
J. Aust. Math. Soc. 107 (2019), 199–214
doi:10.1017/S1446788718000289

SPECTRA OF LINEAR FRACTIONAL COMPOSITION
OPERATORS ON THE GROWTH SPACE AND BLOCH SPACE

OF THE UPPER HALF-PLANE

SHI-AN HAN and ZE-HUA ZHOU�

(Received 15 January 2018; accepted 8 July 2018; first published online 29 October 2018)

Communicated by C. Meaney

Abstract

In this article, we provide a complete description of the spectra of linear fractional composition operators
acting on the growth space and Bloch space over the upper half-plane. In addition, we also prove that the
norm, essential norm, spectral radius and essential spectral radius of a composition operator acting on the
growth space are all equal.
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1. Introduction

Let Ω be a domain of the complex plane. Given a holomorphic self-map ϕ : Ω→ Ω

and a holomorphic function u ∈ H(Ω) over Ω, the associated weighted composition
operator is defined by

uCϕ( f ) = u · f ◦ ϕ for all f ∈ H(Ω).

In particular, when u ≡ 1, Cϕ is called a composition operator.
Over the past four decades, the research on composition operators and weighted

composition operators has undergone a fast and fruitful development. The convention
is to relate the theoretical operator properties of uCϕ, that is, boundedness,
compactness, spectra, normality and so on, to the function properties of its symbol.
The work is usually carried over the unit disk. For general information, we refer
readers to the excellent monographs by Sharpiro [21] and Cowen and Macluer [7].

In recent years, there has been a great deal of interest in holomorphic function
spaces of the upper half-plane Π+ = {z : Im z > 0}. Matache, in his series of papers [17–
19], made a systematic study of composition operators on the Hardy space H2(Π+)
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of the upper half-plane. He found [18] that, unlike in the case of the unit disk, not
every holomorphic self-map of the upper half-plane induces a bounded composition
operator on H2(Π+). In fact, he obtained a very simple criterion for the boundedness
of a composition operator acting on H2(Π+): Cϕ is bounded if and only if the angular
derivative of ϕ at infinity exists. Matache’s result was strengthened by Elliott and
Jury [9] in the following precise form.

Theorem A. Acting on the Hardy space H2(Π+), Cϕ is bounded if and only if ϕ has a
finite angular derivative 0 < λ <∞ at infinity. In that case, the norm, essential norm,
spectral radius and essential spectral radius are all equal to

√
λ.

As a corollary of Theorem A, we see immediately that no compact composition
operator exists on H2(Π+). Motivated by this fact, Shapiro and Smith [22] investigated
the existence of compact composition operators on Hardy spaces of various domains.

It should be noted that an analogue of Theorem A also holds on weighted Bergman
spacesA2

α(Π+) [10] of the upper half-plane.
Sharma et al. [23] introduced upper half-plane versions of the growth spaceA(Π+)

and the Bloch space B(Π+),

A(Π+) =
{
f ∈ H(Π+) : ‖ f ‖A(Π+) = sup

w∈Π+

Im w| f (w)| <∞
}

and
B(Π+) =

{
f ∈ H(Π+) : ‖ f ‖B(Π+) = sup

w∈Π+

Im w| f ′(w)| <∞
}
.

Both spaces are natural counterparts of the respective ones over the unit disk. The
authors then studied the boundedness of composition operators acting on these spaces.

Recall that the classical Bloch space of the unit disk is given by

B =
{
f ∈ H(D) : ‖ f ‖B = sup

z∈D
(1 − |z|2)| f ′(z)| <∞

}
.

It is well known that the Cayley transform σ(z) = i((1 + z)/(1 − z)) is a conformal map
from the unit disk onto the upper half-plane. If we define the ‘composition operator’

Cσ : B(Π+)→B
f 7→ f ◦ σ,

then calculation shows that ‖ f ◦ σ‖B = 2‖ f ‖B(Π+). So B(Π+) is isomorphic to B and a
composition operator Cϕ on B(Π+) is similar to another composition operator Cψ on
B via Cσ.

The story for a growth space is somewhat different. The authors [23] found that a
composition operator Cϕ :A(Π+)→A(Π+) is bounded if and only if

sup
w∈Π+

Im w
Imϕ(w)

<∞,
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which is equivalent to the existence of the finite angular derivative ϕ′(∞) by the Julia–
Carathéodory theorem of the upper half-plane (see [9] or Lemma 2.5 below). Recently,
the authors of [24] proved that there is also no compact composition operator on the
growth space. Both facts indicate that the growth space behaves like the Hardy space
and the weighted Bergman space over the upper half-plane. So one may naturally ask
the following question.

Is there an analogue of Theorem A on the growth space?

