
Canad. Math. Bull. Vol. 64 (4), 2023, pp. 1411–1422
http://dx.doi.org/10.4153/S0008439523000541
© The Author(s), 2023. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society

Bohr operator on operator-valued
polyanalytic functions on simply
connected domains
Vasudevarao Allu and Himadri Halder

Abstract. In this article, we study the Bohr operator for the operator-valued subordination class S( f )
consisting of holomorphic functions subordinate to f in the unit disk D ∶= {z ∈ C ∶ ∣z∣ < 1}, where
f ∶ D→ B(H) is holomorphic and B(H) is the algebra of bounded linear operators on a complex
Hilbert space H. We establish several subordination results, which can be viewed as the analogs
of a couple of interesting subordination results from scalar-valued settings. We also obtain a von
Neumann-type inequality for the class of analytic self-mappings of the unit diskDwhich fix the origin.
Furthermore, we extensively study Bohr inequalities for operator-valued polyanalytic functions in
certain proper simply connected domains in C. We obtain Bohr radius for the operator-valued
polyanalytic functions of the form F(z) = ∑p−1

l=0 z l f l(z), where f0 is subordinate to an operator-
valued convex biholomorphic function, and operator-valued starlike biholomorphic function in the
unit disk D.

1 Introduction

Let H∞(D) be the space of bounded analytic functions from the unit disk D ∶= {z ∈
C ∶ ∣z∣ < 1} into the complex plane C and denote ∥ f ∥∞ ∶= sup∣z∣<1 ∣ f (z)∣. In 1914, the
following remarkable result for the universal constant r = 1/3 for functions in H∞(D)
was proved by Bohr [13].

Theorem A Let f ∈ H∞(D) with the power series f (z) = ∑∞n=0 anzn . Then
∞

∑
n=0
∣an ∣rn ≤ ∥ f ∥∞(1.1)

for ∣z∣ = r ≤ 1/3, and the constant 1/3, referred to as the classical Bohr radius, is the best
possible.

The interest in the Bohr inequality has been revived when Dixon [15] used it to
disprove the conjecture that if the nonunital von Neumann’s inequality holds for
a Banach algebra, then it is necessarily an operator algebra. In 2004, Paulsen and
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1412 V. Allu and H. Halder

Singh [22] extended Bohr’s theorem to Banach algebras by finding a general version
of Bohr inequality which is valid in the context of uniform algebras. For fixed z ∈ D,
we denote

Gz ∶= { f (z) =
∞

∑
n=0

anzn ∶ f ∈ H∞(D)} .

For ∣z∣ = r, the Bohr operator Mr on Gz is defined by

Mr( f ) =
∞

∑
n=0
∣an ∣∣zn ∣ =

∞

∑
n=0
∣an ∣rn .

The Bohr operator has the following properties, which has been established in [23].

Theorem 1.1 [2] For each fixed z ∈ D and ∣z∣ = r, the Bohr operator Mr satisfies:
(1) Mr( f ) ≥ 0, and Mr( f ) = 0 if, and only if, f ≡ 0,
(2) Mr( f + g) ≤ Mr( f ) +Mr(g),
(3) Mr(α f ) = ∣α∣Mr( f ), α ∈ C,
(4) Mr( f .g) ≤ Mr( f ).Mr(g),
(5) Mr(1) = 1.

By the virtue of Theorem 1.1, it is worth to mention that the space Gz with the
norm Mr constitutes a Banach algebra. However, not all Banach spaces satisfy the
Bohr phenomenon. In [7], Bénéteau et al. have shown that Hq , the usual Hardy spaces
in D, do not satisfy the Bohr phenomenon for any 0 < q < ∞. A complex Banach
algebra A satisfies the von Neumann inequality if for all polynomial p(X) and for all
x ∈ A with ∥x∥ ≤ 1,

∥p(x)∥ ≤ ∥p∥∞ .(1.2)

In [25], von Neumann has shown that the algebra B(H) of all bounded operators on
a Hilbert space H satisfies the inequality (1.2). It is well known that every Banach
algebra which is an operator algebra (i.e., which is isometrically isomorphic to a
closed subalgebra of B(H) for some Hilbert space H) also satisfies the von Neumann
inequality (1.2). Bohr inequality has been extended to several complex variables and
more abstract settings (see [8, 12, 14, 19, 21, 22, 24]).

