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Turbulent flows over rough surfaces can be encountered in a wide range of engineering
applications. Despite the progress made after several decades of studies, the prediction
of drag and roughness function from the surface geometrical parameters remains an open
question. Several methods have shown encouraging results. However, they lack generality
and present some scatter in the data. In this paper we propose a new parameter, the
effective distribution (ED), which lays foundation on the effective slope with some changes
to take into account the sheltering effect of large roughness elements and the drag induced
by pinnacles higher than the average roughness elements. To develop this new correlation
between geometrical features of the wall and the drag, we performed a set of simulations
of the turbulent flow over a rough surface made of triangular elements varying their height
and spatial distribution. The ED correlates quite well both with the drag and the roughness
function for a wide range of cases having different mean roughness height, skewness and
kurtosis. To further validate the ED, and assessing how it can be generalized to real rough
wall, an irregular wall made from the superposition of random sinusoidal function was
considered. Results were consistent with the correlation here presented.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Rough surfaces are encountered in a wide range of engineering and environmental
applications. The flow in heat exchangers, the atmospheric boundary layer over urban
areas, complex topography or vegetation and the leading-edge erosion of turbine blades
are just a few examples of the wide range of problems where roughness plays a key role.
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Roughness in general leads to a drop in system performance and a huge boost in the
management costs. Hence, predicting the effect of rough walls on turbulence has become
an important design prerequisite for practical applications. Starting from the seminal
work of Nikuradse (1933), in the last decades, several studies have been carried out to
understand the flows physics over corrugated walls. Despite extensive efforts being made
by the scientific community, our knowledge cannot be considered sufficiently robust and
universal. One of the first attempts to predict the main roughness effect was given by Hama
(1954), introducing the correlation between a geometrical parameter, known as equivalent
sand grain roughness ks (Schlichting 1937), and the energy loss induced by the roughness.
Hama (1954) observed that the main effect of the roughness is the downward shift of
the mean velocity profile (scaled in inner units) in the log region, known as roughness
function �U+. Hereafter, the superscript + denotes variables made non-dimensional with
inner variables uτ = (τs/ρ)(0.5) and ν/uτ , where uτ is the friction velocity, ρ is the fluid
density, ν is the kinematic viscosity and τs is the wall shear, equal to the sum of the
viscous (or skin frictional) stress Cf = (1/Lx)

∫ Lx
0 (μ∂〈U∗〉/∂y∗)(1/ρU2

c ) ds and the form
drag Pd = (1/Lx)

∫ Lx
0 〈P〉n · x ds, (n is the normal to the surface, x is the unit vector in

the streamwise direction and s is a coordinate along the surface). The symbol 〈·〉 indicates
quantities averaged in the spanwise direction and time, * indicates dimensional units and
Lx represents the streamwise length. The original formulation to calculate the roughness
function was given by Hama (1954), who introduced the following correlation:

�U+ = 1
κ

ln(k+
s ) + B, (1.1)

where κ is the von Kármán constant, k+
s = ks·uτ /ν and B is a constant. Unfortunately, for

a general rough wall, ks cannot be calculated a priori; it can be, in fact, determined once
the mean velocity profile is known. In fact, as pointed out by several authors (see among
others Flack, Schultz & Volino (2020)), ks is not a physical measure of the corrugation.
The prediction of the drag, as well as �U+, based on geometrical features of the wall,
has received extensive attention in the past and a variety of roughness correlations have
been developed in the literature (see among others Sigal & Danberg (1990), Waigh &
Kind (1998), Van Rij, Belnap & Ligrani (2002), Bons (2005), Flack & Schultz (2010),
Chan et al. (2015), Busse, Thakkar & Sandham (2017), Forooghi et al. (2017), Thakkar,
Busse & Sandham (2017), Piomelli (2019), De Marchis et al. (2020) and Chung et al.
(2021)). Several parameters were analysed in the past, for instance the mean roughness
height k+, the peak-to-valley distance k+

