, which is represented by the curved surface
in Figure 3(a).

dz=—(VAW) " 'V2 Wdu—n(V2W) "'V Wdt (4.6)

In this equation, the first term aims to slide the state z in the tangent space with the EM, and the second term
aims to pull z toward the EM in the normal direction.
Using Equation (4.6), the Haptic-DMPs are then introduced based on the following differential

equations:
U=, (4.7a)
w=a,(B,(ur —u) —v)+f(x), (4.7b)
. (2 —1g2 . 2 ) !
i=—(VoLW) Vi Wv—n(VoW) V. W, (4.7¢)
¢=1/VI'G> (u)v (4.7d)
with
-1
G,(u) &2V, W—V. W(VoW) VLW 4.8)

Here, the first two equations—Equations (4.7a) and (4.7b)—correspond to conventional DMPs, but for
the control input u, Equation (4.7¢) resembles Equation (4.6) above. Equations (4.7¢) and (4.8) involve
computations of different gradients, including V2, W (z,u), V2, W(z,u), VW (z,u), and V2, W (z,u). More
specifically, we have
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ngW(z, u) = ngWctrl(z, u) + VZU(Z) (4.9a)
V2 W(z.u) = Vi W (z,u) (4.9b)

V. W(z,u) =V W (z,u) +VU(z) (4.9¢)
V2 W (1) = V2, Wen(z,u) (4.9d)

The gradients related to W, (z, u) can be calculated from its explicit function, such as Equation (2.3), while
the gradients of U(z) can be computed as discussed in Section 3.2. In Equation (4.7d), G, (u) is the control
Hessian, and ¢ is referred to as the haptic cost, which will be used in the optimization process later on. This
haptic cost is equivalent to the accumulated control energy required along the trajectory when the robot
follows a control policy u(¢) (Campolo and Cardin, 2025). A higher ¢ value indicates that the robot requires
greater control force during manipulation. For many manipulation tasks, the goal is to minimise this total
control energy, making ¢ a suitable candidate for the cost function in our BBO algorithm, as presented next.

To learn the weights (parameters) ® of Haptic-DMPs, a BBO algorithm is employed (Stulp and Sigaud,
2013; Yangetal.,2023; Yang et al., 2025). As shown in Figure 2, in the /" iteration, we perform R rollouts
(indexed by r), where each rollout (®)) involves sampling from a Gaussian distribution A" as described in
Equation (4.10). The distribution is centered around the optimal parameters @} ; obtained from the
(i—1)™ iteration

0/ =N (0}_,00) (4.10)

i

Here, o denotes the variance of exploration. Once the new parameter @/, for arollout r is generated, Haptic-
DMPs, as shown in Equation (4.7), compute a corresponding control policy #/(¢), given the initial pose g
and the estimated target u7. The haptic cost ¢; for the rollout is then obtained. The parameter o can also be
interpreted as the exploration rate. A larger o promotes broader exploration of u/(¢), while a smaller og
confines the exploration, keeping it closer to the optimal policy of the previous iteration. Subsequently, the
BBO algorithm selects the rollout with the lowest haptic cost, which can be expressed as:

r* =argmin (¢") (4.11)

Thus, the optimal parameter for the Haptic-DMP in this iteration is updated as @] = G)f, which is called
“select and hold” in Figure 2. This “select and hold” step also retains the minimal cost from the previous
iteration to guide new explorations in a direction that aims to reduce the cost. This iterative process
continues until ¢7 converges.

5. Case studies

In this section, we conduct two numerical examples (Figure 4) to verify our framework. The first example
is a relatively straightforward task: disk-in-hole insertion. This is to aid the visualization of our results, as
we want to show the regressed contact potential U(z) in a three-dimensional plot, and hence the maximum
dimension of z should be two. As such, we choose a centrally symmetric shape of an object where the
contact force is independent of the orientation of the object. The second example is peg-in-hole insertion,
which is a classical example in contact-rich tasks. The overall diagram of our proposed framework is
shown in Figure 2, and the presentations of the two tasks in this section follow this framework.

