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To characterize fluid flow in the slip regime, the use of Navier–Stokes–Fourier (NSF)
equations with slip boundary conditions is prevalent. This trend underscores the necessity
of developing reliable and accurate slip boundary conditions. According to kinetic theory,
slip behaviours are intrinsically linked to the gas scattering processes at the surface.
The widely used Maxwell scattering model, which employs a single accommodation
coefficient to describe gas scattering processes, reveals its limitations when the difference
between accommodation coefficients in the tangential and normal directions becomes
significant. In this work, we provide a derivation of velocity slip and temperature jump
boundary conditions based on the Cercignani–Lampis–Lord scattering model, which
applies two independent accommodation coefficients to describe the gas scattering
process. A Knudsen layer correction term is introduced to account for the impact of the
surface on the velocity distribution function, which is associated with the scattering model.
The governing equation of the correction term is established based on the linearized
Boltzmann equation. Additionally, two moments are derived to capture the collision effect
in the Knudsen layer: a conserving moment of collision invariants, and an approximate
higher-order conserving moment. These moments are then employed to determine the
coefficients in the correction term. We demonstrate that the derived slip coefficients align
closely with numerical results obtained by solving the Boltzmann equation in the Knudsen
layer. Besides, we apply the derived slip boundary conditions within the framework of the
NSF equations, yielding numerical results that exhibit excellent consistency with those
obtained through molecular-level simulations.

Key words: rarefied gas flow

1. Introduction

The rarefied gas effect is a vital and foundational concern demanding attention
in hypersonic flows (Ivanov & Gimelshein 1998; Candler 2019) and gas flows for

† Email address for correspondence: jun.zhang@buaa.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A36-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jun.zhang@buaa.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.617&domain=pdf
https://doi.org/10.1017/jfm.2024.617


P. Luan, H. Yang, Q. Ma and J. Zhang

microelectromechanical systems (MEMS) (Reese, Gallis & Lockerby 2003; Karniadakis,
Beskok & Aluru 2006). In the case of hypersonic aircraft design, with its consideration of
extremely high flow velocities, remarkably low atmospheric density, and sharp geometric
shapes, the rarefied gas effect cannot be overlooked in the design process. Similarly, in the
context of MEMS, as manufacturing processes and technology advance, the characteristic
sizes of devices can reach the micron or even nanometre scale, which is comparable to the
mean free path of gas molecules. This trend necessitates the consideration of the rarefied
gas effect in the design process of MEMS.

The degree of rarefaction in a gas flow is typically characterized by the Knudsen
number (Kn), which is defined as the ratio of the molecular mean free path to a specific
characteristic length. Based on Kn, gas flow is conventionally classified into four regimes:
the continuum regime (Kn < 0.001), the slip regime (0.001 < Kn < 0.1), the transition
regime (0.1 < Kn < 10), and the free-molecule regime (Kn > 10).

In slip and early transition regimes, the application of the Navier–Stokes–Fourier
(NSF) equations with no-slip boundary conditions becomes inappropriate (Struchtrup
2005; Sharipov 2015). On the other hand, the widely used direct simulation Monte
Carlo (DSMC) method (Bird 1994), which is computationally efficient for simulating
non-equilibrium flows in the transitional regime, becomes impractical for simulating
complex three-dimensional gas flows in the near-continuum regime (Fei et al. 2020; Feng
et al. 2023). As a result, there is a growing interest in developing a physically accurate
and computationally efficient approach within the framework of NSF equations (Lockerby
& Reese 2008; Lofthouse, Scalabrin & Boyd 2008; Gu & Emerson 2009). In the case
of slightly rarefied flows, a widely adopted approach is applying suitable slip boundary
conditions (Struchtrup 2005; Sharipov 2015).

Various slip boundary conditions have been proposed to address non-equilibrium effects
that emerge near the wall within the slip regime, including first- and second-order
boundary conditions, and others (Gökçen, MacCormack & Chapman 1987; Myong
2004; Le et al. 2012; Wang, Ou & Chen 2023); the corresponding results are well
documented in the reviews (Cao et al. 2009; Zhang, Meng & Wei 2012; Akhlaghi, Roohi
& Stefanov 2023). Classically, first-order boundary conditions encompass the Maxwell
model (Maxwell 1879) for velocity slip, and the Smoluchowski model (Smoluchowski
von Smolan 1898) for temperature jump. These models suggest that the slip velocity and
temperature jump are proportional to the normal gradients of velocity and temperature
at the surface, respectively. Towards increased accuracy and wider applicability of the
NSF equations, a variety of second-order boundary conditions have also been developed
(Hadjiconstantinou 2003; Lockerby et al. 2004; Radtke et al. 2012; Zeng et al. 2023),
but these models include parameter values that remain a subject of debate for specific
problems. When determining the slip coefficients in the boundary conditions mentioned
above, accommodation coefficients (ACs) (Lord 1992; Arkilic, Breuer & Schmidt 2001)
are used to quantify the extent to which molecules adapt to the wall. Typical slip
boundary conditions assume that ACs are the same in all directions; however, experimental
measurements (Yamamoto, Takeuchi & Hyakutake 2006; Liang, Li & Ye 2013) and
molecular dynamics simulations (Spijker et al. 2010; Sipkens & Daun 2018) reveal
substantial discrepancies between ACs in the tangential and normal directions. These
discrepancies affect the accuracy of numerical simulations using the slip boundary
conditions mentioned above. Consequently, it is necessary to develop slip boundary
conditions that distinguish the tangential and normal ACs.

Numerous methods have been developed to establish slip boundary conditions,
including the moment method (Grad 1949; Struchtrup & Weiss 2000; Torrilhon &
Struchtrup 2008; To et al. 2015; Li & Yang 2023), half-flux method (Patterson 1956;
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Shen 2006; Zhang et al. 2021) and variational method (Loyalka 1968; Klinc & Kuščer
1972; McCormick 2005). The method of directly solving the linearized Boltzmann
equation has also been developed to obtain precise slip coefficients (Sharipov 2003a, 2011;
Siewert 2003; Basdanis, Valougeorgis & Sharipov 2023). Additionally, Sone, Ohwada
& Aoki (1989) and Ohwada, Sone & Aoki (1989) used a finite difference method to
numerically analyse the behaviour of the gas over a plane wall for hard-sphere molecules
and diffuse reflection boundary conditions. Based on the numerical results, the Knudsen
layer of a slightly rarefied gas flow past a body and the slip coefficients are derived. Aoki
et al. (2017) systematically derived the slip boundary conditions for the compressible NSF
equations on the basis of the Chapman–Enskog solution of the Boltzmann equation. The
resulting formulae of the slip boundary conditions are summarized with explicit values
of the slip coefficients for the Maxwell scattering model, contributing to the improved
accuracy of previous slip boundary conditions through a rigorous theoretical derivation.

Historically, the first quantitative description of velocity slip was given by Maxwell
(1879). Advancements upon the Maxwell scattering model showed that by considering
the conservation of momentum and energy within the Knudsen layer, the expression for
the slip coefficients could be determined. This groundbreaking insight gave rise to the
now-famous Maxwell slip boundary condition. Loyalka (1971b) observed that Maxwell’s
results were not sufficiently accurate. Expanding on Maxwell’s method, he incorporated
the effect of collisions in the Knudsen layer. Specifically, he differentiated the distribution
function of incident gas molecules near and far from the surface, and used two moments
to determine them. This effort yielded values of slip coefficients that are closely aligned
with numerical solutions obtained by solving the Boltzmann equation.

Notably, the slip boundary conditions derived using the aforementioned methods depend
on the scattering model employed. Currently, most corresponding results are based on
the Maxwell scattering model, which incorporates only one AC. Despite its widespread
use, the Maxwell scattering model has notable limitations. For instance, it does not
distinguish the ACs between normal and tangential directions, fails to accurately reproduce
phenomena such as the lobular re-emission patterns observed when molecular beams hit
the surface (Cercignani & Lampis 1971), struggles to describe backscattering (Basdanis,
Tatsios & Valougeorgis 2022), and does not account for the temperature independence of
ACs, among other shortcomings.