pv , the root mean square k+
rms, the roughness solidity

λ, the skewness Sk, the kurtosis Ks and the effective slope (ES), using both experiments or
numerical simulations over two-dimensional (2-D) or three-dimensional (3-D) roughness.
Schlichting (1937) introduced the term roughness solidity (λ) to quantifies the roughness
density and is defined as the total projected frontal roughness area per unit wall-parallel
projected area. It has been observed that the roughness function �U+ increases with
density up to λ = 0.15, where it is maximum, and then decreases for larger λ (Jiménez
2004; Flack & Schultz 2014). This indicates qualitatively that increasing the roughness
density while in the sparse regime (λ < 0.15) increases the drag due to the increased
frontal area of the roughness. In the dense regime (λ > 0.15), mutual sheltering of
roughness elements leads to a decrease in drag as the density is increased (Macdonald,
Griffiths & Hall 1998; Oke 1988; Jiménez 2004). Despite the utilization of solidity for
distinguishing between different roughness types, it cannot solely fully characterize a
rough surface. For example, Jiménez (2004) showed a dependency on λ−2, while λ−5 has
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Roughness effective distribution

been proposed by Dvorak (1969). Other geometrical parameters are required to describe
the mutual sheltering of the roughness elements. The effective slope, ES, is connected to
the solidity parameter, λ, through the relation ES = 2λ (Napoli, Armenio & De Marchis
2008; MacDonald et al. 2016; Thakkar et al. 2017). MacDonald et al. (2016) showed
that the value of ES ≈ 0.35, defined as a demarcation point between waviness regime
(ES < 0.35) and roughness regime (ES > 0.35), is associated with a solidity value of
λ = 0.175. Moreover, Mejia-Alvarez & Christensen (2013) and De Marchis (2016) have
reported that ES = 0.35 is a limit between slope dependent and height dependent flows.
Furthermore, some studies focused the attention on regular elements arranged over a
flat plate (see among others Leonardi et al. (2003), Volino, Schultz & Flack (2011),
De Marchis (2016), Gatti et al. (2020), Modesti et al. (2021) and Busse & Zhdanov
(2022) for 2-D elements, and Orlandi & Leonardi (2008), Boppana, Xie & Castro (2010),
Hong, Katz & Schultz (2011) and Busse & Jelly (2020) for 3-D elements). Recently,
Millward-Hopkins et al. (2011) and Yang et al. (2016) have formulated drag-prediction
models that use a sheltering argument to account for the interaction between roughness
elements. Geometrical statistics, developed so far, correlate well with the drag of some
particular type of roughness but lack universality with other generic irregular walls. This
calls for an effort to develop a universal correlation to predict roughness effects. In this
study, direct numerical simulations have been performed to reveal the flow features around
rough elements. A new parameter, called effective distribution (ED), has been introduced.
The ED is based on a modified version of the ES (Napoli et al. 2008) and the proposed
results show a good correlation with different roughness shape. The paper is organized as
follows: § 2 describes the numerical procedure adopted for direct numerical simulations,
§ 3 highlights flow configurations, results are presented in § 4 and conclusions are drawn
in § 5.

2. Numerical procedure

Direct numerical simulations have been performed for a fully developed turbulent
channel flow with roughness on the bottom wall. The non-dimensional Navier–Stokes and
continuity equations for incompressible, neutrally stable flows can be expressed as

∂Ui

∂t
+ ∂UiUj

∂xj
= − ∂P

∂xi
+ 1

Re
∂2Ui

∂x2
j

+ Πδi1, (2.1)

∇ · U = 0, (2.2)

where Re is the Reynolds number based on the bulk velocity (Ub = 1/h
∫ h

0 U dy), which is
held constant in time, h is the channel half-height, δij is the Kronecker delta, Ui is the ith
component of the velocity vector, xi is the ith coordinate direction and P is the pressure.
The quantity Π is the pressure gradient which varies with time in order to keep the flow
rate constant. The Navier–Stokes equations were discretized in an orthogonal coordinate
system using the staggered central second-order finite difference approximation. The
surface roughness was treated using the immersed boundary technique, which allows
solution over complex geometries without the need for intensive body-fitted grids. It
consists of imposing Ui = 0 on the body surface, which does not necessary coincide with
the grid. Full details about the immersed boundary method and the numerical schemes can
be found in Orlandi & Leonardi (2006).
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Figure 1. The 3-D computational domain for the two set of rough surfaces considered: (a) set 1 having 16
triangles and k/h ≈ 0.1; (b) set 2 having eight triangles and k/h ≈ 0.2.