We will answer this question affirmatively in the second section.
Among composition operators, those induced by linear fractional transformations

are well understood in several backgrounds, including the unit disk [3, 5, 6, 12–14, 16]
and the upper half-plane [11, 20]. Recall that a linear fractional transformation (LFT)
is a meromorphic bijection of the extended complex plane C ∪ {∞} onto itself, which
can be expressed in the form

ϕ(w) =
aw + b
cw + d

, ad − bc , 0.

It is clear that each LFT has exactly two fixed points, counting multiplicities.
According to the behavior at the fixed point, LFTs are classified into four classes:
elliptic, hyperbolic, parabolic and loxodromic. For details, see Sharpiro’s book [21] or
the article [12].

Recently, Schroderus [20] considered the spectrum problem of a linear fractional
composition operator on H2(Π+) and A2

α(Π+) and got a complete solution.
Schroderus’s result extended some earlier work of Gallardo-Gutiérrez and Montes-
Rodrı́guez [11]. We will consider the spectra problem of a LFT composition operator
on the growth space in Section 2 and on the Bloch space in Section 3. We believe
that these results will be beneficial for further research on the spectra of weighted
composition operators with LFT symbols acting on the growth space over the unit
disk.

2. Composition operators on the growth space

2.1. The growth space. Before our discussion, we will make a slight generalization
of the definition of a growth space.

For α > 0, the growth spaceAα(Π+) over the upper half-plane is defined by

Aα(Π+) =
{
f ∈ H(Π+) : ‖ f ‖Aα

= sup
w∈Π+

(Im w)α| f (w)| <∞
}
.

Taking the notation from [20] for the weighted Bergman space A2
γ(Π

+), γ > −1, we
associateA2

−1(Π+) = H2(Π+) and let Kγ
w be the reproducing kernel forA2

γ(Π
+), γ ≥ −1.

According to [20, Lemma 2],

| f (w)| ≤ ‖ f ‖A2
γ
‖Kγ

w‖A2
γ

= ‖ f ‖A2
γ

cγ
(Im w)γ/2+1
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for all f ∈ A2
γ(Π

+), where cγ is a constant depending only on γ. Therefore A2
γ(Π

+) is
contained in the growth spaceAγ/2+1(Π+).

Denote by δw the linear functional of evaluation at w ∈ Π+,

δw( f ) = f (w), f ∈ Aα(Π+).

It is clear that δw is continuous, that is, Aα(Π+) is a functional Banach space. In fact,
we have the following result on the norm of the evaluation functional.

Lemma 2.1. As a linear functional onAα(Π+), ‖δw0‖ = 1/(Im w0)α.

Proof. By the definition of Aα(Π+), it is obvious that ‖δw0‖ ≤ 1/(Im w0)α. To prove
the equality, take the test function

fw0 (w) =
1

(w − Re w0)α
.

Then

‖ fw0‖Aα
= sup

w∈Π+

∣∣∣∣∣ Im w
(Re w − Re w0) + i Im w

∣∣∣∣∣α = 1

and

|δw0 ( fw0 )| =
1

(Im w0)α
,

which completes the proof. �

Recall the classical growth space H∞α (D) over the unit disk

H∞α (D) =
{
f ∈ H(D) : ‖ f ‖H∞α = sup

z∈D
(1 − |z|2)α| f (z)| <∞

}
.

Composition operators and weighted composition operators on H∞α (D) have been
widely studied, and also more generally on the spaces H∞v (D), where v is a positive
weight function on D (see [1, 2, 4, 16] and the references therein).

Unlike the Bloch space, the Cayley transform no longer induces an isomorphic
composition operator from Aα(Π+) to H∞α (D). However, as the following lemma
shows, we can perform an isomorphism via the ‘weighted composition operator’

J :Aα(Π+)→ H∞α (D)

f 7→ J f (z) =
f (σ(z))

(1 − z)2α , (2.1)

where σ(z) = i((1 + z)/(1 − z)) is the Cayley transform.

Lemma 2.2. Let J be as defined in (2.1). Then J is an isometric isomorphism from
Aα(Π+) onto H∞α (D).
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Proof. For any function f ∈ Aα(Π+),

‖J f ‖H∞α = sup
z∈D

(1 − |z|2)α
∣∣∣∣∣ f (σ(z))
(1 − z)2α

∣∣∣∣∣
= sup

w∈Π+

(1 − |σ−1(w)|2)α
| f (w)|

|1 − σ−1(w)|2α

= sup
w∈Π+

(
1 −

∣∣∣∣∣w − i
w + i

∣∣∣∣∣2)α∣∣∣∣∣1 − w − i
w + i

∣∣∣∣∣−2α
| f (w)|

= sup
w∈Π+

( 4 Im w
|w + i|2

·
|w + i|2

4

)α
| f (w)|

= sup
w∈Π+

(Im w)α| f (w)|

= ‖ f ‖Aα
.

