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An energy decomposition theorem for
matrices and related questions

Ali Mohammadi, Thang Pham , and Yiting Wang

Abstract. Given A ⊆ GL2(Fq), we prove that there exist disjoint subsets B, C ⊆ A such that A = B ⊔ C
and their additive and multiplicative energies satisfying

max{ E+(B), E×(C) } ≪
∣A∣3

M(∣A∣)
,

where

M(∣A∣) = min
⎧⎪⎪
⎨
⎪⎪⎩

q4/3

∣A∣1/3(log ∣A∣)2/3 ,
∣A∣4/5

q13/5(log ∣A∣)27/10

⎫⎪⎪
⎬
⎪⎪⎭

.

We also study some related questions on moderate expanders over matrix rings, namely, for A, B, C ⊆
GL2(Fq), we have

∣AB + C∣, ∣(A+ B)C∣ ≫ q4 ,

whenever ∣A∣∣B∣∣C∣ ≫ q10+1/2 . These improve earlier results due to Karabulut, Koh, Pham, Shen, and
Vinh ([2019], Expanding phenomena over matrix rings, ForumMath., 31, 951–970).

1 Introduction

Let Fq denote a finite field of order q and characteristic p, and let M2(Fq) be the set of
two-by-two matrices with entries in Fq . We write X ≪ Y to mean X ≤ CY for some
absolute constant C > 0 and use X ∼ Y if Y ≪ X ≪ Y .

Given subsets A, B ⊆ M2(Fq), we define the sum set A+ B to be the set {a + b ∶
(a, b) ∈ A× B} and similarly define the product set AB. In this paper, we study
various questions closely related to the sum-product problem over M2(Fq), which
is to determine nontrivial lower bounds on the quantity max{ ∣A+ A∣, ∣AA∣ }, under
natural conditions on sets A ⊆ M2(Fq).

A result in this direction was proved by Karabulut et al. in [4, Theorem 1.12],
showing that if A ⊆ M2(Fq) satisfies ∣A∣ ≫ q3 then

max{ ∣A+ A∣, ∣AA∣ } ≫min{ ∣A∣
2

q7/2 , q2∣A∣1/2 } .(1.1)
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A closely related quantity is the additive energy E+(A, B) defined as the number of
quadruples (a, a′ , b, b′) ∈ A2 × B2 such that a + b = a′ + b′. The multiplicative energy
E×(A, B) is defined in a similar manner. We also use, for example, E+(A) = E+(A, A).
For λ ∈ M2(Fq), we define the representation function rAB(λ) = ∣{ (a, b) ∈ A× B ∶
ab = λ }∣. Note that rAB is supported on the set AB and so we have the identities

∑
λ∈AB

rAB(λ) = ∣A∣∣B∣ and ∑
λ∈AB

rAB(λ)2 = E×(A, B).(1.2)

A standard application of the Cauchy–Schwarz inequality gives

∣A+ B∣ ≥ ∣A∣2∣B∣2
E+(A, B) , ∣AB∣ ≥ ∣A∣2∣B∣2

E×(A, B) .(1.3)

Thus, if either E+(A, B) or E×(A, B) is small, then max(∣A+ B∣, ∣AB∣) is big. This
motivates the study of energy estimates.

Balog and Wooley [2] initiated the investigation into a type of energy variant of
the sum-product problem by proving that given a finite set A ⊂ R, one may write A =
B ⊔ C such that max{E+(B), E×(C)} ≪ ∣A∣3−δ(log ∣A∣)1−δ for δ = 2/33. In the prime
field setting, they also provided similar results, namely:
(1) If ∣A∣ ≤ p 101

161 (log p) 71
161 , then

max{E+(B), E×(C)} ≪ ∣A∣3−δ(log ∣A∣)1−δ/2 , δ = 4/101.

(2) If ∣A∣ > p 101
161 (log p) 71

161 , then

max{E+(B), E×(C)} ≪ ∣A∣3(∣A∣/p)1/15(log ∣A∣)14/15 .

These results have been improved by Rudnev, Shkredov, and Stevens in [10]. In
particular, they increased δ from 2/33 to 1/4 over the reals, and from 4/101 to 1/5
over prime fields. We note that this type of result has many applications in different
areas, for instance, bounding exponential sums [5, 8, 12–15] or studying structures in
Heisenberg groups [1, 3].

The main goals of this paper are to study energy variants of the sum-product
problem, and to obtain new exponents on two moderate expanding functions in the
matrix ring M2(Fq). While the results in [2, 10] mainly relies on a number of earlier
results on the sum-product problem or Rudnev’s point–plane incidence bound [9],
our proofs rely on graph theoretic methods. It follows from our results in the next
section that there exists a different phenomenon between problems over finite fields
and over the matrix ring M2(Fq).

2 Main results

Our first theorem is on an energy decomposition of a set of matrices in M2(Fq).

Theorem 2.1 Given A ⊆ GL2(Fq), there exist disjoint subsets B, C ⊆ A such that A =
B ⊔ C and

max{E+(B), E×(C)} ≪
∣A∣3

M(∣A∣) ,
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where

M(∣A∣) =min
⎧⎪⎪⎨⎪⎪⎩

q4/3

∣A∣1/3(log ∣A∣)2/3 , ∣A∣4/5
q13/5(log ∣A∣)27/10

⎫⎪⎪⎬⎪⎪⎭
.(2.1)

It follows from this theorem that for any set A of matrices in M2(Fq), we always
can find a subset with either small additive energy or small multiplicative energy. By
the Cauchy–Schwarz inequality, we have the following direct consequence on a sum-
product estimate, namely, for A ⊆ GL2(Fq), we have

max{∣A+ A∣, ∣AA∣} ≫ ∣A∣ ⋅M(∣A∣).(2.2)

By a direct computation, one can check that this is better than the estimate (1.1) in the
range ∣A∣ ≪ q3+5/8/(log ∣A∣)1/2.