Marker Sketch Case Lx Ly Lz Reτ �x+ �y+
min �y+

max �z+

Flat 12.8h 2.2h πh 240 11.93 1.19 11.26 5.85
A11 6.4h 2.2h πh 458 5.73 0.92 11.92 3.94
B11 6.4h 2.2h πh 558 6.97 1.12 14.51 4.80
B21 6.4h 2.2h πh 568 7.09 1.14 14.76 4.88
C11 6.4h 2.2h πh 510 6.38 1.02 13.27 4.39
C21 6.4h 2.2h πh 538 6.72 1.08 13.98 4.62
C31 6.4h 2.2h πh 581 7.27 1.16 15.11 4.99
C41 6.4h 2.2h πh 589 7.36 1.18 15.31 5.06
A0 6.4h 2.2h πh 465 5.81 0.93 12.09 4.00
A12 6.4h 2.2h πh 567 7.09 1.13 14.75 4.88
A12b 6.4h 2.2h πh 589 7.37 1.18 15.32 5.07
B12 6.4h 2.2h πh 703 8.79 1.41 18.29 6.04
B22b 6.4h 2.2h πh 791 9.88 1.58 20.56 6.80
C12 6.4h 2.2h πh 645 8.06 1.29 16.77 5.54
C22 6.4h 2.2h πh 675 8.43 1.35 17.54 5.80
C32 6.4h 2.2h πh 731 9.14 1.46 19.01 6.28
C42 6.4h 2.2h πh 742 9.27 1.48 19.28 6.37

Table 1. Legend, sketch of the geometrical shape, computational box and grid resolution of the different
walls studied here.

3. Flow configuration

Periodic boundary conditions have been applied in the streamwise (x or x1) and spanwise
(z or x3) directions while a no-slip condition has been imposed in the wall-normal
direction (y or x2). The computational box in the x, y, z direction is 6.4h × 2.2h × πh,
respectively; a sketch of two of the roughness cases considered here is shown in figure 1.
The computational domain has been discretized using 512 × 256 × 256 grid points. The
mesh is uniform in the streamwise and spanwise directions, with �x/h = 0.0125 and
�z/h = 0.009. On the other hand, a non-uniform mesh has been used in the y direction.
Specifically, in the wall-normal direction the points are clustered near the wall within
the cavity �ymin/h = 0.002. The mesh increases towards the channel centreline, with
�ymax/h = 0.026. The Reynolds number is Re = 4300 and corresponds to the friction
Reynolds number Reτ = 240 when both walls are smooth. Details of the computational
box and resolution are summarized in table 1.

For a fixed pitch to height ratio w/k = 4, which is below the value for which transverse
bars can be considered virtually isolated (w/k = 8, Leonardi et al. (2003)), two sets
of simulations have been analysed varying the roughness height. The first set is made
of 16 triangular transverse bars equally spaced in the streamwise direction w/h = 0.4
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Roughness effective distribution

Marker Sketch Case k/h kmax/h w/h λ/h ES ED Ku Sk D/ρU2
b �U+

Flat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.30
A11 0.10 0.00 0.40 0.00 0.50 0.57 7.49 2.64 0.23 11.50
B11 0.10 0.20 0.40 3.20 0.56 0.67 11.38 3.07 0.34 13.00
B21 0.10 0.20 0.40 3.20 0.50 0.69 13.17 3.30 0.35 13.00
C11 0.09 0.18 0.40 0.40 0.56 0.66 11.61 3.13 0.28 12.20
C21 0.09 0.18 0.40 0.80 0.56 0.69 11.61 3.13 0.31 12.80
C31 0.09 0.18 0.40 1.20 0.56 0.71 11.61 3.13 0.37 13.50
C41 0.09 0.18 0.40 1.60 0.56 0.73 11.61 3.13 0.38 13.80
A0 0.20 0.00 6.40 0.00 0.06 0.25 7.49 2.64 0.23 11.00
A12 0.20 0.00 0.80 0.00 0.50 0.65 7.49 2.64 0.35 13.50
A12b 0.22 0.00 0.80 0.0 0.55 0.72 7.49 2.64 0.38 13.60
B12 0.20 0.40 0.80 6.40 0.56 0.77 11.38 3.07 0.52 14.60
B22 0.20 0.40 0.80 6.40 0.50 0.79 13.17 3.30 0.55 14.60
B22b 0.23 0.46 0.80 6.40 0.58 0.91 13.17 3.30 0.68 15.50
C12 0.18 0.36 0.80 0.80 0.56 0.76 11.61 3.13 0.45 13.70
C22 0.18 0.36 0.80 1.60 0.56 0.78 11.61 3.13 0.49 14.20
C32 0.18 0.36 0.80 2.40 0.56 0.81 11.61 3.13 0.58 15.00
C42 0.18 0.36 0.80 3.20 0.56 0.83 11.61 3.13 0.60 15.00