Another interesting aspect of Bohr phenomenon thrives on considering the Bohr
radius problem for subordinating families of analytic functions in D. For two analytic
functions g and f in D, we say that g is subordinate to f, written g ≺ f , if there
exists an analytic function ϕ ∶ D→ D with ϕ(0) = 0 such that g(z) = f (ϕ(z)) in D.
Let S( f ) be the class of analytic functions subordinate to f in D. We say that g is
quasi-subordinate to f if there exists an analytic function ψ with ∣ψ(z)∣ ≤ 1 in D

such that g(z) = ψ(z) f (ϕ(z)) in D. It is well known that if g is subordinate (or
quasi-subordinate) to f in D, then Mr(g) ≤ Mr( f ) for ∣z∣ = r ≤ 1/3. Bhowmik and
Das [10] have studied the Bohr radius for the subordinating families, and the Bohr
radius for quasi-subordination families has been studied by Alkhaleefah et al. [5]. In
2021, Bhowmik and Das [11] extended the Bohr phenomenon for the subordination
to operator-valued analytic functions in D. Throughout this article, B(H) stands
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Bohr operator on operator-valued polyanalytic functions 1413

for the space of bounded linear operators on a complex Hilbert space H. We want
to concentrate operator-valued holomorphic functions f ∶ D→ B(H). The term
subordination for operator-valued functions can be defined as the scalar valued case.
That is, for two holomorphic functions g , f ∶ D→ B(H), we say that g is subordinate
to f, written g ≺ f , if there exists a holomorphic function ϕ ∶ D→ D with ϕ(0) = 0
such that g(z) = f (ϕ(z)) inD. Let S( f ) be the class of analytic functions subordinate
to f in D. For given two Banach spaces X and Y and a domain Ω ⊂ X, a holomorphic
function f ∶ Ω → Y is said to be biholomorphic on Ω if f −1 exists and is holomorphic
in f (Ω) ⊆ Y . We say that a biholomorphic function f is starlike in its domain Ω with
respect to ξ0 ∈ Ω if f (Ω) is a starlike domain with respect to f (ξ0), i.e., (1 − t) f (ξ0) +
t f (z) ∈ f (Ω) for all z ∈ Ω and t ∈ [0, 1]. A biholomorphic function f is called starlike
if f is starlike with respect to 0 ∈ Ω and f (0) = 0. A biholomorphic function f is said
to be convex if f is starlike with respect to every point in Ω. For convex or star-like
biholomorphic function f in D, Bohr phenomenon for any g ∈ S( f ) has been studied
in [11].

For the rest of our discussion, we introduce some notations. Throughout this paper,
∥A∥ stands for the operator norm of A for any A ∈ B(H) and ∣A∣ = (A∗A)1/2 denotes
the absolute value of A, where A∗ is the adjoint of A and T 1/2 denotes the unique
positive square root of a positive operator T. We denote I be the identity operator
on H.

In 2010, Fournier and Ruscheweyh [16] extensively studied the Bohr radius prob-
lem for arbitrary simply connected domains containing D. Let H(Ω) be the class of
analytic functions f ∶ Ω → C, and let B(Ω) denote the class of functions f ∈H(Ω)
such that f (Ω) ⊆ D. For the classB(Ω), the Bohr radiusBΩ is defined by (see [4, 16])

BΩ ∶= sup{r ∈ (0, 1) ∶ Mr( f ) ≤ 1 for all f (z) =
∞

∑
n=0

anzn ∈ B(Ω), z ∈ D},

where Mr( f ) ∶= ∑∞n=0 ∣an ∣rn is the Bohr operator for f ∈ B(Ω) in D. For Ω = D,
B(Ω) reduces to BD = 1/3, which is the classical Bohr radius for the class B(D).

For 0 ≤ γ < 1, Fournier and Ruscheweyh [16] have estimated the Bohr radius for
the class B(Ωγ) and proved that BΩγ = (1 + γ)/(3 + γ), where

Ωγ ∶= {z ∈ C ∶ ∣z + γ
1 − γ
∣ < 1

1 − γ
}.

