
3 Top of the Tide
Application of Deep Learning in Recommender 
Systems

With the introduction of Microsoft’s Deep Crossing, Google’s Wide&Deep, and a 
large number of excellent deep learning recommendation models such as Factorization-
machine-supported Neural Network (FNN) and Product-based Neural Network 
(PNN) in 2016, the field of recommender systems and computational advertising has 
fully entered the era of deep learning. Today, deep learning models have become a 
 well-deserved mainstream in the field of recommender systems and computational adver-
tising. In Chapter 2, we discuss the structural characteristics and evolution of  traditional 
 recommendation models. After entering the era of deep learning, the  recommendation 
model has made significant progress mainly in the following two aspects:

 (1) Compared with traditional machine learning models, deep learning models have 
stronger expressivity and can mine more hidden patterns in data.

 (2) The model structure of deep learning is very flexible. The model structure can 
be adjusted according to business use cases and data characteristics, so that the 
model fits perfectly with the application scenario.

From a technical point of view, the deep learning recommendation model learns from 
many deep learning techniques in computer vision, and in speech and natural lan-
guage processing, and has undergone rapid evolution in its model structure.

This chapter summarizes the deep learning recommendation models with great 
influence in the recommendation field, constructs the evolution map between them, 
and introduces the technical characteristics of each model. The criteria for selecting a 
model should follow the following three principles:

 (1) Models have great influence in industry and academia.
 (2) The model has been successfully applied by well-known IT companies such as 

Google, Alibaba, and Microsoft.
 (3) It plays an important role in the development of deep learning recommender systems.

Now, we will enter the “top of the tide” of recommender systems technology and 
explore how deep learning is transforming its application.

3.1 Evolution Graph of Deep Learning Recommendation Models

Figure 3.1 shows the evolution graph of the state-of-art deep learning recommen-
dation models. Taking the Multi-Layer Perceptron (MLP) as the core, by changing 
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493.1 Deep Learning Model Evolution

the structure of the neural network, a deep learning recommendation model with 
different characteristics is constructed. The main evolution directions are as 
follows:

 (1) Changing the complexity of the neural network. From the simplest single-layer 
neural network model AutoRec (autoencoder recommendation) to the classic 
deep neural network structure Deep Crossing (deep feature crossing), the main 
evolutionary method is increasing the depth, that is, the number of layers and the 
structural complexity of the neural network.

 (2) Changing the way features are crossed. The main change in this type of 
model is to enrich the way features are crossed in deep learning networks. For 
example, the NeuralCF (Neural Collaborative Filtering) changes the man-
ner of user vector and item vector interoperability, and the PNN (Product-
based Neural Network) model defines multiple types of feature vector cross 
operations.

 (3) Ensemble models. This type of model mainly refers to the Wide&Deep model 
and its subsequent variants, for example, Deep and Cross, DeepFM, and so 
on. The idea is to improve the model’s comprehensive ability by combining 

Figure 3.1 Evolution graph of mainstream deep learning recommendation models.
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50 Deep Learning Applications in Recommender Systems

two deep learning networks with different characteristics and complementary 
advantages.

 (4) Evolving the FM models based on deep learning framework. The traditional 
recommendation model FM has many upgraded versions in the deep learn-
ing era, including NFM (Neural Factorization Machine), FNN (Factorization-
machine-supported Neural Network), AFM (Attention neural Factorization 
Machine), and so on. These upgraded models improve FM in different direc-
tions. For example, NFM mainly uses neural networks to improve the capa-
bility of feature interaction on the second-order term. AFM is an FM model 
that introduces an attention mechanism, and FNN uses the results of FM to 
initialize the network.

 (5) Combining attention mechanism and recommendation models. This type of model 
mainly applies the “attention mechanism” to the deep learning recommendation 
model, mainly including AFM, which combines FM and attention mechanism, 
and DIN (Deep Interest Network), which introduces the attention mechanism for 
CTR prediction.

 (6) Combining sequence models and recommendation models. This type of model 
is characterized by using a sequence model to simulate the evolving trend of 
user behavior or user interest. The representative model is DIEN (Deep Interest 
Evolution Network).

These summaries clearly show the rapid development and broad thinking of deep 
learning models in recommendation applications. But each model is not a tree with-
out roots, and its appearance is traceable. As with the structure of Chapter 2, we will 
explore together to learn the details of each model on the evolution graph as shown 
in Figure 3.1.

3.2 AutoRec: A Single Hidden-Layer Neural Network  
Recommendation Model

The AutoRec [1] model was proposed by the Australian National University in 2015. 
It combines the idea of AutoEncoder with collaborative filtering, and proposes a sin-
gle hidden-layer neural network recommendation model. Because of its concise net-
work structure and easy-to-understand theory, AutoRec is very suitable for learning 
as an entry model for deep learning recommender systems.

3.2.1 Theories of AutoRec

The AutoRec model is a standard autoencoder, and its basic theory is to use the 
co-occurrence matrix in collaborative filtering to complete the autoencoding of item 
vectors or user vectors. Then it uses the result of self-encoding to get the user’s esti-
mated rating of the item, and lastly performs recommendation ranking.
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513.2 AutoRec: A Single Layer Neural Network Model

Assuming that there are m users and n items, the user will rate one or several of the 
n  items, and the unrated items can be represented by the default value or the average 
score. Then the ratings of all m users can form a scoring matrix with the dimension of 
m n× , which is also known as a co-occurrence matrix in collaborative filtering.

For an item i, the ratings of all the m users can form an m-dimensional vector 
r i

i mi
T

R R� � � �� �1 , , . As mentioned in Basics: Autoencoder, the problem that AutoRec 
solves is to construct a reconstruction function h r;�� �, so that the sum of the squared 
residuals between all the score vectors generated by the reconstruction function and 
the original score vector is minimized (Eq. 3.1).

After obtaining the reconstruction function of the AutoRec model, the final recom-
mendation list can be obtained through the process of score estimation and ranking. 
The following section will introduce two key points of the AutoRec model: the model 
architecture of the reconstruction function, and the process of using the reconstruction 
function to obtain the final recommendation list.

3.2.2 Network Structure of the AutoRec Model

AutoRec uses a single hidden-layer neural network to build a reconstruction function. 
As shown in Figure 3.2, the input layer of the network is the item’s rating vector r, 
and the output is a multiclassification layer. The blue neurons in Figure 3.2 represent 
a k-dimensional hidden layer of the model, where k m� .

Basics: Autoencoder
As the name suggests, an autoencoder is a model that is capable of “self-encoding” 
data. Whether it is image, audio, or text data, it can be converted into a vector for 
expression. Assuming the featured data vector is r , the function of the autoencoder 
is to take the vector r  through a reconstruction function. It will keep the obtained 
output vector as close to itself as possible after it is applied.

Assuming that the reconstruction function of the autoencoder is h r;�� �, then 
the objective function of the autoencoder is

 min ;
�

�
r

r r
�
� � � �

S

h
2

2
 (3.1)

where S is the entire training dataset.
After completing the training of the autoencoder, it is equivalent to storing the 

“essence” of all data vectors in the reconstruction function h r;�� �. In general, the 
number of parameters in the reconstruction function is much smaller than the num-
ber of dimensions of the input vector, so the autoencoder is functionally equivalent 
to data compression and dimensionality reduction.

Due to the “generalization” process, the output vector generated by the auto-
encoder will not be completely equivalent to the input vector, so it has a certain 
prediction ability for the missing dimensions. This is also the reason why the auto-
encoder can be used for recommender systems.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005


52 Deep Learning Applications in Recommender Systems

V  and W in Figure 3.2 represent a parameter matrix from the input layer to the 
hidden layer and the hidden layer to the output layer, respectively. The reconstruction 
function is defined as follows,

 h f g br W Vr;� �� � � �� � �� ��  (3.2)

where f ( )⋅  and g( )⋅  are the activation functions of the output layer and the hidden 
layer, respectively.