In the next theorem, we show that the lower bound of (2.2) can be improved by a
direct energy estimate.

Theorem 2.2 Let A, B ⊆ M2(Fq) and C ⊆ GL2(Fq). Then

E+(A, B) ≪ ∣A∣2∣BC∣2
q4 + q13/2 ∣A∣∣BC∣

∣C∣ .

Corollary 2.3 For A ⊆ M2(Fq), with ∣A∣ ≫ q3, we have

max{ ∣A+ A∣, ∣AA∣ } ≫min{ ∣A∣
2

q13/4 , q4/3∣A∣2/3 } .(2.3)

In addition, if ∣AA∣ ≪ ∣A∣ and ∣A∣ ≫ q3+1/2, then

∣A+ A∣ ≫ q4 .(2.4)

If ∣AA∣ ≪ ∣A∣ and ∣A∣ ≫ q3+2/5, then

∣A+ A+ A∣ ≫ q4 .(2.5)

We point out that the arguments of the proof of Corollary 2.3 could be used
iteratively to give stronger results for expansion of k-fold sum sets A+⋯+ A of sets
A ⊆ M2(Fq) with ∣AA∣ ≪ ∣A∣, as k gets larger.

We remark that the estimate (2.3) improves (1.1) in the range ∣A∣ ≪ q3+5/8 and is
stronger than (2.2) in the range of ∣A∣ ≫ q13/4. We also note that our assumption to get
the estimate (2.4) is reasonable. For instance, let G be a subgroup of F∗q , and let A be
the set of matrices with determinants in G, then we have ∣A∣ ∼ q3 ⋅ ∣G∣ and ∣AA∣ = ∣A∣.

It has been proved in [4, Theorems 1.8 and 1.9] that for A, B, C ⊆ M2(Fq), if
∣A∣∣B∣∣C∣ ≥ q11, then we have

∣AB + C∣, ∣(A+ B)C∣ ≫ q4 .

In the following theorem, we provide improvements of these results.
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Theorem 2.4 Let A, B, C ⊆ M2(Fq), we have

∣AB + C∣ ≫min{ q4 , ∣A∣∣B∣∣C∣
q13/2 } .

If C ⊆ GL2(Fq), the same conclusion holds for (A+ B)C, i.e.,

∣(A+ B)C∣ ≫min{ q4 , ∣A∣∣B∣∣C∣
q13/2 } .

In particular:
(1) If ∣A∣∣B∣∣C∣ ≫ q10+1/2, then ∣AB + C∣ ≫ q4 .
(2) If ∣A∣∣B∣∣C∣ ≫ q10+1/2 and C ⊆ GL2(Fq), then ∣(A+ B)C∣ ≫ q4 .

The condition C ⊆ GL2(Fq) is necessary, since, for instance, one can take C being
the set of matrices with zero determinant and A = B = M2(Fq), then ∣(A+ B)C∣ ∼ q3

and ∣A∣∣B∣∣C∣ ∼ q11.
We expect that the exponent q10+1/2, in the final conclusions of the above theorem,

could be further improved to q10, which, as we shall demonstrate, is sharp. For AB + C,
let A and B be the set of lower triangular matrices in M2(Fq) and for arbitrary 0 < δ <
1, let X ⊆ Fq be any set with ∣X∣ = q1−δ , and let

C = {(c1 c2
c3 c4

) ∶ c1 , c3 , c4 ∈ Fq , c2 ∈ X } .

Then ∣A∣∣B∣∣C∣ = q10−δ and ∣AB + C∣ = ∣C∣ = q4−δ .
For (A+ B)C, the construction is as follows: For arbitrary k, let q = pk , and let V

be the set of elements corresponding to a (k − 1)-dimensional vector space over Fp
in Fq . Thus, we have ∣V ∣ = pk−1 = q1−1/k . Now, let

A = B = {(x1 x2
x3 x4

) ∶ x1 , x2 ∈ V , x3 , x4 ∈ Fq } ,

and

C = {(c1 c2
c3 c4

) ∶ c1 , c3 ∈ Fq , c2 , c4 ∈ Fp } .

Note that A+ B = A = B and so

(A+ B)C = AC = {(y1 y2
y3 y4

) ∶ y1 , y3 , y4 ∈ Fq , y2 ∈ V } ,

where we have used that V ⋅ Fp + V ⋅ Fp = V + V = V .
Thus, ∣A∣∣B∣∣C∣ = (q2 ⋅ q2−2/k)2 ⋅ (q2 ⋅ q2/k) = q10−2/k while ∣(A+ B)C∣ = q4−1/k .
Also, we remark here that in the setting of finite fields, our approach and that of

Karabulut et al. in [4] imply the same result. Namely, for A, B, C ⊆ Fq , we have ∣(A+
B)C∣, ∣AB + C∣ ≫ q whenever ∣A∣∣B∣∣C∣ ≫ q2. However, this is not true in the matrix
ring. Let us briefly sketch the proof. For λ ∈ AB + C, write

t(λ) = ∣{ (a, b, c) ∈ A× B × C ∶ ab + c = λ }∣.
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By the Cauchy–Schwarz inequality, we have

(∣A∣∣B∣∣C∣)2 = ( ∑
λ∈AB+C

t(λ))
2

≤ ∣AB + C∣ ∑
λ∈AB+C

t(λ)2 .