Let H∞(Ω, X) be the space of bounded analytic functions from Ω into a com-
plex Banach space X and ∥ f ∥H∞(Ω,X) = supz∈Ω ∥ f (z)∥. The Bohr phenomenon for
operator-valued functions on simply connected domains has been studied in [6]. Let
B(H) be the algebra of all bounded linear operators on a complex Hilbert space H.
For the class H∞(Ω,B(H)), we denote (see [6])

λH ∶= λH(Ω) ∶= sup
f ∈H∞(Ω,B(H))
∥ f (z)∥≤1

{ ∥An∥
∥ I − ∣A0∣2∥

∶ A0 /≡ f (z) =
∞

∑
n=0

Anzn , z ∈ D} .

(1.3)

https://doi.org/10.4153/S0008439523000541 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000541


1414 V. Allu and H. Halder

Recently, Allu and Halder [6] have established the Bohr theorem for the functions in
H∞(Ω,B(H)).

Theorem 1.2 [6] Let f ∈ H∞(Ω,B(H)) with ∥ f (z)∥H∞(Ω,B(H)) ≤ 1 such that
f (z) = ∑∞n=0 Anzn in D, where A0 = α0I for ∣α0∣ < 1 and An ∈ B(H) for all n ∈
N ∪ {0}. Then

∞

∑
n=0
∥An∥ rn ≤ 1 for r ≤ 1

1 + 2λH

.(1.4)

For Ω = Ωγ and p = 1 in [6, Corollary 1.52], we have the following result.

Theorem 1.3 [6] Let f ∈ H∞(Ωγ ,B(H)) with ∥ f (z)∥H∞(Ωγ ,B(H)) ≤ 1 such
that f (z) = ∑∞n=0 Anzn in D, where A0 = α0I for ∣α0∣ < 1 and An ∈ B(H) for all
n ∈ N ∪ {0}. Then

∞

∑
n=0
∥An∥ rn ≤ 1 for r ≤ 1 + γ

3 + γ
.(1.5)

When Ωγ = D, i.e., γ = 0, under the same assumptions as in Theorem 1.3, we have
∞

∑
n=0
∥An∥ rn ≤ 1 for r ≤ 1

3
.(1.6)

2 Bohr operator on operator-valued subordination classes

In this section, we study subordination results for Bohr operator on operator-valued
analytic functions in D. Recall that B(H) be the algebra of all bounded linear
operators on a complex Hilbert space H. For analytic functions f ∶ D→ B(H) with
f (z) = ∑∞n=0 Anzn in D and An ∈ B(H) for n ∈ N ∪ {0}, we define the Bohr operator
Mr( f ) as the scalar valued case. That is, Mr( f ) = ∑∞n=0 ∥An∥ ∣z∣n . It can be easily seen
that the operator Mr satisfies the same property as in Theorem 1.1. In fact, for f , g ∶
D→ B(H)with f (z) = ∑∞n=0 Anzn and g(z) = ∑∞n=0 Bnzn in D with An , Bn ∈ B(H)
for n ∈ N ∪ {0}, we have

Mr( f + g) =
∞

∑
n=0
∥An + Bn∥ rn ≤

∞

∑
n=0
∥An∥ rn +

∞

∑
n=0
∥Bn∥ rn = Mr( f ) +Mr(g).(2.1)

Using (2.1), it is easy to see that if F(z) = ∑k∈Z fk(z) is analytic function in D, then
Mr(F) ≤ ∑k∈Z Mr( fk), where fk ∶ D→ B(H) is analytic function inD for each k ∈ Z.
On the other hand, we note that Mr(β f ) = ∣β∣Mr( f ) for any β ∈ C and Mr(zp f ) =
r p Mr( f ). We observe that ( f g)(z) = ∑∞n=0 An(zn g(z)) and hence

Mr( f g) ≤
∞

∑
n=0
∥An∥ rn Mr(g) = Mr( f )Mr(g).(2.2)

Clearly, Mr(I) = 1. The following result has been established in [2].
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Lemma 2.3 [2] Let ϕ ∶ D→ D be analytic function with ϕ(0) = 0. Then Mr(ϕ) ≤ ∣z∣
for ∣z∣ = r ≤ 1/3.