In order to prevent overfitting of the reconstruction function, the L2 regularization 
term is added. Then, the AutoRec objective function becomes,

 min ;

�
�

i

n
i i

F F
h

�

� � � �� � � � � � �� �
1

2 2 2

2
r r W V

O

�
 (3.3)

Since the AutoRec model is a standard three-layer neural network, the model can be 
trained using a gradient backpropagation approach.

Basics: Neuron, Neural Network, and Backpropagation
In this section, the basic concepts related to deep learning are mentioned many 
times, such as neurons, neural networks, and gradient backpropagation – the main 
training method of neural networks. We will briefly walk through these concepts.

Neuron, also known as Perceptron, is the same as a logistic regression unit from 
the model structure perspective. Here, we will use an example of a two-dimensional 
input vector to elaborate it. Assuming that the input vector of the model is a 
two-dimensional feature vector x x1 2,� �, the model structure of a single neuron is 
depicted in Figure 3.3.

In Figure 3.3, the elements in the blue circle can be viewed as a linear weighted 
summation, plus a constant bias b, and the final input can be expressed as follows

x w x w b1 1 2 2�� � � �� � �

Figure 3.2 Architecture of the AutoRec model.
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533.2 AutoRec: A Single Layer Neural Network Model

The entire blue circle in Figure 3.3 is a representation of the activation function. 
Its main role is to map an unbounded input variable to a normalized, bounded 
range of values. In addition to the sigmoid function introduced in Section 2.4, the 
other common activation functions are tanh, ReLU, and so on. Due to the limita-
tion of the simple structure, the single neuron has poor fitting ability. Therefore, 
when solving complex problems, multiple neurons are often linked as a network, 
so that it can have the ability to fit any complex function. Such a network is what 
we often call a Neural Network. Figure 3.4 illustrates a simple neural network 
consisting of an input layer, a two-neuron hidden layer, and a single-neuron out-
put layer.

In Figure 3.4, the neurons (blue circles) have the same structure as that of the 
perceptron described here. The inputs to neurons h1 and h2 are the feature vector 
( , )x x1 2  and the inputs to neuron o1 are h1 and h2. Here, we show the simplest form 
of neural network. As the development of deep learning continues, researchers’ 
exploration of different connection methods of neurons leads to different genera-
tions of deep learning networks with different characteristics.

After introducing the structure of a basic neural network, the next important 
question is how to train a neural network. We will start with two important con-
cepts in the neural network training – Forward Propagation and Backpropagation. 

Figure 3.3 The model structure of a single neuron.
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Figure 3.4 A simple neural network.
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The purpose of forward propagation is to obtain the predicted value of the model’s 
input based on the current network parameters. This process is also often referred 
to as the model inference. After getting the predicted value, you can use the defi-
nition of the loss function to calculate the loss of the model. For the output layer 
neurons (o1 in Figure 3.4), the gradient descent method can be used directly to 
calculate the gradient of the associated weights (that is, the weights w5 and w6 in 
Figure 3.5), so as to update the weights. But for the hidden layer, how could we use 
the gradient descent to update the parameters for the neurons in the hidden layer 
(for example, w1 in Figure 3.5) based on the loss from the output layer?

It can be solved through the gradient backpropagation. The gradient backprop-
agation is used to derive model weights based on model loss utilizing the chain 
rule. As shown in the following equation, the gradient of the final loss function to 
the weight w1 is obtained by multiplying the partial derivative of the loss function 
to the output of the neuron h1 and the partial derivative of the output of the neuron 
h1 to the weight w1. That is, the final gradient is propagated back layer by layer, 
leading to the update of the weight w1.

�

�
�
�

�
�
�
�

L

w

L

h

h

w
o o1 1

1 1

1

1

In the specific calculation, it is necessary to clarify the form of the final loss func-
tion and the form of the activation function of each layer of neurons, and then 
calculate the partial derivative according to the specific function.

To summarize, a neuron is the basic structure in neural networks. The specific 
implementation, mathematical expression, and training methods are consistent 
with logistic regression models. A neural network is a network formed by connect-
ing multiple neurons in a certain way. The training method of a neural network is 
gradient backpropagation based on the chain rule.

Input Layer

Height

Weight Gender

Hidden Layer Output Layer

O1

h1
w1

w2

w3

w4

w5

w6

b1

b2

b3

h2

Figure 3.5 A schematic diagram of neural network structure 
and its weights.

3.2.3 Recommendation Process Based on the AutoRec Model

The recommendation process based on the AutoRec model is not complicated. Given 
the rating vector of the input item i is r i� �, the output vector of the model h( ; )r i� � �  is 
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553.3 Deep Crossing Model Overview

the prediction of ratings for the item i by all users. Then, R̂ui represents the rating 
prediction of user u for item i, as shown in Eq. 3.4.

 ˆ ˆ;R h i

u
ui � � �� �� �r �  (3.4)

By traversing the input item vector, the rating predictions of all items from user u 
can be obtained. Then the recommendation list can be generated based on the rating 
predictions.

Like the collaborative filtering algorithm introduced in Section 2.2, AutoRec is also 
divided into item-based AutoRec and user-based AutoRec. The input vector in the 
formula introduced here is the rating vector of the item, so it can be called I-AutoRec 
(Item-based AutoRec). If the user’s rating vector is used as the input vector, then we 
will get U-AutoRec (User-based AutoRec). In the process of recommendation list 
generation, the advantage of U-AutoRec over I-AutoRec is that it only needs to input 
the user vector of the target user once, and then the user’s rating vector for all items 
can be constructed. That is to say, only one model inference process is needed to 
obtain the user’s recommendation list; the disadvantage is that the sparsity of the user 
vector may affect the model’s effectiveness.

3.2.4 Strengths and Limitations of the AutoRec Model

The AutoRec model uses a single hidden layer autoencoder to generalize user or 
item ratings, so that the model has a certain level of generalization and expressivity. 
Because the structure of the AutoRec model is relatively simple, it has a certain prob-
lem of insufficient expressivity.

In terms of model structure, the AutoRec model is exactly the same as the later 
word-to-vector model (Word2vec), but with different optimization targets and train-
ing methods. After learning Word2vec, interested readers can compare the similarities 
and differences between these two models.

From the perspective of deep learning, the proposal of the AutoRec model opened 
the prelude to the use of deep learning to solve the recommendation problem, and 
provided ideas for the construction of complex deep learning networks.

3.3 Deep Crossing Model: A Classic Deep Learning Architecture

If the AutoRec model is an initial attempt to apply deep learning to the recommender 
system, then the Deep Crossing model [2] proposed by Microsoft in 2016 is a complete 
application of the deep learning architecture in the recommender system. Although 
companies have claimed that they have applied deep learning models in their recom-
mender systems since 2014, it was not until the year when the Deep Crossing model 
was released that there were official papers sharing the technical details of the complete 
deep learning recommender system. Compared with some problems of poor expressiv-
ity caused by the simple network structure of the AutoRec model, the Deep Crossing 
model completely solves a series of deep learning implementation issues from feature 
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engineering, sparse vector densification, and multilayer neural network optimization 
target fitting. The solutions provided in this model have laid a good foundation for 
much subsequent research.

3.3.1 Application Scenarios of the Deep Crossing Model

The application scenario of the Deep Crossing model is the search advertisement rec-
ommendations in the Microsoft search engine Bing. After a user enters a search term 
in the search box, the search engine will not only return relevant results but also return 
advertisements related to the search term, which is also the main profit source of most 
search engines. Based on the business model, the most important module of an ads 
system is to build a CTR model to accurately predict click-through rate and further lift 
performance of ads recommendation. Therefore, CTR naturally become the optimiza-
tion objective of the Deep Crossing model.

