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Abstract

Let π be a probability distribution in R
d and f a test function, and consider the problem

of variance reduction in estimating Eπ (f ). We first construct a sequence of estimators
for Eπ (f ), say (1/k)

∑k−1
i=0 gn(Xi), where the Xi are samples from π generated by the

Metropolized Hamiltonian Monte Carlo algorithm and gn is the approximate solution
of the Poisson equation through the weak approximate scheme recently invented by
Mijatović and Vogrinc (2018). Then we prove under some regularity assumptions that
the estimation error variance σ 2

π (gn) can be as arbitrarily small as the approximation
order parameter n → ∞. To illustrate, we confirm that the assumptions are satisfied by
two typical concrete models, a Bayesian linear inverse problem and a two-component
mixture of Gaussian distributions.
Keywords: Central limit theorem; Markov chain Monte Carlo; Poisson equation; weak
approximation
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1. Introduction and main results

Let π be a target distribution in R
d and f : Rd �→R a test function. We are mainly concerned

with the issue of variance reduction in estimating Eπ (f ) based on the samples generated by
the Hamiltonian Monte Carlo algorithm. The variance reduction is a widely used method in
statistical inferences. In fact, if π is comparatively simple so that independent samples are
easily drawn, say (Xi, i ≥ 1), then we can use (1/k)

∑k
i=1 f (Xi) as an estimator of Eπ (f ) by the

well-known law of large numbers. The estimation error is asymptotically given by (1/k)Eπ (f −
Eπ (f ))2. However, if Eπ (f −Eπ (f ))2 is itself not negligible, then sufficiently many samples
must be drawn in order to make the error as small as possible. Thus, in order to upgrade the
efficiency of estimation we need to resort to the variance reduction method. That is, to find
a function g with known Eπ (g), say Eπ (g) = 0 and Eπ (f + g −Eπ (f ))2 <Eπ (f −Eπ (f ))2, so
that we might prefer to use (1/k)

∑k
i=1 (f (Xi) + g(Xi)) as an alternative estimator of Eπ (f ) by

the law of large numbers again. A natural problem now arises: how do we construct such a
g(x)? This is not an easy task in general.
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2 Z. SU AND Z. YAO

On the other hand, we are also required to solve the issue of simulating the target
distribution π . In fact, this latter issue is more challenging and often appears in diverse research
fields like high-dimensional data analysis, Bayesian statistical inference, high-performance
numeric computation, and machine learning.

1.1. Metropolis–Hastings Monte Carlo

Markov chain theory turns out to offer a powerful tool for managing an issue like simulation,
which resulted in the Markov chain Monte Carlo (MCMC) method. Assume that (Xi, i ≥ 0)
is an ergodic Markov chain with π as its stationary distribution. Then it follows by Birkhoff’s
theorem that limk→∞

[
(1/k)
∑k−1

i=0 f (Xi)
]=Eπ (f ) π -almost everywhere (a.e.). Therefore, the

time mean (1/k)
∑k−1

i=0 f (Xi) may be used as a good estimator for Eπ (f ) when the Markov chain
is run for a sufficiently long time.

Constructing such a Markov chain that targets the desired distribution, however, is itself
a nontrivial problem. Fortunately, various procedures have been outlined in the literature for
automatically constructing appropriate transitions for any given target distribution, with the
foremost among these the Metropolis–Hastings algorithm.

Let π be a fixed probability measure, and assume it possesses a density function, denoted as
π (x) (with a minor abuse of notation). Start with a proposal transition kernel Q(x, ·) with den-
sity function q(x, y) and run the Metropolis–Hastings algorithm to generate a chain (Xi, i ≥ 0)
as follows. Given the current state Xi = x, sample a candidate Y = y from the proposal kernel
Q(x, ·), and then the calculate the acceptance rate:

α(x, y) := min

{
1,

π (y)q(y, x)

π (x)q(x, y)

}
. (1.1)

Then independently draw a uniform random variable Z ∼ U[0, 1]. If Z ≤ α(x, y) then set
Xi+1 = y; otherwise, set Xi+1 = x. The associated Markov kernel can be written as follows.
For any set A ∈B(Rd),

P(x, A) =
∫

A
α(x, y)q(x, y) dy + δx(A)

∫
Rd

(1 − α(x, y))q(x, y) dy.

The Markov kernel P(x, dy) is remarkably reversible with respect to π , i.e. π (x)P(x, dy) =
π (y)P(y, dx), and so the stationary distribution of the chain (Xi, i ≥ 0) is exactly the target dis-
tribution π [5, Proposition 2.3.1]. It is worth noting that only the ratio π (y)/π (x) is used in the
acceptance/rejection probability (1.1), and thus it easily extends to a larger class of distribu-
tions, particularly like the Bayesian posterior distributions whose normalization constants are
hardly computable.

As the reader may realize, the Metropolis–Hastings framework is quite flexible by instan-
tiating it with different choices for the proposal transition kernel Q(x, dy), which in turn
have a significant influence upon sampling. A simple and widely used choice is the so-called
Metropolized random walk (MRW). This corresponds to simply taking a random walk with
transition kernel q(x, ·) ∼N (x, hId) around the state space, where some steps are occasionally
rejected. Note that the proposal is independent of the target π , and so uses only a zeroth-order
oracle for π .

If π has a smooth enough density function, particularly π (x) ∝ e−U(x), where U(x) ∈
C2(Rd), we can exploit the information from the gradient. Consider the stochastic Langevin
diffusion process

dXt = −∇U(Xt) dt + √
2 dBt, (1.2)
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Variance reduction to Hamiltonian MCMC 3

where Bt is the standard Brownian motion on R
d. Under certain smoothness conditions, the

distribution of Xt converges in probability to π as t → ∞ regardless of the initial value X0
[22]. In practice, numerical machine computation requires finite precision and updates to X.
We adapt the Euler–Maruyama discretization of (1.2) to offer a proper choice for transition,

Xk+1 = Xk − h∇U(Xk) + √
2hξk+1, (1.3)

where h > 0 is the step size and (ξk, k ≥ 1) is a sequence of independent and identically dis-
tributed (i.i.d.) N (0, 1) random variables. In other words, the proposal transition kernel q(x, ·)
is just N (x − h∇U(x), 2hId). The algorithm corresponding to (1.3) is often referred to as the
unadjusted Langevin algorithm. Note that the invariant measure, say πh, induced by (1.3) is not
identical to the target π , so a bias must be corrected. The corresponding Metropolis–Hastings
algorithm is called the Metropolized adjusted Langevin algorithm (MALA).

There have been plenty of works investigating the efficiency of MRW and MALA; see [10,
18–20, 22, 24] and references therein for more details. MRW is still popular in many appli-
cations because of its conceptual simplicity and the ease of implementation. Unfortunately, it
is typically the slowest in terms of the total number of iterations, and performs poorly with
increasing dimension and complexity of the target distribution.

To avoid the slow exploration of the state space that results from the diffusive behavior
of simple random walk proposals, we resort to the Hamiltonian Monte Carlo (HMC), which
automatically generate distant and coherent exploration for sufficiently well-behaved target
distributions by carefully exploiting the differential structure of the target probability density.

1.2. Metropolized Hamiltonian Monte Carlo

Metropolized Hamiltonian Monte Carlo, abbreviated to MHMC, was introduced in [6] in
computational physics, and came to the statistics community two decades later, quickly gaining
popularity. The reader is referred to [2–4, 23] for nice introductory reviews.

The basic idea behind the MHMC method is as follows. Let H(x, v) = U(x) + ‖v‖2/2,
(x, v) ∈R

d ×R
d. We augment the target distribution π ∝ e−U(x) to add a momentum variable v.

Specifically, define the Boltzman–Gibbs probability measure μBG(x, v) ∝ e−H(x,v). Obviously,
the first marginal of μBG is π , so if we obtain a sample from μBG, then upon projecting to the
first coordinate we obtain a sample from π .

Simulating μBG is in turn done using the Hamiltonian dynamics formulation, which is a
reformulation of classical dynamics. Denote by (xt, vt) the state at time t of a physical sys-
tem, where xt is the position vector and vt the momentum vector. The evolution of the system
through time is then given by the Hamiltonian equation

dx

dt
= ∇vH(xt, vt) = vt,

dv

dt
= −∇xH(xt, vt) = −∇U(xt).

Denote by �t : (x, v) �→ (xt, vt) the Hamiltonian flow, where (x, v) and (xt, vt) are starting states
and the states after time t, respectively. The key advantage of the Hamiltonian dynamics over
other formulations of classical dynamics is that the Hamiltonian flow possesses the following
fundamental properties.

Conservation of energy: Along the Hamiltonian dynamics, (xt, vt)t≥0 satisfies H(xt, vt) =
H
(
x0, v0
)
, t ≥ 0. In fact, it is easy to check that ∂H(xt, vt)/∂t ≡ 0.
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4 Z. SU AND Z. YAO

Conservation of volume: �t is a volume-preserving map since det (∇�t(x, v)) = 1 for all
t ≥ 0 and x, v ∈R

d.

Time reversibility: Assume (xt, vt)0≤t≤T solve Hamilton’s equations, then
(xT−t, −vT−t)0≤t≤T also solve Hamilton’s equations.

Preservation of Boltzman–Gibbs measure: �t leaves the augmented target μBG invariant,
μBG ◦ �−1

t = μBG.

However, simply running Hamilton’s equations does not yield a convergent sampling algo-
rithm. To get around this issue we need to refresh the momentum periodically. The ideal HMC
algorithm is as follows:

Pick an integration time T > 0 and draw (X0, V0) ∼ μ0, where μ0 is a fixed but arbitrary
probability distribution. For each iteration k = 0, 1, 2, . . .