The following result is the operator-valued subordination result for Bohr operator,
which has been first proved in [11]. By using Lemma 2.3, we give an alternative proof.

Theorem 2.1 Let f , g ∶ D→ B(H) be holomorphic functions such that f ≺ g. Then

Mr( f ) ≤ Mr(g) for ∣z∣ = r ≤ 1
3

.(2.4)

Proof Let f (z) = ∑∞n=0 Anzn and g(z) = ∑∞n=0 Bnzn in D with An , Bn ∈ B(H) for
n ∈ N ∪ {0}. Since f ≺ g in D, then there exists an analytic function ϕ ∶ D→ D such
that ϕ(0) = 0 and f (z) = g(ϕ(z)) in D. In view of (2.1), (2.2), and Lemma 2.3, for
0 ≤ ∣z∣ = r ≤ 1/3, we obtain

Mr( f ) = Mr(g(ϕ)) = Mr (
∞

∑
n=0

Bn(ϕ(z))n)

≤
∞

∑
n=0
∥Bn∥ (Mr(ϕ(z)))n ≤

∞

∑
n=0
∥Bn∥ rn = Mr(g).

This completes the proof. ∎

In particular, for the scalar-valued functions f , g ∶ D→ C, Theorem 2.1 reduces
to the result of Abu Muhanna et al. [2], and Bhowmik and Das [10]. In view of
Theorem 2.1, we obtain the following interesting result.

Theorem 2.2 Let f , g , h ∶ D→ B(H) be holomorphic functions such that f (z) =
h(z)g(ϕ(z)) for some analytic function ϕ ∶ D→ D with ϕ(0) = 0. If ∥h(z)∥ ≤ M for
∣z∣ < β ≤ 1 and h(0) = αI with ∣α∣ ≤ M, then Mr( f ) ≤ M Mr(g) for 0 ≤ r ≤ β/3.

Proof From (2.2), we have

Mr( f ) ≤ Mr(h)Mr(g(ϕ)).(2.5)

The assumption ∥h(z)∥ ≤ M in the disk Dβ ∶= {z ∈ C ∶ ∣z∣ < β} shows that h1 ∶ D→
B(H) defined by h1(z) = h(z)/M is holomorphic and ∥h1(z)∥ ≤ 1 in Dβ such that
h1(0) = (α/M)I. Since ∣α∣ ≤ M, from (1.6), we obtain

Mr(h) ≤ M for 0 < r ≤ β
3

.(2.6)

Furthermore, in view of Theorem 2.1, we have

Mr(g(ϕ)) ≤ Mr(g) for 0 < r ≤ 1
3

.(2.7)

By using (2.6) and (2.7) in (2.5), we obtain

Mr( f ) ≤ M Mr(g) for 0 < r ≤ β
3

.(2.8)

This completes the proof. ∎
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Remark 2.1 (1) For a particular case h(z) ≡ I, Theorem 2.2 reduces to
Theorem 2.1. By taking f , g , h ∶ D→ C are analytic functions in Theorem 2.2, we
obtain the scalar-valued quasi-subordination result, which has been established
in [5].

(2) When ∥h(z)∥ ≤ 1 in D, we deduce that Mr( f ) ≤ Mr(g) for ∣z∣ = r ≤ 1/3.

We now prove the following interesting result, which is an analog of von Neumann
inequality (1.2).

Theorem 2.3 Let f ∶ D→ B(H) be analytic in D and continuous in D such that
f (0) = αI for some α ∈ C with ∣α∣ < 1. Then

Mr( f (ϕ)) ≤ ∥ f ∥∞ for 0 ≤ r ≤ 1/3,(2.9)

where ϕ ∶ D→ D is analytic function with ϕ(0) = 0.