Table 2. Geometrical and flow properties: k/h, roughness height; kmax/h, big element roughness height (equal
to 2*k/h); w, cavity width; λ, distance between big elements; ES, effective slope; ED, effective distribution;
Ku, kurtosis; Sk, skewness; D/ρU2

b , total drag; �U+, roughness function.

(figure 1a). The baseline case ( case A11), has a constant roughness height k/h = 0.1.
In the second set of simulations (figure 1b), we halved the number of triangular bars in
streamwise direction but doubled the roughness height to k/h = 0.2 ( case A12). The
subscript indicates the roughness height. Other cases are considered as a modification of
the baseline to highlight specific geometrical features, such as a protuberance above the
roughness layer and the wake of larger elements affecting the downstream roughness. The
height is slightly adjusted in each case to keep constant either the value of ES, kurtosis
and skewness. In cases B11 ( ) and B12 ( ) we doubled the vertical size of one element; in
cases B21 ( ), B22 ( ) and B22b ( ) we removed the element immediately downstream
of the tallest one. The set of simulations labelled with C present two taller triangles,
with streamwise distances gradually increasing from C11 to C41 ( , , , ) and from
C12 to C42 ( , , , ). The geometrical and flow properties are summarized in table 2.
According to the values of the friction Reynolds number and k/h here considered, a fully
rough regime is ensured (see among others Bandyopadhyay (1987) and Leonardi, Orlandi
& Antonia (2007)).

4. Results and discussion

The effect of the roughness is to shift downward the mean velocity U+ profile, with respect
to that on a smooth wall, by an increment �U+, i.e.

U+ = κ−1 ln y+ + C − �U+. (4.1)

The roughness function in the present paper has been computed as the distance of the
log region with respect to the ideal smooth wall with C = 5.6. The friction velocity on
the rough wall is computed as the sum of the form drag and frictional drag so there are
no uncertainties due to the asymmetry of the channel. The velocity profiles on the upper
smooth wall (not shown here because beyond the scope of the paper), when scaled with
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Figure 2. Drag and roughness function dependence on the geometrical features of the rough wall (ES,
skewness and kurtosis). Symbols as in table 1.

the proper friction velocity (from the shear on that wall and not from the pressure drop)
agree well with the law of the wall although the extent of the log region is shorter due to
the smaller local turbulent Reynolds number. The virtual origin in y is chosen to have a
slope of κ = 0.41. Other choices could have been made for the virtual origin, but since
the goal here is to calculate the roughness function for a large number of different cases,
fixing the slope of the log region to κ−1 allowed a consistent calculation of the roughness
function. In figure 2 the total drag and the roughness function are plotted as function of the
ES, skewness and kurtosis. For the same ES, or Ku or Sk, the drag varies significantly, up
to 300 % and the roughness function up to 40 %. The value of the drag has been included
in the analysis because it does not present the uncertainties that the roughness function has
in its definition (virtual origin, the slope of the log region and the value of the constant C).
Even grouping data relative to the same mean roughness height or root mean square does
not eliminate the scatter in the data.