The proof is complete. �

According to Lemma 2.2, the properties of a composition operator on Aα(Π+) can
be directly deduced from the corresponding weighted composition operator on H∞α (D).
We collect, in the following, some known results on weighted composition operators
on H∞α (D), which will be used later.

The first result concerns the essential norm of a weighted composition operator,
which is a special case of [4, Theorem 4.2]. The second gives the spectrum of a
weighted composition operator in the case where ϕ has an interior fixed point.

Lemma 2.3 [4, Theorem 4.2]. For ϕ an analytic self-map of the unit disk and u ∈ H(D)
such that the weighted composition operator uCϕ is bounded acting on H∞α (D), α > 0,
the essential norm is

‖uCϕ‖e = lim
r→1

sup
|ϕ(z)|>r

|u(z)|
( 1 − |z|2

1 − |ϕ(z)|2

)α
.

Lemma 2.4 [1, Theorem 7]. Let α > 0 and suppose that ϕ, which is not an
automorphism, has fixed point a ∈ D and that uCϕ : H∞α (D)→ H∞α (D) is bounded.
Then

σ(uCϕ) = {λ : |λ| ≤ re(uCϕ)} ∪ {u(a)ϕ′(a)n}∞n=0.

We will use the Julia–Carathéodory theorem frequently. The unit disk version is
well known; see, for example [7, Theorem 2.44]. The following lemma gives the
upper half-plane version of the Julia–Carathéodory theorem, which is easily deduced
from the unit disk version using the Cayley transform. Here, if ϕ : Π+ → Π+, then we
write ϕ(∞) =∞ if ϕ(zn)→∞ whenever zn→∞ nontangentially. In this case, we write

ϕ′(∞) = lim
z→∞

z
ϕ(z)

if this nontangential limit exists and is finite. For more details, see [9].
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Lemma 2.5 (Julia–Carathéodory). For an analytic self-map ϕ of the upper half-plane,
the following conditions are equivalent:

(1) ϕ(∞) =∞ and ϕ′(∞) exists;
(2) supIm z>0 Im z/Imϕ(z) <∞; and
(3) lim supz→∞ Im z/Imϕ(z) <∞.

Moreover, the quantities in (2) and (3) are both equal to the angular derivative ϕ′(∞).

2.2. Norm and spectral radius. The following result answers the first question
raised in the introduction.

Theorem 2.6. Suppose that ϕ is a holomorphic self-map of the upper half plane. Then
acting onAα(Π+), Cϕ is bounded if and only if supw∈Π+(Im w/Imϕ(w))α <∞, that is, ϕ
has a finite angular derivative at infinity. Moreover, the norm, essential norm, spectral
radius and essential spectral radius are all equal to supw∈Π+(Im w/Imϕ(w))α =

ϕ′(∞)α.

Proof. On the one hand, if Cϕ is bounded, then

‖C∗ϕ(δw)‖ ≤ ‖Cϕ‖‖δw‖.

Since, for any f ∈ Aα(Π+),

C∗ϕ(δw)( f ) = δw(Cϕ f ) = f (ϕ(w)) = δϕ(w)( f ),

we get C∗ϕ(δw) = δϕ(w). Then by Lemma 2.1,

sup
w∈Π+

( Im w
Imϕ(w)

)α
= sup

w∈Π+

‖C∗ϕ(δw)‖

‖δw‖
≤ ‖Cϕ‖.

On the other hand, if supw∈Π+(Im w/Imϕ(w))α <∞, then, for any f ∈ Aα(Π+),

‖Cϕ f ‖ = sup
w∈Π+

(Im w)α| f (ϕ(w))|

= sup
w∈Π+

( Im w
Imϕ(w)

)α
(Imϕ(w))α| f (ϕ(w))|

≤ sup
w∈Π+

( Im w
Imϕ(w)

)α
‖ f ‖.

Therefore, Cϕ is bounded if and only if supw∈Π+(Im w/Imϕ(w))α < ∞ and ‖Cϕ‖ =

supw∈Π+(Im w/Imϕ(w))α.
It remains to prove the formula concerning the essential norm, spectral radius and

essential spectral radius of Cϕ. For this, we will pull back to the unit disk via the
isomorphism J constructed above.

By Lemma 2.2, the composition operator

Cϕ :Aα(Π+)→Aα(Π+)
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is isometrically isomorphic to the weighted composition operator

JCϕJ−1 : H∞α (D)→ H∞α (D).