Proof Let f (z) = ∑∞n=0 Anzn inD, where A0 = αI and An ∈ B(H) for n ∈ N ∪ {0}.
Then, for r ≤ 1/3, Theorem 2.1 gives

Mr( f (ϕ)) ≤
∞

∑
n=0
∥An∥ rn = Mr( f ).(2.10)

In view of (1.6), for 0 ≤ r ≤ 1/3, we obtain Mr( f ) ≤ ∥ f ∥∞ which together with (2.10)
gives (2.9). ∎

3 Bohr theorem for operator-valued polyanalytic functions

Polyanalytic functions f of order p defined in a simply connected domain Ω ⊆ C
are complex-valued polynomials in the variable z with analytic functions are their
coefficients. That is, f has the following form f (z) = ∑p−1

l=0 zp f l(z), where f l ’s are
analytic functions in Ω. Equivalently, polyanalytic functions can also be defined as
the Cp(Ω)-solutions of the generalized Cauchy–Riemann equations ∂p f /∂zp = 0 in
Ω (the Cauchy–Riemann equations of order p). Throughout this paper, we assume
that p ≥ 2.

In 1908, Kolossov [20] first introduced polyanalytic functions in connection with
his research in the mathematical theory of elasticity. Polyanalytic function theory
has been extensively studied by Balk [9]. In 2011, Agranovsky [3] characterized the
polyanalytic functions by meromorphic extensions into chains of circles. It is worth
mentioning that the properties of polyanalytic functions can be different from those
of analytic functions (see [9]). By considering the polyanalytic function f (z) = 1 − zz,
one can easily see that f vanishes on the boundary of the unit diskDwithout vanishing
identically in D. Studying polyanalytic functions also reveals some new properties of
analytic functions. The study of polyanalytic functions is closely related to numerous
research topics of complex analysis, e.g., function theory of several complex vari-
ables, the theory of distribution of values of meromorphic functions, the theory of
meromorphic curves, and the theory of boundary properties of analytic functions.
In 2019, Hachadi and Youssfi [18] have studied several properties of polyanalytic
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reproducing kernels. In 2021, Abdulhadi and Hajj [1] extensively studied univalency
criteria, Landau’s theorem, arc-length problem, and the Bohr phenomenon problem
for polyanalytic functions in D.

Since complex-valued polyanalytic functions are polynomials in z in simply con-
nected domain Ω, this leads to study the operator-valued polyanalytic functions. A
operator-valued polyanalytic function F of order p in Ω is a polynomial in z with
operator-valued analytic functions as its coefficients. That is, F has the following form:

F(z) =
p−1

∑
l=0

zp f l(z),

where f l ∶ Ω → B(H) are analytic functions for l = 0, 1, . . . , p − 1 and fp−1 /≡ 0. Now,
we consider the simply connected domain Ω containing D.

Although Bohr radius and Bohr phenomenon have been extensively studied, no
attempt has been made so far to obtain operator-valued analogs of Bohr phenomenon
for polyanalytic functions. Therefore, our main aim of this section is to obtain the
Bohr inequality under appropriate considerations and necessary conditions. In the
following result, we establish operator-valued analogs of Bohr inequality in simply
connected domain Ω containing D.

Theorem 3.1 Let F be a polyanalytic function of order p in Ω with F(z) =
∑p−1

l=0 z l f l(z), where each f l ∶ Ω → B(H) is an analytic function such that f l(z) =
∑∞n=0 An , l zn in D and An , l ∈ B(H) for n ∈ N ∪ {0}. Also, assume that:
(a) ∥ f0(z)∥ ≤ 1 in Ω such that f0(0) = 0 and f ′l (0) = α l f ′0(0) with ∣α l ∣ < k for k ∈

[0, 1] and each l = 1, . . . , p − 1.
(b) ω l ∶ Ω → B(H) is analytic with ∥ω l(z)∥ ≤ k in Ω for k ∈ [0, 1], where ω l(z) =

f ′l (z)( f ′0(z))−1 in Ω such that ω l(z) = ∑∞n=0 ωn , l zn in D, provided ( f ′0(z))−1

exists for all z ∈ Ω.
Then Mr(F) ≤ 1 for ∣z∣ = r ≤ R f =min{r f (p), 1/(1 + 2λH)}, where r f (p) is the small-
est root in (0, 1) of

(1 − r)2 − kλH r + kλH r p+1 = 0.(3.1)

Here, λH is given by (1.3).