4.1. Inconsistency in geometrical parametrization
The flow structure and the pressure around the roughness elements have been analysed to
understand why the drag and roughness function vary despite having the same geometrical
statistics (mean roughness height, ES, Sk or Ku). In particular, comparing A11 ( uniform
triangles) and B11 cases, ( same as A11 with an element �k higher), with a slight change
of ES corresponds to a major difference in drag. For uniform roughness, the cavities are
filled with a recirculating flow (figure 3a). The non-dimensional form drag (normalized
with ρU2

b) of each element is Pd = 0.005. On the other hand, in B11, the streamlines
impinge on the tallest element (the element ‘0’ in figure 3b) generating a stagnation point
and high-pressure differences with respect to the leeward side of the wedge. The form
drag is Pd = 0.04, approximately eight times larger than that of uniform triangles. This
shows how sensitive the drag is to pinnacles emerging outside the roughness layer, which,
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Figure 3. Streamlines superposed to colour contours of pressure: (a) A11 ( ); (b) B11 ( ); (c) B21 ( ); (d) C11
( ). The pressure drag of each triangle is indicated below them, i.e. Pd(4) = 0.005. Definition of �k is included
in the figure.

instead, is not accounted for in ES, skewness and kurtosis. The form drag of the upstream
triangle (labelled ‘−1’) is slightly smaller because the streamlines are tilted upward by the
taller element. The large recirculation closes on the second element downstream (labelled
‘2’) at a distance of approximately 8k. The pressure drag of the two roughness elements
in the wake is very small and negative, meaning that the pressure on the leeward side is
higher than that on the windward side. The drag of the other roughness elements is to a
good approximation unaffected implying that a perturbation to the geometrical topography
of the surface affects the flow slightly upstream (up to 4k) and a bit more downstream
(8k). The surface B21 is obtained by removing the triangle (labelled ‘1’ in figure 3b)
downstream of the highest roughness element. The mean streamlines are very similar
with a main recirculation originated on the highest peak and closing approximately 8k
downstream (figure 3c). The drag on each element is approximately the same. The overall
drag and roughness function are to a good approximation the same as those of B11 despite
variations of ES and Ku. This suggests that roughness elements located in the wake region
of higher elements must be weighted differently in the geometrical statistics of the surface.
Adding a second taller roughness element to B11, immediately downstream (labelled ‘1’ in
figure 3d), surface C11, increases the mean surface height, as well as the higher moments
statistics, but reduces the drag (and roughness function) instead of increasing it (as it would
have been expected by having a higher mean roughness). The wake of the first higher
pinnacle shields the second, as already considered in various prior studies (see among
others Raupach, Antonia & Rajagopalan (1991), Shao & Yang (2005), Shao & Yang (2008)
and Yang et al. (2016)). These studies denoted, as volumetric sheltering, the momentum
reduction in the wakes of roughness elements and its effect on the drag of neighbouring
roughness elements. The recirculation shrinks compared with B11 and B12, filling the
cavity formed by the two higher triangles (elements ‘0’ and ‘1’ of figure 3d). Increasing
the distance between the two highest pinnacles (cases C31 and C41 , figure 4a,b), leads
to an increase of drag and �U+ because the streamlines tend to reattach on the lower array
of triangles with a consequent increase of pressure drag on the large element. These results
suggest that the position of the roughness elements, affects the flow physics and the drag
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Figure 4. Streamlines superposed to colour contours of pressure: (a) C31 ( ); (b) C41 ( ).

despite the geometrical feature Ku or Sk are the same. A single pinnacle much higher than
the others has a major effect on the flow. Its contribution is not proportional to the wet
area, or exposed area to the flow; it is much higher if the upstream elements are smaller. It
could be interpreted mathematically into a geometry height gradient, which was partially
taken into account by the ES. However, cases C11–C41 highlight how it is important the
presence of other tall roughness elements upstream, and their wake. The distance between
two consecutive highest peaks is a key parameter to determine the influence of roughness
on turbulent flow.

4.2. Effective distribution
The analysis of § 4.1 showed that any parametrization based on geometrical features of the
walls needs to be consistent with the following points.

(i) The roughness elements in the wake of larger elements have a negligible
contribution to the drag. As a consequence, the geometrical quantities used to
parameterize the roughness should be filtered by the contribution of those elements
in the wake length.

(ii) The contribution to the drag of each roughness element depends on its pattern and
distance from previous elements (figure 3b).

(iii) The distance between two consecutive rough elements affects the velocity
distribution, the momentum in the cavity and as a consequence the intensity of
the stagnation point on the windward roughness element.