Step 1: Refresh the momentum by drawing ξkT ∼ N(0, Id).

Step 2: Integrate Hamilton’s equations, and set (X(k+1)T , V(k+1)T ) = �T (XkT , ξkT ).

Since both steps of each iteration preserve μBG, the entire algorithm preserves μBG. At
this stage, though, this algorithm is still idealized because it assumes the ability to exactly
integrate Hamilton’s equations. This is generally not possible outside a few special cases. We
approximately implement Hamilton’s equations through the use of a numerical integrator. The
simplest and most well-known such integrator is the so-called leapfrog integrator.

Pick a step size h > 0 and a total number of iterations K, corresponding to the total
integration time via T = Kh. Let (x0, v0) be the initial point. For i = 0, 1, 2, . . . , K − 1,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v(i+1/2)h = vih − h

2
∇U(xih),

x(i+1)h = xih + hv(i+1/2)h,

v(i+1)h = v(i+1/2)h − h

2
∇U(x(i+1)h).

(1.4)

Let �h,T (x, v) be the output of the leapfrog integrator with K steps started at (x, v). Once
we apply the leapfrog integrator to HMC, we obtain a discrete-time sampling algorithm
that is once again biased. We correct the bias through the use of the Metropolis–Hastings
acceptance/rejection dynamic. The MHMC algorithm is now summarized as follows:

Initialize at X0 ∼ π0, where π0 is a fixed but arbitrary probability distribution. For
iterations i = 0, 1, 2, . . .

Step 1: Refresh the momentum: draw Vi ∼N (0, Id).

Step 2: Propose a trajectory: let (X′
i, V ′

i ) = �h,T (Xi, Vi).

Step 3: Accept the trajectory with probability

α((Xi, Vi), (X′
i, V ′

i )) = min

{
1,

exp (−H(X′
i, V ′

i ))

exp (−H(Xi, Vi))

}
.

If the trajectory is accepted, set Xi+1 = X′
i ; otherwise, we set Xi+1 = Xi. Iteratively, we can

obtain a Markov chain (Xi, i ≥ 0) with kernel Ph,T as follows:
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Ph,T (x, A) =
∫
Rd

1A×Rd (�h,T (x, v))α(x, v)η(v) dv + δx(A)

(
1 −
∫
Rd

α(x, v)η(v) dv

)
, (1.5)

with α(x, v) := α((x, v), �h,T (x, v)) = min{1, exp (−H(�h,T (x, v)) + H(x, v))} and η(v) =
(2π )−d/2 exp

(− 1
2‖v‖2
)
. It is easy to see that π is an invariant probability measure with respect

to kernel Ph,T [3]. More properties of the HMC algorithm are detailed in Section 2.
The main purpose of this article is to construct an efficient estimator whose error variances

are asymptotically negligible based on the samples generated by the MHMC algorithm.

1.3. Main results

Besides the invariance of π , [9] showed that Ph,T is ergodic under regular conditions,
and hence, by Birkhoff’s ergodic theorem, for π -almost every x ∈R

d, the following limit
holds for π -integrable f : limk→∞ (1/k)

∑k−1
i=0 f (Xi) =Eπ (f ), Px-a.e., where Px stands for the

law with the initial state X0 = x. Therefore, it is once again natural to take the mean value
(1/k)
∑k−1

i=0 f (Xi) as an approximation for Eπ (f ).
In order to establish the central limit theorem (CLT) and variance reduction, we need to

make some additional assumptions on the target density π (x), equivalently U(x), and the test
function f . Motivated by [9], we introduce the following assumptions.

Assumption 1.1. For some fixed l ∈ (1, 2], there exist L1 > 0 and A ∈R such that, for every
x ∈R

d, 〈∇U(x), x〉 ≥ L1‖x‖l − A.

Assumption 1.2. For some fixed number l ∈ (1, 2],

(i) U ∈ C3(Rd) and there exists a constant L2 > 0 such that ‖∇kU(x)‖ ≤ L2(1 + ‖x‖l−k) for
all x ∈R

d and k = 2, 3.

(ii) There exist L3 > 0 and R0 ≥ 0 such that 〈∇2U(x)∇U(x), ∇U(x)〉 ≥ L3‖x‖3l−4 for all
x ∈R

d, ‖x‖ ≥ R0.

Assumption 1.3. U is a perturbation of a quadratic function. In particular, U(x) = 1
2 x�
x +

ζ (x), where 
 is a positive definite matrix, ζ : Rd →R is a differentiable function, and there
exist L4 ≥ 0 and γ ∈ [1, 2) such that, for all x, y ∈R

d,

|ζ (x)| ≤ L4(1 + ‖x‖)γ , (1.6a)

‖∇ζ (x)‖ ≤ L4(1 + ‖x‖)γ−1, (1.6b)

‖∇ζ (x) − ∇ζ (y)‖ ≤ L4‖x − y‖. (1.6c)

Assumption 1.4. There exists an r > 0 such that |f (x)| ≤ Vr(x), where Vr(x) = er‖x‖, x ∈R
d.

Remark 1.1. If Assumptions 1.1 and 1.2 hold for some l ∈ (1, 2], then for all T ≥ 1 and h > 0
(we require further that h < M/T3/2 for a certain constant M > 0 when l = 2), Ph,T satisfies the
drift condition (Vr, λ, b, C), i.e. there exists a set C > 0, λ ∈ [0, 1), and b ∈ (0, +∞) such that

Ph,TVr(x) ≤ λVr(x) + b1x∈C for all x ∈R
d, (1.7)

where C = {x : Vr(x) ≤ L5} for a constant L5. Consequently, Ph,T is Vr-uniformly geometrically
ergodic.
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Assumption 1.3 is stronger than Assumption 1.2, as mentioned in [9]. In fact, U in
Assumption 1.3 has a special form, namely a quadratic function with a perturbation. If
Assumption 1.3 holds, then (1.7) holds for all T ≥ 1 and 0 < h < M/T , where M is a con-
stant. It is worth noting that the constant M can be taken small enough that the bound (2.1)
holds as well.

We are now ready to state our main results.

Theorem 1.1. (Central limit theorem.)

(i) Fix l ∈ (1, 2). Under Assumptions 1.1, 1.2 and 1.4, f is π -integrable and, for each T ≥ 1,
with h > 0,

1√
k

k−1∑
i=0

(f (Xi) −Eπ (f ))
d→ σπ (f )N (0, 1), k → ∞, (1.8)

where σ 2
π (f ) = Varπ (f ) + 2

∑∞
k=1 Eπ

[
(f −Eπ (f ))Pk

h,T (f −Eπ (f ))
]
< ∞.

(ii) Fix l = 2. Under Assumptions 1.1, 1.2, and 1.4, f is π -integrable and (1.8) holds for each
T ≥ 1, 0 < h < M/T3/2 with a constant M > 0.

(iii) Under Assumptions 1.1, 1.3, and 1.4, f is π -integrable and (1.8) holds for each T ≥ 1,
0 < h < M/T with a constant M > 0.

As a direct consequence, we can estimate the error variance Eπ

[
(1/k)
∑k−1

i=0 (f (Xi) −
Eπ (f ))

]2 by k−1σ 2
π (f ) provided k is large enough, which characterizes the convergence rate

of (1/k)
∑k−1

i=0 f (Xi). If σ 2
π (f ) is comparatively large, however, more iterations of MHMC

are required to decrease the error of the estimation, which may reduce the efficiency of
sampling. To solve such an issue, we introduce another function g(x) such that Eπ (g) is
known and Eπ

[
(1/k)
∑k−1

i=0 ((f (Xi) + g(Xi) −Eπ (g)) −Eπ (f ))
]2 can be substantially smaller.

For example, let f̂ be the solution to the Poisson equation

f̂ − Ph,T f̂ = f −Eπ (f ); (1.9)

then it is easy to see that (1/k)
∑k−1

i=0 (f + Ph,T f̂ − f̂ )(Xi) is an unbiased estimator for Eπ (f )
with variance zero, which induces high accuracy. In practice, it is almost impossible to obtain
a precise solution to (1.9), however. We need a proper approximation f̃ of f̂ and to calculate
π
[
(1/k)
∑k−1

i=0 (f + Ph,T f̃ − f̃ )(Xi) −Eπ (f )
]2 in order to determine the asymptotic variance.

Recently, [17] presented an approximation scheme for a solution of the Poisson equation
of a geometrically ergodic Metropolis–Hastings chain, and further proved that the sequence of
the asymptotic variance in the CLT for the control-variate estimators converged to zero. The
major contribution of this article is to adapt that approximation scheme for a solution of the
Poisson equation of MHMC chains to construct a sequence of control-variate estimators and to
further prove the asymptotic variances converge to zero, and so realize the variance reduction.
Specifically, split the whole space Rd into a number of subdomains, say Gn

0, Gn
1, . . . , Gn

mn
, and

choose a suitable point an
i inside each subdomain Gn

i . Then, based on these points, construct
a Markov chain with a finite number of states as a good approximation of the continuous-
state Markov chain. In turn, there must exist a solution denoted by f̂n to the Poisson equation
induced by such a finite Markov chain. Finally, define f̃n(x) = f̂n(an

i ) for x ∈ Gn
i as in (3.4)
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Variance reduction to Hamiltonian MCMC 7

and set gn = f + Ph,T f̃n − f̃n, which is a perturbation of the original test function f . Note that
Eπ gn = Eπ f , and we have the following variance reduction theorem.