Thus, the main task is to bound∑λ t(λ)2, i.e., the number of tuples (a, b, c, a′ , b′ , c′) ∈
(A× B × C)2 such that ab + c = a′b′ + c′. In [4], instead of bounding∑λ t(λ)2, they
bounded the number of quadruples (a, b, c, λ) ∈ A× B × C × (AB + C) such that
ab + c = λ. These two approaches imply the same lower bounds for (A+ B)C and
AB + C when A, B, C ⊂ Fq , but in the matrix rings, bounding ∑λ t(λ)2 is more
effective. In other words, there exists a different phenomenon between problems over
finite fields and over the matrix ring M2(Fq).

We now state a corollary of the above theorem with C = AA which might be of
independent interest.

Corollary 2.5 Let A ⊂ M2(Fq) with ∣A∣ ≫ q3+7/16, then

max{∣AA(A+ A)∣, ∣AA+ A+ A∣} ≫ q4 .

Let A, B, C , D ⊆ M2(Fq), our last theorem is devoted for the solvability of the
equation

x + y = zt, (x , y, z, t) ∈ A× B × C × D.(2.6)

Let J(A, B, C , D) denote the number of solutions to this equation.
One can check that by using Lemma 4.1 and Theorem 4.2 from [4], one has

∣J(A, B, C , D) − ∣A∣∣B∣∣C∣∣D∣
q4 ∣ ≪ q7/2(∣A∣∣B∣∣C∣∣D∣)1/2 .(2.7)

Thus, when ∣A∣∣B∣∣C∣∣D∣ ≫ q15, then J(A, B, C , D) ∼ ∣A∣∣B∣∣C∣∣D∣q4 . We refer the interested
reader to [11] for a result on this problem over finite fields. In our last theorem, we are
interested in bounding J(A, B, C , D) from above when ∣A∣∣B∣∣C∣∣D∣ is smaller.

Theorem 2.6 Let A, B, C , D ⊆ M2(Fq), and let J(A, B, C , D) denote the number of
solutions to equation (2.6). Then, we have

J(A, B, C , D) ≪ ∣A∣∣B∣1/2∣C∣∣D∣
q2 + q13/4(∣A∣∣B∣∣C∣∣D∣)1/2 .

Assume ∣A∣ = ∣B∣ = ∣C∣ = ∣D∣, the upper bound of this theorem is stronger than that
of (2.7) when ∣A∣ ≪ q11/3.

2.1 Structure

The rest of this paper is structured as follows: In Section 3, we prove a preliminary
lemma, which is one of the key ingredients in the proof of our energy decomposition
theorem. Section 4 is devoted to proving Theorem 2.1. The proofs of Theorem 2.2 and
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Corollary 2.3 will be presented in Section 5. Section 6 contains proofs of Theorem 2.4,
Corollary 2.5, and Theorem 2.6.

3 A preliminary lemma

Given sets A, B, C , D, E , F ⊆ M2(Fq), let I(A, B, C , D, E , F) be the number of solu-
tions

(a, e , c, b, f , d) ∈ A× B × C × D × E × F ∶ ab + e f = c + d .

The main purpose of this section is to prove an estimate for I(A, B, C , D, E , F), which
is one of the key ingredients in the proof of Theorem 2.1.

Proposition 3.1 We have

∣I(A, B, C , D, E , F) − ∣A∣∣B∣∣C∣∣D∣∣E∣∣F∣
q4 ∣ ≪ q13/2

√
∣A∣∣B∣∣C∣∣D∣∣E∣∣F∣ .

To prove Proposition 3.1, we define the sum-product digraph G = (V , E) with the
vertex set V = M2(Fq) ×M2(Fq) ×M2(Fq), and there is a directed edge going from
(a, e , c) to (b, f , d) if and only if ab + e f = c + d. The setting of this digraph is a
generalization of that in [4, Section 4.1]

Let G be a digraph on n vertices. Suppose that G is regular of degree d, i.e., the in-
degree and out-degree of each vertex are equal to d. Let mG be the adjacency matrix
of G, where (mG)i j = 1 if and only if there is a directed edge from i to j. Let μ1 =
d , μ2 , . . . , μn be the eigenvalues of mG . Notice that these eigenvalues can be complex
numbers, and for all 2 ≤ i ≤ n, we have ∣μ i ∣ ≤ d. Define μ(G) ∶=max∣μ i ∣≠d ∣μ i ∣. This
value is referred to as the second largest eigenvalue of mG .

A digraph G is called an (n, d , μ)-digraph if G is a d-regular digraph of n vertices,
and the second largest eigenvalue of mG is at most μ.

We recall the following lemma from [16] on the distribution of edges between two
vertex sets on an (n, d , μ)-digraph.

Lemma 3.2 Let G = (V , E) be an (n, d , μ)-digraph. For any two sets B, C ⊆ V, the
number of directed edges from B to C, denoted by e(B, C) satisfies

∣e(B, C) − d
n
∣B∣∣C∣∣ ≤ μ

√
∣B∣∣C∣ .

With Lemma 3.2 in hand, to prove Proposition 3.1, it is enough to study properties
of the sum-product digraph G.

Definition 3.1 Let a, b ∈ M2(Fq). We say they are equivalent, if whenever the ith
row of a is not all-zero, neither is the ith row of b and vice versa, for 1 ≤ i ≤ 2.