A more advanced scattering model was proposed by Cercignani & Lampis (1971) and
later extended by Lord (1991, 1995), and it is thus denoted the Cercignani–Lampis–Lord
(CLL) scattering model. This model includes two ACs, one for tangential momentum
(TMAC) and the other for normal energy (NEAC). The CLL scattering model not only
accurately reproduces feather-like structures around specular reflection lines in thermal
beam scattering experiments (Cercignani & Lampis 1971), but also successfully predicts
the thermal pressure difference index, a critical parameter for Knudsen pumps, to be
less than 0.5 in the free-molecular limit of thermal transpiration (Sharipov 2003b). In
addition, the CLL scattering model can effectively describe backscattering, which is a
phenomenon that can occur on rough surfaces; these results agree exceptionally well
with experimental measurements (Kalempa & Sharipov 2020). Recently, Sharipov &
Volkov (2022) employed the CLL scattering model to evaluate the impact of ACs on
the aerothermodynamics of a sphere based on ab initio interatomic potentials (Sharipov
2022), and they found that the TMAC and NEAC strongly affect all aerothermodynamic
characteristics. The calculated drag and energy transfer coefficients for different ACs
exhibit variations of up to 30 % and 200 %, respectively.

Because the CLL scattering model performs better than the Maxwell scattering model,
it is intriguing to derive slip boundary conditions based on the CLL scattering model.
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For instance, Struchtrup (2013) derived slip coefficients using the moment method.
However, the resulting values deviate by 10 % from the numerical results obtained by
solving the Boltzmann equation (Struchtrup 2005). Klinc & Kuščer (1972), as well as
McCormick (2005), derived results using the variational method. Nevertheless, these
derivations involve higher-order ACs, rendering them challenging for practical application.
Recently, Basdanis et al. (2023) obtained the interpolation expression of slip coefficients
for the CLL scattering model using symbolic regression. Zhang et al. (2021) obtained the
CLL slip boundary condition via the half-flux method, yielding results consistent with
those of Struchtrup (2013). Zhang et al. (2021) further refined their results by applying an
empirical correction factor, akin to Loyalka’s correction (Loyalka 1971b) for the Maxwell
slip boundary condition. While the results of Basdanis et al. (2023) and Zhang et al. (2021)
perform well, they rely on an empirical correction that lacks a rigorous derivation and clear
physical foundation.

In this study, we employ a two-moment method to derive the slip boundary conditions
based on the CLL scattering model. In our derivation, we consider the collision effect
in the Knudsen layer, and incorporate the surface’s impact on the distribution function
by introducing a Knudsen layer correction term. We validate our newly derived slip
coefficients by comparing our results with previous numerical results obtained by solving
the Boltzmann equation. Furthermore, we apply the derived slip boundary conditions
to computational fluid dynamics (CFD) calculations, comparing the results with those
obtained using the DSMC method to verify their accuracy.

The remainder of the paper is organized as follows. Section 2 presents the theoretical
derivation of our newly developed slip boundary conditions. In § 3, the accuracy of
these boundary conditions is verified, including comparisons of slip coefficients and
comparisons of computational results between the CFD and DSMC methods. Section 4
provides concluding remarks and some discussion.

2. Derivation of slip boundary conditions

2.1. Knudsen layer and scattering kernels in kinetic theory
The moment method proposed by Grad (1949) serves as a bridge between the mesoscale
and macroscale, and it offers a promising tool to derive slip boundary conditions. To better
elucidate the derivation process of velocity slip and temperature jump, certain fundamental
aspects of kinetic theory necessary for the subsequent calculation are revisited.

For any gas flow near a solid surface, there exists a thin layer known as the Knudsen layer
(Shan et al. 2022; Qian, Wu & Wang 2023). The Knudsen layer thickness is approximately
that of a few mean free paths. In this region, collisions between gas molecules and the
solid surface dominate, while collisions between gas molecules are rare enough that gas
molecules remain in the thermodynamically non-equilibrium state. Therefore, the linear
constitutive relationships assumed in the NSF equations no longer apply. To accurately
characterize the dynamic behaviour of molecules in this region, kinetic methods must be
employed, including direct calculations of the Boltzmann equation, and using the DSMC
method.

A typical velocity profile within the Knudsen layer is depicted in figure 1. Here, the
solid curve represents the average gas velocity obtained using kinetic methods. The actual
velocity slip is denoted as u(0). By extrapolating the velocity values from the outer edge
of the Knudsen layer towards the surface, a ‘fictitious’ average velocity us at the surface
can be determined. If this fictitious velocity is used as a boundary condition for the NSF
equations, then the velocity solution obtained outside the Knudsen layer will be identical
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y

uw

us

u(0)
u

Knudsen layer

O(λ)

Figure 1. Schematic of the velocity profile of the Knudsen layer near a surface. Here, the surface is assumed
to be stationary, λ is the molecular mean free path, uw is the velocity of the surface and equals zero in this
situation, u(0) is the actual velocity slip at the surface, and us is the ‘fictitious’ slip velocity that would be
needed to ensure that an NSF solution (dashed line) provides an accurate prediction (solid line) beyond the
Knudsen layer.

to that obtained from the Boltzmann equation (Ivchenko, Loyalka & Tompson 2007). All
discussions below are based on a reference frame relative to the surface. For a moving
surface, all velocities can be transformed using the wall’s velocity −uw. The temperature
jump follows the same trend.

According to kinetic theory, the state of gas molecules can be described using
a distribution function f (xk, ck, t), where xk denotes spatial coordinates, ck denotes
molecular velocity, t denotes time, and f (xk, ck, t) dc dx represents the number of
molecules with velocity c ∼ c + dc at position x ∼ x + dx at time t. After the distribution
function is determined, macroscopic properties can be obtained by taking moments, i.e.

ρ =
∫

mf dc,

ρc̄k =
∫

mckf dc,

ρ
3
2

RT =
∫

1
2

mc′
kc′

kf dc,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is mass density, c̄k is macroscopic flow velocity, T is temperature, R = k/m is the
gas constant, m is the molecular mass, k is the Boltzmann constant, and c′

k = ck − c̄k is
the peculiar velocity of molecules. In a state of equilibrium, the distribution function of
gas molecules is typically Maxwellian, i.e.

fM = n

(2πRT)3/2
exp

(
− c′

kc′
k

2RT

)
. (2.2)

At the surface, interactions between gas molecules and the surface occur, resulting in
differences between the distribution functions of incident and reflected molecules. We
denote the velocities of incident molecules as ci, and the velocities of reflected molecules
as cr. Here, only non-adsorbing surfaces are considered, which signifies that molecules
immediately reflect upon colliding with the surface. The distribution function of gas
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molecules at the surface is denoted as

fw =
{

f −, cni ≤ 0,
f +, cnr > 0,

(2.3)

where f − is the distribution function of incident molecules (cni = ci · n represents the
normal component of velocity), f + is the distribution function of reflected molecules, and
the distribution functions of incident and reflected molecules can be related through a
scattering kernel (Cercignani & Cercignani 1988), i.e.

cnr f +(cr) = −
∫

cni<0
cni f −(ci)R(ci → cr) dc′. (2.4)

The scattering kernel R(ci → cr) provides the probability of a gas molecule with velocity
ci ∼ ci + dci impacting the surface and being reflected with velocity cr ∼ cr + dcr, and
this probability is determined by the local temperature Tw and velocity uw at the surface.

The specific form of the scattering kernel depends on the scattering model, and it must
satisfy certain mathematical properties as provided below.
Nonnegativity:

R(ci → cr) ≥ 0. (2.5)

Normalization: ∫
cn>0

R(ci → cr) dc = 1. (2.6)

Reciprocity:

cni exp

(
− c2

i
2RTw

)
R(ci → cr) = −cnr exp

(
− c2

r

2RTw

)
R(−cr → −ci). (2.7)

A schematic of various scattering models is shown in figure 2. For the Maxwell
scattering model, the scattering kernel is typically given by

RM(ci → cr) = σ
cn

2π(RTw)2
exp

(
− c2

2RTw

)
+ (1 − σ)δ(ci − cr + 2ncn), (2.8)

where the first part represents the diffusive reflection component, which signifies that
molecules fully adapt to the surface’s conditions, and the second part represents the
specular reflection component, which signifies that molecules’ tangential velocities will
remain unaltered while their normal velocities will be inverted. Here, σ is the AC, and it
takes values between 0 and 1, with the lower and upper limits corresponding to completely
specular and diffuse reflection, respectively.