Theorem 1.2 (Variance reduction.) In the above setting and with the assumptions in Theorem
1.1, the central limit theorem holds for every n ≥ 1:

1√
k

k−1∑
i=0

(gn(Xi) −Eπ (f ))
d−→ σπ (gn)N (0, 1), k → ∞,

where σ 2
π (gn) = Varπ (gn) + 2

∑∞
k=1 Eπ

[
(gn −Eπ (f ))Pk

h,T (gn −Eπ (f ))
]
< ∞. Moreover,

limn→∞ σ 2
π (gn) = 0.

The rest of the paper is organized as follows. In Section 2, we first review some basic con-
cepts and notions about Markov chains with general state spaces, and then give some more
technical results about the MHMC Markov chains. In Section 3 we formulate the approxi-
mation scheme based on the idea of weak approximation following [17], and construct in a
specific way f̃n, which is used in the variance reduction. Section 4 is devoted to the detailed
proofs of the main results. The proof of Theorem 1.1 is actually standard through the use of
Lyapunov’s drift conditions. However, Theorem 1.2 cannot be obtained by a simple combi-
nation of [9, 17]. In fact, there is an additional term |det J�x (x̄)| in the HMC kernel, which is
so complex that it does not satisfy the assumption in [17]. Our proof makes delicate use of
the specific approximate construction and moment controls. Section 5 is devoted to two con-
crete examples, a Bayesian linear inverse problem and a two-component mixture of Gaussians,
which satisfy the conditions for variance reduction. In Section 6, we provide some numerical
experiments to support our theoretical guarantees. The paper concludes with a discussion in
Section 7.

1.4. Notation

Denote by R
+ the set of positive real numbers. Denote by N

+ the set of positive integers.
Denote by ‖ · ‖ the Euclidean norm on R

d. Denote by B(Rd) the Borel σ -field of R
d and

F(Rd) the set of all Borel-measurable functions on R
d. Denote by μ( · ) the Lebesgue measure

on R
d. For a Markov kernel P, denote by (Xi)i∈N the corresponding canonical Markov chain,

and denote by (�,F) the canonical space. For any probability measure ν on R
d and a Markov

kernel P, denote by Pν the unique probability measure on the canonical space (�,F) such
that the canonical process Xi is a Markov chain with kernel P and initial distribution ν. For
f ∈ F(Rd), set ‖f ‖∞ = supx∈Rd |f (x)|. For f ∈ F(Rd) and V : Rd → [1, ∞), the V-norm of f
is given by ‖f ‖V = ‖f /V‖∞. Suppose M is a p × q matrix; denote by M� and det (M) the
transpose and the determinant of M, respectively. Denote by Ck(Rd) the set of all k-times
continuously differentiable functions. Let f ∈ Ck(Rp,Rq) and denote by Jf the Jacobian matrix
of f . Let g ∈ Ck(Rp,R) and denote by ∇g, ∇2g, and ∇3g the first-, second-, and third-order
derivatives of g, respectively.

2. Properties of HMC

In this section we introduce important properties of HMC that will be used later. The reader
is also referred to [2, 3, 23] for more details. For the reader’s convenience, we briefly review
some basic concepts and notions about Markov chains on R

d in Appendix A.
Suppose that the target density is π (x) ∝ e−U(x), with U satisfying Assumptions 1.1–1.3.

Thanks to the leapfrog algorithm and Metropolis–Hastings step in the MHMC, the resulting
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Markov chain (Xi, i ≥ 0) with kernel Ph,T is reversible with respect to π (x), and thus π is an
invariant probability measure [14].

As for the irreducibility and ergodicity of MHMC Markov chains, additional conditions are
required. Recently, [9] provided some sufficient conditions for the irreducibility of MHMC
Markov chains. Indeed, suppose that Assumption 1.2 holds and that both the step size h and
step number T satisfy the inequality[

1 + ϑ
(
hL1/2

2

)]T
< 2, (2.1)

where ϑ(x) = x
(
1 + 1

2 x + 1
4 x2
)
; then, for all x ∈R

d there exists a C1(Rd,Rd) diffeomor-
phism �x : x̄ �→ �x(x̄) such that xT = proj1 ◦ �h,T (x, �x(xT )), where proj1 : (x, y) �→ x denotes
coordinate projection and �h,T is defined by (1.4).

Let J�x (x̄) be the Jacobian matrix of �x at the point x̄. The following lemma is important
when proving the main theorems.

Lemma 2.1. If Assumption 1.2 and condition (2.1) hold, then there exists a constant κ(h, T)
such that, for any x, x̄ ∈R

d, D(x, x̄) := | det J�x (x̄)| ≤ κ(h, T).

Proof. By the structure of the leapfrog integrator in (1.4), for all (x0, v0) ∈R
d ×R

d and
t ∈ {1, 2, . . . , T}, the tth iteration (xt, vt) = �h,t(x0, v0) takes the form

xt = x0 + thv0 − 1

2
th2∇U(x0) − h2

t−1∑
k=1

(t − k)∇U(xk), (2.2)

vt = v0 − 1

2
h(∇U(x0) + ∇U(xt)) − h

t−1∑
k=1

∇U(xk).

Let �h,t(x, v) =∑t−1
k=1 (t − k)∇U(xk). Then, for any t ≥ 1 and h > 0, Assumption 1.2 implies

sup
x,v,w∈Rd

‖�h,t(x, v) − �h,t(x, w)‖
‖v − w‖ ≤ t

h
(κh,t − 1),

where κh,t = (1 + hL1/2
2 ϑ
(
hL1/2

2

))t
< 2 [9]. Therefore, by (2.1), we have

sup
x,v∈Rd

h

t

∥∥J�h,t (x, v)
∥∥< 1, (2.3)

where J�h,t (x, v) is the Jacobian matrix of the function v �→ �h,t(x, v).
As a direct consequence, the function v0 �→ xt defined in (2.2) is a diffeomorphism and has

a continuously differentiable inverse x̄ �→ �x(x̄) for each x ∈R
d. In addition, by (2.2) and (2.3),

there exists a constant κ1 ∈ (0, 1) such that, for any x, v, w ∈R
d,

‖proj1 ◦ �h,T (x, v) − proj1 ◦ �h,T (x, w)‖

= hT

∥∥∥∥
(

v − h

T
�h,T (x, v)

)
−
(

w − h

T
�h,T (x, w)

)∥∥∥∥≥ hTκ1‖v − w‖,

which in turn implies that there exists a constant κ2 > 0 such that, for all x, v, w ∈R
d,

‖�x(v) − �x(w)‖ ≤ κ2‖v − w‖.
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Therefore, for all x, x̄ ∈R
d, it follows from Hadamard’s inequality that

| det J�x (x̄)| ≤ ‖J�x (x̄)‖d ≤ sup
x,x̄∈Rd

‖J�x (x̄)‖d ≤ κd
2 =: κ(h, T) > 0,

where the last inequality is due to [7, Exercise 2.24]. �

Lemma 2.2. If Assumption 1.2 and the condition (2.1) hold, then for any T ≥ 1, h ≥ 0, and
(x, v) ∈R

d ×R
d, (x, v) �→ (�h,T (x, v), �x(v), D�x(·)(v)) is continuous on R

d ×R
d.

Proof. Continuity for the mapping (x, v) �→ (�h,T (x, v), �x(v), D�x(·)(v)) was presented in
the proof of [9, Theorem 1]. �

Remark 2.1. The assumptions of Lemma 2.2 seem slightly different from those in Theorem
1.2. However, by adjusting the value of M to make h small enough, condition (2.1) can be
satisfied and thus Lemma 2.2 remains valid.

It now follows from (1.5) that

Ph,T (x, dx̄) = αH(x, x̄)
exp{−‖�x(x̄)‖2/2}

(2π )d/2
D(x, x̄) dx̄

+ δx(dx̄)
∫
Rd

(1 − α(x, v))
exp{−‖v‖2/2}

(2π )
d
2

dv, (2.4)

where αH(x, x̄) = α(x, �x(x̄)), D(x, x̄) was defined in Lemma 2.1.
Furthermore, the Markov kernel Ph,T is μ-irreducible, aperiodic, and Harris recurrent,

and each compact set is 1-small. As a consequence, for all x ∈R
d, limk→∞

∥∥Pk
h,T (x, ·)−

π ( · )
∥∥

TV = 0. Note also that if a Markov chain has a unique invariant probability measure,
then ergodicity is valid and the ergodic theorem can be obtained by [5, Theorem 5.2.6].
Therefore, by the irreducibility and [5, Theorem 9.2.15], π is the unique invariant probability
measure with respect to Ph,T and hence, for all f ∈ L1(π ) and π -almost every x ∈R

d, we have
limk→∞ (1/k)

∑k−1
i=0 f (Xi) =Eπ (f ), Px-a.e. This forms the starting point of our further study in

this work.

3. Approximation scheme for variance reduction

Definition 3.1.

(i) Assume there exists a partition G of (Rd, μ) into measurable subsets G0, G1, . . . , Gm

such that μ(Gi) > 0 holds for 0 ≤ i ≤ m and
⋃m

i=1 Gi is bounded. Choose ai ∈ Gi for all
0 ≤ i ≤ m and let Y = {a0, . . . , am}. We say that the pair Y= (G, Y) is an allotment,
with m being the size of Y.

(ii) Let W : R
d → [1, ∞) be a measurable function. The W-radius and W-mesh of an

allotment Y are respectively defined by rad(Y, W) = infy∈G0 W(y) and

δ(Y, W) = max

{
max

1≤i≤m
sup
y∈Gi

|y − ai|, max
0≤i≤m

sup
y∈Gi

(
W(ai)

W(y)
− 1

)}
.

(iii) If there exists a sequence of allotments (Yn, n ≥ 0) satisfying limn→∞ rad(Yn, W) = ∞
and limn→∞ δ(Yn, W) = 0, then we say that Yn is exhaustive with respect to W.
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Consider Vr(x) = er‖x‖, x ∈R
d. Obviously, Vr : Rd → [1, ∞) is a continuous function with

bounded sublevel sets, i.e. for every c ∈R, the pre-image V−1
r ((−∞, c]) is a bounded ball.