Proposition 3.3 The sum product graph G is a (q12 , q8 , c ⋅ q13/2)-digraph, for some
positive constant c.
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Proof The number of vertices is ∣M2(Fq)∣3 = q12. Moreover, for each vertex
(a, e , c), with each choice of (b, f ), d is determined uniquely from d = ab + e f − c.
Thus, there are ∣M2(Fq)∣2 = q8 directed edges going out of each vertex. The number
of incoming directed edges can be argued in the same way. To conclude, the digraph
G is q8-regular. Let mG denote the adjacency matrix of G. It remains to bound the
magnitude of the second largest eigenvalue of the adjacency matrix of G, i.e., μ(mG).

In the next step, we are going to show that mG is a normal matrix, i.e., mT
G mG =

mG mT
G , where mT

G is the conjugate transpose of mG . For a normal matrix m, we know
that if λ is an eigenvalue of m, then ∣λ∣2 is an eigenvalue of mmT and mT m. Thus,
for a normal matrix m, it is enough to give an upper bound for the second largest
eigenvalue of mmT or mT m.

There is a simple way to check whenever G is normal. For any two vertices u and v,
let N+(u, v) be the set of vertices w such that →uw , →vw are directed edges, and N−(u, v)
be the set of vertices w′ such that

 →
w′u,

 →
w′v are directed edges. It is not hard to check

that mG is normal if and only if ∣N+(u, v)∣ = ∣N−(u, v)∣ for any two vertices u and v.
Given two vertices (a, e , c) and (a′ , e′ , c′), where (a, e , c) ≠ (a′ , e′ , c′), the num-

ber of (x , y, z) that lies in the common outgoing neighborhood of both vertices is
characterized by

ax + e y = c + z
a′x + e′y = c′ + z

} #⇒ (a − a′)x + (e − e′)y = (c − c′) .

For each pair (x , y) satisfying this equation, z is determined uniquely. Thus, the
problem is reduced to computing the number of such pairs (x , y).

For convenience, let ā = a − a′, c̄ = c − c′, and ē = e − e′. Also, let t = (ā ē)2×4.
Then, the above relation is equivalent to

(ā ē)(x
y) = t (x

y)
4×2
= c̄ .(3.1)

We now have the following cases:
• (Case 1: rank(t) = 0) Note that in this case, we need a = a′, c = c′, and e = e′, which

is a contradiction to our assumption that (a, e , c) ≠ (a′ , e′ , c′). Thus, we simply
exclude this case.

• (Case 2: rank(t) = 1) As t is not an all-zero matrix, there is at least one nonzero row.
Without loss of generality, assume it is the first row. Then,

t = ( a1 a2 e1 e2
αa1 αa2 αe1 αe2

), where (a1 , a2 , e1 , e2) ≠ 0 and α ∈ Fq .

– (Case 2.1: rank(c̄) = 2) In this case, there is no solution, as rank(t (x
y)) ≤

rank(t) = 1 but rank(c̄) = 2.

– (Case 2.2: rank(c̄) = 1) Let x = (x1 x2
x3 x4

), y = (y1 y2
y3 y4

). We discuss two sub-
cases:

(a) c̄ = ( c1 c2
αc1 αc2

) with the same factor α, where (c1 , c2) ≠ (0, 0).
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In this case, we have the following set of equations:
⎧⎪⎪⎨⎪⎪⎩

a1x1 + a2x3 + e1 y1 + e2 y3 = c1 ,
a1x2 + a2x4 + e1 y2 + e2 y4 = c2 .

Since we assume (a1 , a2 , e1 , e2) ≠ 0, without loss of generality, let a1 ≠ 0. Then,
⎧⎪⎪⎨⎪⎪⎩

x1 = (a1)−1(c1 − a2x3 − e1 y1 − e2 y3),
x2 = (a1)−1(c2 − a2x4 − e1 y2 − e2 y4),

which means that for each (x3 , y1 , y3) there is a unique x1 and for each
(x4 , y2 , y4) there is a unique x2. Thus, there are q6 different (x , y, z) solutions.

(b) In all other sub-cases, there is no solution. If c̄ = ( c1 c2
βc1 βc2

), where β ≠ α

and (c1 , c2) ≠ (0, 0), then we get the following two equations:
⎧⎪⎪⎨⎪⎪⎩

a1x1 + a2x3 + e1 y1 + e2 y3 = c1 ,
αa1x1 + αa2x3 + αe1 y1 + αe2 y3 = βc1 ,

which obviously do not have any solution.

Otherwise, c̄ = (βc1 βc2
c1 c2

), where (c1 , c2) ≠ (0, 0). Note that if α ≠ 0, then

β ≠ α−1, because this case is covered in Case 2.2(a) implicitly. We get the follow-
ing equations.

⎧⎪⎪⎨⎪⎪⎩

a1x1 + a2x3 + e1 y1 + e2 y3 = βc1 ,
αa1x1 + αa2x3 + αe1 y1 + αe2 y3 = c1 ,

which obviously do not have any solution. Notice that α = 0 or β = 0 corresponds
to t and c̄ not being equivalent.

– (Case 2.3: rank(c̄) = 0) This case is similar to the Case 2.2(a), except c1 = c2 = 0.
We have the following two equations:

⎧⎪⎪⎨⎪⎪⎩

a1x1 + a2x3 + e1 y1 + e2 y3 = 0,
a1x2 + a2x4 + e1 y2 + e2 y4 = 0.

Following the same analysis, we conclude there are q6 solutions.
• (Case 3: rank(t) = 2) In this case, we always have solutions, for any c̄.