Compared to the Maxwell scattering model, which includes only one coefficient, the
CLL scattering model employs two ACs: the TMAC σt, and the NEAC αn. Its specific
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ci crn
(a) (b)

(c) (d)

Figure 2. A schematic of various scattering models. Here, ci denotes the velocity of the incident molecule, cr
denotes the velocity of the reflected molecule, and n is the normal vector at the surface. (a) Specular reflection
model. (b) Diffuse reflection model. (c) Maxwell scattering model. (d) CLL scattering model.

form is

RCLL(ci → cr) = 1
2π

1
αnσt(2 − σt)

cnr

(RTw)2
I0

(√
1 − αn cnr cni

αnRTw

)

× exp

[
−c2

nr
+ (1 − αn)c2

ni

2RTwαn
−
(
ctr − (1 − σt)cti

)2
2RTwσt(2 − σt)

]
. (2.9)

Here, ct represents the tangential component of the velocity, which is a two-dimensional
vector, and I0 is the modified Bessel function of the first kind (order zero):

I0(x) = 1
2π

∫ 2π

0
exp(x cosφ) dφ. (2.10)

Note that αn takes values between 0 and 1, while σt takes values between 0 and 2,
and σt > 1 represents the presence of molecular backscattering, which may occur on a
rough surface. In extreme cases, when σt = 2, αn = 0, molecules scatter back completely;
when σt = 1, αn = 1, molecules undergo complete diffuse reflection; and when σt = 0,
αn = 0, molecules experience complete specular reflection. According to Sharipov &
Moldover (2016), the typical values of the TMAC vary in the range 0.4 ≤ σt ≤ 1, while the
NEAC practically varies across the entire range, i.e. 0.01 ≤ αn ≤ 1. Besides, in the CLL
scattering model, the two tangential and one normal component of the scattering kernel
are independent of each other, i.e.

RCLL(ci → cr) = R(ui, ur)R(wi,wr)R(vi, vr). (2.11)

Specifically, for the tangential velocity u, the scattering kernel is

R(ui, ur) = 1√
2πRTwσt(2 − σt)

exp
(

−(ur − (1 − σt)ui)
2

2RTwσt(2 − σt)

)
. (2.12)

We can also introduce the tangential energy accommodation coefficient (TEAC) αt, which
is related to the TMAC σt by

αt = σt(2 − σt). (2.13)
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Therefore, the scattering kernel for the tangential velocity u can also be expressed as

R(ui, ur) = 1√
2πRTwαt

exp

(
−
(
ur − √

1 − αt ui
)2

2RTwαt

)
. (2.14)

Note that in this case, αt takes values between 0 and 1, and the case 1 < σt ≤ 2 cannot
be covered. The tangential velocity w follows the same form. For normal velocity v, the
scattering kernel is

R(vi, vr) = vr

RTwαn
I0

(√
1 − αn vrvi

RTwαn

)
exp

(
−v

2
r + (1 − αn) v

2
i

2RTwαn

)
. (2.15)

In completing the corresponding calculations, partial integrals for the tangential and
normal scattering kernels are provided in Appendix A.

2.2. The effect of the Knudsen layer on the distribution function
For a system that does not deviate significantly from the equilibrium state, an asymptotic
solution of the Boltzmann equation can be obtained using the Chapman–Enskog expansion
(Chapman & Cowling 1990). A concise overview of this procedure is provided in
Appendix B. Truncated to first order, corresponding to the NSF equations, the distribution
function can be written as

f = f0

[
1 − 4κβ2

5nk

(
c′2

2RT
− 5

2

)
c′

i
∂ ln T
∂xi

− 4μβ4

ρ

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)
∂ c̄i

∂xj

]
, (2.16)

where β is the reciprocal of the most probable thermal speed, i.e. β = 1/
√

2RT , μ is the
molecular viscosity coefficient, and κ is the thermal conductivity coefficient. According
to Chapman & Cowling (1990), μ and κ can be determined as

μ = 2kT
15

∫ ∞

−∞
B
(

c′
√

2RT

)4

f0 dc′,

κ = 2k2T
3m

∫ ∞

−∞
A
(

c′
√

2RT

)4

f0 dc′,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.17)

where A and B are defined in (B13)–(B16).
We now consider a semi-infinite expanse of a gas bounded by a flat plate located at y =

0, lying in the x–z plane. At large distances from the plate, the distribution function can be
described by the Chapman–Enskog expansion as shown above. However, in the vicinity of
the plate, the presence of the Knudsen layer may invalidate the Chapman–Enskog solution.
To address this, the influence of the Knudsen layer can be accounted for by introducing
a Knudsen layer correction term Φ(c, y), which is a function of velocity and the spatial
coordinate y. We further assume that the gas has a velocity ū(y) in the x-direction, and
the gas maintains a constant gradient ∂ ū/∂y and ∂T/∂y perpendicular to the plate. These
gradients are sufficiently small. In this case, the distribution function can be further written
as

f = f0

[
1 − 4κβ2

5nk

(
c′2

2RT
− 5

2

)
v′ ∂ ln T

∂y
− 4μβ4

ρ
u′v′ ∂ ū

∂y
+Φ

]
. (2.18)

The Knudsen layer appears very small from a macroscopic perspective but is sufficiently
large when viewed from a microscopic perspective. For this reason, we denote the Knudsen
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layer correction term at the surface as Φ(c, 0), and at the outer edge of the Knudsen
layer as Φ(c,∞). At the surface, the Knudsen layer correction terms of the incident
distribution function Φ−(c, 0) and reflected distribution function Φ+(c, 0) differ due to
molecules hitting the surface and then scattering out. The relationship between them can
be determined by the scattering model, as mentioned previously in (2.4). Due to collisions
between molecules, the Knudsen layer correction term becomes the same in a very short
distance from the surface, so Φ−(c,∞) and Φ+(c,∞) are equal to each other. We denote
the incident distribution function as f − and the reflected distribution function as f +, so
(2.18) can be written as

f ± = f0

[
1 − 4κβ2

5nk

(
c′2

2RT
− 5

2

)
v′ ∂ ln T

∂y
− 4μβ4

ρ
u′v′ ∂ ū

∂y
+Φ±

]
. (2.19)

Notably, f + and f − are different only at the surface; in the main region, they are identical.
Next, we will determine the governing equation of the Knudsen layer correction term

Φ. Given that the system does not deviate significantly from equilibrium, the linearized
Boltzmann equation can be used (Sharipov 2015), i.e.

∂h
∂t

+ ck
∂h
∂xk

+ Fk
∂h
∂ck

= L[h], (2.20)

where the linearized collision operator is defined as

L[h] =
∫ ∞

−∞

∫ 4π

0

(
h∗ + h1∗ − h − h1

)
f 1
0 crσ dΩ dc1, (2.21)

where h is the deviation of the distribution function from equilibrium, which contains
the solution of Chapman–Enskog expansion part φ as well as the added Knudsen
layer correction terms, i.e. Φ. The relationship between them can be expressed as f =
fM[1 + h] = fM[1 + (φ +Φ)].

Following the principle of linear superposition, we subtract the Chapman–Enskog
expansion part from (2.20), and the governing equation of the Knudsen layer correction
term Φ can be obtained. For the one-dimensional problem under consideration, the
equation can be simplified as

v′ ∂Φ
∂y

= L[Φ]. (2.22)

Notably, in (2.22) and in the following contexts, we use a reference frame moving
with the gas at the local average velocity. Therefore, we use peculiar velocities instead
of instantaneous velocities.