Proposition A.1 in [17] establishes the existence of an exhaustive sequence with respect to Vr.
For the sake of completeness, we briefly review the construction of such an allotment here.

Let r1 > 1, and let (rn, n ≥ 1) be an increasing unbounded sequence of positive
numbers. For each n ≥ 1, define sets Ln = V−1

r ((−∞, rn]), L̃n = {x ∈R
d : there exists y ∈

Ln such that ‖x − y‖ <
√

d}. The set L̃n is trivially a bounded and non-empty closed set. Vr

is uniformly continuous on L̃n. So there exists a decreasing sequence εn < 1, vanishing as n
tends to infinity, such that ‖x − y‖ < εn

√
d implies |Vr(x) − Vr(y)| < 1/n for each n and all

x, y ∈ L̃n.
Fix n ≥ 1. For x = (x1, x2, . . . , xd) ∈R

d write Kn
x := ∏d

i=1 [xi, xi + εn). Pick points
x(1), x(2), . . . , x(mn) such that the sets Gn

j := Kn
x(j) are disjoint and cover Ln. Let Gn

0 be the

closure of Rd \⋃mn
j=1 Kn

x(j) . Finally, choose an
0 ∈ Gn

0 such that Vr(an
0) = infx∈Gn

0
Vr(x), and pick

an
j ∈ Gn

j arbitrarily. It is now easy to verify that the allotment defined above is exhaustive with
respect to Vr.

Let Yn = (Gn, Yn), where G
n = (Gn

i , 0 ≤ i ≤ mn) and Yn = (an
i , 0 ≤ i ≤ mn). We will con-

struct a sequence of approximating solutions f̃n based on the exhaustive allotments Yn. Given
the kernel Ph,T with h, T > 0, define Q(n)

ij = Ph,T
(
an

i , Gn
j

)
and Q(n) = (Q(n)

ij

)
(mn+1)×(mn+1).

Since each part Gn
i has a positive measure the transition matrix Q(n) is well defined, and for

every i, j ∈ {0, 1, . . . , mn}, Q(n)
ij > 0 by the μ-irreducibility of Ph,T . Furthermore, Q(n) is irre-

ducible, aperiodic, and recurrent, so there exists a unique invariant probability measure by
Markov chain theory on a finite state space. Let an(x) =∑mn

i=0 an
i 1x∈Gn

i
, x ∈R

d. Then, by the

definitions of Vr-mesh and exhaustive allotment, for every x ∈R
d we have limn→∞ an(x) = x.

Observe that Vr(an(x)) can be controlled by Vr(x). Indeed, for all n ≥ 1 and x ∈R
d, we have

the useful inequality

Vr(an(x)) = Vr(x)

(
1 + Vr(an(x)) − Vr(x)

Vr(x)

)

≤ Vr(x)

(
1 + max

0≤i≤m
sup
y∈Gi

(
Vr(an(x))

Vr(y)
− 1

))
≤ Vr(x)(1 + δn), (3.1)

where δn = δ(Yn, Vr) denotes the Vr-mesh of the allotment Yn, the first inequality following
by the exhaustivity property.

Lemma 3.1

(i) Drift condition. There exist constants λv ∈ (0, 1), bv > 0 satisfying

Q(n)Vr(an
i ) ≤ λvVr(an

i ) + bv1an
i ∈C (3.2)

for all n ≥ 1 and an
i ∈ Yn.

(ii) Minorization condition. There exist a compact set C ⊂R
d, a constant ε ∈R

+, and a
probability measure νn on (Yn,P

(
Yn
)
) such that

Q(n)
ij ≥ ενn({an

j }) (3.3)

for all n ≥ 1 and i, j ∈ {0, 1, . . . , mn} satisfying an
i ∈ Yn ∩ C.
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(iii) Strong aperiodicity condition. There exists a constant ε̄ ∈ (0, ∞) such that ενn(C ∩
Yn) ≥ ε̄.

The proof of Lemma 3.1 can be found in Appendix B.
Let π̂n be an invariant probability measure of Q(n).

Proposition 3.1. The approximate Markov kernel Q(n) is Vr-uniformly geometrically ergodic,
i.e. there exist constants M > 0 and ρ ∈ (0, 1) such that, for k, n ≥ 1,∥∥(Q(n))k(y, ·) − π̂n( · )

∥∥
Vr

≤ MVr(y)ρk for all y ∈ Yn.

Proof. By Lemma 3.1, the existence of M and ρ is a direct consequence of [1]. It is also
implied that M and ρ only depend on the parameters ε, λv, bv, and ε̄ in Lemma 3.1. �

We are now in a position to construct the approximation solution f̃n. To this end, we denote
by f̂n a solution to the Poisson equation f̂n(y) − Q(n) f̂n(y) = f (y) −Eπ̂n(f ), y ∈ Yn. Having f̂n, the
approximating solution f̃n is defined by

f̃n(x) =
m∑

i=0

f̂n
(
an

i

)
1x∈Gn

i
, x ∈R

d. (3.4)

Obviously, the more precisely Q(n) approximates Ph,T , the more closely f̃n approaches the exact
solution of the Poisson equation.

4. Proofs of main results

Throughout this section, the parameter r > 0 is fixed. We start with the proof of
Theorem 1.1.

Proof of Theorem 1.1. We only prove (i) with l ∈ (1, 2), since the other cases are similar.
Recall that Ph,T satisfies the drift condition (1.7) with Vr(x) = er‖x‖. By [5, Theorem 15.2.4],
Ph,T is both Vr and V2r-uniformly geometrically ergodic, and so it follows by [21, Fact 10] that
Vr and V2r are π -integrable.

In addition, we obviously have the following equivalence relations:

Ph,TVr ≤ λVr + b1C

⇔Ph,TVr + (1 − λ)Vr ≤ Vr + b1C

⇔ Ph,T
Vr

1 − λ
+ Vr ≤ Vr

1 − λ
+ b

1 − λ
1C,

where C = {x : Vr(x) ≤ L2}. Therefore, for every f such that ‖f ‖Vr < ∞, f is π -integrable, and
further the CLT (1.8) holds according to [5, Theorem 21.2.11]. �

Next, we turn to the proof of Theorem 1.2. We first give an upper bound for error variance
in terms of the spectral radius of Ph,T on L2

0(π ).

Proposition 4.1. Denote by ρ the spectral radius of Ph,T |L2
0(π ). For any g ∈ L2

0(π ),

σ 2
π (g) ≤ 1 + ρ

1 − ρ
Eπ (g2).

The proof of Proposition 4.1 can be found in Appendix D.
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For notational simplicity, set gn = f + Ph,T f̃n − f̃n, where f̃n is given by (3.4). Trivially,
Eπ (gn) =Eπ (f ), and by Proposition 4.1,

σ 2
π (gn) ≤ 1 + ρ

1 − ρ
Eπ (gn −Eπ (f ))2.

Therefore, it suffices to prove that Eπ (gn −Eπ (f ))2 → 0 as n → ∞. In turn, it is sufficient to
verify the following statements due to the dominated convergence theorem:

• For π -almost every x ∈R
d, limn→∞ gn(x) =Eπ (f ).

• The Vr-norm is uniformly bounded: supn≥1 ‖gn −Eπ (f )‖Vr < ∞.

For clarity, we restate these statements as Propositions 4.2 and 4.3.

Proposition 4.2 For π -almost every x ∈R
d, limn→∞ gn(x) =Eπ (f ).

Observe that for any x ∈R
d, f̃n(an(x)) − Ph,T f̃n(an(x)) = f (an(x)) −Eπ̂n (f ), and so

|gn(x) −Eπ f | ≤ |f (x) − f (an(x))| + |Eπ̂n(f ) −Eπ (f )|
+ |(Ph,T f̃n − f̃n)(x) − (Ph,T f̃n − f̃n)(an(x))|

=: M(1)
n (x) + M(2)

n + M(3)
n (x).

Then it reduces to verifying that M(1)
n , M(2)

n , and M(3)
n converge π -a.e. to zero as n → ∞, hence

the following three lemmas.

Lemma 4.1. limn→∞ M(1)
n (x) = 0 for π -almost every x.

Proof. Note that f is π -a.e. continuous and an(x) → x as n → ∞. This concludes the
proof. �

Lemma 4.2. limn→∞ M(2)
n = 0.

The proof of Lemma 4.2 can be found in Appendix C. The following lemma offers a uniform
bound for the Vr-norm of f̃n.

Lemma 4.3. There exist a constant β > 0 and a sequence of real numbers {bn}n∈N such that
supn≥1 ‖f̃n + bn‖Vr ≤ β.

Proof. This is a direct consequence of Proposition 3.1 combined with [17, Proposition
3.5]. �

Lemma 4.4. limn→∞ M(3)
n (x) = 0 for π -almost every x.