These features have been included in a new geometrical parametrization, ED, as a revision
of the ES introduced by Napoli et al. (2008), as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ED =
⎛
⎝ES −

m∑
j=1

n∑
i=1

αi,j · ESi +
m∑

j=1

m∑
i=1

βi,j · ES�ki

⎞
⎠ +

n∑
i=1

wi,i+1

Lx

k
δk

αi,j = min
(

1,
�kj

wi,j

)
for 1 � wi,j

k
< 8, αi,j = 0 for

wi,j

k
> 8

βi,j = λi,j

wakej
for

λi,j

wakej
< 1, βi,j = 1 for

λi,j

wakej
> 1

(4.2)

where ES is the overall ES calculated as in the original formulation of Napoli et al.
(2008) ((1/Lx1)

∫
Lx1

|∂k(x1)/∂x1| dx1), ESi is the ES of the ith element, weighted by
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Figure 5. Schematic representation of the parameter defined in the determination of the ED.

αi,j = min(1, �kj/wi,j) with wi,j the distance between the jth higher peak, emerging �kj
over the crest plane, and the ith roughness element. The index n in the summations
indicates the number of roughness elements while m is the number of pinnacles above
the crests plane. The second term on the right-hand side of (4.2) subtracts from the ES
the contribution of the elements in the wake of the higher peaks. The coefficient αi,j takes
into account the effect of the wake of the jth pinnacle above the crests plane on the ith
roughness element. This term is unity when the ith roughness element is close to the
higher peak ‘j’ and in its wake, and decreases to zero as it is farther apart from it. In
fact, when the cavity between two roughness elements is narrow, the flow has a d-type
behaviour and the drag is almost unaffected by that roughness element so its contribution
to the ES is removed. By increasing wi,j, the distance of the roughness element from the
peak, its contribution to the drag gradually increases and then just a fraction of its ES
is subtracted from the overall ES. Previous papers showed that for a pitch to height ratio
larger than 8 the roughness elements act as isolated with a reattachment of the flow on the
flat wall of the cavities. Therefore the wake length can be approximated to wakej = 8kj,
which is this dataset could be simplified to wakej = 8kmax since all the pinnacles above
the crests plane have the same height. However, to keep a general formulation of (4.2)
wakej = 8kj is used allowing to have a non-uniform distribution of elements above the
crests plane. For wi,j/kj > 8 (resulting in wi,j > wakej), indicating the roughness element
outside the wake region, αi,j = 0. A similar concept is used to account for the pattern of the
higher pinnacles, the m elements emerging above the crests plane. When the downstream
pinnacle is too close to that upstream, its contribution to the drag is smaller than when it
is isolated. Therefore, the ES�kj is weighted by βi,j = λi,j/wakej, where λi,j is the distance
between the pinnacles i and j that are higher than the crests plane. When λi,j < wakej,
the downstream pinnacle is in the wake region of the upstream pinnacle. This means that
the flow around the downstream pinnacle (i) will be affected by the wake of the upstream
pinnacle ( j), which results in a reduced contribution to the overall drag. To account for
this effect, a coefficient β is introduced, which scales the contribution of the downstream
pinnacle to the overall drag. When λi,j < wakej, βi,j is less than 1 to reflect the reduced
contribution of the downstream pinnacle. As λi,j increases and the downstream pinnacle
(i) moves out of the wake region, βi,j increases as well, until it reaches a constant value of
1 when λi,j > wakej. This indicates that both pinnacles have the same contribution to the
overall drag and can be treated as isolated peaks. In figure 5 a sketch of these distances
is depicted. The fourth term in (4.2) accounts for the distance between two consecutive
roughness elements which, as observed by Leonardi et al. (2003), affects the velocity
profile, stagnation pressure and then the drag. By definition, the ES does not take into
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Figure 6. Drag and roughness function as function of the ED.
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Figure 7. Contour plot of the mean streamwise velocity for the irregular rough wall of De Marchis et al.
(2019).