2.3. The velocity slip problem
Now let us analyse the velocity slip problem. Considering the scenario depicted in figure 1,
and neglecting changes in temperature, the distribution function can be approximated to
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P. Luan, H. Yang, Q. Ma and J. Zhang

first order as

f ± = f0

[
1 − 4μβ4

ρ
u′v′ ∂ ū

∂y
+Φ±

]
. (2.23)

According to the derivation of Maxwell, Φ± are assumed to take the form

Φ−(c, 0) = a0
u′

√
2RT0

, (2.24)

Φ±(c,∞) = a0
u′

√
2RT0

, (2.25)

where a0 is a parameter to be determined, and T0 is the equilibrium temperature, which
is taken as the wall temperature Tw. Note that (2.24) and (2.25) rely on the strong
assumption that the incident distribution function remains unchanged within the Knudsen
layer, leading to significant uncertainties that cannot be ignored (Loyalka 1971b). To rectify
this issue, we can assume that Φ± take the form

Φ− (c, 0) = aw
u′

√
2RT0

, (2.26)

Φ± (c,∞) = a0
u′

√
2RT0

, (2.27)

which uses a similar method to that of Loyalka (1971b). From a physical perspective,
a0w /= a0 indicates the inclusion of collision effects. If incident molecules in the Knudsen
layer do not collide with other molecules, then the form of the distribution function
is uniform throughout the Knudsen layer. As collisions between incident and reflected
molecules are inevitable, discrepancies in distribution functions arise at the edge of the
Knudsen layer and at the surface, leading to a clear distinction between a0w and a0.
Notably, compared to the macroscopic variables obtained from the original distribution
function (2.16), the macroscopic variables such as ρ, c̄i, T determined by (2.23), (2.26)
and (2.27) are unchanged according to (2.1), except for the tangential mean velocity ū,
which corresponds to the velocity slip caused by the existence of the Knudsen layer.

BecauseΦ−(c, 0) is known, the expression ofΦ+(c, 0) can be further determined using
(2.4) with the CLL scattering model. After rearranging, Φ+(c, 0) is written as

Φ+(c, 0) = [A0(1 − σt)+ 1]
μ

pRT0

∂ ū
∂y

u′
rvr

′ + A1(1 − σt)
μ

pRT0

∂ ū
∂y

u′
r + (1 − σt)

a0w√
2RT0

u′
r.

(2.28)

Note that in the aforementioned calculation, integrals from Appendix A have been
utilized, and A0 and A1 are two coefficients that are already determined.

The next step is to determine the two unknown parameters, i.e. a0w and a0. This will use
the moments of (2.22). Notably, following the principle of Chapman–Enskog expansion,
the collision operator defined in (2.21) satisfies the relations

L[ψ] = 0, (2.29)

L
[

B
1

2RT
u′v′

]
= 1

RT
u′v′, (2.30)

L
[

A
v′

√
2RT

]
= v′

√
2RT

(
c′2

2RT
− 5

2

)
, (2.31)

where A, B and ψ are the same as in Appendix B.
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Slip boundary conditions based on the CLL scattering model

It is useful to introduce a scalar product, which is defined as

(ρ1(x, c), ρ2(x, c)) =
∫
ρ1(x, c) exp

(
− c′2

2RT0

)
ρ2(x, c) dc′. (2.32)

And the collision operator L has the property (Sharipov 2015)

(L[α], β) = (L[β], α) , (2.33)

where α and β are two arbitrary functions of velocity.
The determination of a0w and a0 is divided into two steps.

(i) First, taking the scalar product of both sides of (2.22) with respect to u′, we have

left-hand side =
(

u′, v′ ∂Φ
∂y

)
= ∂

∂y

(
u′v′, Φ

)
, (2.34)

right-hand side = (
u′, L[Φ]

) = (
L[u′], Φ

) = 0. (2.35)

Note that u′ and v′ are peculiar velocities. Since ∂ ū/∂y is sufficiently small, we
can assume that the peculiar velocities are independent of the spatial coordinates.
Therefore, in (2.34), u′ and v′ can enter inside the derivative sign with respect to y,
allowing the derivative sign to be taken outside of the integration. Combining the
above two equations, we obtain

∂

∂y

(
u′v′, Φ

) = 0. (2.36)

Thus in the y-direction, (
u′v′, Φ

) = const. (2.37)

(ii) Second, taking the scalar product of both sides of (2.22) with respect to
(B/2RT0)u′v′, we have

left-hand side =
(

B
1

2RT0
u′v′, v′ ∂Φ

∂y

)
= ∂

∂y

(
B

1
2RT0

u′v′2, Φ
)
, (2.38)

right-hand side =
(

B
1

2RT0
u′v′, L[Φ]

)
=
(

L
[

B
1

2RT0
u′v′

]
, Φ

)

=
(

1
RT0

u′v′, Φ
)
. (2.39)

Note that in (2.38), we also assume that the peculiar velocities and the equilibrium
temperature T0 are independent of the spatial coordinates. If we assume that Φ
takes the form as (2.26)–(2.28), then (2.39) equals zero. Combining the above two
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equations, we obtain

∂

∂y

(
B

1
2RT0

u′v′2, Φ
)

= 0. (2.40)

Thus in the y-direction,

(
B

1
2RT0

u′v′2, Φ
)

= const. (2.41)

The scalar function B can be expanded in the Sonine polynomials as

B =
∞∑

r=1

brS
(r−1)
5/2

[
c′2

2RT0

]
. (2.42)

If we truncate to the first term, then the scalar function B can be approximated as

B ≈ b1, (2.43)

which is a constant independent of velocity. In this manner, we can extract B/2RT0
outside of the scalar product (2.41). Thus in the y-direction,

(
u′v′2, Φ

)
≈ const. (2.44)

From (2.37) and (2.44), the expressions for a0w and a0 can be determined. After
simplifying, we obtain

a0w = μ

p
√

π
∂ ū
∂y

1
σt

[
(1 − σt)

(
A0 + A1

√
2√

πRT0

)
+ 1

]
, (2.45)

a0 =
{

2 − σt

2
(1 − σt)

σt

[(
A0 + A1

√
2√

πRT0

)
+ 1

]

+ 1
π

[
(1 − σt)

(
2A0 + A1

√
π√

2RT0

)
+ 2

]}

× μ

p
√

π
∂ ū
∂y
. (2.46)

As per Appendix A, we determine A0 as 1 − αn and A1 as
√
(πRT0/

√
2)αn. Therefore, the

expression for a0 can be simplified as

a0 =
{

2 − σt

σt

(
1 + 4 − π

2π
σt

)
− 4 − π

2π
αn(1 − σt)

}
μ

p
√

π
∂ ū
∂y
. (2.47)

Thus far, the distribution function at the outer edge of the Knudsen layer that considers the
collision effect has been determined. Finally, the velocity slip can be obtained by taking
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Slip boundary conditions based on the CLL scattering model

y

Tw
T

Knudsen layer

O(λ)

T∞
T(0)

Figure 3. Schematic of the temperature profile of the Knudsen layer near a surface. Here, λ is the molecular
mean free path, Tw is the temperature of the surface, T(0) is the actual temperature of gas at the surface, and
T∞ is the ‘fictitious’ temperature of gas that would be needed to ensure that an NSF solution (dashed line)
provides an accurate prediction (solid line) beyond the Knudsen layer.

the moment of the distribution function, i.e.

us = 1
ρ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
mu′f (0)

(
1 − 4μβ4

ρ
u′v′ ∂ ū

∂y
+ a0

u′
√

2RT0

)
dc′

= a0

√
RT0

2

=
[

2 − σt

σt

(
1 + 4 − π

2π
σt

)
− 4 − π

2π
αn(1 − σt)

]
μ

p
√

π
∂ ū
∂y

√
RT0

2
. (2.48)

Notably, this slip coefficient formula is dependent not only on the TMAC but also on the
NEAC, although the dependence is minimal.

2.4. The temperature jump problem
As shown in figure 3, the temperature profile within the Knudsen layer near a surface
exhibits a similarity to the velocity profile within the Knudsen layer near a surface.
Neglecting changes in velocity, the distribution function can be approximated to first order
as

f ± = f0

[
1 − 4κβ2

5nk

(
c′2

2RT0
− 5

2

)
v′ ∂ ln T

∂y
+Φ±

]
. (2.49)

If Maxwell’s assumption was adopted, then Φ± takes the form

Φ−(c, 0) = a1

(
c′2

2RT0
− 5

2

)
, (2.50)

Φ±(c,∞) = a1

(
c′2

2RT0
− 5

2

)
. (2.51)
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Considering the influence of the Knudsen layer on the incident distribution function, two
independent parameters are introduced to obtain a more accurate distribution function, i.e.

Φ−(c, 0) = a1w

(
c′2

2RT0
− 5

2

)
, (2.52)

Φ±(c,∞) = a1

(
c′2

2RT0
− 5

2

)
. (2.53)

Notably, compared to the macroscopic variables obtained from the original distribution
function, the mean velocity c̄i determined by (2.49), (2.52) and (2.53) is unchanged
according to (2.1). However, the density and temperature are different from those in the
main flow due to the existence of the Knudsen layer.