Proof. The form (2.4) and the structure of Ph,T together yield

M(3)
n = |Ph,T f̃n(x) − Ph,T f̃n(an(x))|

=
∣∣∣∣
∫
Rd

(f̃n(x̄) − f̃n(x))
(
αH(x, x̄)D(x, x̄)e−‖�x(x̄)‖2/2

− αH(an(x), x̄)D(an(x), x̄)e−‖�an(x)(x̄)‖2/2) dx̄

∣∣∣∣,
where in the first equation we used the fact that f̃n(an(x)) = f̃n(x).
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Since (x, x̄) �→ (D(x, x̄), αH(x, x̄)) is continuous by Lemma 2.2 and, for each x̄ ∈R
d,∣∣f̃n(x̄) − f̃n(x)

∣∣≤ ∣∣f̃n(x̄) + bn − (f̃n(x) + bn)
∣∣≤ β(Vr(x̄) + Vr(x)), (4.1)

where bn and β were given in Lemma 4.3, the integrand above converges to zero.
Analogous to the proof of Lemma 4.2, we obtain, for each x̄ ∈R

d,

∣∣αH(x, x̄)D(x, x̄)e−‖�x(x̄)‖2/2 − αH(an(x), x̄)D(an(x), x̄)e−‖�an(x)(x̄)‖2/2
∣∣

≤ δxπ (x̄) + αH(x, x̄)k(x, x̄). (4.2)

Obviously, the product of the right-hand sides in (4.1) and (4.2) is integrable with respect to μ

over Rd. Therefore, M(3)
n tends to zero by the dominated convergence theorem. �

Proposition 4.3. supn≥1 ‖gn −Eπ (f )‖Vr < ∞.

Proof. By the drift condition of Ph,T , the solution f̂ to the Poisson equation (1.9) belongs to
L∞

Vr
= {f : ‖f ‖Vr < ∞}, and it is unique up to a constant [5]. Therefore, by Lemma 4.3, there

exist a constant β ′ and a sequence of real numbers {bn}n≥1 such that, for all n ≥ 1 and x ∈R
d,∣∣f̃n(x) + bn − f̂ (x)

∣∣≤ β ′Vr(x). Observe that

gn −Eπ (f ) = Ph,T f̃n − f̃n + f − π (f ) = Ph,T
(
f̃n + bn − f̂

)− (f̃n + bn − f̂
)
.

By the definition of Ph,T , it easily follows that, for all n ≥ 1 and x ∈R
d,

|gn −Eπ (f )| =
∣∣∣∣
∫
Rd

(
f̃n + bn − f̂

)
(�h,T (x, v))α(x, v)η(v) dv

+ (f̃n + bn − f̂
)
(x) ·
[

1 −
∫
Rd

α(x, v) η(dv)

]
− (f̃n + bn − f̂

)
(x)

∣∣∣∣
≤
∫
Rd

[∣∣(f̃n + bn − f̂
)
(�(x, v))

∣∣+ ∣∣(f̃n + bn − f̂
)
(x)
∣∣]α(x, v)η(v) dv

≤
∫
Rd

β ′Vr(�h,T (x, v))α(x, v) η(dv) + β ′Vr

∫
Rd

α(x, v)η(v) dv

≤ β ′(Ph,TVr(x) + Vr(x)) ≤ (1 + λ + b)β ′Vr(x),

which together with the definition of the Vr-norm implies the desired result. �

Proof of Theorem 1.2. Combining Propositions 4.1, 4.2, and 4.3 concludes the proof. �

5. Applications

In this section we aim to show how to verify the assumptions on the target distributions
given in Section 1.3 through two concrete models.

5.1. Bayesian linear inverse problem

Let β ∈ ( 12 , 1
)
, λ1, λ2, δ > 0, and A a p × d matrix. Consider the linear model b = AX + ε,

where X has a prior distribution πX(x) given by
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πX(x) ∝ exp

(
−λ1
(
x�x + δ

)β − λ2

2
x�x

)
, x ∈R

d,

and ε ∼ N(0, Id).
The so-called Bayesian linear problem is to infer X from the observations b. In fact, the

density of the posterior distribution of interest us given by π (x) ∝ exp (−U(x)), where

U(x) = −1

2
x�(A�A + λ2Id

)
x − λ1

(
x�x + δ

)β + 〈b, Ax〉.

The exponential integrator version of MALA (EI-MALA) was devised to generate a Markov
chain with invariant distribution π . The Wasserstein convergence rate of a class of EI-MALA
algorithms was studied at length in [8], and the CLT for the corresponding Markov chains
established in [13].

We will confirm that the potential U satisfies Assumptions 1.1 and 1.2, and so both the CLT
and the variance reduction theorem are applicable for the MHMC Markov chains as well. It is
apparent that U(x) can be decomposed as

U(x) = U1(x) + U2(x) =
[

1

2
x�(A�A + λ2Id

)
x

]
+
[
λ1
(
x�x + δ

)β − 〈b, Ax〉
]

. (5.1)

[9] offers a sufficient condition for Assumptions 1.1 and 1.2. The following is a slightly
stronger version.

Lemma 5.1. Fix l ∈ (1, 2]. Suppose that the potential U(x) can be decomposed as U(x) =
U1(x) + U2(x), where U1(x) and U2(x) satisfy the following conditions:

(i) U1 and U2 belong to C3(Rd).

(ii) For all k ≥ 1 and x ∈R
d, U1(kx) = klU1(x) and {y ∈R

d : U1(y) ≤ U1(x)} is a convex set.

(iii) lim‖x‖→∞ U1(x) = ∞.

(iv) For k = 2, 3,

lim‖x‖→∞
‖∇kU2(x)‖

‖x‖l−k
= 0. (5.2)

Then the potential U satisfies Assumptions 1.1 and 1.2.

Proposition 5.1. The potential U given by (5.1) satisfies Assumptions 1.1 and 1.2.

The proof of Proposition 5.1 can be found in Appendix E.

5.2. Two-component mixture of Gaussians

Consider the sampling from a mixture of Gaussians with two components

π ∼ pN (μ, Id) + (1 − p)N (ν, Id), (5.3)

where N (·, Id) is a d-dimensional normal distribution with identity variance.
Without loss of generality, assume p = ec/(ec + e−c) for some c ∈R, and let U1(x) = 1

2‖x‖2,

U2(x) = − log
(
ec−‖μ‖2/2e−〈x,μ〉 + e−c−‖ν‖2/2e−〈x,ν〉). Then
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π (x) = 1

(2π )d/2

[
p exp

{
−1

2
‖x − μ‖2

}
+ (1 − p) exp

{
−1

2
‖x − ν‖2

}]

= 1

(2π )d/2(ec + e−c)
e−‖x‖2/2[ec−‖μ‖2/2e−〈x,μ〉 + e−c−‖ν‖2/2e−〈x,ν〉]

∝ e−U(x) = e−(U1(x)+U2(x)).

While there is a huge literature about this model, we mention only the recent work [15]
related to ours. Note that the potential function U(x) is Lipschitz smooth but not strongly
convex in R

d. In fact, it is double-well and strongly convex only when |x| ≥ r for a sufficiently
large r. MALA and the classical expectation-maximization (EM) optimization algorithm were
compared in [15], which claimed that MALA sampling can be faster than the EM algorithm.
We will examine Assumption 1.3 and verify the conditions (1.6a)–(1.6c), so that we can apply
MHMC sampling to the double-well potential case.

Proposition 5.2. Consider a two-component Gaussian mixture model as in (5.3). Then
Assumptions 1.3 hold.

The proof of Proposition 5.2 can be found in Appendix F.

Remark 5.1. In fact, this result can be extended to the case where π ∼ pN (μ, 
) + (1 −
p)N (ν, 
) for some symmetric positive definite matrix 
. We can find that the linear terms
〈μ, x〉, 〈ν, x〉 in U2 are replaced by

〈

−1μ, x

〉
,
〈

−1ν, x

〉
, respectively, and the bounds of

‖∇U2‖ and ‖∇2U2‖ can be obtained similarly.

Remark 5.2. By the approximation scheme, the allotment only needs to be exhaustive with
respect to the function Vr(x) = exp (r‖x‖) for some r such that f (x) ≤ Vr(x) for all x ∈R

d.
Consequently, the specific allotment construction depends solely on the test function f .
Suppose a constant r is such that f (x) ≤ Vr(x) for all x; then we could construct an allotment
according to Section 3. In particular, let rn = en and εn = (n2

√
d + nrd)−1. This gives Ln =

{x ∈R
d : ‖x‖ ≤ n/r} and L̃n = {x ∈R

d : ‖x‖ ≤ √
d + n/r}. Following the construction of Gn

j in

Section 3, we can generate an allotment such that ‖x − y‖ < εn
√

d implies |Vr(x) − Vr(y)| <
n−1 for each n and all x, y ∈ L̃n, by Lagrange’s theorem. By [17, Proposition A.1], such an
allotment forms an exhaustive sequence with respect to Vr.

6. Simulations

In this section we explain how to implement the MHMC algorithm for variance reduction
through two simple examples. In fact, we have to tackle the following two issues in practice:

• The stochastic matrix Q = (Qij
)

(m+1)×(m+1) cannot be computed analytically.

• Once the approximate solution f̃ has been computed, the function Ph,T f̃ , and thus the
control variate Ph,T f̃ − f̃ , are not accessible in closed form.