account how wide are the cavities between roughness elements; it is, in fact, calculated
only in the domain region characterized by roughness elements, ES being zero everywhere
else. Nevertheless, looking at the streamlines depicted in figure 4, the distance between
two consecutive elements wi,i+1 has considerable effect on the fluid flow, showing the
importance to taking into account these features. The dependence on the scale of roughness
is accounted for with k/δk, where δk is the outer layer length scale (channel half-height or
boundary layer thickness). In the present research two roughness heights were simulated,
thus further geometrical configurations are required to confirm the role of the fourth term
of (4.2). Figure 6 shows the correlation between the ED and the total drag or roughness
function. The novel parametrization proposed in this paper, ED, correlates with the drag
significantly better than the ES (shown in figure 2). A large variation in terms of drag and
roughness function for the same value of ES was observed in figure 2, suggesting that
the ES alone may not fully capture the impact of geometrical features on turbulent flows.
On the other hand, the ED, taking into account the geometrical features which affect the
turbulent flows discussed above, varies smoothly with the drag and roughness function.
To further corroborate our previous finding and validate the ED, we applied it to a more
complex irregular rough wall (figure 7). The irregular surface shape was generated through
the superimposition of sinusoidal functions with random amplitudes and four different
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wavelengths, see De Marchis, Milici & Napoli (2019). To use the ED, it is necessary to
define a crests plane and then the pinnacles emerging above it. While this is obvious in the
simplified cases discussed before, it is not straightforward for a more generic surface with
peaks of variable height as that in (figure 7). The method we used consists in identifying
the local peaks of the surface and then calculating the probability density function of those
values using a number of bins equal to one third of the samples to have some statistical
convergence. The crests plane was taken as the most probable peak height. The calculation
of the distances between peaks, and the ED is then straightforward. Since the value of ED
of the original case in De Marchis et al. (2019) was very small, the mean roughness height
was increased to have a higher value of the ED. Specifically, the new geometry (reported
as ‘crest roughness type’ using the ‘∗’ marker in the caption of figure 6) has a value
of ED = 0.37 quite similar to the range here analysed. Data from both cases have been
included in figure 6(b). Despite the surface in De Marchis et al. (2019) not being used to
develop (4.2) but used as an independent validation only, results are consistent with the
correlation between ED and roughness function obtained with our database of triangular
roughness elements. This result suggests that the ED has the potential to be generalized
to more complex and realistic 2-D geometries. More work is needed to extend it to 3-D
roughness.

5. Conclusions

Direct numerical simulations have been performed to analyse a set of 2-D rough surfaces
using triangle-shaped elements. One of the main challenges of the last decade was the
prediction of a drag and roughness function based on surface topography, which requires a
parametrization. Therefore, 17 geometries with different shapes but similar ES, skewness
and kurtosis have been investigated. The study found that for most of the data, different
shapes with the same geometrical quantities can result in different drag and roughness
functions. To address this issue, a new geometrical parameter, called ED, was introduced.
The ED is a geometrical parameter that accounts for the physical behaviour of the fluid
around roughness elements. It is calculated based on flow features typically occurring
in rough flow. The first suggested that roughness in the wake of large pinnacles has
a negligible contribution to the drag and should not be included in the calculation of
geometrical statistics of the surface to predict the drag. In addition, ED recognizes that
roughness elements have contributions to the drag and �U+ based on their size and
pattern. The ED has been calculated as a modification to the ES, by subtracting the
contribution of roughness elements located in the wake region and adding the contribution
of pinnacles above the crest plane. Additionally, if the surface is characterized by more
than a peak emerging above the crests plane, the distance between two subsequent
pinnacles has to be considered. When the downstream pinnacle is in the wake region
of the upstream pinnacle its contribution to the drag and then to the calculation of ED
is reduced. On the other hand, as the separation increases and the downstream pinnacle
moves out of the wake region, it is no longer influenced by the flow dynamics of the
upstream pinnacle, and can be treated as an isolated peak. The ES lacks details regarding
the separation between individual elements, particularly evident in a flat section where
ES equals zero. As pointed out by Leonardi et al. (2003), the velocity profile undergoes
significant influence from the flat section located downstream of each element. To address
the influence of the flat section, the final term in (4.2) was incorporated. Overall, the
ED provides a representative geometrical parameter of the entire roughness configuration,
taking into account the peaks above the mean roughness, the wake region induced by
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the higher elements, and the distance between two consecutive elements. The ED was
shown to correlate well with drag and roughness function for the large dataset used to
develop it as well as for a more realistic irregular rough wall generated with random
sinusoidal functions. Overall, the ED improves previous correlations between the drag
and geometrical features of the wall. More work is still required to further generalize it to
roughness surfaces irregular in the spanwise direction.
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