Proof Let F(z) = ∑p−1
l=0 z l f l(z) with f l(z) = ∑∞n=0 An , l zn in D. Then

Mr(F) = Mr
⎛
⎝

p−1

∑
l=0

z l f l(z)
⎞
⎠
≤

p−1

∑
l=0

r l Mr( f l) for ∣z∣ = r < 1.(3.2)

Since ω l(z) = f ′l (z)( f ′0(z))−1 in Ω with ∥ω l(z)∥ ≤ k in Ω for each l such that f ′l (0) =
α l f ′0(0), it follows that f ′l (z) = ω l(z) f ′0(z) in Ω with ω l(0) = α l I, where ∣α l ∣ < k for
each l = 1, . . . , p − 1. Let λH be given by (1.3). In view of Theorem 1.2, for ∣z∣ = r ≤
1/(1 + 2λH), we have Mr(ω l) ≤ k, which together with (2.2) gives

Mr( f l) =
r

∫
0

Mr( f ′l )dt =
r

∫
0

Mr(ω l f ′0)dt ≤ k
r

∫
0

Mr( f ′0)dt = k Mr( f0).(3.3)
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Using (3.2) and (3.3), for ∣z∣ = r ≤ 1/(1 + 2λH), we obtain

Mr(F) ≤ k
p−1

∑
l=0

r l Mr( f0) = kMr( f0)(
1 − r p

1 − r
) .(3.4)

We now wish to find the upper bound for Mr( f0). We observe that f0 ∶ Ω → B(H)
is analytic function with ∥ f0(z)∥ ≤ 1 in Ω such that f0(z) = ∑∞n=0 An ,0zn in D, where
f0(0) = A0,0 = 0. Then, in view of (1.3), we have ∥An ,0∥ ≤ λH for n ≥ 1, and hence

Mr( f0) =
∞

∑
n=0
∥An ,0∥ rn ≤ λH (

r
1 − r
) .(3.5)

In view of (3.4) and (3.5), for r ≤ 1/(1 + 2λH), we obtain

Mr(F) ≤ k λH (
r

1 − r
)( 1 − r p

1 − r
) .(3.6)

Therefore, Mr(F) ≤ 1 for r ≤min{1/(1 + 2λH), r f (p)}, where r f (p) is the smallest
root in (0, 1) of

k λH (
r

1 − r
)( 1 − r p

1 − r
) = 1,

which is equivalent to (1 − r)2 − k λH r + k λH r p+1 = 0. This completes the proof. ∎

As a consequence of Theorem 3.1, we obtain Bohr-type inequality for bi-analytic
functions in a domain Ω.

Corollary 3.7 Let F be a bi-analytic function in a domain Ω with the series expansion
as in Theorem 3.1. Also, assume all the hypotheses as in Theorem 3.1. Then Mr(F) ≤ 1
for ∣z∣ = r ≤min{r f (2), 1/(1 + 2λH)}, where r f (2) is the smallest root in (0, 1) of

(1 − r)2 − kλH r + kλH r3 = 0,(3.8)

where λH is given by (1.3).

For Ω = Ωγ , we have λH = λH(Ωγ) ≤ 1/(1 + γ) (see [6]). In view of Theorem 3.1,
we obtain the following corollaries.

Corollary 3.9 Let F be a polyanalytic function in Ωγ with the series expansion as
in Theorem 3.1. Also, assume all the hypotheses as in Theorem 3.1. Then Mr(F) ≤ 1 for
∣z∣ = r ≤min{r f (p, γ), (1 + γ)/(3 + γ)}, where r f (p, γ) is the smallest root in (0, 1) of

(1 + γ)(1 − r)2 − kr + kr p+1 = 0.(3.10)

The following result is the limiting case of Corollary 3.9. Consider the domain
Ω̃ = {z ∶ Re z < 1}, which can be obtained as the limiting case of the domain Ωγ by
considering γ → 1−.
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Corollary 3.11 Let F be a polyanalytic function in Ω̃ with the series expansion as in
Theorem 3.1. Also, assume all the hypotheses as in Theorem 3.1. Then Mr(F) ≤ 1 for
∣z∣ = r ≤min{r f (p, 1), 1/2}, where r f (p, 1) is the smallest root in (0, 1) of

2(1 − r)2 − kr + kr p+1 = 0.(3.12)

In the next result, we obtain Bohr radius for the polyanalytic function F(z) =
∑p−1

l=0 z l f l(z), where f0 is a subordinate to a convex biholomorphic function in the
unit disk D.