– (Case 3.1: rank(ā) = 2 or rank(ē) = 2) In this case, let us look back on equation
(3.1). If rank(ā) = 2, then we can rewrite (3.1) as āx = c̄ − ē y. Observe that, for
any y ∈ M2(Fq), there is a unique x. Thus, the number of solutions is q4. The
case where rank(ē) = 2 is similar.

– (Case 3.2: rank(ā) ≤ 1 and rank(ē) ≤ 1) In this case, it is not hard to observe
that t must be one of the following four types:

(i) ( a1 a2 e1 e2
αa1 αa2 βe1 βe2

), where (a1 , a2), (e1 , e2) ≠ (0, 0), α ≠ β, (α, β) ≠

(0, 0).

https://doi.org/10.4153/S000843952300036X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952300036X


1288 A. Mohammadi et al.

(ii) (αa1 αa2 βe1 βe2
a1 a2 e1 e2

), where (a1 , a2), (e1 , e2) ≠ (0, 0), α ≠ β, (α, β) ≠

(0, 0).

(iii) (a1 a2 0 0
0 0 e1 e2

), where (a1 , a2), (e1 , e2) ≠ (0, 0).

(iv) ( 0 0 e1 e2
a1 a2 0 0 ), where (a1 , a2), (e1 , e2) ≠ (0, 0).

Since (i) and (ii) are symmetric and so is (iii) and (iv), we only argue for (i)
and (iii). For (iii), reusing notations from Case 2.2(a), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1x1 + a2x3 = c1 ,
a1x2 + a2x4 = c2 ,
e1 y1 + e2 y3 = c3 ,
e1 y2 + e2 y4 = c4 .

As (a1 , a2) ≠ (0, 0) and (e1 , e2) ≠ (0, 0), without loss of generality, we
assume a1 ≠ 0 and e1 ≠ 0. Then, it means for each (x3 , x4 , y3 , y4) there is a
unique (x1 , x2 , y1 , y2). Thus, the system has q4 solutions.

For (i), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1x1 + a2x3 + e1 y1 + e2 y3 = c1 , 1
a1x2 + a2x4 + e1 y2 + e2 y4 = c2 , 2
αa1x1 + αa2x3 + βe1 y1 + βe2 y3 = c3 , 3
αa1x2 + αa2x4 + βe1 y2 + βe2 y4 = c4 . 4

Again, assume a1 ≠ 0 and e1 ≠ 0. Now, take 1 × α − 3 , we get (α − β)(e1 y1 +
e2 y3) = αc1 − c3. As α ≠ β, this means e1 y1 + e2 y3 = (α − β)−1(αc1 − c3). Thus,
for each y3, there is a unique y1. Similarly, compute 1 × β − 3 , and we
get a1x1 + a2x3 = (β − α)−1(βc1 − c3), which means that for each x3, we get a
unique x1. We can do the same for 2 and 4 and conclude that there are q4

solutions.
Observe that all cases are disjoint and they together enumerate all possible relations

between vertices (a, e , c) and (a′ , e′ , c′). We computed N+((a, e , c), (a′ , e′ , c′))
above and the computation for N−((a, e , c), (a′ , e′ , c′)) is the same. Thus, we know
mG is normal. Note that each entry of mG mT

G can be interpreted as counting the
number of common outgoing neighbors between two vertices. We can write mG mT

G as

mG mT
G = q8I + 0E21 + q6E22a + 0E22b + q6E23 + q4E31 + q4E32

= (q8 − q4)I + q4 J − q4E21 + (q6 − q4)E22a

− q4E22b + (q6 − q4)E23 + (q4 − q4)E31 + (q4 − q4)E32

= (q8 − q4)I + q4 J − q4E21 + (q6 − q4)E22a − q4E22b + (q6 − q4)E23 ,

where I is the identity matrix, J is the all one matrix and E i js are adjacency
matrices, specifying which entries are involved. For example, for Case 2.3, all pairs
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(a, e , c), (a′ , e′ , c′) with c = c′ and rank(t) = 1 are involved. Thus, the E23 is an
adjacency matrix of size q12 × q12 (containing all triples (a, e , c)), with pairs of vertices
satisfying this property marked 1 and all others marked 0.

Finally, observe that each subgraph defined by the corresponding adjacency matrix
E i j is regular. This is due to the fact that the condition does not depend on specific
value of (a, e , c). Starting from any vertex (a, e , c), we can get to all possible ā, ē , c̄
by subtracting the correct (a′ , e′ , c′). Thus, for each case, we get the same number of
(a′ , e′ , c′) that satisfies the condition.

Let κi j be the maximum number of 1s in a row in E i j . Obviously, κi j is an
upper bound on the largest eigenvalue of E i j . It is not difficult to see that κ21 ≪ q9,
κ22a ≪ q7,κ22b ≪ q8 andκ23 ≪ q5. For example, in Case 2.1, we have rank(t) = 1 and
rank(c̄) = 2. For a fixed (a, e , c), the former implies that there are O(q5) possibilities
for a′ and e′ while the latter implies there are O(q4) possibilities for c′. Altogether,
there are O(q9) possibilities for (a′ , e′ , c′) in Case 2.1. Because the graph induced by
E21 is regular, we have κ21 ≪ q9. Other cases can be deduced accordingly.