Next, substituting (2.52) into (2.4) and using the CLL scattering kernel, after carrying
out straightforward calculations, an expression for Φ+(c, 0) corresponding to the
discontinuous term of reflected molecules at the surface can be obtained:

Φ+(c, 0) = − μ

2pRT0

∂ ln T
∂y

[
(A0(1 − αt)+ 1)v′c′2 + A1(1 − αt)c′2 − (A0(1 − αt)− B0)v

′3

− (A1(1 − αt)− B1)v
′2 + (A02RT0αt − A05RT0 + B2 − 5RT0)v

′

+ A12RT0αt − A15RT0 + B3

]

+ a1w

2RT0

[
u′2(1 − αt)+ w′2(1 − αt)+ v′2(1 − αn)+ 2RT0

(
αt + αn − 5

2

)]
.

(2.54)

In the corresponding calculation, integrals from Appendix A are used, with A0, A1 and
B0–B3 incorporated as coefficients that are already determined.

Using the same process as in § 2.3, the determination of a1w and a1 from (2.22) is
divided into two steps.

(i) First, taking the scalar product of both sides of (2.22) with respect to c′2, we have

left-hand side =
(

c′2, v′ ∂Φ
∂y

)
= ∂

∂y

(
c′2v′, Φ

)
, (2.55)

right-hand side =
(

c′2, L[Φ]
)

=
(

L[c′2], Φ
)

= 0. (2.56)

Combining the above two equations, we obtain

∂

∂y

(
c′2v′, Φ

)
= 0. (2.57)

Thus in the y-direction, (
c′2v′, Φ

)
= const. (2.58)
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Slip boundary conditions based on the CLL scattering model

(ii) Second, taking the scalar product of both sides of (2.22) with respect to Av′/
√

2RT0,
we have

left-hand side =
(

A
v′

√
2RT0

, v′ ∂Φ
∂y

)
= ∂

∂y

(
A

1√
2RT0

v′2, Φ
)
, (2.59)

right-hand side =
(

A
v′

√
2RT0

, L[Φ]
)

=
(

L
[

A
v′

√
2RT0

]
, Φ

)

=
(

v′
√

2RT0

(
c′2

2RT0
− 5

2

)
, Φ

)
. (2.60)

Note that in (2.55) and (2.59), the assumption that peculiar velocities and the
equilibrium temperature T0 are independent of spatial coordinates has been used.
If we assume that Φ takes the form as (2.52)–(2.54), then (2.60) equals zero.
Combining the above two equations, we obtain

∂

∂y

(
A

1√
2RT0

v′2, Φ
)

= 0. (2.61)

Thus in the y-direction, (
A

1√
2RT0

v′2, Φ
)

= const. (2.62)

The scalar function A can be expanded in the Sonine polynomials:

A =
∞∑

r=0

arS(r)3/2

[
c′2

2RT0

]
. (2.63)

If we truncate to first order, then the scalar function A can be approximated as

A ≈ a1 S(1)3/2

[
c′2

2RT0

]

= a1

[
−
(

c′2

2RT0
− 5

2

)]
. (2.64)

Substituting (2.64) into (2.62), we obtain that in the y-direction,(
v′2
(

c′2

2RT0
− 5

2

)
, Φ

)
≈ const. (2.65)

From (2.58) and (2.65), the expressions for a1w and a1 can be determined. After
simplifying, we obtain

a1w = μ

p
∂ ln T
∂y

√
2πRT0 × 1

8(αt + αn)

[
(4αt + 11)A0 + 8(αt + 2)

A1√
2πRT0

− 21B0

− 24
B1√

2πRT0
− 5

B2

RT0
− 8

B3

RT0

1√
2πRT0

− 10
]
, (2.66)
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a1 = √
π
μ

p
∂ ln T
∂y

√
RT0 × 10 − 2αt − 3αn

4(αt + αn)

×

⎡
⎢⎢⎣
(4αt + 11)

A0

2
+ 4(αt + 2)

A1√
2πRT0

− 21
2

B0 − 12
B1√

2πRT0
− 5

2
B2

RT0
− 4

B3

RT0

1√
2πRT0

− 5

10

+ 2(αt + αn)

5π

(4αt − 1)A0 + (αt − 1)A1

√
2π√
RT0

− 12B0 − 3
2

B1

√
2π√
RT0

− B2

RT0
− 13

10 − 2αt − 3αn

⎤
⎥⎥⎥⎦ . (2.67)

As per Appendix A, it is proper to take A0 as 1 − αn, A1 as (
√

πRT0/
√

2)αn, B0 as 1 − αn,
B3 as 3

√
π/2 (RT0)

3/2αn, and B1 = B2 = 0. As a result, the expression for a1 can be
transformed to

a1 = √
π
μ

p
∂ ln T
∂y

√
RT0

×
{

10 − 2αt − 3αn

4(αt + αn)

[
2αt + 3αn − 10

10
+ 2

5π

(αt + αn)(4αt + 9αn − 26)
10 − 2αt − 3αn

]

+ 4 − π

10π
αn(1 − αt)

}
. (2.68)

Thus far, the distribution function at the outer edge of the Knudsen layer that considers
the collision effect has been determined. Finally, the temperature jump can be obtained by
taking the moment of the distribution function, i.e.

T∞ − Tw

Tw

= 2
3n0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
c′2

2RT0
− 3

2

)
f (0)

(
μ

p
v′
(

c′2

2RT0
− 5

2

)
∂ ln T
∂y

+ a1

(
c′2

2RT0
− 5

2

))
dc

= a1

=
[

10 − 2αt − 3αn

4(αt + αn)

(
2αt + 3αn − 10

10
+ 2

5π

(αt + αn)(4αt + 9αn − 26)
10 − 2αt − 3αn

)
+ 4 − π

10π
αn(1 − αt)

]

× √
π
μ

p
∂ ln T
∂y

√
RT0. (2.69)

3. Results and validation

Equations (2.48) and (2.69) constitute the primary contributions of this paper. These
two formulae explicitly show the dependence of slip coefficients on TEAC and NEAC
with very concise forms, facilitating their use in practical applications. In this section, a
comprehensive verification and evaluation of these results is reported. In § 3.1, we will
compare the slip coefficients and jump coefficients obtained from (2.48) and (2.69) with
the numerical solutions provided by Sharipov (2011). In § 3.2, we will implement these
boundary conditions in CFD and compare the results with DSMC to further assess the
accuracy of these formulae.
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Slip boundary conditions based on the CLL scattering model

Slip model Scattering model Velocity slip coefficient

Maxwell (1879) Maxwell model
2 − σ

σ

√
π

2

Loyalka (1971b) Maxwell model
2 − σ

σ

√
π

2
(1 + 0.1366σ)

Struchtrup (2013) CLL model
2 − σt

σt

√
π

2

Zhang et al. (2021) CLL model
2 − σt

σt

√
π

2
(1 + 0.1366σt)

Present result CLL model
[

2 − σt

σt

(
1 + 4 − π

2π
σt

)
− 4 − π

2π
αn(1 − σt)

] √
π

2

Table 1. Velocity slip boundary coefficients based on the Maxwell scattering model and CLL scattering
model.

3.1. Comparison of the slip coefficients
To facilitate comparison, we express the boundary conditions for the velocity slip and
temperature jump in a general form as

us = Cm
μ

βp
∂ ū
∂y
, (3.1)

T − Tw = Ct
μ

βp
∂T
∂y
, (3.2)

where Cm and Ct are the velocity slip and temperature jump coefficients, respectively, μ
is the molecular viscosity, and p is the local pressure. The relationship between μ and p
can be expressed as μ = τp, where τ is the mean collision time of molecules.