The features used by Microsoft under this use case are shown in Table 3.1. These 
features can be divided into three categories – the categorical features that can be pro-
cessed into one-hot or multi-hot vectors, including user search terms (that is, query), 
ad keyword, ad title, landing page, match type; the numeric features, which Microsoft 
calls counting features, including CTR and click prediction; the other one is the fea-
tures that need further processing, including advertising campaign, impression, click, 
and so on. Strictly speaking, these are not independent features but rather a group 
of features that need further processing. For example, the budget in the advertising 
campaign can be used as a numerical feature, and the ID of the advertising plan can 
be used as a categorical feature.

Categorical features can be processed into feature vectors through one-hot 
or multi-hot encoding, and numerical features can be directly concatenated into 

Table 3.1 Features in the Deep Crossing model

Feature Feature meaning

Search term The search term entered by the user in the search box
Ad keyword Keywords that the advertiser adds to the ad to describe their product
Ad title The titles of the ads
Landing page The first page after ad is clicked
Match type Advertiser-selected ad-search term match type (including exact 

match, phrase match, semantic match, and so on)
CTR Ad’s historical CTR
Click prediction CTR prediction from another CTR model
Ad campaign The ad delivery plan created by the advertiser, including budget, 

targeting conditions, and so on
Impression Sample An example of an ad “impression” that records the contextual 

information about the ad in the actual impression scene
Click Sample An example of an ad “click” that records the contextual information 

about the ad in the actual click scenario
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feature vectors. After generating the vector representation of all input features, the 
Deep Crossing model uses the feature vectors to predict CTR. The characteristic 
of a deep learning network is that the network structure can be flexibly adjusted 
according to the business and engineering needs, so as to achieve the end-to-end 
training from the original input features to the final optimization target. Next, by 
analyzing the network structure of the Deep Crossing model, we can explore how 
deep learning can accurately predict the CTR through the layer-by-layer process-
ing of features.

3.3.2 Network Structure of Deep Crossing Model

In order to achieve end-to-end training, the Deep Crossing model needs to solve the 
following problems in its network:

 (1) How to solve the problem of densification of sparse feature vectors since one-hot 
encoding feature is too sparse, which is not in favor of direct training;

 (2) How to solve the problem of automatic feature crossovers;
 (3) How to achieve the optimization target set by the problem in the output layer.

The Deep Crossing model sets up different neural network layers to solve these prob-
lems. As shown in Figure 3.6, the network structure mainly includes four layers: the 
embedding layer, the stacking layer, the multiple residual units layer, and the scoring 

Figure 3.6 Structure diagram of the Deep Crossing model.
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layer. Next, the functions and implementations of each layer will be introduced from 
bottom to top.

• Embedding layer: The role of the embedding layer is to convert sparse categorical 
features into dense embedding vectors. As can be seen from Figure 3.6, each feature 
(such as Feature#1, here refers to the one-hot encoded sparse feature vector) will be 
converted into the corresponding embedding vector (such as Embedding#1) after 
passing through the embedding layer.

The structure of the embedding layer is mainly based on the classic fully con-
nected layer structure, but the embedding technology itself, as a very widely 
studied topic in the deep learning domain, has derived many other differ-
ent embedding methodologies such as Word2vec, Graph Embedding, and so 
on. Chapter 4 will give a more detailed introduction to the state-of-the-art 
embedding models.

Generally speaking, the dimension of the embedding vectors should be much 
smaller than the original sparse feature vector, and tens to over one hundred 
dimensions can generally meet the requirements. It should be noted here that 
Feature#2 in Figure 3.6 actually represents a numerical feature. The numerical 
feature does not need to go through the embedding layer, but directly enters the 
stacking layer.

• Stacking layer: The function of the stacking layer is relatively simple. It is to con-
catenate different embedding features and numerical features to form a new feature 
vector containing all features. This layer is also usually referred as the concatenate 
layer.

• Multiple Residual Units layer: The main structure of this layer is a MLP. Compared 
with the standard neural network with a perceptron as the basic unit, the Deep 
Crossing model uses a multilayer residual network as the MLP implementation. 
The most famous residual network is the 152-layer residual network proposed by 
Microsoft researcher Yuming He in the ImageNet competition [3]. The application 
of residual networks in the Deep Crossing model is also the first successful exten-
sion of residual networks outside the field of computer vision.

Through the multilayer residual network, the various dimensions of the feature 
vector are fully crossed, so the model can capture more information about non-
linear features and combined features. As a result, the deep learning model is 
more expressive than traditional machine learning models.

Basics: Residual Neural Networks and Its Characteristics
Residual neural network is a neural network composed of residual units. The spe-
cific structure of the residual unit is depicted in Figure 3.7.

Different from the traditional perceptron, the residual unit has two main 
characteristics:
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Figure 3.7 The specific structure of a residual unit.

 (1) The residual unit contains a fully connected layer with ReLU as the activation 
function.

 (2) The input is directly connected with ReLU output through a shortcut path.

Under such a structure, what the residual unit is actually fitting is the “residual 
difference” ( )x x0 1−  between the output and the input, which is the origin of the 
name of the residual neural network.

The birth of the residual neural network is mainly to solve two problems:

 (1) For traditional perceptron-based neural networks, when the network is deep-
ened, there is often an overfitting problem; that is, the deeper the network, the 
worse the performance on the test set. In the residual neural network, due to 
the existence of short-circuit of the input vector, the two-layer ReLU network 
can be skipped in many cases to reduce the occurrence of overfitting.

 (2) When the neural network is deep enough, there is often a serious gradient van-
ishing phenomenon. The vanishing gradient phenomenon means that in the pro-
cess of gradient backpropagation, the closer to the input end, the smaller the 
magnitude of the gradient, and then the slower the parameter convergence speed. 
To solve this problem, the residual unit uses the ReLU activation function to 
replace the original sigmoid activation function. In addition, short-circuiting the 
input vector is equivalent to directly passing the gradient to the next layer with-
out modification, which also makes the residual network converge faster.

• Scoring layer: The scoring layer, as the output layer, is to fit the optimization objec-
tive. For binary classification problems such as CTR prediction, the scoring layer 
often uses a logistic regression model, while for multiclassification problems such 
as image classification, the scoring layer often uses a softmax model.

This is the model structure of Deep Crossing. On this basis, the gradient backpropaga-
tion method is used for training, and finally the CTR prediction model based on Deep 
Crossing is obtained.
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3.3.3 The Revolution to Feature Crossing Method by Deep Crossing Model

From the view of the current deep learning world, the Deep Crossing model is unre-
markable, because it does not introduce any special model structure such as atten-
tion mechanism, sequence model, and so on. It just uses the typical deep learning 
architecture with embeddings and a multilayer neural network. But from a historical 
perspective, the emergence of the Deep Crossing model is revolutionary. There is 
no manual feature engineering involved in the Deep Crossing model. The original 
features are fed into the neural network layer after the embedding layer, and the task 
of feature crossing is all handed over to the model. Compared with the previously 
introduced FM and FFM models, which only have the ability to cross second-order 
features, the Deep Crossing model can perform “deep crossover” among features 
by adjusting the depth of the neural network, which is the origin of the name Deep 
Crossing.

3.4 NeuralCF Model: Combination of CF and Deep Learning

In Section 2.2, we introduce the classic algorithm of a recommender system – 
 collaborative filtering. The Matrix Decomposition technique is then developed along 
the idea of collaborative filtering (Section 2.3), which decomposes the co-occurrence 
matrix in collaborative filtering into the user vector matrix and item vector matrix. 
In this model, the inner product of the hidden vector of user u and the hidden vector 
of item i is the prediction of the rating of item i by user u. Following the develop-
ment path of Matrix Decomposition and combining with deep learning knowledge, 
researchers from the National University of Singapore proposed a deep-learning-
based collaborative filtering model NeuralCF [4] in 2017.