Specifically, we have ‖Cϕ‖ = ‖JCϕJ−1‖ and ‖Cϕ‖e = ‖JCϕJ−1‖e. We need to calculate
the explicit expression of JCϕJ−1. For any f ∈ H∞α (D),

JCϕJ−1 f (z) = JCϕ((1 − σ−1)2α f ◦ σ−1)(z)
= J((1 − σ−1 ◦ ϕ)2α f ◦ σ−1 ◦ ϕ)(z)

=

(1 − σ−1 ◦ ϕ ◦ σ(z)
1 − z

)2α
f ◦ σ−1 ◦ ϕ ◦ σ(z)

= u(z) f (ψ(z)),

where ψ = σ−1 ◦ ϕ ◦ σ and u(z) = ((1 − ψ(z))/(1 − z))2α.
Since supw∈Π+ Im w/Imϕ(w) < ∞, Lemma 2.5 implies that ϕ(∞) = ∞ and the

angular derivative ϕ′(∞) exists, which, translating to the unit disk via the Cayley
transform, is equivalent to ψ(1) = 1 and the angular derivative ψ′(1) exists. Now, by
Lemma 2.3 and the Julia–Carathéodory theorem of the unit disk [7, Theorem 2.44],

‖Cϕ‖e = ‖JCϕJ−1‖e = lim
r→1

sup
|ψ(z)|>r

|u(z)|
( 1 − |z|2

1 − |ψ(z)|2

)α
≥ lim

r→1
|u(r)|

( 1 − r2

1 − |ψ(r)|2

)α
= lim

r→1

(
|1 − ψ(r)|

1 − r

)2α( 1 − r2

1 − |ψ(r)|2

)α
≥ lim

r→1

(1 − |ψ(r)|
1 − r

)2α( 1 − r2

1 − |ψ(r)|2

)α
= lim

r→1

(1 − |ψ(r)|
1 − r

)α( 1 + r
1 + |ψ(r)|

)α
= ψ′(1)α = ϕ′(∞)α.

Therefore,

‖Cϕ‖ ≥ ‖Cϕ‖e ≥ ϕ
′(∞)α = sup

w∈Π+

( Im w
Imϕ(w)

)α
= ‖Cϕ‖,

which implies that

‖Cϕ‖ = ‖Cϕ‖e = ϕ′(∞)α = sup
w∈Π+

( Im w
Imϕ(w)

)α
.

For any n ≥ 1, we denote by ϕn the nth iterate of ϕ. Since ϕ has finite angular
derivative ϕ′(∞) at ∞, by the definition of ϕ′(∞), we know that ϕ(z j) converges to
∞ nontangentially whenever z j converges to∞ nontangentially. Therefore,

ϕ′n(∞) = lim
z→∞

z
ϕn(z)

= lim
z→∞

z
ϕ(z)

ϕ(z)
ϕ2(z)

· · ·
ϕn−1(z)
ϕn(z)

= ϕ′(∞)n.
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By similar arguments, we can prove that ‖Cϕn‖ = ‖Cϕn‖e = ϕ′(∞)nα. Therefore, the
spectral radius and essential spectral radius of Cϕ are both equal to ϕ′(∞)α. The proof
is complete. �

Note that Theorem 2.6 strengthens the results of [23, Theorem 4.1] and [24,
Theorem 2.6]. In particular, the following corollary is immediate.

Corollary 2.7 [24, Theorem 2.16]. There exists no compact composition operator on
Aα(Π+).

2.3. Spectra. According to Theorem 2.6, if a linear fractional transformation

ϕ(w) =
aw + b
cw + d

induces a bounded composition operator on the growth space Aα(Π+), then we must
have ϕ(∞) =∞, that is, a , 0 and c = 0. So we can write ϕ in the form

ϕ(z) = µw + w0,

where µ > 0 and Im w0 ≥ 0 since ϕ maps the upper half-plane into itself. Therefore,
only two kinds of LFTs can induce bounded composition operators on the growth
spaceAα(Π+):

• parabolic if ϕ(w) = w + w0 with Im w0 ≥ 0; and
• hyperbolic if ϕ(w) = µw + w0 with µ > 0, µ , 1 and Im w0 ≥ 0.

For the remainder of this section, we will try to determine the spectra of composition
operators induced by LFTs. Since no general results exist in the literature involving
the spectra of weighted composition operators with LFT symbols over H∞α (D), even
though some special cases [1, 2, 16] have been investigated, we cannot carry the results
directly from the unit disk.

First, consider the case when ϕ is parabolic, that is,

ϕ(w) = w + w0.