5.1. Disk-in-hole manipulation

5.1.1. Model description
As shown in Figure 4(a), we define the world as x,y coordinate, one robot gripper grasps a disk z at its
center. As the robot utilizes an impedance controller, there exists a desired position for the robot control u.
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Z= (722y)

(a) Manipulate a isotropic disk. (b) Manipulate an anisotropic peg.

Figure 4. A robot manipulating an object into a hole. Our framework considers both indirectly
controllable variable (state z) and directly controllable variable (control input u).

Therefore, the configuration space is R? x R?, with z = (z,,2,) and u = (uy,u,). A virtual spring connects
the robot control u and the disk z with stiffness K. As such, the control energy W, (z,u) (Equation (2.3))

between the robot and the disk can be simplified as Wy (z,u) =3 (u — ) Ko(u—z).

5.1.2. Data collection in Drake

In the Drake simulator (Tedrake et al., 2019), we uniformly distribute the variable z within a specified
range that encompasses the entire hole, as illustrated in Figure 5. We record all pairs (z, F(z)). For
instances where the disk remains detached from the hole, the output force is a zero vector (F =0),
indicating that the absence of contact results in negligible contact energy. Conversely, we catalogue the
instances of contact along with the corresponding contact forces, which are then transformed into the
world frame.

5.1.3. Regression using GPR with derivatives

After inputting the grid-like object positions z along with the corresponding output force, the dataset is
collected. We then regress the entire environment using GPR (Equation (3.12)) with the kernel chosen as
Gaussian (or exponentiated quadratic) defined as

> llz—2I>
k(z,7) = o eXp <—7 6D

Figure 5. A grid sampling to gather observation data. In simulation, the disk intersects with the hole to
estimate contact force, where the contact is captured by a hydroelastic contact model (Tedrake et al.,
2019). For the disk-in-hole task, we sample at different (zx,zy).
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0.3
——=GPR-generated
——observed
0.2 : , T
N 0.1
0
-0.1
-0.2 -01 0 01 02
ZX
(a) Regressed potential U (z) from Eq. (3.9) on a grid map. (b) Regressed gradient V_U(z) from Eq. (3.10) v.s. observation.

Figure 6. Regressed potential U(z) and gradient V,U(z).

where o, is the amplitude coefficient, while £ denotes the kernel width. As depicted in Figure 6(a), the
geometry of the contact potential resembles a hole, where the contact potential approaches zero in
noncontact regions.

In Figure 6(b), we present the vector field obtained from both observations and regression. Given that
the vectors represent physical forces, it is evident that the forces point outward at the boundary of the hole.
Outside the hole, where no contact occurs, the observed forces are zero, while the regressed forces remain
close to zero. However, due to the properties of Gaussian kernels and the sparsity of the observed data, the
regressed force becomes relatively significant near the boundary, even in the absence of actual contact.
This phenomenon can be mitigated by incorporating more observations, particularly in areas near the hole
surface, for regression.

5.1.4. Trajectory planning using Haptic-DMPs and BBO

As shown in Figure 2, the control policy u(t) is parameterized by Haptic-DMPs (Equations (4.7a)—
(4.7¢)), and the cost function is ¢ as in Equation (4.7d). We set R =10 rollouts for each iteration. We
iterate the framework until the cost converges. The results are shown in Figures 7 and 8. The
gray curves represent nonoptimal rollouts #” during iteration i, the red curve indicates the optimal

iteration #1 iteration #10
U U
0.4 -z 0.4 -z
—~0.3 —~0.3
£ E
>0.2 >0.2 d
0.1 ﬂ 0.1
0 0
-0.2 0 0.2 -0.2 0 0.2
x(m) x(m)
(a) Iteration 1: the control policy mostly (b) Iteration 10: the control policy avoid
inside the hole so that the disk squeeze at stuck at the hole where the optimal policy
the hole strongly. for insertion is perfect insertion.

Figure 7. Iterations during BBO: the red curve denotes the optimal control policy u(t) in this iteration, the
blue one denotes 7(t), and the gray curves represent the nonoptimal explorations in each iteration
of BBO.
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0.5
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0.4 —u
.03
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>0.2 d
11 T
0
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X(m)

Figure 8. The optimal policy u(t) implemented in Drake. For the disk-in-hole task, the optimal policy
achieves a contactless insertion.

policy in this iteration with the parameter @7, and the blue curve shows the corresponding trajectory
of the disk.