Construct a partition {G0, G1, . . . , Gm} of Rd in such a way that the probability of π (G0)
is small. We assume that it is easy to sample d-dimensional normal random points. Let ai ∈ Gi

for i > 0 be arbitrary and choose a0 on the boundary of G0.
Let Y = {a0, a1, . . . , am}, G= {G0, G1, . . . , Gm}. This induces an allotment (Y,G) in R

d.
Recall that Qij = Ph,T (ai, Gj), where the transition kernel Ph,T was given by (1.5). As the
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16 Z. SU AND Z. YAO

precise computation of each entry is not feasible, we construct an estimate of Qij via another
i.i.d. Monte Carlo. With this in mind, let Z1, Z2, . . . , ZN be i.i.d. samples from N (0, Id), where
N is sufficiently large. Define

Q̂(ai, aj) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

N

N∑
k=1

1Zk∈Gjα(ai, Zk) if j �= i,

1 −
∑

k∈{0,1,...,m}\i

Q̂(ai, ak) if j = i.
(6.1)

The approximating transition matrix Q = (Qij
)

is now well estimated by Q̂ = (Q̂ij
)

by the law

of large numbers, so we use Q̂ in the MHMC algorithm instead of Q.
Turning to the second issue, given a π -integrable function f , we aim to estimate Eπ (f ) by

(1/k)
∑k−1

i=0 (f + Ph,T f̃ − f̃ )(Xi), where (Xi, i ≥ 0) is a Markov chain generated by the MHMC
algorithm. However, Ph,T f̃ is not accessible in a closed form once again. Similarly to (6.1),
define, for any x ∈R

d,

Q̂(x, aj) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

N

N∑
k=1

1Zk∈Gjα(ai, Zk) if j �= i(x),

1 −
∑

k∈{0,1,...,m}\i

Q̂(x, ak) if j = i(x),
(6.2)

where i(x) is the unique index i ∈ {0, 1, . . . , m} such that x ∈ Gi(x); then define, for any x ∈R
d,

Q̂f̃ (x) =∑m
j=0 f̂ (aj)Q̂(x, aj). Finally, we use Q̂f̃ in place of Ph,T f̃ . We remark that the term

(1/k)
∑k−1

i=0 (f + Q̂f̃ − f̃ )(Xi) is unbiased to some extent; the interested reader is referred to
[17, Remark 5.1] for details.

In the next subsection we provide a simple example to illustrate the efficiency of variance
reduction in MHMC through the weak approximation scheme.

It is not obvious [how] to do so in a way which substantially decreases the variance of
the simulation without substantially increasing the complexity of the simulations, and
for which optimal values of the parameters can be approximated with a reasonable
numerical cost. [12, p. 60].

6.1. Gaussian mixture distribution

Consider a one-dimensional Gaussian mixture distribution as mentioned in Section 5.2. Let
μ = 3, ν = −2, and p = 0.3. Choose f (x) = x2 as the force function. For any m ≥ 1, l > 0, let
Gm,l

0 =R\[−l, l] and Gm,l
i , i = 1, 2, . . . , m, be intervals of length 2l/m partitioning [−l, l]. The

step size and length are chosen to be h = 0.1 and T = 20. The construction of Q̂ is derived from
(6.1) using N = 107, and the estimator (1/k)

∑k−1
i=0 (f + Q̂f̃ − f̃ )(Xi) is then derived from (6.2)

using N = 105 and the approximating scheme. We study three allotments, where the parameters
take values as shown in Table 1. We evaluate the associated quantities after 6000 iterations.
The results are shown in Figure 1 for different iterations and different estimations from 50
replications. The red curve corresponds to conventional MHMC estimates, and the blue curve
corresponds to the modified estimators (1/k)

∑k−1
i=0 (f + Q̂f̃ − f̃ )(Xi).

We observe that the mean square errors (MSE) of the modified estimator are consis-
tently lower than those of the original MHMC estimator. Moreover, as the allotments become
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TABLE 1. The parameter setup for different allotments.

Allotment
index l m

1 2 18
2 4 15
3 6 30

FIGURE 1. The estimates for Eπ (f ) using different methods with different allotments.

denser, the MSE decreases further. This result suggests that the variance reduction technique is
effective and demonstrates that achieving improved convergence in sampling does not require
excessively fine allotments. These findings are encouraging and point to the potential for apply-
ing this approach to a wider range of models, particularly those in high-dimensional settings.

7. Discussion

There are two interesting recent works in the literature: [17], in which the authors develop
an approximation scheme for a solution of the Poisson equations of a geometrically ergodic
Metropolis–Hastings chain, and construct a sequence of control-variate estimators to decrease
the error variance in the mean estimate; and [9], in which the authors discussed the irreducibil-
ity and geometric ergodicity of the popular Hamiltonian Monte Carlo algorithm in a rigorous
mathematical sense. Motivated by these two works, we have established the CLT and variance
reduction theorem under mild regular conditions for the MHMC algorithm, which implies that
the MHMC algorithm can be applied in a wide range of fields.
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18 Z. SU AND Z. YAO

In addition, we offer several concrete examples satisfying the regular conditions, which
suggests that our results can be applied to a broad class of potentials. The simulation results
imply that the method works well in practice.

Some questions arise from our work. The simulations suggest that the approximation
scheme takes effect even if m is not so large, though it is desirable to obtain non-asymptotic
results for the convergence of variance reduction, like in [17, Section 4]. It seems difficult to
analyze the convergence rate when using the diffeomorphism mentioned in (2.4), and alterna-
tive ways are needed. On the other hand, when implementing the approximation scheme, we
use standard Monte Carlo (6.1) to approximate the kernel Q, which may affect the performance
of the scheme. Lastly, an interesting question is how to execute an efficient implementation for
the approximation scheme. We leave these for future work.

Appendix A. Markov chains on R
d

For the reader’s convenience, we briefly review some basic concepts and notions about
Markov chains on R

d in this subsection. [5, 16] are good classic books in this field.
Let (Rd, ‖ · ‖) be a standard Euclidean space equipped with its Borel σ -field B and

Lebesgue measure μ. Consider a time-homogeneous Markov chain (Xi, i ≥ 0) with transition
kernel P, i.e. P(x, A) = P(Xi ∈ A | Xi−1 = x) for all i ≥ 1, x ∈R

d, and A ∈B. For each σ -finite
measure π on (Rd,B), define, for a measurable set A, πP(A) = ∫x∈Rd π (dx) P(x, A), and, for
a measurable function f : Rd →R, Pf (x) = ∫y∈Rd f (y) P(x, dy). If πP = π then we say π is an
invariant measure for the kernel P. If π (dx) P(x, dy) = π (dy) P(y, dx), then π is reversible with
respect to the kernel P. It is well known that reversibility implies the existence of invariant
probability.

The Markov kernel P is π -irreducible if, for every x ∈R
d and A ∈B with π (A) > 0, there

exists k ≥ 1 such that Pk(x, A) > 0. A set C ∈B is small if there exist k ≥ 1 and a non-zero
measure ν such that, for every x ∈ C, Pk(x, ·) ≥ ν(·). In particular, a set C is usually referred to
as 1-small if k = 1. With the concept of a small set, irreducibility admits another interpretation.
A Markov chain is called irreducible if there exists a small set C such that, for some k0 ≥ 1,
Pk0 (x, C) > 0 for all x ∈R

d. Note that if P is π -irreducible, then it is also irreducible since B
is countably generated. A set satisfying the last inequality is sometimes called accessible.

For an accessible small set C ∈X , its period is defined by

dC = gcd
{

k ≥ 1; inf
x∈C

Pk(x, C) > 0
}

.

Note that the set on the right-hand side is well defined, and all accessible small sets have a
common period, say κ . A Markov kernel P is called aperiodic if κ = 1. One of the remarkable
properties of aperiodicity is that if P is aperiodic then, for each x ∈R

d and each accessible set
A ∈B, there exists N = N(x, A) ≥ 1 such that Pk(x, A) > 0 for all k ≥ N.

A Markov chain with stationary distribution π is called Harris recurrent if, for any C ∈B
with π (C) > 0 and any x ∈R

d, the chain eventually reaches C from x with probability 1, i.e.
P(there exists n : Xn ∈ C | X0 = x) = 1.

Total variation distance is often used to measure the distance between distributions. Let ν1,
ν2 be two probability measures; their total variation distance is defined by

‖ν1 − ν2‖TV = sup
A∈X

|ν1(A) − ν2(A)| ≡ 1

2
sup
|f |≤1

∣∣∣∣
∫

f dν1 −
∫

f dν2

∣∣∣∣.
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Given a function V : Rd →R
+, the V-norm for a function f is defined by

‖f ‖V = sup
x∈Rd

|f (x)|
V(x)

,

and the V-distance between ν1 and ν2 is given by

‖ν1 − ν2‖V = 1

2
sup

‖f ‖V≤1

∣∣∣∣
∫

f dν1 −
∫

f dν2

∣∣∣∣.
For an MCMC algorithm with the target distribution π , we are eager to know whether the

distribution of Xk is sufficiently close to π as the iteration proceeds. The quantity commonly
studied is ‖Pk(x, ·) − π ( · )‖TV and the like.

It is well known that if the kernel P is irreducible and aperiodic then, for π -almost every
x ∈R

d, limk→∞ ‖Pk(x, ·) − π ( · )‖TV = 0. In addition, under some extra conditions the rate of
convergence in this would be geometric. We say the kernel P is geometrically ergodic if there
is a positive constant ρ < 1 such that, for π -almost every x ∈R

d, there exists a finite number κx

with ‖Pn(x, ·) − π ( · )‖TV ≤ κxρ
n. The concept of geometrically ergodic has been intensively

studied by much literature; see, e.g., [5, 16, 21]. If there exist a π -a.e. finite measurable function
V : Rd → [1, ∞], a small set C ∈B, and constants λ ∈ (0, 1), b > 0 such that PV(x) ≤ λV(x) +
b1x∈C, we say that P satisfies the Lyapunov drift condition (V, λ, b, C).

It is well known that the drift condition is equivalent to geometrical ergodicity when the
kernel P is irreducible, aperiodic, and admits an invariant probability. And the converse is also
true [11].

Geometrical ergodicity plays an important role in the study of Markov chains. In particular,
together with some regular conditions it guarantees that the central limit theorem holds, which
is our concern in the present paper.