Obviously, ϕ is an automorphism of the upper half-plane when Im w0 = 0. In this case,
the author in [20] obtained the spectrum of Cϕ on the Hardy and weighted Bergman
space of the upper half-plane by performing the Fourier transform to convert Cϕ into
some multiplier on a certain L2 space (Paley–Wiener theorem). The method cannot be
applied to the growth space. Fortunately, Aα(Π+) is large enough to admit abundant
eigenvectors of Cϕ. For the nonautomorphism case, we will embrace Cowen’s use of
a semigroup argument, the idea for which he attributes to Kaufman [5].

Theorem 2.8. Suppose that ϕ(w) = w + w0 with Im w0 ≥ 0. Then the spectrum of Cϕ

onAα(Π+) is:

(i) σ(Cϕ) = T if Im w0 = 0; and
(ii) σ(Cϕ) = {eitw0 : t ≥ 0} ∪ {0} if Im w0 > 0.
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Proof. By Theorem 2.6, the spectral radius ρ(Cϕ) is ϕ′(∞)α = 1.
(i) If Im w0 = 0, then ϕ is an automorphism of the upper half-plane and the

associated composition operator is invertible. The spectrum mapping theorem implies
that λ ∈ σ(Cϕ) if and only if λ−1 ∈ σ(C−1

ϕ ), where C−1
ϕ = Cϕ−1 and the spectral radius

r(Cϕ−1 ) also equals one by Theorem 2.6. Therefore, σ(Cϕ) ⊂ T.
For the converse inclusion, we will show that each λ ∈ T is an eigenvalue of infinite

multiplicities. To see this, denote gt(w) = eitw for any t > 0. Then

‖gt‖Aα
= sup

w∈Π+

(Im w)α|eitw| = sup
w∈Π+

(Im w)αe−t Im w =

(
α

te

)α
<∞

and
Cϕgt = eitw0 gt.

For each λ ∈ T, there exists a sequence of distinct positive numbers {tk : k ∈ N} such
that λ = eitkw0 , so

Cϕgtk = λgtk for all 0 ≤ k <∞.

We need to show that these eigenfunctions gtk are linearly independent. Suppose that
n ∈ N and ck ∈ C, 0 ≤ k ≤ n − 1 are such that

n−1∑
k=0

ckeitkw = 0 for all w ∈ Π+. (2.2)

By the uniqueness theorem of holomorphic functions, (2.2) actually holds for all
w ∈ C. Now, for any 0 ≤ m ≤ n − 1, taking the mth derivative and evaluating at the
origin in (2.2), we get the system of linear equations given by

n−1∑
k=0

cktm
k = 0 for all 0 ≤ m ≤ n − 1. (2.3)

Note that the coefficients of (2.3) make up a Vandermonde matrix whose determinant
is not zero, so ck = 0, 0 ≤ k ≤ n − 1. By the arbitrariness of n, the family {gtk : k ∈ N}
is linearly independent.

(ii) If Im w0 > 0, similarly to (i), we can show that each nonzero point of the spiral
{eitw0 : t ≥ 0} ∪ {0} is an eigenvalue of Cϕ, and thus {eitw0 : t ≥ 0} ∪ {0} ⊂ σ(Cϕ).

For the converse inclusion, we will apply Cowen’s semigroup argument. For any
t ∈ Π+, let

ϕt(w) = w + t|w0|

and let Ct be the associated composition operator. We first show that:

(1) Ct1+t2 = Ct1Ct2 ; and
(2) Ct is holomorphic with respect to t.

The first statement is obvious. For the second statement, denote

X0 = span{δw : w ∈ Π+} ⊂ Aα(Π+)∗.
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Lemma 2.1 implies that, for any f ∈ Aα(Π+),

‖ f ‖Aα
= sup

{
| f (w)|
‖δw‖

: w ∈ Π+
}

= sup{|L( f )| : ‖L‖ = 1, L ∈ X0},

that is, X0 is a determining manifold [15, 2.8.2] ofAα(Π+). According to [15, 3.10.1],
it suffices to illustrate that L(Ct f ) is a holomorphic function in t for any L ∈ X0 and any
f ∈ Aα(Π+). So let f ∈ Aα(Π+) be fixed for the moment. For any point w ∈ Π+, it is
obvious that δw(Ct f ) = f (w + tu) is holomorphic in t. For any linear functional L ∈ X0,
there exists a sequence of functionals {Ln}n ⊂ span{δw : w ∈ Π+} such that Ln → L.
Since ‖Ct‖ = 1 for all t ∈ Π+,

|Ln(Ct f ) − L(Ct f )| ≤ ‖Ln − L‖‖ f ‖Aα
→ 0,

which means that L(Ct f ) is the uniform limit of the sequence {Ln(Ct f )}n of
holomorphic functions, so L(Ct f ) is also holomorphic in t.

Now, denote by C the norm closed algebra generated by {I} ∪ {Ct : t ∈ Π+}. Note
that C is a commutative unital Banach algebra. The Gelfand theory states that

σC(Ct) = {L(Ct): L is a multiplicative linear functional on C}.