The rest follows from a routine computation: let v2 be an eigenvector correspond-
ing to μ(G). Then, because G is regular and connected (easy to see, there is no isolated
vertex), v2 is orthogonal to the all 1 vector, which means J ⋅ v2 = 0. We now have

μ(mG)
2v2 = mG mT

G ⋅ v2 = (q8 − q4)I ⋅ v2 + (−q4E21 + (q6 − q4)E22a − q4E22b + (q6 − q4)E23) ⋅ v2

= ((q8 − q4) − q4κ21 + (q6 − q4)κ22a − q4κ22b + (q6 − q4)κ23) ⋅ v2

≪ q13 ⋅ v2 .

Thus, μ(mG) ≪ q13/2. ∎

Proof of Proposition 3.1 It follows directly from Proposition 3.3 and Lemma 3.2
that

∣I(A, B, C , D, E , F) − 1
q4 ∣A∣∣B∣∣C∣∣D∣∣E∣∣F∣∣ ≪ q13/2

√
∣A∣∣B∣∣C∣∣D∣∣E∣∣F∣ .

This completes the proof. ∎

4 Proof of Theorem 2.1

To prove Theorem 2.1, we will also need several technical results. A proof of the
following inequality may be found in [8, Lemma 2.4].

Lemma 4.1 Let V1 , . . . , Vk be subsets of an abelian group. Then

E+(
k
⊔
i=1

Vi) ≤ (
k
∑
i=1

E+(Vi)1/4)
4

.

The following lemma is taken from [5] and may also be extracted from [8, 10].
Lemma 4.2 is slightly different to its analogs over commutative rings as highlighted
by the duality of the inequalities (4.5) and (4.6).
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Lemma 4.2 Let X ⊆ GL2(Fq). There exist sets X∗ ⊂ X, D ⊂ XX, as well as numbers
τ and κ satisfying

E×(X)
2∣X∣2 ≤ τ ≤ ∣X∣,(4.1)

E×(X)
τ2 ⋅ log ∣X∣ ≪ ∣D∣ ≪ (log ∣X∣)6 ∣X∗∣4

E×(X)
,(4.2)

∣X∗∣2 ≫
E×(X)

∣X∣(log ∣X∣)7/2 ,(4.3)

κ≫ ∣D∣τ
∣X∗∣(log ∣X∣)2 ,(4.4)

such that either

rDX−1(x) ≥ κ for all x ∈ X∗ ,(4.5)

or

rX−1 D(x) ≥ κ for all x ∈ X∗ .(4.6)

We need a dyadic pigeonhole argument, which can be found in [6, Lemma 18].

Lemma 4.3 For Ω ⊆ M2(Fq), let w , f ∶ Ω → R
+ with f (x) ≤ M , ∀x ∈ Ω. Let W =

∑x∈Ω w(x). If∑x∈Ω f (x)w(x) ≥ K , then there exists a subset D ⊂ Ω and a number τ
such that τ ≤ f (x) < 2τ for all x ∈ D and K/(2W) ≤ τ ≤ M . Moreover,

K
2 + 2 log2 M

≤ ∑
x∈D

f (x)w(x) ≤ 2τ ∑
x∈D

w(x) ≤min{2τW , 4τ2∣D∣} .

Proof of Lemma 4.2 We use the identities in (1.2) and apply Lemma 4.3, by taking
Ω = XX , f = w = rX X , M = ∣X∣, K = E×(X), and W = ∣X∣2, to find a set D ⊂ XX and
a number τ, satisfying (4.1), such that D = { λ ∈ XX ∶ τ ≤ rX X(λ) < 2τ } and

τ2∣D∣ ≫ E×(X)/ log ∣X∣ .(4.7)

Define P1 = { (x , y) ∈ X × X ∶ x y ∈ D } and Ax = { y ∶ (x , y) ∈ P1 } for x ∈ X. By
the definition of D, we know that τ∣D∣ ≤ ∣P1∣ < 2τ∣D∣. We can use Lemma 4.3 again
with Ω = X , f (x) = ∣Ax ∣, w = 1, M =W = ∣X∣, and K = ∣P1∣ to find a set V ⊂ X and a
number κ1 such that V = { x ∈ X ∶ κ1 ≤ ∣Ax ∣ < 2κ1 } and

∣V ∣κ1 ≫ ∣P1∣/ log ∣X∣ ≫ τ∣D∣/ log ∣X∣ .(4.8)

Now, we split the analysis into two cases based on ∣V ∣:
Case 1 (∣V ∣ ≥ κ1(log ∣X∣)−1/2): In this case, we simply set X∗ = V and κ = κ1. For

each x ∈ V , there are at least κ1 different y such that x y ∈ D. Therefore, rDX−1(x) ≥
κ ∀x ∈ X∗.
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Case 2 (∣V ∣ < κ1(log ∣X∣)−1/2): In this case, we find another pair U ,κ2 that satisfies
∣U ∣ ≫ κ2(log ∣X∣)−1/2 and set X∗ = U and κ = κ2. Let P2 = { (x , y) ∈ P1 ∶ x ∈ V } and
By = { x ∶ (x , y) ∈ P2 }. By definition, we have ∣P2∣ ≥ ∣V ∣κ1. We apply Lemma 4.3
again, with Ω = X , f (y) = ∣By ∣, w = 1, K = ∣P2∣ and W = M = ∣X∣ to get U ⊂ X and a
number κ2 such that U = { y ∈ X ∶ κ2 ≤ ∣By ∣ < 2κ2 } and

∣U ∣κ2 ≫ ∣P2∣/ log ∣X∣ ≥ κ1∣V ∣/ log ∣X∣ .(4.9)

Combining this inequality with the assumption of this case (κ1 ≥ ∣V ∣(log ∣X∣)1/2) and
∣V ∣ ≥ κ2, we conclude ∣U ∣ ≫ κ2(log ∣X∣)−1/2. We can then argue similarly as in Case 1
to conclude rX−1 D(x) ≥ κ ∀x ∈ X∗.