In the early iteration (Figure 7(a)), the control policy u(z) closely resembles a straight line toward the
target. As a result, the cost is quite high, and the disk repeatedly makes contact with the boundary of
the hole. However, after several iterations (Figure 7(b)), the BBO framework successfully identifies the
optimal insertion policy, allowing the disk to be inserted into the hole with minimal or no contact, thereby
significantly reducing the cost.

5.1.5. Verification in the simulator

After Haptic-DMPs compute the optimal control policy u(f), we implement this policy in the Drake
simulator. The resulting trajectory of the disk is illustrated in Figure 8. The control policy u is shown in
blue, and the simulated trajectory of the disk z(#) is shown in black. This test verifies the performance of
our algorithm.

5.2. Peg-in-hole manipulation

For the peg-in-hole task shown in Figure 4(b), the variables are z = (zy,2y.29) and u = (i, uy,up). The
steps taken are the same as in the disk-in-hole example. We continue to use a grid map to sample the
dataset, but with one more degree of freedom (DOF) for rotation.

5.2.1. Data collection and regression

Similar to the disk-in-hole task, we regress the contact potential U(z) for the peg-in-hole task. Since the
control u € SE(2), we extract slices of u at different angles to visualize the regressed potential function.
From Figure 9, we observe that when the peg’s rotation is fixed, the potential function resembles a hole

20 20 20
15 15 15
N 10 N10 { G 210 7 \j
0.4 > ¥ SR ] 5 01
5 | i i 5 =2
TN 0, | = 1 0 324 | o~
0 R 0.1 0 : . 01 0 = i o
02 02 02
5 I L 5 1 T 5 r 1 I
03 02 01 0 01 02 -03 03 02 01 0 01 02 -03 03 02 04 0 01 02 -03

Figure 9. A sliced observation of the regressed potential function U(z) on a grid map.
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u u
0.4 z 0.4 z
~03 ~0.3
E E
>0.2 m >0.2
0.1 ‘ 0.1
0 0
-0.2 0 0.2 -0.2 0 0.2
x(m) x(m)
(a) Iteration 1: the initial policy mostly (b) Iteration 10: the control policy avoid
inside the hole so that the peg is squeezed unnecessary contact where the optimal
at the hole strongly. policy slides along the chamfer.

Figure 10. Iterations during BBO: the red curve denotes the optimal control policy u(t) in this iteration,
the blue one denotes z(t), and the gray curves represent the nonoptimal explorations in each iteration
of BBO.

aligned with the peg’s orientation. Specifically, when zy = 0°, U(z) exhibits a hole-like shape analogous to
the actual hole geometry. Additionally, the rotation of the peg does not affect the magnitude of the
potential, as the contact potential is determined solely by the contact forces derived from the training data.

5.2.2. Trajectory planning using Haptic-DMPs and BBO

Similarly, we apply the BBO algorithm to the peg-in-hole example and plot the pose of the peg during
each iteration to illustrate its rotation. In the early iteration (Figure 10(a)), the control policy starts as a
straight-line trajectory, resulting in a high cost due to inefficient alignment and frequent contact with the
hole’s boundary. However, after several iterations (Figure 10(b)), the BBO algorithm adjusts the policy,
guiding the peg away from the hole initially before smoothly inserting it, utilizing the chamfer to achieve
insertion, significantly reducing the cost.

5.2.3. Verification in the simulator

The resulting trajectory of the peg simulated by Drake is illustrated in Figure 11. It can be seen that the peg
occasionally makes contact with the hole’s corners and slides along the chamfer to complete the insertion.
This behavior occurs because, due to the sparsity of the observation data, the GPR provides a very smooth
function approximation, which may not precisely capture sharp corners. Despite the approximation’s
imperfections, the task is still successfully completed with the help of impedance control, ensuring that the
peg aligns correctly and completes the insertion.

0.5

0.4

Figure 11. Implement the optimal policy u(t) in the Drake. For the peg-in-hole task, the optimal policy
slides along the chamfer to achieve the insertion task.
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A

Figure 12. Variation of the initial position of the peg z.