For any given multiplicative linear functional L, denote l(t) = L(Ct). Then l(t)
is a holomorphic function over the upper half-plane and l(t1 + t2) = l(t1)l(t2). An
elementary argument shows that either l ≡ 0 or l(t) = eiβt for some β ∈ C. In the latter
case,

|eiβt | = |L(Ct)| ≤ 1

for all t ∈ Π+, so β ≥ 0 and thus

σ(Cϕ) ⊂ σC(Ct) ⊂ {eitβ : β ≥ 0} ∪ {0}.

Taking t = ei arg w0 ,

σ(Cϕ) ⊂ {eiβei arg w0 : β ≥ 0} ∪ {0} = {eisw0 : s ≥ 0} ∪ {0}.

The proof is complete. �

Now, for the hyperbolic case,

ϕ(w) = µw + w0 for all µ > 0, µ , 1.

When Im w0 = 0, ϕ is an automorphism. In this case, we will prove that Cϕ is similar
to a multiple of an isometry. When Im w0 > 0, ϕ is not an automorphism. In this case,
the spectrum is a closed disk, but the proofs for the case 0 < µ < 1 and the case µ > 1
are different, which is due to the location of their fixed points.

Theorem 2.9. Suppose that ϕ(w) = µw + w0 with µ > 0, µ , 1 and Im w0 ≥ 0. Then the
spectrum of Cϕ onAα is:
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(i) σ(Cϕ) = {λ : |λ| = µ−α} if Im w0 = 0; and
(ii) σ(Cϕ) = {λ : |λ| ≤ µ−α} if Im w0 > 0.

Proof. By Theorem 2.6, it follows immediately that the spectral radius of Cϕ is µ−α.
(i) Without loss of generality, we may assume that ϕ(w) = µw. Indeed, for the case

w0 , 0, since ϕ has two fixed points, a = w0/(1 − µ) ∈ R and ∞, we can perform a
conformal transform by setting

ϕ̃(w) = τ−1
a ◦ ϕ ◦ τa(w) = µw,

where τa(w) = w + a. Then Cϕ̃ = Cτa ◦Cϕ ◦C−1
τa

and Cϕ are similar and have the same
spectrum.

Now, for any f ∈ Aα,

‖Cϕ̃ f ‖Aα
= sup

w∈Π+

(Im w)α| f ( µw)| = µ−α sup
w∈Π+

(Im w)α| f (w)| = µ−α‖ f ‖Aα
∞
,

that is, Cϕ̃ is a multiple of an isometry. Since Cϕ̃ is invertible, σ(Cϕ̃) ⊂ {λ : |λ| = µ−α}.
Now, for any λ, |λ| = µ−α, write λ = µ−α+it for some t ≥ 0 and denote

gt(w) = e(−α+it) log w,

where log denotes the principle branch of the logarithm. Then

‖gt‖Aα
= sup

w∈Π+

(Im w)αe−α log |w|−t arg w ≤ sup
w∈Π+

(Im w)α|w|−α = 1 <∞

and
Cϕ̃gt(w) = e(−α+it)(log µ+log w) = λgt(w).

Therefore, {λ : |λ| = µ−α} ⊂ σ(Cϕ̃).
(ii) If Im w0 > 0, it remains to show that {λ : |λ| ≤ µ−α} ⊂ σ(Cϕ). The proof is divided

into two cases.
Case 1. µ > 1. Denote by a = w0/(1 − µ) (Im a < 0) the fixed point of ϕ other than

infinity. The fact that the imaginary part of a is negative will enable us to construct
eigenfunctions. As above, write λ = µ−αs+it with s ≥ 1, t ≥ 0 and define the function

ht(w) = e(−αs+it) log(w−a),

where log is the principle branch of the logarithm. Then

‖ht‖Aα
= sup

w∈Π+

(Im w)αe−α log |w−a|−t arg(w−a)

≤ sup
w∈Π+

(Im w)α|Im w − Im a|−α < 1

and
Cϕht = λgt.

Therefore, λ ∈ σ(Cϕ).
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Case 2. µ < 1. In this case, ϕ has an interior fixed point a = w0/(1 − µ) ∈ Π+. By
Lemma 2.2, the composition operator

Cϕ :Aα(Π+)→Aα(Π+)

is isometrically isomorphic to the weighted composition operator

uCψ : H∞α (D)→ H∞α (D),

where ψ = σ−1 ◦ ϕ ◦ σ and u(z) = ((1 − ψ(z))/(1 − z))2α. By Theorem 2.6, the essential
spectral radius is re(uCψ) = re(Cϕ) = µ−α. So according to Lemma 2.4,

{λ : |λ| ≤ µ−α} ⊂ σ(Cϕ).