Appendix B. Proof of Lemma 3.1

Proof. (i) We borrow some technical tricks from [17, Proposition 3.3]. For any fixed n ≥ 1,
we extend an from R

d to R
d ×R

d, still denoted by an, where an(x, v) = an(x). By (3.1), it
follows that, for each i = 0, 1, . . . , mn,

Q(n)Vr(an
i )

=
∫
Rd

Vr
(
an
(
�h,T
(
an

i , v
)))

η(v)α
(
an

i , v
)

dv + Vr
(
an

i

)(
1 −
∫
Rd

η(v)α
(
an

i , v
)

dv

)

≤ (1 + δn)
∫
Rd

Vr
(
�h,T
(
an

i , v
))

η(v)α
(
an

i , v
)

dv + Vr
(
an

i

)(
1 −
∫
Rd

η(v)α
(
an

i , v
)

dv

)

= Ph,TVr
(
an

i

)+ δn

∫
Rd

Vr
(
�h,T
(
an

i , v
))

η(v)α
(
an

i , v
)

dv ≤ (1 + δn)Ph,TVr
(
an

i

)
.

By the drift condition (1.7), there exist λv ∈ [0, 1), bv ∈ (0, +∞), and a compact
set C such that Q(n)Vr

(
an

i

)≤ (1 + δn
)
Ph,TVr

(
an

i

)≤ (1 + δn)λvVr
(
an

i

)+ (1 + δn)bv1an
i ∈C. Since

limn→∞ δn = 0, there exists n0 ≥ 1 such that, for all n > n0, (1 + δn)λv < 1
2 (1 + λv) < 1. Set

https://doi.org/10.1017/jpr.2025.10025 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10025


20 Z. SU AND Z. YAO

λv = 1
2 (1 + λv) and bv = (1 + supn δn)bv. If N0 > 1 then we enlarge C, keeping the new set

compact, and increase bv, still denoted by bv, such that (3.2) holds for n ≤ N0. Therefore, we
obtain a compact set C, λv ∈ [0, 1), and bv > 0 such that the drift condition (3.2) holds for all
n ≥ 1.

(ii) Let C be the compact set constructed above; it suffices to establish (3.3). Since C is
compact, there exists R0 < ∞ such that C ⊆ B(0, R0). It follows from [9, Theorem 12] that the
ball B(0, R0) is 1-small for Ph,T . Precisely, there exist constants (L0, v0, s0) ∈R

+ ×R
d ×R

+
such that, for each i, j0, 1, . . . , mn

}
,

(
Q(n))

ij = Ph,T
(
an

i , Gn
j

)
≥ L0 min

(x,v)∈B(0,Rn)×B(v0,s0)
{α(x, v)η(v)}μ(Gn

j ∩ B(0, R0)
)

=: ε′μ
(
Gn

j ∩ B(0, R0)
)

= ε′μ(B(0, R0))
μ
(
Gn

j ∩ B(0, R0)
)

μ(B(0, R0))
=: ενn

({
an

j

})
,

where ε = ε′μ(B(0, R0)) and νn
({

an
j

})= μ
(
Gn

j ∩ B(0, R0)
)
/μ(B(0, R0)). The fact that ε′ > 0

results from the continuity of α(x, v) and η(v) by Lemma 2.2.
(iii) Set δ∗ = supk≥1 δk and let E ⊆R

d be an open set of radius rE > δ∗. Recall that
Vr(x) = er‖x‖; then rn := rad(Yn, Vr) → ∞ as n → ∞, so there exists n0 ≥ 1 such that E ⊆⋂

n≥n0
V−1

r ([1, rn)). Then we enlarge the set C such that

C ⊇
( ⋃

n<n0

R
d\Jn

0

)
∪
⋂

n≥n0

V−1
r ([1, rn)). (B.1)

It is clear that the right-hand side of (B.1) is bounded, so we may, and do, assume that C is
compact, and thus the drift condition and minorization condition remain valid. Assume further
that R0 in νn is so large that B(0, R0) still contains C. It suffices to estimate νn

(
C ∩ Yn

)
.

For n < n0, note that C ∩ Yn ⊇ {an
i : i = 1, 2, . . . , mn

}
, since C ⊇ (Gn

0

)c by (B.1). Hence,

νn(C ∩ Yn) ≥ νn

( mn⋃
i=1

{
an

i

})= μ
((

Gn
0

)c ∩ B(0, R0)
)

μ(B(0, R0))
= μ
((

Gn
0

)c)
μ(B(0, R0))

> 0, (B.2)

where we used the fact that B(0, R0) ⊇ C ⊇ (Gn
0

)c.
For n ≥ n0, let E’ be an open ball of radius 1

2 rE centered at the center of E. Since
rn = rad(Yn, Vr) = infy∈Gn

0
Vr(y), we have E ∩ Gn

0 ⊆ V−1
r ([1, rn)) ∩ V−1

r ([rn, ∞)) =∅,

which implies that E ∩ Gn
0 =∅. Note that |y − an(y)| ≤ δ∗ < 1

2 rE for any point y ∈ E′, so
an(y) ∈ E ⊆ C. Therefore, E′ ⊆⋃i:an

i ∈C Gn
i and
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νn(C ∩ Yn) =
μ
(⋃

i:an
i ∈C Gn

i ∩ B(0, R0)
)

μ(B(0, R0))
≥ μ(E′ ∩ B(0, R0))

μ(B(0, R0))
= μ(E′)

μ(B(0, R0))
> 0, (B.3)

where the last inequality results from B(0, R0) ⊇ C ⊇ E ⊇ E′.
Therefore, if we set

ε̄ = min
{
μ(E′), minn<n0 μ

((
Gn

0

)c)}
εμ(B(0, R0))

,

then ε̄ > 0 and ενn(C ∩ Yn) ≥ ε̄ by (B.2) and (B.3). The proof is complete. �

Appendix C. Proof of Lemma 4.2

Proof. The proof basically follows the same line as [17, Proposition 3.7], with suitable
modification. First, define a new approximate Markov chain on Yn whose transition matrix
and invariant measure are denoted by Q(n)∗ and π∗

n , respectively. Precisely, define, for i, j ∈
{0, 1, . . . , mn}, π∗

n

({
an

i

})= π
(
Gn

i

)
,

(
Q(n)∗)

ij = Pπ

(
X1 ∈ Gn

j | X0 ∈ Gn
i

)= 1

π
(
Gn

i

) ∫
Gn

i

π (x)Ph,T
(
x, Gn

j

)
dx,

hn
(
an

i

)= 1

π
(
Gn

i

) ∫
Gn

i

π (x)f (x) dx.

Then we estimate |Eπ̂n(f ) −Eπ (f )| as follows:

|Eπ̂n(f ) −Eπ (f )| ≤ |Eπ̂n(f ) −Eπ∗
n
(f )| + |Eπ∗

n
(f ) −Eπ∗

n
(hn)|, (C.1)

where we used the fact that Eπ∗
n
(hn) =Eπ (f ).

Note that |Eπ̂n(f ) −Eπ∗
n
(f )| ≤ ‖f ‖Vr‖π∗

n − π̂n‖Vr ≤ (M/(1 − ρ))‖f ‖Vr‖π∗
n − π∗

n Q(n)‖Vr .
We will show that ‖π∗

n − π∗
n Q(n)‖Vr converges to zero. Let g : Yn →R be a function such that

‖g‖Vr ≤ 1; we obtain, by the definition of the V-norm,

(
π∗

n − π∗
n Q(n))g = π∗

n

(
Q(n)∗ − Q(n))g

=
mn∑
j=0

( mn∑
i=0

π∗
n

(
an

i

)[
Q(n)∗

ij − Q(n)
ij

]
g
(
an

j

))

=
mn∑
j=0

( mn∑
i=0

π
(
Gn

i

)[ ∫
Gn

i

π (x)

π
(
Gn

i

)Ph,T
(
x, Gn

j

)
dx − Ph,T

(
an

i , Gn
j

)])
g
(
an

j

)

=
mn∑
j=0

( ∫
Rd

π (x)
[
Ph,T
(
x, Gn

j

)− Ph,T
(
an(x), Gn

j

)]
dx

)
g
(
an

j

)
.
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By the equivalence relation in (2.4), it further follows that
mn∑
j=0

( ∫
Rd

π (x)
[
Ph,T
(
x, Gn

j

)− Ph,T
(
an(x), Gn

j

)]
dx

)
g
(
an

j

)

=
mn∑
j=0

∫
Rd

π (x)g(an(x)) dx
∫

Gn
j

[α(an(x), v) − α(x, v)]η(v) dv

+
mn∑
j=0

∫
Rd

π (x) dx
∫

Gn
j

g(an(x̄)){αH(x, x̄)η̄(x, x̄) − αH(an(x), x̄)η̄(an(x), x̄)} dx̄

=
∫
Rd

π (x) dx
∫
Rd

g(an(x)){α(an(x), v) − α(x, v)}η(v) dv

+
∫
Rd

π (x) dx
∫
Rd

g(an(x̄)){αH(x, x̄)η̄(x, x̄) − αH(an(x), x̄)η̄(an(x), x̄)} dx̄ =: I(1)
n + I(2)

n ,

where η̄(x, x̄) = (2π )−d/2 exp
{− 1

2‖�x(x̄)‖2
}
D(x, x̄). Then it is sufficient to show that both I(1)

n

and I(2)
n tend to zero.