To validate the robustness of our framework, we also vary the initial position of the peg. We conducted
10 trials with randomly assigned initial positions, and all trials successfully inserted the peg into the hole
as shown in Figure 12.

5.3. Further parameter analysis

As shown in Figure 2, our framework follows a block structure, allowing us to visualize and analyze each
component separately.

5.3.1. Hyperparameters of GPR

The hyperparameters of GPR, such as the amplitude coefficient of the kernel o, (as defined in
Equation (5.1) and the variance of the noise ,, in the observation (as defined in Equation (3.2)), influence
the regressed contact potential U(z). We vary the GPR hyperparameters and analyze how U(z) changes as
a result.

As observed in Figure 13, increasing ¢, has minimal impact on the results, whereas increasing o,
significantly affects the regressed potential. Despite these variations, the geometric shape of the hole
remains consistent, although the absolute value of U(z) changes. Additionally, the function becomes
steeper, indicating increased contact stiffness or a stiffer object. Despite this, we test our framework
with this parameter setting and find that the BBO successfully converges, discovering an insertion

policy.
2000
\ 20 -
1500 - I\
s \ 15 -
N —_
5 1000 N1o
> -0.1
500 5 Lo =
0 0 o1 N
- -0.2
-5 T T
0.3 0.2 0.1 0 01 02 -03
ZX
(a) Increase weight of o by a factor of 10. (b) Increase o, by a factor of 100.

Figure 13. Effect of varying GPR hyperparameters on the regressed contact potential U(z).
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Figure 14. Haptic cost ¢ with respect to iterations with different exploration rates.

5.3.2. Exploration rate of BBO
To analyze the impact of the exploration rate og (Equation (4.10)), we vary its value while keeping the
initial position constant. The cost variation over iterations during the BBO process is shown in Figure 14.

* Smaller values of g (e.g., 1): The cost decreases slowly and gets stuck in a local minimum.
Physically, this corresponds to the peg getting stuck in front of the chamfer of the hole.

* Moderate values of o (e.g., 1.5 and 3): A larger o accelerates the cost reduction. Although g =3
leads to a faster decrease than og = 1.5, both eventually converge to the same value, indicating a
successful convergence of the BBO algorithm.

» Larger values of og (e.g., 5): While the cost converges the fastest, the final converged cost is higher
than that of g = 1.5 and o = 3, suggesting suboptimal performance due to excessive exploration.

Through these robust tests, which reveal the varying impact of different hyperparameters, the need for
careful selection to optimize performance for specific tasks is again reiterated.

5.4. Further discussion

To better capture the environment in more detail, such as sharp corners, additional observation data are
required. However, this introduces a trade-off with increased computational complexity due to larger
datasets, as mentioned in Remark 3. This challenge can be addressed by employing scalable or
incremental GPR methods.

In our simulations, Drake is used to collect force/torque data. In real-world scenarios, data collection
can similarly be achieved by using a robot’s end-effector to tap around its environment and record forces
and torques with a force/torque sensor. An environment map can then be constructed using GPR with
derivatives, and a control policy can subsequently be derived using Haptic-DMPs and BBO.

6. Conclusion

In this article, we have shown that by using only premeasured forces and torques (such as those from a
simulator) as inputs for GPR with derivatives, it is possible to create an environment map from an energy-
based perspective. This environmental energy is then employed in a mechanical framework operating
under quasi-static conditions. Haptic-DMPs have been proposed to plan the trajectory for navigating the
manipulation task in a contact-rich environment. Through numerical simulations of two classical
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assembly tasks—disk-in-hole and peg-in-hole—it has been shown that the proposed method can find
feasible paths to successfully perform these tasks. Our potential directions for further work involve
incorporating prior knowledge about the environment into GPR, reducing computational complexity
through scalable GPR techniques, and/or enabling incremental updates to GPR. These improvements
would significantly improve the applicability of the framework in real-world experiments.

Data availability statement. The code is available at https:/github.com/Illllyang/haptic. DMP.git and can also be found in
(Nguyen et al., 2025).
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