Note that the set {u(σ−1(a))ψ′(σ−1(a))}∞n=0 does not give any more points in
the spectrum since the essential spectral radius equals the spectral radius by
Theorem 2.6. �

Remark. As shown above, the location of the fixed point a = w0/(1 − µ) enables us to
construct eigenfunctions in the case µ > 1. But this fails in the case µ < 1. In fact, if
f ◦ ϕ = λ f , |λ| ≤ µ−α, then

f (ϕ(w)) =

∞∑
n=0

anµ
n(w − a)n = λ

∞∑
n=0

an(w − a)n = λ f (w)

in a neighborhood of a ∈ Π+. So λ = µn and f (w) = an(w − a)n for some n ∈ N.
However, in this case, it is easy to see that f ∈ Aα(Π+) if and only if an = 0. Therefore,
Cϕ has no eigenvalues.

3. Regarding the Bloch space

Recall that the Bloch space of the half-plane is defined by

B(Π+) =
{
f ∈ H(Π+) : ‖ f ‖B(Π+) = sup

w∈Π+

Im w| f ′(w)| <∞
}
.

The quantity ‖ · ‖B(Π+) defines a seminorm on B(Π+). A norm is given by adding the
modulus | f (i)| to the seminorm. As we mentioned in the introduction, the Cayley
transform induces an isomorphic composition operator from B(Π+) onto the classic
Bloch space B of the unit disk

B =
{
f ∈ H(D) : ‖ f ‖B = sup

z∈D
(1 − |z|2)| f ′(z)| <∞

}
.

According to the Schwartz–Pick theorem [7, Theorem 2.39], every holomorphic self-
map of the unit disk induces a bounded composition operator on B .

In this section, we want to complete the characterization of the spectra of
composition operators with LFT symbols acting on the Bloch space. First, recall that

https://doi.org/10.1017/S1446788718000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000289


[13] Spectra of linear fractional composition operators 211

an automorphism ϕ ∈ Aut(D) of the unit disk is a conformal map of the unit disk onto
itself, which is of the form

ϕ(z) = λ
a − z
1 − az

for all |λ| = 1, a ∈ D.

The spectra of automorphic composition operators on the Bloch space were described,
although not explicitly, in [16] as a corollary.

Theorem 3.1 [16, Corollary 5.2]. Let ϕ ∈ Aut(D). Then the spectrum of Cϕ acting on
the Bloch space B is:

(i) {ϕ′(a)n : n ≥ 0} if ϕ has an interior fixed point a ∈ D;
(ii) the unit circle T if ϕ has no interior fixed point.

For the remainder of this paper, we will give the spectra when ϕ is not an
automorphism. First, the spectral radius is already known.

Lemma 3.2 [8, Corollary 3.9]. Let ϕ be a holomorphic self-map of the unit disk. Then
the spectral radius of Cϕ acting on B is one.

The spectrum of a composition operator on the Bloch space when the symbol admits
an interior fixed point is shown in the following lemma.

Lemma 3.3 [1, Corollary 9,10]. Suppose that ϕ, which is not an automorphism, fixes a
point in D. Then, acting on the Bloch space,

σ(Cϕ) = {λ : |λ| ≤ re(Cϕ)} ∪ {u(a)ϕ′(a)n}∞n=0.

Moreover, if ϕ is univalent and re,H2 (Cϕ) , 0, where H2 is the Hardy–Hilbert space of
the unit disk, then σ(Cϕ) = D.

Now, we can complete the task of determining the spectra of nonautomorphism
LFT composition operators acting on the Bloch space.

Theorem 3.4. Let ϕ, which is not an automorphism, be an LFT mapping the unit disk
into itself. Then, acting on the Bloch space B, the spectrum of Cϕ is:

(i) {ϕ′(a)n : n ≥ 0} if ϕ has an interior fixed point a and an exterior fixed point;
(ii) D if ϕ has two distinct fixed points with one on the boundary; and
(iii) {eiw0t : t ≥ 0} ∪ {0}, where w0 = 2iϕ(0)/(ζ − ϕ(0)), if ϕ has a unique fixed point

ζ ∈ T of 2-multiplicities.

Proof. (i) In this case, ϕ(ϕ(D)) ⊂ D and thus Cϕ◦ϕ is compact. It follows by Lemma 3.3
and the spectral mapping theorem that σ(Cϕ) = {ϕ′(a)n : n ≥ 0}.