Note that the integrand of I(1)
n is dominated by a π -integrable entity. Indeed, for every

x ∈R
d, we have ∣∣∣∣

∫
Rd

g(an(x)){α(an(x), v) − α(x, v)}η(v) dv

∣∣∣∣
≤
∫
Rd

Vr(an(x))|α(an(x), v) − α(x, v)|η(v) dv

≤ (1 + sup
n≥1

δn
)
Vr(x)
∫
Rd

|α(an(x), v) − α(x, v)|η(v) dv, (C.2)

which is π -integrable. Also, since the function (x, v) �→ α(x, v) is continuous on R
d, the

right-hand side of (C.2) converges to zero since limn→∞ an(x) = x. Thus, by the dominated
convergence theorem, we have limn→∞ I(1)

n = 0.
Turning to I(2)

n , set Zn(x, x̄) = αH(x, x̄)η̄(x, x̄)αH(an(x), x̄)η̄
(
an(x), x̄

)
. Using the structure of

Ph,T and (3.1), we get, for every x ∈R
d,∣∣∣∣

∫
Rd

g(an(x̄)){αH(x, x̄)η̄(x, x̄) − αH(an(x), x̄)η̄(an(x), x̄)} dx̄

∣∣∣∣
≤
∫
Rd

Vr(an(x̄))|Zn(x, x̄)| dx̄

≤ (1 + sup
n≥1

δn
) ∫

Rd
Vr(x̄)|Zn(x, x̄)| dx̄

≤ (1 + sup
n≥1

δn
)
(Ph,TVr(x) + Ph,TVr(an(x)))

≤ (1 + sup
n≥1

δn
)(

2 + sup
n≥1

δn
)
(λ + b)Vr(x). (C.3)
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Fix x ∈R
d. Since Zn(x, x̄) is continuous on R

d ×R
d by Lemma 2.2, it obviously follows

that
lim

n→∞ Vr(x̄)|Zn(x, x̄)| = 0, μ-a.e. (C.4)

On the other hand, we claim that there exists a constant κx such that

αH(an(x), x̄)η̄(an(x), x̄) ≤ π (x̄)κx for all x̄ ∈R
d. (C.5)

Indeed, by the structure of the Metropolis–Hastings algorithm, we have

αH(an(x), x̄)η̄(an(x), x̄) ≤ 1

(2π )d/2
D(an(x), x̄) exp{U(an(x)) − U(x̄)}

× exp

{
−1

2
‖proj2 ◦ �h,T (an(x), �an(x)(x̄))‖2

}

≤ π (x̄)
C′

π (an(x))
≤ π (x̄)κx,

where proj2(x, v) := v and κx := C′( infn≥1 π (an(x))
)−1 for all x, v ∈R

d.
Note that D(an(x), x̄) is bounded by Lemma 2.1. Also, it follows from the continuity of π

and the definition of δn that π (an(x)) ≥ inf
{
π (y) : y ∈ B

(
x, supn≥1 δn

)}
> 0 for all sufficiently

large n. Thus, we have 0 < κx < ∞, and so (C.5) holds true.
Then we can show that, for the fixed x,

Vr(x̄)|Zn(x, x̄)| ≤ Vr(x̄)[π (x̄)δx + αH(x, x̄)η̄(x, x̄)] ∈ L1(μ). (C.6)

Combining (C.3), (C.4), and (C.6) implies that I(2)
n → 0.

Consequently, there exists a constant κ0 > 0 such that

|Eπ̂n(f ) −Eπ∗
n
(f )| ≤ κ0

(
I(1)
n + I(2)

n

)→ 0 as n → ∞. (C.7)

Finally, we verify that the second term on the right-hand side of (C.1) tends to zero. By the
definition of hn and π∗

n , we obtain

|Eπ∗
n
(f ) −Eπ∗

n
(hn)| =

mn∑
i=0

π
(
Gn

i

)(
fn
(
an

i

)− hn
(
an

i

))

=
mn∑
i=0

π
(
Gn

i

)[
f
(
an

i

)− 1

π
(
Gn

i

) ∫
Gn

i

π (x)f (x) dx

]

=
mn∑
i=0

∫
Gn

i

[
f
(
an

i

)− f (x)
]
π (x) dx =

∫
Rd

(f (an(x)) − f (x))π (x) dx.

Note that f is π -a.e. continuous and thus f (an(x)) − f (x) π -a.e. converges to zero in R
d. In

addition, it is easy to see that

|f (an(x)) − f (x)| ≤ ‖f ‖Vr

(
2 + sup

k≥1
δk
)
Vr(x) ∈ L1(π ).

Therefore, the dominated convergence theorem implies that

lim
n→∞ |Eπ∗

n
(f ) −Eπ∗

n
(hn)| = 0. (C.8)

We conclude the proof by inserting (C.7) and (C.8) into (C.1). �
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Appendix D. Proof of Proposition 4.1

Proof. Note that π is reversible with respect to the Markov kernel Ph,T . By the spectral
theory in [5, Chapter 22] we obtain

σ 2
π (g) =

∫
S

1 + t

1 − t
ζg(dt),

where S = Spec(Ph,T |L2
0(π )) and ζg is the spectral measure associated with g.

Since Ph,T is Vr-uniformly geometrically ergodic, the spectral theory implies that Ph,T has
an absolute L2(π )-spectral gap, i.e. the spectral radius ρ < 1. Therefore, we obtain

σ 2
π (g) ≤ 1 + ρ

1 − ρ

∫
S
ζg(dt) = 1 + ρ

1 − ρ
Eπ (g2),

where we used the fact that ζg(S) = ‖g‖2
L2

0(π )
. The proof is complete. �

Appendix E. Proof of Proposition 5.1

Proof. By direct calculation, we easily find that U1 belongs to C3(Rd) and satisfies the
conditions in Lemma 5.1. It is now sufficient to show that U2 belongs to C3(Rd) and admits the
property (5.2). Note that U2(x) = λ1

(
x�x + δ

)β + 〈b, Ax〉; then some simple calculus yields

∂U2

∂xi
= 2λ1β

(
x�x + δ

)β−1
xi −
(
A�b
)

i,

∂2U2

∂xi∂xj
= 2λ1β

[(
x�x + δ

)β−1
δij + 2xixj(β − 1)

(
x�x + δ

)β−2
]
,

∂3U2

∂xi∂xj∂xk
= 2λ1β

[
2xk(β − 1)

(
x�x + δ

)β−2
δij + 2(β − 1)

(
x�x + δ

)β−2(xjδik + xiδjk)

+ 4xixjxkβ1β2
(
x�x + δ

)β−3
]
,

where δij is the Kronecker delta function.
Obviously, all the partial derivatives are continuous and so U2 ∈ C3(Rd). Turning to study

∇2U2(x), by the equivalence between norms we only consider the Hilbert–Schmidt (HS) norm
of ∇2U2(x) to obtain

‖∇2U2(x)‖2
HS

≤ 4λ2
1β

2
∑
i,j

[
(‖x‖2 + δ)β−1δij + 2xixj(β − 1)(‖x‖2 + δ)β−2]2

= C
[
d(‖x‖2 + δ)2(β−1) + 4(β − 1)2‖x‖4(‖x‖2 + δ)2(β−2) + 4(β − 1)‖x‖2(‖x‖2 + δ)2β−3],

where C is a numeric constant.
Since β ∈ ( 12 , 1

)
and δ > 0, as ‖x‖ → ∞ we have

‖∇2U2(x)‖ ≤ (‖∇2U2(x)‖2
HS

)1/2 → 0. (E.1)
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As for the term ‖∇3U2(x)‖, we obtain, by a similar argument,

‖∇3U2(x)‖2
HS ≤ 4λ2

1β
2
∑
i,j,k

[
2(β − 1)

(
x�x + δ

)β−2(xkδij + xjδik + xiδjk)

+ 4xixjxk(β − 1)(β − 2)
(
x�x + δ

)β−3
]2

= C(β − 1)2[(6d + 3d2)(‖x‖2 + δ)2β−4‖x‖2 + 4(β − 2)2(‖x‖2 + δ)2β−6‖x‖6

+ 12(β − 2)(‖x‖2 + δ)2β−5‖x‖4],
which in turn implies, as ‖x‖ → ∞,

‖∇3U2(x)‖‖x‖ ≤ ‖∇3U2(x)‖HS‖x‖ → 0. (E.2)

Thus, combining (E.1) and (E.2) proves the condition (5.2). �

Appendix F. Proof of Proposition 5.2

Proof. The function |U2(x)| is obviously continuous on R
d. Also, note that

|U2(x)| ≤ log
[
ec−‖μ‖2/2e−〈x,μ〉 + e−c−‖ν‖2/2e−〈x,ν〉].

Thus, for any γ > 1,

lim‖x‖→∞
|U2(x)|

(1 + ‖x‖)γ
= 0.

Hence, there exists A1 > 0 such that

sup
x∈Rd

|U2(x)|
(1 + ‖x‖)γ

≤ A1. (F.1)

Namely, condition (1.6a) is verified.
Next, we turn to ‖∇U2(x)‖. Note that

∇U2(x) = ec−‖μ‖2/2e−〈x,μ〉μ + e−c−‖ν‖2/2e−〈x,ν〉ν
ec−‖μ‖2/2e−〈x,μ〉 + e−c−‖ν‖2/2e−〈x,ν〉 .

Then ‖∇U2(x)‖ ≤ ‖μ‖ + ‖ν‖. Therefore, for any γ in (F.1), there exists A2 > 0 such that

sup
x∈Rd

‖∇U2(x)‖
(1 + ‖x‖)γ−1

≤ A2,

which implies (1.6b).
It remains to prove (1.6c). Some simple calculations yield

‖∇2U2(x)‖HS = exp
{〈μ + ν, x〉 − 1

2 (‖μ‖2 + ‖ν‖2)
}

(
exp
{
c − 1

2‖μ‖2
}

exp{−〈x, μ〉} + exp
{−c − 1

2‖ν‖2
}

exp{−〈x, ν〉})2 ‖μ − ν‖2

≤ 1

2
‖μ − ν‖2 < ∞.

Hence, by the mean value theorem there exists a constant A3 > 0 such that, for any x, y ∈R
d,

‖∇U2(x) − ∇U2(y)‖ ≤ A3‖x − y‖.

Set L4 := max{A1, A2, A3}. Conditions (1.6a)–(1.6c) are now verified. �
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