Theorem 3.2 Let F be a polyanalytic function of order p in D with F(z) =
∑p−1

l=0 z l f l(z), where each f l ∶ D→ B(H) is an analytic function such that f l(z) =
∑∞n=0 An , l zn in D and An , l ∈ B(H) for n ∈ N ∪ {0}. Also, assume that:
(1) f0 ∈ S(g) such that f0(0) = 0 and f ′l (0) = α l f ′0(0)with ∣α l ∣ < k for k ∈ [0, 1] and

each l = 1, . . . , p − 1, where g ∶ D→ B(H) is a convex biholomorphic function
with g(z) = ∑∞n=0 gnzn in D and gn ∈ B(H) for n ∈ N ∪ {0}.

(2) ω l ∶ D→ B(H) is an analytic function with ∥ω l(z)∥ ≤ k inD for k ∈ [0, 1], where
ω l(z) = f ′l (z)( f ′0(z))−1 in D such that ω l(z) = ∑∞n=0 ωn , l zn in D, provided
( f ′0(z))−1 exists for all z ∈ D.

Then Mr(F) ≤ 1 for ∣z∣ = r ≤ RC =min{rC(p, k, β), 1/3}, where rC(p, k, β) is the
smallest root in (0, 1) of

(1 − r)2 − kβ r + kβ r p+1 = 0,(3.13)

where ∥g′(0)∥ = β.

Proof From (3.4), it is enough to estimate the upper bound of Mr( f0). Let g ∶
D→ B(H) be univalent and convex biholomorphic function in D such that g(z) =
∑∞n=0 gnzn , where gn ∈ B(H). Set ξ = e2πi/n . Since g is convex, then by the similar
argument used in proving [26, Theorem X], we obtain

Ψ(zn) = f0(ξz) + f0(ξ2z) +⋯ + f0(ξnz)
n

= An ,0zn + A2n ,0z2n +⋯ ≺ g(z),

and hence Ψ(z) = An ,0z + A2n ,0z2 +⋯ ≺ g(z) for z ∈ D. Hence, there exits a holo-
morphic function ω ∶ D→ Dwith ω(0) = 0 such that Ψ(z) = g(ω(z)), which implies
that Ψ′(0) = ω′(0)g′(0). That is, An ,0 = ω′(0)g′(0), which leads to

∥An ,0∥ ≤ ∥g′(0)∥ .(3.14)

Since f l(z) = ∑∞n=0 An , l zn in D, using (3.14) and the fact f0(0) = 0, we obtain

Mr( f0) =
∞

∑
n=0
∥An ,0∥ rn ≤ ( r

1 − r
) ∥g′(0)∥ = β ( r

1 − r
) .(3.15)

Since F(z) = ∑p−1
l=0 z l f l(z) with f l(z) = ∑∞n=0 An , l zn in D, we have

Mr(F) = Mr
⎛
⎝

p−1

∑
l=0

z l f l(z)
⎞
⎠
≤

p−1

∑
l=0

r l Mr( f l) for ∣z∣ = r < 1.(3.16)
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By the given assumption ω l(z) = f ′l (z)( f ′0(z))−1 in Ω with ∥ω l(z)∥ ≤ k in Ω for each
l such that f ′l (0) = α l f ′0(0), it follows that f ′l (z) = ω l(z) f ′0(z) in Ω with ω l(0) = α l I,
where ∣α l ∣ < k for each l = 1, . . . , p − 1. Let λH be given by (1.3). For Ωγ = D, i.e., γ = 0,
we have λH ≤ 1 (see [6]). In view of Theorem 1.2, for ∣z∣ = r ≤ 1/3, we have Mr(ω l) ≤ k,
which together with (2.2) gives

Mr( f l) =
r

∫
0

Mr( f ′l )dt =
r

∫
0

Mr(ω l f ′0)dt ≤ k
r

∫
0

Mr( f ′0)dt = k Mr( f0).(3.17)