(ii) The proof is divided into two cases.
Case 1. If ϕ has a boundary fixed point ζ ∈ T and an interior fixed point, according

to Lemma 3.3, it suffices to prove that the essential spectral radius re,H2 (Cϕ) > 0. Since
ϕ is a nonautomorphism LFT with a boundary fixed point, ϕ(D) is a disk tangential to

https://doi.org/10.1017/S1446788718000289 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000289


212 S.-A. Han and Z.-H. Zhou [14]

the unit circle at ζ. Applying [7, Theorem 7.31] and the Julia–Carathéodory theorem
of the unit disk [7, Theorem 2.44],

re,H2 (Cϕ) = lim
k→∞

(
lim sup
|w|→1

‖Kϕk(w)‖

‖Kw‖

)1/k

= lim
k→∞

(
lim sup
|w|→1

1 − |w|2

1 − |ϕk(w)|2

)1/2k

= lim
k→∞

(
lim sup

w→ζ

1 − |w|2

1 − |ϕk(w)|2

)1/2k

= lim
k→∞

(
lim inf

w→ζ

1 − |ϕk(w)|2

1 − |w|2

)−1/2k

= lim
k→∞

(|ϕ′k(ζ)|)−1/2k = ϕ′(ζ)−1/2 > 0.

Case 2. If ϕ has a boundary fixed point ζ ∈ T and an exterior fixed point, let
ϕ̃(z) = ζ−1ϕ(ζz). Then ϕ̃(1) = 1 and Cϕ̃ and Cϕ are similar. Let σ(z) = i((1 + z)/(1 − z))
be the Cayley transform. Then Cϕ̃ acting on B is similar to Cψ acting on B(Π+), where
ψ = σ ◦ ϕ̃ ◦ σ−1. We need to prove that σ(Cψ) = D.

Denote by w0 (Im w0 < 0) the fixed point of ψ other than ∞. Then ψ(w) =

µ(w − w0) + w0, where µ > 1 since∞ is attractive. For λ = µ−s+it ∈ D with s ≥ 0, t ∈ R,
take

fs,t(w) = e(−s+it) log(w−w0),

where log denotes the principle branch of the logarithm. Then

Cψ fs,t = µ−s+it fs,t

and

‖ fs,t‖B(Π+) = sup
w∈Π+

Im w| f ′s,t(w)|

= |−s + it| sup
w∈Π+

Im w|e(−s−1+it) log(w−w0)|

= |−s + it| sup
w∈Π+

Im we−(s+1) log |w−w0 |−t arg(w−w0)

≤ |−s + it| sup
w∈Π+

Im we−(s+1) log |w−w0 | (Im w0 < 0)

= |−s + it| sup
w∈Π+

Im w
|w − w0|

s+1 <∞.

So D ⊂ σ(Cϕ), which, together with Lemma 3.2, gives the result σ(Cϕ) = D.
(iii) Proceeding as above, Cϕ acting on B is similar to Cψ acting on B(Π+), where

ψ = σ ◦ ζ−1 ◦ ϕ ◦ ζ ◦ σ−1. Since ψ fixes ∞ as the unique fixed point and not an
automorphism,

ψ(w) = w + w0 for all Im w0 > 0.
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Calculation shows that w0 = ψ(0) = 2iϕ(0)/(ζ − ϕ(0)). Note that Cψ is embedded
in the holomorphic semigroup {Cψt : t ∈ Π+}, where ψt = w + t|w0|. The inclusion
σ(Cϕ) ⊂ {eiw0t : t ≥ 0} ∪ {0} is exactly the same as the proof of Theorem 2.8. To prove
the converse inclusion, for any point eiw0t, t ≥ 0,

Cψ(eitw) = eit(w+w0) = eitw0 eitw

and
‖eitw‖B(Π+) = sup

w∈Π+

Im w|iteitw| = t sup
w∈Π+

Im w · e−t Im w =
1
e
<∞.

The proof is complete. �

At the end of this paper, for completeness, we would like to state the spectra of
composition operators with linear fractional symbols acting on the Bloch space of the
upper half-plane.

Corollary 3.5. Let ϕ : Π+ → Π+ be a linear fractional transformation. Then acting
on the Bloch space B(Π+), the spectrum of Cϕ is:

(i) {ϕ′(a)n : n ≥ 0} if ϕ has an interior fixed point a ∈ Π+ and an exterior fixed point;
(ii) T if ϕ is an automorphism without interior fixed point;
(iii) D if ϕ has two distinct fixed points with only one on the boundary; and
(iv) {eiw0t : t ≥ 0} ∪ {0}, where w0 = ((ϕ(i) − i)(b + i))/(b − ϕ(i)), if ϕ is a

nonautomorphism with the unique boundary fixed point b of 2-multiplicities.

Remark. In the fourth case (iv) of Corollary 3.5, the value of w0 is understood to be
ϕ(i) − i when the fixed point of ϕ is∞.
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