3.4.1 Revisiting Matrix Factorization Models from the Perspective  
of Deep Learning

As mentioned in the introduction to the Deep Crossing model in Section 3.3, the main 
function of the embedding layer is to convert sparse vectors into dense vectors. In fact, 
if we view the Matrix Decomposition model from the perspective of deep learning, 
the user-hidden vector and item-hidden vector of the matrix decomposition layer can 
be treated as one kind of embedding method. The final “scoring layer” is to obtain the 
“similarity” after the inner product of the user’s latent vector and the item’s latent vec-
tor. The “similarity” here is the prediction of the rating. In summary, the architecture 
of the matrix factorization model can be described by a deep learning network like 
structure, as shown in Figure 3.8.

In the process of training and evaluating models using Matrix Decomposition, it 
is often found that the model is prone to underfitting. The reason is that the model 
structure of matrix decomposition is relatively simple, especially the output layer 
(that is, the scoring layer), which cannot effectively fit the optimization objective. 
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This requires the model to have stronger expressivity. Inspired by this motivation, 
researchers from the National University of Singapore proposed the NeuralCF 
model.

3.4.2 Network Structure of the NeuralCF Model

As shown in Figure 3.9, NeuralCF replaces the simple inner product operation in the 
matrix factorization model with the structure of the multilayer neural network and 
output layer. The benefits of doing so are intuitive. First, the user vector and the item 
vector can be more effectively crossed to obtain more valuable feature combination 
information; the second is to introduce more nonlinear features to make the model 
more expressive.

In fact, the interaction layer of user and item vectors can be replaced by any other 
form of manipulations. Such type of model is the so-called Generalized Matrix 
Factorization model.

The original matrix decomposition uses the “inner product” method to allow the 
user to interact with the item vector. In order to further allow the vectors to fully cross 
in each dimension, the element-wise product (that is, multiplying the corresponding 
elements from two vectors with the same dimension) is used for interoperability. Then 
the final prediction target is fitted through the output layer, such as logistic regression. 
The use of neural networks to fit interaction functions in NeuralCF is a generalized 
form of feature crossing. In the chapters that introduce the PNN model and the Deep 
and Cross model, more feasible forms of interaction functions will be introduced.

Further, the feature vectors obtained through different interaction networks can be 
concatenated and passed to the output layer for fitting. An example of integrating two 

Figure 3.8 Representation of matrix factorization in a deep learning network-like structure.
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networks is given in the NeuralCF paper [4] (shown in Figure 3.10). Such a model is 
called the hybrid NeuralCF. It can be seen that the hybrid NeuralCF model integrates 
with the original NeuralCF model mentioned earlier and the generalized matrix fac-
torization model with element-wise results, such as interoperability. This allows the 
model to have stronger feature crossing and nonlinearity.

Basics: What Is the Softmax Function?
While introducing the Deep Crossing and NeuralCF models, it has been mentioned 
many times that the softmax function is used as the final output layer of the model 
to solve the fitting of multiclassification problems. So what is the softmax function 
and why is the softmax function able to solve multiclassification problems?

Mathematical Definition of Softmax Function
Given an n-dimensional vector, the softmax function maps it to a probability dis-
tribution. The standard softmax function � : 

n n�  is defined by the following 
formula,

� X� � �
� �
� �

� � � � �

��i

i

j

n
j

n
T nx

x
n x x

exp

exp
, , , ,

1

11  where andi � � �X

It can be seen that the softmax function solves the problem of mapping from an orig-
inal n-dimensional vector to an n-dimensional probability distribution. Then in the 
multiclass classification problem, assuming that the number of classes is n, what the 
model wants to predict is the probability distribution of a sample on n classes. If a 

Figure 3.10 The hybrid NeuralCF model.
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deep learning model is used for prediction, then the final output layer is composed of 
n neurons. The output of the n neurons then become the input (a n-dimensional vec-
tor) to the final softmax function. Eventually, the final multiclass probability distri-
bution can be obtained from the output of the softmax function. In a neural network, 
the structure of the softmax output layer can be presented as shown in Figure 3.11.

In multiclass classification problems, the softmax function is often used together 
with the cross-entropy loss function,

LossCross Entropy �� � �� �� ln
i

i i
y � x

where yi is the ground truth label value of the ith category, and σ ( )x i represents the 
predicted value of the ith category by the softmax function. Because the softmax 
function normalizes the classification output into the probability distribution of 
multiple classifications, and the cross entropy describes the similarity between the 
predicted classification and the actual result, the softmax function is often used in 
conjunction with the cross entropy. When using cross-entropy as the loss function, 
the gradient descent form of the entire output layer becomes extremely simple. The 
derivative of the softmax function turns,

� � �
�

�
� � � � �� � �
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Based on the chain rule, the derivative of the cross-entropy function to the  
j th-dimensional input x j of the softmax function can be expressed as,

�
�

�
�
� � �

�
� � �
�

Loss Loss

x xj j�
�

x

x

1 2 n······

[x1, x2,  ......, xn]

Softmax function

[p1, p2,  ......, pn]

Output layer

Figure 3.11 The structure of the softmax output layer.
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In a multiclass classification problem, only one dimension of 1 is in the ground 
truth label, and the rest of the dimensions are all 0. Assuming that the kth dimen-
sion is 1, that is, yk = 1, then the cross-entropy loss function can be simplified into 
the following form,

LossCross Entropy �� � �� � � � � � �� � � � � �� �� ln ln ln
i

i i k k k
y y� � �x x x

Then,
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From this, it can be seen that the combination of softmax function and cross 
entropy is not only perfectly aligned in mathematical meaning, but also makes 
the gradient formula concise. Based on this gradient equation, the update of the 
weight of the entire neural network can be completed by the method of gradient 
backpropagation.

3.4.3 Strengths and Limitations of NeuralCF Models

The NeuralCF model actually proposes a model framework – it is based on the two 
embedding layers of the user vector and the item vector, uses different interaction layers 
to cross the features, and can flexibly concatenate different interaction layers. From this, 
we can see the advantages of deep learning in building a recommendation model – using 
the ability of neural networks to fit arbitrary functions in theory, flexibly combining 
different features, and increasing/decreasing the complexity of the model as needed.

In practice, it should be noted that it is not always true that the more complex the 
model structure and the more features, the better. We need to understand the conse-
quence induced by adding more complexities to the model: (1) risk of overfitting; (2) 
demand of a larger amount of training data; and (3) longer training time. These afore-
mentioned aspects are what algorithm engineers need to consider while making trade-
off decisions between model practicability, real-time performance, and effectiveness.

The NeuralCF model also has its own limitations. Since it is developed on the basis 
of collaborative filtering, the NeuralCF model does not introduce other types of fea-
tures, which undoubtedly wastes other valuable information in practical applications. 
In addition, there is no further exploration and categorization of feature interaction 
types in the model. It requires deeper dives in the follow-up research.

3.5 PNN Model: A Way of Enhancing Feature Cross Capabilities

The main idea of the NeuralCF model introduced in Section 3.4 is to use a multilayer 
neural network to replace the dot product operation of classical collaborative filtering 
to enhance the expressiveness of the model. In a broader sense, any manipulation 
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method between vectors can be used to replace the inner product operation of col-
laborative filtering, and the corresponding model can be called a generalized matrix 
factorization model. However, the NeuralCF model only mentions two fields of fea-
ture vectors, the user vector and the item vector. How to design the feature crossing 
method if multiple sets of feature vectors are added? In 2016, the PNN (Product-
based Neural Networks) model proposed by researchers from Shanghai Jiao Tong 
University [5] gave several design ideas for feature interaction.