Transforming the derived theoretical results (2.48) and (2.69) into the above two forms,
we can determine the slip coefficients as

Cm =
[

2 − σt

σt

(
1 + 4 − π

2π
σt

)
− 4 − π

2π
αn(1 − σt)

] √
π

2
, (3.3)

Ct = 3
8

10 − 2αt − 3αn

αt + αn

(
1 − 2αt + 3αn

10
+ 2

5π

(26 − 4αt − 9αn)(αt + αn)

10 − 2αt − 3αn

)√
π

+3
2

π − 4
10π

αn(1 − αt)
√

π. (3.4)

In order to facilitate comparison and give a clear picture of the position of this work,
we summarize the first-order velocity slip and temperature jump coefficients obtained
from the existing literature, derived from both the Maxwell scattering model and the CLL
scattering model, in tables 1 and 2. Notably, the results of Struchtrup (2013) for the CLL
scattering model are not accurate enough, while the corrected results of Zhang et al. (2021)
rely on an empirical correction. In contrast, our newly developed slip models are more
physically grounded, and are accurate enough to be used in practical applications.
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Figure 4. Comparison of the theoretical slip coefficients derived in this work with those of Struchtrup (2013)
and the numerical results of Sharipov (2011).

Interestingly, assuming that the ACs are identical in the tangential and normal directions,
(3.3) and (3.4) will be simplified to

C∗
m = 2 − α

α
(1 + 0.1366α)

√
π

2
− 0.1211α(1 − α), (3.5)

C∗
t = 2 − α

α
(1 + 0.1621α)

15
16

√
π − 0.073α(1 − α), (3.6)

which are very close to the slip coefficients obtained by Loyalka (1971b, 1989) for the
Maxwell scattering model:

C′
m = 2 − α

α
(1 + 0.1366α)

√
π

2
, (3.7)

C′
t = 2 − α

α
(1 + 0.1621α)

15
16

√
π. (3.8)

To assess the accuracy of the slip coefficients, we compared the results obtained from
(3.3) and (3.4) with the numerical solutions obtained by Sharipov (2011) by solving the
simplified Boltzmann equation, known as the SBGK model. Notably, Struchtrup (2013)
also used the moment method to derive slip coefficients for the CLL scattering model.
Therefore, we have also compared our results with those of Struchtrup (2013). Figure 4
shows that the velocity slip coefficient remains relatively constant with the NEAC, while
the temperature jump coefficient varies significantly. Additionally, both the velocity slip
and temperature jump coefficients decrease as the AC increases. Our theoretically derived
slip coefficients closely match values from numerical solutions, while the results of
Struchtrup (2013) show some deviation. Further analysis indicates that for the Struchtrup
(2013) model, the maximum relative error in the velocity slip coefficient is approximately
13 %, and the relative error in the temperature jump coefficient is approximately 17 %. For
the present model, the maximum relative error in the velocity slip coefficient is less than
1.1 %, and the relative error in the temperature jump coefficient does not exceed 4.4 %.
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Gas Tref (K) dref (m) ω R (m2 s−2 K−1) γ Pr

Ar 273 4.17 × 10−10 0.81 208.1 1.67 0.67
1000 3.595 × 10−10 0.734 208.1 1.67 0.67

Table 3. Parameters used in CFD and DSMC.

3.2. Comparison between CFD and DSMC
The DSMC method is capable of capturing both near-equilibrium transport mechanisms
(viscosity, thermal conductivity and molecular diffusion) and non-equilibrium effects
(velocity slip, temperature jump, etc.); it has been employed extensively to obtain standard
results for validating slip boundary conditions (Bird 1994). We now incorporate the slip
boundary conditions into CFD simulations, and subsequently compare the obtained results
with those from the DSMC method. This scenario presents a real test of the slip boundary
conditions that we propose.

The DSMC simulations in this work are based on the open-source software SPARTA
(Plimpton et al. 2019). The collision model used is the variable hard sphere (VHS) model
(Bird 1994). Parameters related to the VHS model are determined through the equations

μ = μref

(
T

Tref

)ω
, (3.9)

μref = 15
√

πmkTref

2πd2
ref (5 − 2ω)(7 − 2ω)

, (3.10)

where Tref and dref represent the reference values for temperature and diameter in the
VHS model, respectively, ω is the viscosity index, and k is the Boltzmann constant. The
CFD simulations were performed using the open-source software OpenFOAM (Jasak,
Jemcov & Tukovic 2007), specifically version 10. And the density-based compressible
solver rhoCentralFOAM (Greenshields et al. 2010) is chosen for use.

We extend the Maxwell & Smoluchowski slip boundary conditions provided in
rhoCentralFOAM to incorporate the slip boundary conditions derived herein. To eliminate
the interference of other factors, the calculation of viscosity coefficients in CFD utilizes
the power-law model, which is defined in (3.9) and (3.10), with parameters aligned with
the DSMC set-up. Argon (Ar) is chosen as the working gas in the simulations, and the
relevant parameters are listed in table 3. The parameters corresponding to 1000 K refer to
the settings of Lofthouse et al. (2008).

We first examined the high-speed Couette flow, allowing a comparison of both the
velocity slip and temperature jump results from the velocity and temperature fields.
After that, we conducted simulations of a two-dimensional hypersonic cylinder flow.
Notably, these benchmarks have been thoroughly investigated by Sharipov & Strapasson
(2013), Sharipov (2015) and Sharipov & Volkov (2022), who used CLL scattering model
as gas–surface interaction in combination with ab initio potential as an alternative
intermolecular collision model. In our study, these examples are used to verify the
accuracy and reliability of the slip boundary conditions that we derived.
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Figure 5. Velocity and temperature profiles for Couette flow with a global Kn of 0.05. Comparison of the CFD
results with no-slip, Maxwell slip and CLL slip boundary conditions derived herein. The DSMC results serve
as a benchmark, for (a,c) αt = 1.0, αn = 0.5, and (b,d) αt = 0.5, αn = 1.0.

3.2.1. Couette flow
In our simulation, the temperature of the plates, the initial temperature of Ar, and Tref are
taken as 273 K. The velocities of the upper plate and the lower plate are set as 337.29 m s−1

and −337.29 m s−1, respectively, which are equal to the most probable thermal speed of
molecules at 273 K. The separation distance L between the two plates is 0.001 m.

We consider a moderate rarefied case (Kn = 0.05). The results are compared between
CFD with no-slip and CLL slip boundary conditions derived by Struchtrup (2013), and
the present model. Note that Struchtrup (2013) also utilized the moment method to derive
the slip model. The DSMC results serve as a benchmark. For the DSMC and CLL slip
simulations, two scenarios for the ACs are chosen: one with αt = 1.0, αn = 0.5, and
another with αt = 0.5, αn = 1.0. As shown in figure 5, using a no-slip boundary condition
would lead to significant deviation from the DSMC result. The velocity profiles from both
CLL slip models closely align with the DSMC results, while for the temperature profile,
the results using the present model are more accurate in the main region. This difference
is particularly pronounced when αt is large. In the vicinity of the wall, the present model
seems to give a larger temperature jump than the actual value. This is not surprising, as all
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Gas Kn D (m) Ma T∞ (K) p∞ (Pa) Tw (K) Tref (K)

Ar 0.01 0.3048 10 200 1.17 500 1000

Table 4. Simulation parameters for the case of two-dimensional hypersonic flow around a cylinder.

slip boundary conditions provide ‘fictitious’ values instead of ‘real’ values at the wall, in
order to ensure that an NSF solution provides an accurate prediction beyond the Knudsen
layer, as depicted in figure 3.

3.2.2. Two-dimensional hypersonic flow around a cylinder
For the two-dimensional hypersonic flow around a cylinder, we refer to the case of
Lofthouse et al. (2008), and the relevant parameters are shown in table 4. The working gas
is Ar, and the global Kn is based on the cylinder diameter D. The incoming velocity is set
as 2624.1 m s−1, which corresponds to Ma = 10. Here, T∞ and p∞ are the temperature
and pressure at the initial state, respectively. The temperature of the cylinder surface is
set as 500 K, and the reference temperature needed for the calculation of viscosity is
chosen as 1000 K. Note that the curved wall effect and the thermal creep effect need to be
considered in this case. Following Lockerby et al. (2004) and Loyalka (1971a), the velocity
slip boundary conditions are modified as

us =
[

2 − σt

σt

(
1 + 4 − π

2π
σt

)
− 4 − π

2π
αn(1 − σt)

]
μ

p
√

π

(
∂ ū
∂y

+ ∂v̄

∂x

)√
RT
2

+ 3
4
μ

ρT
∂T
∂x

(3.11)

for the present result, and

us = 2 − σt

σt

μ

p
√

π

(
∂ ū
∂y

+ ∂v̄

∂x

)√
RT
2

+ 3
4
μ

ρT
∂T
∂x

(3.12)

for the Struchtrup result.
A comparison of temperature contours is presented in figure 6. The CFD results, using

no-slip and CLL slip boundary conditions derived in this work, are depicted in the upper
part of each plot, while the DSMC results are shown in the lower part. From the results,
we can find that use of the CLL slip model performs well, especially in the wake regions
of the cylinder. Note that discrepancies persist at the shock front and in the boundary
layer. In these regions, the local Kn exceeds 0.1, although the global Kn is 0.01. Therefore,
the inaccuracy of CFD results in these specific regions is caused mainly by the linear
constitutive relations used in the NSF equations, and the selection of slip boundary
conditions is only one contributing factor.