Now, (4.4) follows from either of (4.8) or (4.9). To prove (4.3), we first note
that in either of the cases above we have ∣X∗∣ ≫ κ(log ∣X∣)−1/2. Then using
the lower bound on κ, (4.7) and (4.1), we have ∣X∗∣2 ≫ ∣D∣τ(log ∣X∣)−5/2 ≫
E×(X)/(∣X∣ log ∣X∣)7/2 as required. Finally, to deduce the required upper bound
on ∣D∣ in (4.2) note that, as shown above, ∣D∣τ ≪ ∣X∗∣2(log ∣X∣)5/2, which with (4.7)
implies ∣D∣E×(X)(log ∣X∣)−1 ≪ (∣D∣τ)2 ≪ ∣X∗∣4(log ∣X∣)5. ∎

Lemma 4.4 Let X ⊆ GL2(Fq). Then there exists X∗ ⊆ X, with

∣X∗∣ ≫
E×(X)1/2

∣X∣1/2(log ∣X∣)7/4 ,

such that

E+(X∗) ≪
∣X∗∣4∣X∣6(log ∣X∣)2

q4E×(X)2 + q13/2∣X∗∣3∣X∣(log ∣X∣)5

E×(X)
.(4.10)

Proof We apply Lemma 4.2 to the set X and henceforth assume its full statement,
keeping the same notation. Without loss of generality, assume rX−1 D(x) ≥ κ ∀x ∈ X∗.
Thus,

E+(X∗) = ∣{(x1 , x2 , x3 , x4) ∈ X4
∗ ∶ x1 + x2 = x3 + x4}∣

≤ κ−2∣{(d1 , d2 , x1 , x2 , y1 , y2) ∈ D2 × X2
∗ × X2 ∶ x1 + y−1

1 d1 = x2 + y−1
2 d2}∣

= κ−2I(X−1 , D,−X∗ ,−X−1 , D, X∗).

Then applying Proposition 3.1 and (4.4), we obtain

E+(X∗) ≪ κ−2 ⋅ ((∣D∣∣X∣∣X∗∣)
2

q4 + q13/2∣D∣∣X∣∣X∗∣)

≪ ∣X∗∣4∣X∣2(log ∣X∣)2

q4τ2 + q13/2∣X∗∣3∣X∣(log ∣X∣)4

∣D∣τ2 .

Finally, applying (4.1) and (4.2), we obtain the required bound in (4.10) for
E+(X∗). ∎

We are now ready to prove Theorem 2.1.
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Proof of Theorem 2.1 We begin by describing an algorithm, which constructs two
sequences of sets A = S1 ⊇ S2 ⊇ ⋯ ⊇ Sk+1 and ∅ = T0 ⊆ T1 ⊆ ⋯ ⊆ Tk such that S i ⊔
Ti−1 = A, for i = 1, . . . , k + 1.

Let 1 ≤ M ≤ ∣A∣ be a parameter. At any step i ≥ 1, if E×(S i) ≤ ∣A∣3/M the algorithm
halts. Otherwise if

E×(S i) >
∣A∣3
M

,(4.11)

through a use of Lemma 4.4, with X = S i , we identify a set Vi ∶= X∗ ⊆ S i , with

∣Vi ∣ ≫
E×(S i)1/2

∣S i ∣1/2(log ∣A∣)7/4 >
∣A∣

M1/2(log ∣A∣)7/4(4.12)

and

E+(Vi) ≪
∣Vi ∣4∣S i ∣6(log ∣S i ∣)2

q4E×(S i)2 + q13/2∣Vi ∣3∣S i ∣(log ∣S i ∣)5

E×(S i)
.(4.13)

We then set S i+1 = S i ∖ Vi , Ti+1 = Ti ⊔ Vi and repeat this process for the step i + 1.
From (4.12), we deduce ∣Vi ∣ ≫ ∣A∣1/2(log ∣A∣)−7/4 and so the cardinality of each S i
monotonically decreases. This in turn implies that this process indeed terminates after
a finite number of iterations k. We set B = Sk+1 and C = Tk , noting that A = B ⊔ C and
that

E×(B) ≤
∣A∣3
M

.(4.14)

We apply the inequalities (4.11), (4.12) and ∣S i ∣ ≤ ∣A∣, to (4.13), to get

E+(Vi) ≪ M2∣Vi ∣4q−4(log ∣A∣)2 +M∣A∣−2∣Vi ∣3q13/2(log ∣A∣)5

≪ (M2q−4(log ∣A∣)2 +M3/2∣A∣−3q13/2(log ∣A∣)27/4) ⋅ ∣Vi ∣4 .

Then, observing that

C = Tk =
k
⊔
i=1

Vi ⊆ A,

we use Lemma 4.1 to obtain

E+(C) ≪ (M2q−4(log ∣A∣)2 +M3/2∣A∣−3q13/2(log ∣A∣)27/4)(
k
∑
i=1
∣Vi ∣)

4

≤ M2∣A∣4q−4(log ∣A∣)2 +M3/2∣A∣q13/2(log ∣A∣)27/4 .