3.5.1 Network Structure of the PNN Model

The purpose of the PNN model proposal is also to solve the problem of CTR pre-
diction in the recommender system, so the application scenarios of the model will 
be omitted here. Figure 3.12 shows the model structure diagram. Compared with the 
Deep Crossing model (as shown in Figure 3.6), the PNN model is similar in most parts 
of the overall structure, including the input layer, embedding layer, MLP layer, and 
final output layer. The only difference is that the PNN model replaces the stacking 
layer in the Deep Crossing model with a product layer. In other words, the embedding 
vectors of different features are no longer simply concatenated; instead, a product 
operation is applied to each pair of embedding vectors to capture cross-feature infor-
mation in a more structured manner.

In addition, compared with NeuralCF, the input of the PNN model not only 
includes user and item information but can also have more features in different forms 

Figure 3.12 Structure diagram of the PNN model.
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and sources, followed by generating the dense embedding feature vectors of the same 
length through the encoding of the embedding layer. To model feature crossing, 
the PNN model also provides more specific interaction methods.

3.5.2 Multiple Feature Intersection Forms in the Product Layer

The main innovation of the PNN model for the deep learning structure is the  introduction 
of the product layer. Specifically, the product layer of the PNN model consists of 
a linear operation part (block z of the product layer in Figure 3.12) and a product 
 operation part (block p of the product layer in Figure 3.12). Among them, the product 
feature interaction part can be divided into inner product type and outer  product type. 
The PNN model using inner product operation is called Inner  Product-based Neural 
Network (IPNN), and the PNN model using outer product operation is called Outer 
Product-based Neural Network (OPNN).

Whether it is an inner product type or an outer product type, it is a form of pairwise 
combination of different feature embedding vectors. In order to ensure the smooth 
operation of the product, the dimensions of each embedding vector must be the same.

The inner product is a classic vector manipulation method. Assuming that the input 
feature vectors are fi and f j respectively, the inner product equation g i jinner ( ),f f  can 
be defined as,

 g i j i jinner f f f f, ,� � �  (3.5)

The outer product operation is to cross each dimension of the input feature vectors fi 
and f j for each pair of elements to generate a feature cross matrix. The outer product 
equation g i jouter ( ),f f  can be defined as,

 g i j i jouter
Tf f f f,� � �  (3.6)

The outer product operation generates a square matrix with the dimension of M M× ,  
where M is the dimension of the input vector. It is clear that such an operation will 
directly increase the complexity of the algorithm from the order of M originally to M2.  
In order to reduce the burden of model training, a dimensionality reduction method 
was introduced in the PNN model paper. The results of the outer product of the feature 
embedding vectors are super-positioned to form a combined outer product matrix p, 
as shown,

 p f f f f f f f f� � � � � �
� � � � �
�� �� �
i

N

j

N

i j
i

N

j

N

i j
i

N

ig
1 1 1 1 1

outer
T T, ,� � �  (3.7)

From the final form of Equation 3.7, the final superposition matrix p is similar to 
applying an average pooling on all the feature embeddings and then performing the 
outer product operation.

In practical applications, the operation of average pooling should also be treated 
with caution. Because the corresponding dimensions of different features are aver-
aged, it is actually assumed that the corresponding dimensions of different features 
have similar physical meanings. But obviously, if one feature is “age” and the other 
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is “region,” then after these two features have passed through their respective embed-
ding layers, the embedding vectors of the two are not in the same vector space, which 
is obviously not comparable. At this time, averaging the two will obscure a lot of valu-
able information. The average pooling often occurs in the embeddings in the same 
domain; for example, the embedding of multiple items browsed by the user is aver-
aged. Therefore, the outer pooling operation of the PNN model needs to be cautious, 
and carefully balanced between training efficiency and model performance.

In fact, after the linear and product operations of the features, the PNN model 
does not directly send the results to the upper L1 fully connected layer (as shown in 
Figure 3.12), but performs a local fully connected layer conversion inside the product 
layer. It maps the linear portion z, the product portion p into D1-dimensional input 
vectors lz and lp respectively. D1 is the number of hidden units in the L1 hidden layer. 
The mapped vectors lz and lp are superimposed and passed into the hidden layer. This 
part of the operation is commonly seen and can be replaced by other types of transfor-
mation operations, so it will not be described in detail here.

3.5.3 Strengths and Limitations of the PNN Model

The highlight of the PNN model is that it emphasizes the versatility of interaction 
methods between feature embedding vectors. Compared with the simple, undifferenti-
ated processing in the fully connected layer, the inner product and outer product oper-
ations adopted by the PNN model obviously focus more on the interaction between 
different features, which makes it easier for the model to capture the interacting rela-
tionship of the features.

However, the PNN model also has some limitations. For example, in the practical 
application of the outer product operation, a lot of simplification operations have to 
be performed to optimize the training efficiency. Furthermore, performing an indis-
criminate crossover of all features, to some extent, ignores the valuable information 
contained in the original feature vector. It then comes down to questions such as 
how to integrate original features and crossed features to make feature crossing more 
efficient. The Wide&Deep model and various deep learning models based on FM 
introduced in the later sections will give their solutions.

3.6 Wide&Deep Model: Combining Memorization and Generalization

This section introduces a model that has had great influence in the industry since it 
was proposed: the Wide&Deep model, presented by Google in 2016 [6]. The main 
idea of the Wide&Deep model, as its name suggests, is a hybrid model consisting of 
a single-layer “wide” substructure and a multilayered “deep” substructure. Among 
them, the main function of the wide part is to make the model have strong memo-
rization ability, while the main responsibility of the deep part is to make the model 
have more generalization ability. It has the advantages of logistic regression as well 
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as deep neural network. That is, it can quickly process and memorize a large number 
of historical behavioral characteristics, and also has strong expressivity. It not only 
quickly became the state-of-art model in the industry at that time, but also derived a 
large number of hybrid models based on the foundations of the Wide&Deep model. 
Its influence still continues today.

3.6.1 Memorization and Generalization of the Wide&Deep Model

The original intention of the Wide&Deep model and its greatest value are from strong 
memorization ability and generalization ability at the same time. This is the first time 
we have mentioned the Memorization concept in this book. Although generalization has 
been mentioned many times in previous chapters, it has never given a detailed expla-
nation. In this section, we will give a detailed explanation of both these two concepts.

Memorization can be understood as the ability of the model to directly learn and 
utilize the “co-occurrence frequency” of items or features in the historical data. 
Generally speaking, simple models such as collaborative filtering and logistic regres-
sion have strong “memorization capabilities.” Due to the simple structure of this 
type of model, the original data can often directly affect the recommendation results, 
resulting in inductive recommendations like “if you have clicked on A, recommend 
B.” This is equivalent to the model directly remembering the distribution of historical 
data characteristics, and use these memories to make recommendations.

Since the Wide&Deep model was originally proposed by the Google Play recom-
mendation team, here we take the scenario of app recommendation as an example to 
explain the model’s memorization capability.

Suppose that the following combined features are adopted during 
the training process of the Google Play recommendation model, 
AND netflix; impression pandorainstalled_app appuser � �� �, or (netflix & pandora). This 
feature means that the user has installed the Netflix app and sees the Pandora app rec-
ommended in the Google Play App store. If we use a successful Pandora installation 
as a positive label, it is easy to count the co-occurrence frequency between the feature 
of (Netflix and Pandora) and the positive labels of Pandora installation. Assuming that 
the co-occurrence frequency of the two is as high as 10% (the global average appli-
cation installation rate is 1%), this feature is so strong that when designing a model, 
we expect that the model will recommend Pandora as soon as it finds this feature. It 
is like a memorable point imprinted in people’s minds. This is the so-called memori-
zation of the model. For simple models such as logistic regression, if such a “strong 
feature” is found, its corresponding weight will be greatly adjusted during the model 
training process, thus reflecting the direct memory of this feature. On the other hand, 
for a multilayer neural network, the feature will be processed through multiple layers 
and continuously crossed with other features, so the model’s memory of any strong 
feature is not as prominent as that of a simple model.