At the stationary point, the corresponding results are presented in table 5, and show that
using the CLL slip model derived in this work has quite high accuracy. For the case Kn =
0.01, the heat flux predicted using the CLL slip model proposed by Struchtrup (2013) has
relative error 2.8 %, while the relative errors of the results predicted using the present
model do not exceed 1.6 %. For the case Kn = 0.05, the heat flux predicted using the CLL
slip model proposed by Struchtrup (2013) has relative error 9.3 %, while the relative errors
of the results predicted using the present model do not exceed 4.9 %.
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Slip boundary conditions based on the CLL scattering model
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Figure 6. Comparison of temperature contours of CFD results for the circular cylinder flow using different
boundary conditions with DSMC, with a global Kn of 0.01, for (a,b) αt = 1.0, αn = 0.5, and (c,d) αt = 0.5,
αn = 1.0, for (a,c) no-slip, (b,d) CLL slip.

CLL slip CLL slip
Kn Values of ACs DSMC No-slip (Struchtrup 2013) (Present)

0.01 αt = 0.5, αn = 1.0 0.1579 0.1536 (−2.72 %) 0.1589 (+0.63 %) 0.1582 (+0.19 %)
αt = 1.0, αn = 0.5 0.1422 0.1536 (+8.02 %) 0.1462 (+2.81 %) 0.1444 (+1.55 %)

0.05 αt = 0.5, αn = 1.0 0.3257 0.3498 (+7.40 %) 0.3312 (+1.69 %) 0.3252 (−0.15 %)
αt = 1.0, αn = 0.5 0.2685 0.3498 (+30.28 %) 0.2935 (+9.31 %) 0.2816 (+4.88 %)

Table 5. Comparison of heat flux
(

q/
(

1
2ρ∞V3∞

))
at stationary points around a cylinder (Ma = 10) with

DSMC results.
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4. Conclusions and discussions

In this study, we presented a derivation of velocity slip and temperature jump boundary
conditions based on the CLL scattering model. To incorporate the surface’s impact on
the distribution function, a Knudsen layer correction term was introduced. In addition,
two moments were adopted to address the collision effect in the Knudsen layer. We
demonstrated that the results obtained using the derived slip coefficients closely match
the numerical results obtained by solving the Boltzmann equation. Moreover, we applied
the slip boundary conditions to the framework of NSF equations for two benchmarks,
including Couette flow and two-dimensional hypersonic flow around a cylinder, to
compare the CFD results and DSMC results. The slip boundary conditions derived in
this work perform well in simulating flows in the slip regime.

In contrast to the existing slip boundary conditions that utilize a single AC, the slip
boundary conditions developed in this work incorporate two ACs: the TEAC and NEAC.
It is noteworthy that the values of the TEAC and NEAC are dependent on many factors,
including surface materials, surface temperature, gas temperature and gas velocity, among
other influential variables, and they are typically unequal in most scenarios. For instance,
Yamamoto et al. (2006) reported that in the case of nitrogen molecules impinging on
a platinum surface contaminated with xenon molecules, the TEAC and NEAC are 0.52
and 0.61, respectively. The discrepancies between these values lead to a difference in
temperature jump coefficients of approximately 13.2 % comparing values predicted by the
Maxwell slip model (3.8) and the CLL slip model (3.4). Spijker et al. (2010) found that in
the case of argon molecules impinging on a clean platinum surface at 300 K, the TEAC
and NEAC are 0.28 and 0.46, respectively. The discrepancies between these values result
in a significant difference in temperature jump coefficients predicted by these two models,
reaching 41.0 %. We believe that the slip boundary conditions based on the CLL slip model
are promising for providing more reasonable predictions than the Maxwell slip model, as
long as the independent values of the TEAC and NEAC can be measured accurately.

Nowadays, while it is increasingly feasible to utilize the numerical solution of
the Boltzmann equation for determining the slip coefficient, this method necessitates
solving the Boltzmann equation again for each unique combination of TMAC and
NEAC scenarios, demanding substantial computational resources. Conversely, the direct
implementation of the proposed slip models in this study offers considerable convenience
for engineering applications. On the other hand, while the flourishing development of
machine learning technology enables the discovery of fitting formulae using existing
data (Zhang & Ma 2020; Ma et al. 2024), such formulae often lack a strong physical
background and may exhibit significant deviations when applied beyond the scope of the
training set. In contrast, the methodology utilized in this study, while rooted in a classical
approach, yields slip boundary condition models that possess clear physical meaning and
robust applicability. Compared to the asymptotic theory developed by Sone et al. (2000)
and Aoki et al. (2017), this approach is rather simple to implement. We demonstrated that
by considering the collision effect in the Knudsen layer, sufficiently accurate slip boundary
conditions could be achieved. Importantly, these slip boundary conditions are valid across
the entire range of ACs. Among all slip models derived from the CLL scattering model
using kinetic approaches thus far (Klinc & Kuščer 1972; McCormick 2005; Struchtrup
2013; Zhang et al. 2021; Basdanis et al. 2023), our model stands out for its clear physical
foundation and high accuracy.

Several topics warrant further discussion.
First, in the course of our derivation, the CLL scattering model is employed. Despite

its favourable characteristics, the CLL scattering model has certain flaws, and numerous
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Slip boundary conditions based on the CLL scattering model

researchers have dedicated significant efforts to improving the scattering model (Wu &
Struchtrup 2017; Wang et al. 2021; Chen et al. 2023). The theoretical derivation method
used in this work is not limited to the Maxwell or CLL scattering model; after a more
advanced scattering kernel is expressed explicitly, the corresponding slip model can be
derived.

Second, the scenario addressed in this study assumes that molecules experience
complete scattering upon surface impact. Nonetheless, according to Myong’s adsorption
theory (Myong 2004; Myong et al. 2005), some molecules hitting the surface may not
immediately scatter back but instead adsorb to it. Recently, Chen et al. (2023) introduced
scattering kernels that take into account adsorption effects. Using a similar approach, slip
models that account for both scattering and adsorption can be derived and deserve further
investigation.

Third, we focus on only the first-order slip models in the present work (see (2.23)
and (2.49)). On the other hand, Hadjiconstantinou (2003) and Hadjiconstantinou &
Al-Mohssen (2005) argued that second-order slip models perform better in rarefied cases.
If we take the second-order Chapman–Enskog expansion, then a second-order slip model
corresponding to the CLL model can also be derived. This approach could be useful for
exploring in future work.
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Appendix A. Some integrations of scattering kernels

For the CLL scattering model, the tangential and normal scattering kernels are

R(ui, ur) = 1√
2πRTαt

exp

(
−
(
ur − √

1 − αt ui
)2

2RTαt

)
, (A1)

R(wi,wr) = 1√
2πRTαt

exp

(
−
(
wr − √

1 − αt wi
)2

2RTαt

)
, (A2)

R(vi, vr) = vr

RTαn
I0

(√
1 − αn vrvi

RTαn

)
exp

(
−v

2
r + (1 − αn)v

2
i

2RTαn

)
, (A3)

where I0 is the modified Bessel function of the first kind (order zero), i.e.