Note that Lemma 4.1 is applicable because M2(Fq) is an abelian group under
addition. Comparing this with (4.14), we see the choice M = M(∣A∣), given by (2.1) is
optimal. ∎
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5 Proofs of Theorem 2.2 and Corollary 2.3

Proof of Theorem 2.2 We proceed similarly to the proof of [7, Theorem 6]. Note
that

E+(A, B) = ∣C∣−2∣{ (a, a′ , b, b′ , c, c′) ∈ A2 × B2 × C2 ∶ a + bcc−1 = a′ + b′c′(c′)−1 }∣
≤ ∣C∣−2∣{ (a, a′ , s, s′ , c, c′) ∈ A2 × (BC)2 × (C−1)2 ∶ a + sc = a′ + s′c′ }∣.

The required result then follows by applying Proposition 3.1. ∎

Proof of Corollary 2.3 Since ∣A∣ ≫ q3, we may assume A ⊆ GL2(Fq). We use The-
orem 2.2, with A = B = C and apply the lower bound on E+(A) given by (1.3) to obtain
(2.3). To prove (2.4), we follow the same process and apply the assumption ∣AA∣ ≪ ∣A∣,
to obtain

∣A+ A∣ ≫min{ q4 , ∣A∣3/q13/2 },(5.1)

which gives the required result.
To prove (2.5), we use Theorem 2.2, to get

∣A+ A∣2∣A∣2
∣A+ A+ A∣ ≤ E+(A+ A, A) ≪ ∣A+ A∣2∣A∣2

q4 + q13/2∣A+ A∣.

Recalling (5.1), this rearranges to

∣A+ A+ A∣ ≫min{q4 , ∣A+ A∣∣A∣2
q13/2 } ≫min{q4 , ∣A∣

2

q5/2 , ∣A∣
5

q13 } .

The required result then easily follows. ∎

6 Proofs of Theorem 2.4, Corollary 2.5, and Theorem 2.6

Proof of Theorem 2.4 For λ ∈ AB + C, write

t(λ) = ∣{ (a, b, c) ∈ A× B × C ∶ ab + c = λ }∣.

By the Cauchy–Schwarz inequality, we have

(∣A∣∣B∣∣C∣)2 = ( ∑
λ∈AB+C

t(λ))
2

≤ ∣AB + C∣ ∑
λ∈AB+C

t(λ)2 .

Further noting that

∑
λ∈AB+C

t(λ)2 = I(A, B,−C ,−A, B, C).

We apply Proposition 3.1 to obtain

∣AB + C∣ ≫min{ q4 , ∣A∣∣B∣∣C∣
q13/2 } .

This immediately implies the required result.
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For the set (A+ B)C, as above we have

∣(A+ B)C∣ ≥ ∣A∣2∣B∣2∣C∣2
∣{ (a, b, c, a′ , b′ , c′) ∈ (A× B × C)2∶ (a + b)c = (a′ + b′)c′ }∣ .

To estimate the denominator, we follow the argument in the proof of Proposition 3.1.
In particular, we first define a graph G with the vertex set V = M2(Fq) ×M2(Fq) ×
M2(Fq), and there is a direct edge going from (a, e , c) to (b, f , d) if ba + e f = c +
d. The only difference here compared to that graph in Section 3 is that we switch
between ba and ab. By using a similar argument as in Section 3, we have this graph
is a (q12 , q8 , cq13/2)-digraph, where c is a positive constant.

To bound the denominator, we observe that the equation

(a + b)c = (a′ + b′)c′

gives us a direct edge from (c,−b′ ,−ac) to (b, c′ , a′c′). So, let U ∶= {(c,−b′ ,−ac)∶ a ∈
A, c ∈ C , b′ ∈ B} and W = {(b, c′ , a′c′)∶ b ∈ B, c′ ∈ C , a′ ∈ A}. Since C ⊆ GL2(Fq), we
have ∣U ∣ = ∣W ∣ = ∣A∣∣B∣∣C∣. So applying Lemma 3.2, the number of edges from U to W
is at most

∣A∣2∣B∣2∣C∣2
q4 + q13/2∣A∣∣B∣∣C∣.

In other words,

∣{ (a, b, c, a′ , b′ , c′) ∈ (A× B × C)2 ∶ (a + b)c = (a′ + b′)c′ }∣ ≪
∣A∣2 ∣B∣2 ∣C∣2

q4 + q13/2 ∣A∣∣B∣∣C∣,

and we get the desired estimate. ∎

Proof of Corollary 2.5 It follows from Theorem 2.4 that

∣AA+ A+ A∣ ≫ q4 if ∣A∣2∣A+ A∣ ≫ q10+1/2(6.1)

and

∣AA(A+ A)∣ ≫ q4 if ∣A∣2∣AA∣ ≫ q10+1/2 .(6.2)

Note that by Corollary 2.3, if ∣A∣ ≫ q3+7/16, we have

∣A∣2 ⋅max{ ∣A+ A∣, ∣AA∣ } ≫ q4/3∣A∣8/3 ≫ q10+1/2 .

Hence, one of the conditions in (6.1) or (6.2) is satisfied, which in turn gives the
required estimate. ∎

Proof of Theorem 2.6 By the Cauchy–Schwarz inequality and Proposition 3.1,
we have

J(A, B, C , D) = ∣{ (a, b, c, d) ∈ A× B × C × D ∶ a + b = cd }∣
≤ ∣B∣1/2∣{ (a, a′ , c, c′ , d , d′) ∈ A2 × C2 × D2 ∶ cd − a = c′d′ − a′ }∣1/2

≪ ∣A∣∣B∣1/2∣C∣∣D∣
q2 + q13/4(∣A∣∣B∣∣C∣∣D∣)1/2 . ∎
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