The generalization ability can be understood as the relevancy in the feature 
transfer, and the ability to discover the latent correlation between the features and 
ground truth label, especially when the features are sparse or never appeared. Matrix 
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decomposition has a stronger generalization ability than collaborative filtering, since 
matrix decomposition introduces a structure such as a hidden vector, which lets users 
or items with sparse data generate hidden vectors to obtain data-driven recommen-
dation scores. This is a typical example of passing global data to the sparse items 
to improve generalization. For another example, deep neural networks can deeply 
explore latent patterns in data through multiple automatic crossings of the features. 
Even with very sparse input feature vectors, we can still obtain a relatively stable and 
smooth recommendation probability through a deep neural network structure. This is 
the generalization ability that simple models lack.

3.6.2 Network Structure of the Wide&Deep Model

Given the strong memorization ability of the simple model and the strong general-
ization ability of the deep neural network, the direct motivation for designing the 
Wide&Deep model is to combine these two structures. The specific model structure 
is shown in Figure 3.13.

The Wide&Deep model combines a wide part with a single input layer, and a deep 
part, which consists of the embedding layer and multiple hidden layers. Then both 
parts are fed to the final output layer to generate the prediction. The single-layer side 
(wide side) is good at dealing with a large number of sparse ID features while the deep 
side uses the strong expressive ability of the neural network to perform deep feature 
crossing and mine the data patterns hidden behind the features. Finally, using the 
logistic regression model, the output layer combines the outputs from the wide part 
and the deep part to generate the final prediction.

The specific feature engineering and input layer design present a deep understand-
ing of the business use cases from the Google Play Recommendation team. From 
Figure 3.14, we can learn in detail which features the Wide&Deep model uses as the 
input of the deep part and which features are used as the input of the wide part.

Figure 3.13 The structure of the Wide&Deep model.
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The input of the deep part is the full set of feature vectors, including user age, num-
ber of installed applications, device type, installed applications, impression applica-
tions, and so on. The category features, such as installed applications and impression 
applications, need to go through the embedding layer before entering the connection 
layer, where embeddings are concatenated into a 1200-dimensional vector. Then this 
vector is passed through three layers of ReLU fully connected layers, and finally fed 
to the output layer with the log-loss function.

The input of the wide part only includes two types of features – installed applications 
and impressed applications, where the installed applications represent the user’s histori-
cal behavior, and the impressed applications represent the current application candidate 
to be recommended. The reason for choosing these two types of features is to take full 
advantage of the memorization ability of the wide part. As mentioned in the memori-
zation example in Section 3.6.1, simple models are good at memorizing information in 
user behavior characteristics, and can directly influence recommendation results.

The function of combining the feature installed application and impressed appli-
cation in the wide part is called the Cross Product Transformation function, and its 
definition is shown as follows,

 �� X x c
i

d

i
c

ki
ki� � � �� �

�
�

1

0 1,  (3.8)

where cki  is a Boolean variable and xi is the ith feature. When the ith feature 
belongs to the kth crossed feature, the value of cki  is 1, otherwise it is 0. For exam-
ple, for the crossed feature AND(user netflix impression pandora)installed_app app= =; ,  
the corresponding cross-product transform function output is 1 only when both two 
individual features user netflixinstalled_app =  and impression pandoraapp =  are positive, 
otherwise it is 0.

Figure 3.14 The structure of the Wide&Deep model with more feature details.
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After the features are crossed through the cross-product transformation layer opera-
tion, the wide part feeds the combined features into the final log-loss output layer, and 
participates in the final objective fitting together with the output from the deep part.

3.6.3 Evolution of the Wide&Deep Model: The Deep and Cross Model

The development of the Wide&Deep model not only integrates memorization and 
generalization, but also opens up a new idea for the integration of different network 
structures. After the Wide&Deep model, more and more works focus on improving the 
Wide&Deep parts, respectively. A representative model is the Deep and Cross model 
(DCN) proposed by researchers from Stanford University and Google in 2017 [7].

The structure diagram of the Deep and Cross model is shown in Figure 3.15. The 
main idea is to use the cross network to replace the original wide part. Since the design 
idea of the deep part has not changed substantially, this section focuses on the design 
idea and specific implementation of the cross part.

Figure 3.15 The structure of the Deep and Cross model.
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The purpose of designing the cross network is to increase the interaction strength 
between the features, and use a multilayer cross layer to perform feature crossover on 
the input vector. Assuming that the output vector of the lth cross layer is xl , then the 
output vector of the ( )l +1 th layer can be expressed as,

 x x x W b xl l l l l� � � �1 0
T  (3.9)

It can be seen that the second-order term of the cross-layer operation is very similar 
to the outer product operation mentioned in the PNN model in Section 3.5. On this 
basis, the weight vector wl of the outer product operation, as well as the original input 
vector xl  and bias vector bl  are added. The operation of the cross layer is shown in 
Figure 3.16.

It can be seen that the cross layer is relatively “conservative” in increasing parame-
ters. Each layer only adds an n dimensional weight vector wl, where n is the input vector 
dimension, and the input vector is retained in each layer. So the change between output 
and input will not be particularly noticeable. The cross network composed of multiple 
interaction layers performs automatic feature crossover, which is more advanced than 
the wide part in the Wide&Deep model. This can help reduce the efforts on feature 
crossing based on human business understanding. Similar to that in the Wide&Deep 
model, the deep part of the Deep and Cross model is more expressive than the cross 
part, which gives the model a stronger learning ability on nonlinear relationships.

3.6.4 Influence of the Wide&Deep Model

The influence of the Wide&Deep model is undoubtedly significant. Not only has it 
been successfully applied to many first-tier IT companies, but its subsequent improve-
ment and innovation work has continued to this day. In fact, DeepFM, NFM, and 
other models can be viewed as extensions of the Wide&Deep model. The key to the 
success of the Wide&Deep model is that:

 (1) It grasps the essential characteristics of business problems, and can integrate the 
advantages of memorization ability from the traditional models and generaliza-
tion ability from the deep learning models;

 (2) The structure of the model is not complicated, and it is relatively easy to imple-
ment, train and productionize, which accelerates its popularization and applica-
tion in the industry.

Figure 3.16 The operation of the cross-layer.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005


74 Deep Learning Applications in Recommender Systems

It is also from the Wide&Deep model that more and more model structures are added 
to the recommendation model, and the structure of the deep learning model begins to 
develop in a diversified and complex direction.

3.7 Integration of FM and Deep Learning Models

The evolution of the FM model family has been presented in detail in Section 2.5. 
After entering the era of deep learning, the evolution of FM has never stopped. The 
FNN, DeepFM, and NFM models introduced in this section use different methods 
to apply or improve the FM model, and integrate them into the deep learning model, 
continuing the advantages in an easy feature combination.

3.7.1 FNN: Embedding Layer Initialization with the Hidden Vector of FM

The FNN model was proposed by researchers at University College London in 2016 
[8]. The structure of this model (as shown in Figure 3.17) is a classic deep neural 
network similar to the Deep and Cross model. It also includes a typical embedding 
layer to map the sparse input vector to dense vector. So how exactly is the FNN model 
combined with the FM model?

The key to the problem is the improvement of the embedding layer. In the param-
eter initialization process of the neural network, random initialization is often used, 

Figure 3.17 Structure of the FNN model.
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which does not contain any prior information. Because the input of the embedding 
layer is extremely sparse, the convergence rate of the embedding layer is very slow. 
In addition, the number of parameters of the embedding layer often accounts for more 
than half of the parameters of the entire neural network, so the convergence speed of 
the entire model is often limited by the embedding layer.