I0(x) = 1
2π

∫ 2π

0
exp(x cosφ) dφ. (A4)
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After straightforward calculations, the following integral results can be obtained for the
tangential velocity scattering kernel:

∫ ∞

−∞
R(ui, ur)R(wi,wr) exp

(
−u2

i + v2
i + w2

i
2RT

)
dui dwi

= exp

(
−u2

r + v2
i + w2

r

2RT

)
, (A5)

∫ ∞

−∞
R(ui, ur)R(wi,wr) exp

(
−u2

i + v2
i + w2

i
2RT

)
ui dui dwi

= exp

(
−u2

r + v2
i + w2

r

2RT

)
ur
√

1 − αt, (A6)

∫ ∞

−∞
R(ui, ur)R(wi,wr) exp

(
−u2

i + v2
i + w2

i
2RT

)
u2

i dui dwi

= exp

(
−u2

r + v2
i + w2

r

2RT

)[
u2

r (1 − αt)+ RTαt

]
, (A7)

∫ ∞

−∞
R(ui, ur)R(wi,wr) exp

(
−u2

i + v2
i + w2

i
2RT

)
u3

i dui dwi

= exp

(
−u2

r + v2
i + w2

r

2RT

)
ur
√

1 − αt

[
u2

r (1 − αt)+ 3RTαt

]
. (A8)

For the normal velocity scattering kernel, due to the presence of Bessel functions, only
a part of the integrals can be simplified into such a concise form:

∫ ∞

0
R(vi, vr) exp

(
−u2

i + v2
i + w2

i
2RT

)
vi dvi

= exp

(
−u2

i + v2
r + w2

i
2RT

)
vr, (A9)

∫ ∞

0
R(vi, vr) exp

(
−u2

i + v2
i + w2

i
2RT

)
v3

i dvi

= exp

(
−u2

i + v2
r + w2

i
2RT

)
vr

[
v2

r (1 − αn)+ 2RTαn

]
. (A10)

When the integrand contains even powers of normal velocity, the integral results still
involve Bessel functions, making it difficult to obtain an analytical solution. Therefore,
there is a need to approximate the integral results. For ease of calculation and analysis, we
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Figure 7. Comparison of results between the approximation and the concise numerical solutions for
integrations of normal scattering kernels: (a–c) for (A11), and (d–f ) for (A12).

assume that the integral results can be approximated as follows:

∫ ∞

0
R(vi, vr) exp

(
−u2

i + v2
i + w2

i
2RT

)
v2

i dvi

= exp

(
−u2

i + v2
r + w2

i
2RT

)(
A0v

2
r + A1vr

)
, (A11)

∫ ∞

0
R(vi, vr) exp

(
−u2

i + v2
i + w2

i
2RT

)
v4

i dvi

= exp

(
−u2

i + v2
r + w2

i
2RT

)(
B0v

4
r + B1v

3
r + B2v

2
r + B3vr

)
, (A12)

where A0,A1,B0,B1,B2,B3 are constants related to αn.
These coefficients can be determined in the following way. In the case of αn = 1, the

Bessel function vanishes, so the integrations (A11) and (A12) have analytical solutions. If
we assume that A0,B0,B1,B2 are functions of 1 − αn, then according to the result of αn =
1, the constants A1 and B3 can be determined as

√
(πRT/

√
2)αn and 3

√
π/2 (RT)3/2αn,

respectively. For simplicity, we set A0 as 1 − αn, B0 as 1 − αn, and B1 = B2 = 0. The
comparison results between this approximation and the concise numerical solutions are
shown in figure 7, which indicates that our approximation has quite high precision.

Appendix B. The Chapman–Enskog solution of the Boltzmann equation

The equilibrium solution of the Boltzmann equation is f0 = fM , i.e. the Maxwell
distribution function. The Chapman–Enskog solution results from an expansion of the
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distribution function for small departures from f0. The original form of the Boltzmann
equation is

∂f
∂t

+ ci
∂f
∂xi

+ Fi
∂f
∂ci

=
∫ ∞

−∞

∫ 4π

0

(
f ∗ f 1∗ − f f 1

)
gσ dΩ dc1, (B1)

where g denotes the relative velocity for the collision of two molecules, and σ dΩ denotes
the differential cross-section. Just as f denotes the value of the distribution function f at c,
f 1 denotes the value of f at c1. Similarly, f ∗ and f 1∗ are used to denote the values of f at c∗
and c∗

1, respectively. And we will consider that only external forces Fi are independent of
molecular velocity.

To develop the expansion for the Boltzmann equation, we will first write (B1) in a
non-dimensional form. The non-dimensional variables are obtained by dividing ci by a
local reference velocity cr, xi by a characteristic length L, t by L/cr, Fi by c2

r/L, f by nr/c3
r ,

and σ dΩ by νr/(nrcr), where nr is a reference density, and νr is a reference collision
frequency. If we denote the non-dimensional variables by a caret placed over the symbol
(e.g. f̂ ), we then obtain

ξ

[
∂ f̂
∂ t̂

+ ĉi
∂ f̂
∂ x̂i

+ F̂i
∂ f̂
∂ ĉi

]
=
∫ ∞

−∞

∫ 4π

0

(
f̂
∗ { f̂

1∗} − f̂ f̂
1)

ĝσ̂ dΩ dĉ1, (B2)

with
ξ ≡ cr

Lνr
. (B3)

The parameter ξ is a measure of the degree of departure from local equilibrium; for small
values of ξ , we expand f as the power series

f = f0(1 + φ1 + φ2 + · · ·), (B4)

and
f̂ = f̂0

(
1 + ξ φ̂1 + ξ2φ̂2 + · · ·

)
. (B5)

We substitute the expansion (B5) into the non-dimensional Boltzmann equation (B2), and
notice that

f̂ ∗
0 f̂ 1∗

0 − f̂0 f̂ 1
0 = 0. (B6)

We then obtain

ξ

[
∂ f̂0
∂ t̂

+ ĉi
∂ f̂ 0

∂ x̂i
+ F̂i

∂ f̂0
∂ ĉi

]
= ξ

∫ ∞

−∞

∫ 4π

0

(
φ̂∗

1 + φ̂1∗
1 − φ̂1 − φ̂1

1

)
f̂0 f̂ 1

0 ĝσ̂ dΩ dĉ1 (B7)

plus terms of order ξ2. We now return to our original dimensional variables:

∂f0
∂t

+ ci
∂f0
∂xi

+ Fi
∂f0
∂ci

=
∫ ∞

−∞

∫ 4π

0

(
φ∗

1 + φ1∗
1 − φ1 − φ1

1

)
f0 f 1

0 gσ dΩ dc1. (B8)

After explicit differentiation of f0 and eliminating the time derivatives by means of the
conservation equations, the left-hand side of (B8) takes the form

∂f0
∂t

+ ci
∂f0
∂xi

+ Fi
∂f0
∂ci

= f0

[
c′

i

(
c′2

2RT
− 5

2

)
∂ ln T
∂xi

+ 1
RT

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)
∂ c̄i

∂xj

]
.

(B9)
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The right-hand side of (B9) is, to within a factor, the integral I[Q] that is defined as

I[Q] = −
∫ ∞

−∞

∫ 4π

0

(
Q∗ + Q1∗ − Q − Q1

)
f0 f 1

0 crσ dΩ dc1. (B10)

With (B9) and (B10), (B8) becomes

f0

[
c′

i

(
c′2

2RT
− 5

2

)
∂ ln T
∂xi

+ 1
RT

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)
∂ c̄i

∂xj

]
= −I[φ1]. (B11)

After some insightful observation, a partial solution of (B11) can then be written in the
form

φ1 = −1
n

[√
2RT Aj

∂ ln T
∂xj

+ Bij
∂ci

∂xj
+ ψ

]
, (B12)

with

Aj = A
(

c′
√

2RT
, T
) c′

j√
2RT

, (B13)

Bij = B
(

c′
√

2RT
, T
)

1
2RT

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)
. (B14)

And the two scalar functions A and B must satisfy the relations

I

[
A

c′
j√

2RT

]
= f0

c′
j√

2RT

(
c′2

2RT
− 5

2

)
, (B15)

I
[

B
1

2RT

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)]
= 2f0

1
2RT

(
c′

ic
′
j − 1

3
c′

ic
′
jδij

)
. (B16)

As ψ must satisfy the equation I[ψ] = 0, ψ is a linear combination of the collision
invariants and can be absorbed into the scalar function A.

These results can be combined and the partial solution summarized as follows:

f ≈ f0(1 + φ1), (B17)

φ1 = −1
n

[√
2RT Aj

∂ ln T
∂xj

+ Bij
∂ci

∂xj

]
, (B18)

where Aj and Bij take the forms in (B13) and (B14), and the two remaining unknown
functions A and B satisfy (B15) and (B16).
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