Using (3.15)–(3.17), for ∣z∣ = r ≤ 1/3, we obtain

Mr(F) ≤ k
p−1

∑
l=0

r l Mr( f0) = kMr( f0)(
1 − r p

1 − r
) ≤ kβ ( r

1 − r
)( 1 − r p

1 − r
) .(3.18)

Hence, Mr(F) ≤ 1 for r ≤ RC =min{rC(p, k, β), 1/3}, where rC(p, k, β) is the
smallest root in (0, 1) of (3.13). This completes the proof. ∎

Let h ∶ D→ B(H) be holomorphic and g ∈ S(h) with the expansions h(z) =
∑∞n=0 hnzn and g(z) = ∑∞n=0 gnzn , respectively, in D, where hn , gn ∈ B(H) for
n ∈ N ∪ {0}. Then, in view of [11, Lemma 2], for ∣z∣ = r ≤ 1/3, it is known that

∞

∑
n=1
∥gn∥ rn ≤

∞

∑
n=1
∥hn∥ rn .(3.19)

In the following result, we obtain Bohr radius for the polyanalytic function F(z) =
∑p−1

l=0 z l f l(z), where f0 is subordinate to a starlike biholomorphic function in the unit
disk D.

Theorem 3.3 Let F be a polyanalytic function of order p in D with F(z) =
∑p−1

l=0 z l f l(z), where each f l ∶ D→ B(H) are analytic functions such that f l(z) =
∑∞n=0 An , l zn in D and An , l ∈ B(H) for n ∈ N ∪ {0}. Also, assume that:
(1) f0 ∈ S(g) such that f0(0) = 0 and f ′l (0) = α l f ′0(0)with ∣α l ∣ < k for k ∈ [0, 1] and

each l = 1, . . . , p − 1, where g ∶ D→ B(H) is a normalized starlike biholomorphic
function with g(z) = zI +∑∞n=2 gnzn in D and gn ∈ B(H) for n ∈ N ∪ {0}.

(2) ω l ∶ D→ B(H) is an analytic function with ∥ω l(z)∥ ≤ k inD for k ∈ [0, 1], where
ω l(z) = f ′l (z)( f ′0(z))−1 in D such that ω l(z) = ∑∞n=0 ωn , l zn in D.

Then Mr(F) ≤ 1 for ∣z∣ = r ≤ RS =min{rS(p, k), 1/3}, where rs(p, k) is the smallest
root in (0, 1) of

(1 − r)3 − kr + kr p+1 = 0.(3.20)

Proof Let g ∶ D→ B(H) be a normalized starlike biholomorphic function. Then,
in view of [17, Theorem 6.2.6], g satisfies

z g′(z) = q(z)g(z) for z ∈ D,(3.21)
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where q ∶ D→ C is an analytic function with Re q(z) > 0 in D and q(0) = 1. By
comparing the coefficients in the power series of both the sides of (3.21), we obtain

(n − 1)gn = gn−1q1 + gn−2q2 +⋯+ qn−1 for n ≥ 2.(3.22)

By using induction and (3.22), we obtain

(n − 1) ∥gn∥ ≤ 2(n − 1 + n − 2 +⋯+ 1)I = n(n − 1)I,

which turns out that ∥gn∥ ≤ n for all n ≥ 2. Since, f0 ∈ S(g), by using (3.19), for r ≤ 1/3,
we obtain

Mr( f0) =
∞

∑
n=1
∥An ,0∥ rn ≤

∞

∑
n=1
∥gn∥ rn ≤ r +

∞

∑
n=2

nrn = r
(1 − r)2 .(3.23)

It is known that, for Ωγ = D, i.e., γ = 0, if h ∶ D→ B(H) is holomorphic, then we have
λH ≤ 1 (see [6]). From (3.17), we have

Mr( f l) ≤ k Mr( f0).(3.24)

Then, from (3.16), (3.23), and (3.24), we obtain

Mr(F) ≤ k r
(1 − r)2 (

1 − r p

1 − r
) for r ≤ 1

3
.

Hence, Mr(F) ≤ 1 for r ≤ RS =min{rS(p, k), 1/3}, where rC(p, k, β) is the smallest
root in (0, 1) of (3.20). This completes the proof. ∎
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