Aiming at the problem of the convergence speed of the embedding layer, the solu-
tion of the FNN model is to initialize the parameters of the Embedding layer with 
each feature latent vector trained by the FM model, which is equivalent to intro-
ducing valuable prior information when initializing the neural network parameters. 
That is to say, the starting point of neural network training is closer to the target 
optimal point, which naturally accelerates the convergence process of the entire 
neural network.

Let’s review the mathematical form of FM again, as shown in (Eq. 3.10).

 yFM sigmoidx w w x x x
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Basics: Why the Convergence Rate of the Embedding Layer Tends to Be Slow
In a deep learning network, the role of the embedding layer is to convert the sparse 
input vector into a dense vector, but the existence of the embedding layer often 
slows down the convergence speed of the entire neural network for the following 
two reasons:

 (1) The number of parameters in the embedding layer is huge. A simple cal-
culation can be done here. Assuming that the dimension of the input layer 
is 100 000, the output dimension of the embedding layer is 32. There 
are five layers of 32-dimensional fully connected layers added above 
the embedding layer, and the final output layer dimension is 10. Then, 
the number of parameters from the input layer to the embedding layer is 
32 100 000 3200 000� � . The total number of parameters for all remaining 
layers is ( ) .32 32 4 32 10 4416� � � � �  As a result, the total weight of the 
embedding layer is 3200 000 3200 000 4416 99 86/ . %.( )� �  That is to say, 
the weight of the embedding layer accounts for the vast majority of the 
weight of the entire network. It is not hard to understand that most of the 
training time and computational overhead are attributed to the embedding 
layer.

 (2) Since the input vector is too sparse, in the process of stochastic gradient 
descent, only the weight of the embedding layer connected to the nonzero 
feature will be updated (please refer to the parameter update formula in the sto-
chastic gradient descent for understanding), which further reduces the embed-
ding layer convergence speed.
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The parameters mainly include constant bias w0, the first-order term parameter wi  and 
second-order hidden vector vi. The corresponding relationship between the parameters 
of FM and the parameters of the embedding layer in FNN is depicted in Figure 3.18.

It should be noted that although the parameters in FM are pointed to each neuron in 
the embedding layer in Figure 3.18, its specific meaning is to the connection weight 
between the embedding neuron and the input neuron. Assuming that the dimension 
of the FM hidden vector is m, the hidden vector of the k-th dimension feature of the 
i-th feature field is vi k i k i k i k

l
i k
mv v v v, , , , ,( , , , , , )� � �1 2 , then the l-th dimension vi k

l
,  of the 

hidden vector will become the initial value of the connection weight between the input 
neuron k and embedding neuron l.

In the process of the FM model training, the feature fields are not distinguished. 
However, in the FNN model, the features are divided into different feature fields. 
Each feature field has a corresponding embedding layer, and the dimension of 
embedding in each feature field should be consistent with the dimension of the FM 
hidden vector.

In addition to using FM parameters to initialize the weights of the embedding 
layer, the FNN model also introduces another processing method for the embedding 
layer in the real application – pre-training. More details are introduced in Chapter 4.

Figure 3.18 The process of using FM to initialize the embedding layer.
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3.7.2 DeepFM: Replacing the Wide Part with FM

FNN uses the training result of FM as the initialization weight, and does not adjust 
the structure of the neural network, while DeepFM [9] jointly proposed by Harbin 
Institute of Technology and Huawei in 2017 integrates the model structure of FM with 
the Wide&Deep model. Its model structure diagram is shown in Figure 3.19.

As mentioned in Section 3.6, after the Wide&Deep model, many other models 
follow the structure of the dual-model combination, and DeepFM is one of them. The 
improvement of DeepFM on top of the Wide&Deep model is that it replaces the orig-
inal wide part with FM, which strengthens the ability of partial feature combination of 
the shallow network. As shown in Figure 3.19, the FM part on the left shares the same 
embedding layer with the deep neural network part on the right. The FM part on the 
left crosses the embeddings of different feature fields in pairs, that is, the embedding 
vector is treated as the feature hidden vector in the original FM. Finally, the output of 
the FM and the output of the deep part are input into the final output layer to partici-
pate in the final prediction.

Compared with the Wide&Deep model, the improvement of the DeepFM model is 
mainly aimed at mitigating the shortage that the wide part of the Wide&Deep model 
does not have the ability to automatically cross features. The motivation for improve-
ment here is exactly the same as that of the Deep and Cross model. The only differ-
ence is that the Deep and Cross model uses a multilayer cross network for feature 

Figure 3.19 The structure diagram of the DeepFM model.
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combination, while the DeepFM model uses FM structure for feature combination. Of 
course, the specific application effects still need to be compared through experiments.

3.7.3 NFM: FM Model’s Neural Network Attempt

When we introduced the limitations of FM in Section 2.5, it mentions that whether 
it is FM or its improved model FFM, it is still basically a simple model with the 
second-order feature intersection. Affected by the “Curse of Dimensionality” issue, 
it is almost impossible for FM to extend the feature crossing beyond the third order, 
which inevitably limits the expressivity of the FM model. So is it feasible to use 
the stronger expressive power of deep neural networks to improve the FM model? 
In 2017, researchers from the National University of Singapore made an attempt to 
explore this and proposed the NFM [10] model.

The mathematical form of the classical FM is presented in Eq. 3.10. The main 
idea of the NFM model is to replace the part of the inner product of the second-order 
latent vector in the original FM with a function with stronger expressivity, as shown 
in Figure 3.20.

If the traditional machine learning idea is used to design the function f x( ) in the 
NFM model, it usually leads to a more expressive function through a series of math-
ematical derivations. But after entering the era of deep learning, since theoretically 
the deep learning network has the ability to fit any complex function, the construction 
of f x( ) can be completed by a deep learning network and learned through gradient 
backpropagation. In the NFM model, the neural network structure used to replace the 
second-order part of the FM is shown in Figure 3.21.

The characteristic is to add a feature cross-pooling layer (Bi-Interaction Pooling 
Layer) between the embedding layer and the multilayer neural network. Assuming 
that Vx is the embedding set of all feature domains, the specific operation of the feature 
cross-pooling layer is shown in Eq. 3.11,

 f V x v x v
i

n

j i

n

i i j jBI x� � � � � � �
� � �
� �

1 1

  (3.11)

where  represents the element-wise product operation of two vectors, that is, the cor-
responding dimension of two vectors with the same length is multiplied to obtain an 
element-wise product vector. The element-wise product operation on the kth dimen-
sion is as follows,

 v vi j k ik jk� � ��� ��  (3.12)

After performing the element-wise product operation of the two embedding vectors, 
the crossed feature vectors are summed to obtain the output vector of the pooling 
layer. The vector is then input into the upper multilayer fully connected neural net-
work for further interaction.

The first-order structure has been omitted in the NFM architecture diagram shown 
in Figure 3.21. If the first-order part of NFM is viewed as a linear model, then 
the architecture of NFM is equivalent to the evolution of the Wide&Deep model. 
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Compared with the original Wide&Deep model, the NFM model adds a cross-pooling 
layer to its deep part, which strengthens the feature interaction. This is another aspect 
to understand with the NFM model.

3.7.4 Strengths and Limitations of FM-Based Deep Learning Models

This section introduces three deep learning models (FNN, DeepFM, NFM) that were 
developed on top of FM approach. They are all characterized by adding targeted fea-
ture crossover operations to classic multilayer neural networks, so that the model has 
stronger nonlinear expressivities.

Following the idea of feature engineering automation, the deep learning model has 
come all the way from PNN, through Wide&Deep, Deep and Cross, FNN, DeepFM, 

Figure 3.20 Improvement of NFM to the second-order term of FM.

Figure 3.21 The model structure (partial) of the NFM model.
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NFM and other models, and has made a lot of attempts based on different feature 
interaction ideas. However, the idea of feature engineering has almost exhausted all 
possible attempts, and the room for further improvement of the model is quite small, 
which is also one limitation of such type of model.

Since then, more and more deep learning recommendation models have started 
to explore some “structural” modifications. For example, attention  mechanism, 
sequence model, reinforcement learning, and other model structures that shine 
in  other fields have gradually entered the field of recommendation world. These 
attempts have achieved remarkable results in the improvement of the  recommendation 
model.

3.8 Application of Attention Mechanism in the Recommendation Model

The “attention mechanism” comes from the natural human habit of attention. The most 
typical example is that when users browse the web, they will selectively pay attention 
to specific areas of the page and ignore other areas. Figure 3.22 is the heat map of page 
attention from research by the Google Search team by conducting eye-tracking exper-
iments on a large number of users. It can be seen that the distribution of users’ atten-
tion to the areas of the page is very different. Based on this observation, it indicates 
that considering the attention mechanism on the prediction in the modeling process 
may result in some good benefits.

In recent years, the attention mechanisms have been widely used in various fields 
of deep learning studies, and attention models have achieved great success in the fields 
of natural language processing, speech recognition, or computer vision. Since 2017, 
the recommendation field has also begun to try to introduce the attention mechanism 
into the model, among which the most influential works are AFM [11], proposed by 
Zhejiang University, and DIN [12], proposed by Alibaba.

3.8.1 AFM: FM Model with Attention Mechanism

The AFM model can be considered as a continuation of the NFM model intro-
duced in Section 3.7. In the NFM model, the feature embedding vectors of differ-
ent domains are crossed by the feature cross-pooling layer, and the crossed feature 
vectors are “summed” and input to the output layer through a multilayer neural 
network. The crux of the problem lies in the operation of sum pooling, which is 
equivalent to treating all intersecting features “equally,” regardless of the degree of 
influence of different features on the result. In fact, this sum operation eliminates a 
lot of valuable information.

Here, the “attention mechanism” comes in handy. It is based on the assumption that 
different crossed features have different effects on the results. Take a more intuitive 
business scenario as an example to illustrate how users may pay different attention 
to different cross-features. If the application scenario is to predict the likelihood of a 
male user buying a keyboard, the cross-feature of “gender=male & purchase history 
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includes a mouse” is likely more important than the feature “gender=male & user 
age=30.” Thus, the model pays more “attention” to the preceding features. Because of 
this, it makes sense to combine the attention mechanism with the NFM model.

Specifically, the AFM model introduces an attention mechanism by adding an 
attention net between the feature intersection layer and the final output layer. The 
model structure of AFM is shown in Figure 3.23. The role of the attention network is 
to provide weights for each cross feature, that is, the attention score.

Figure 3.22 Google search engine page attention heatmap.
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Like NFM, the feature intersection process of AFM also uses the element-wise 
product operation, as shown next,

 f x xi j i j
i j

PI �� � � � �� �� ��
v v

x



, 
 (3.13)

The pooling process after AFM is added to the attention score is expressed as,

 f f a x x
i j

ij i j i jAtt PI �� �� � � � �
� ��
�

, x

v v  (3.14)

For the attention score aij, the easiest presentation method is to use a weight param-
eter. But in order to prevent the weight parameter from convergence issues due to 
the sparse problem of crossed feature, the AFM model uses a pairwise feature inter-
action and the attention network between the pooling layer to generate the attention 
score.

The structure of the attention network is a simple structure of a single fully connected 
layer plus a softmax output layer, and its mathematical form can be expressed as,
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i j i j
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 (3.15)

The model parameters to be learned are the weight matrix W from the feature inter-
section layer to the fully connected layer of the attention network, the bias vector b,  
and the weight vector h from the fully connected layer to the softmax output layer. 
Together with the other components in the model, the attention network is also trained 
through backpropagation to obtain the final weight parameters.

AFM is a positive attempt by researchers to improve the model structure. It has 
nothing to do with specific application scenarios. However, Alibaba’s introduction 
of the attention mechanism into its deep learning recommendation model is a model 
improvement based on business observation. Next we will introduce Alibaba’s well-
known recommendation model in the industry: the DIN model.

Figure 3.23 The structure diagram of the AFM model.
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3.8.2 DIN: Deep Learning Network with Attention Mechanism

Compared with many previous deep learning models with academic style, the DIN 
model proposed by Alibaba is obviously more business-centric. Its application sce-
nario is Alibaba’s e-commerce advertisement recommendation. When predicting the 
probability of a user u clicking on an advertisement a, the input features of the model 
are naturally divided into two parts. One part is the feature group of user u, as shown 
in Figure 3.24, and the other part is the feature group of candidate advertisement a,  
as shown in the advertisement feature group in Figure 3.24. Both users and adver-
tisements contain two very important features – product ID (good_id) and shop ID 
(shop_id). The product ID in the user feature is a sequence, representing the set of 
products that the user has clicked on, and the same is true for the store ID. The prod-
uct ID and store ID in the advertisement feature set are the IDs corresponding to the 
advertisement (the advertisement on the Alibaba platform). Most of them are products 
that participate in some promotional program).

In the original basic model (the base model in Figure 3.24), the product sequence 
and store sequence in the user feature group enter the upper neural network for further 
training after a simple average pooling operation. The product and store sequences 
have not distinguished the level of importance, and have no explicit relationship with 
the product ID in the advertisement features.

However, in fact, the degree of correlation between advertising features and user 
features is very strong, and the use case introduced in Section 3.7 can illustrate the 
strong correlations. Assuming that the product in the advertisement is a keyboard, 
there are several different product IDs in the user’s click history, for example, mouse, 
T-shirt, and facial cleanser. Based on common sense, the historical commodity ID 
of “mouse” should be more important for predicting the click-through rate of “key-
board” ads than the latter two. From the model’s point of view, the “attention” given 
to different features in the modeling process should be different, and the calculation 
of the “attention score” should be related to the advertising features.

It is also intuitive to reflect the aforementioned idea of “attention” into the model. 
A weight is calculated by using the correlation between candidate products and his-
torically interacted products. This weight represents the strength of “attention.” The 
DIN model adds the attention weight in the network structure, in which the attention 
part is formularized as,

 ,V V V V V Vu a� � � � � � � � �
� �
� �f w g
i

N

i i
i

N

i a i
1 1

 (3.16)

where Vu is the embedding vector of the user u, Va is the embedding vector of the 
candidate advertisement product, and Vi is the embedding vector of the ith action of 
the user u. Here, the user’s action is to browse the product or store, so the embedding 
vector of the action is the embedding vector of the browsed product or store.

Because the attention mechanism is added, Vu has changed from the simple sum of 
Vi in the past to the weighted sum of Vi and the weight wi  of Vi is determined by the 
relationship between Vi and Va, which is g i( , )V Va  in Eq. 3.16. This term is also known 
as the Attention Score.
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Then, what is the good representation for the g i a( , )V V  function? The answer is to 
use an attention activation unit to generate the attention score. This attention activa-
tion unit is essentially a small neural network, and its specific structure is shown in the 
activation unit at the upper right corner of Figure 3.24.

It can be seen that the input layer of the activation unit is two embedding vectors. 
After the element-wise minus operation, they are connected with the original embed-
ding vector to form the input of the fully connected layer. Finally, the attention score 
is generated through the single neuron output layer.

If you pay attention to the red line in Figure 3.24, you can find that the store ID 
from the advertisement feature only interacts with the store ID sequence in the user’s 
historical behavior, and the product ID of advertisement only works with the user’s 
product ID sequence, as the weight of attention should be determined more by the 
correlation of same category of information.

Compared with the FM-based AFM model, the DIN model is a more typical 
attempt to improve the deep learning network structure. Since the introduction of 
the DIN model starts from an actual business scenario, it also gives recommendation 
engineers more substantial inspiration.

3.8.3 Inspiration of Attention Mechanism to Recommender Systems

From the perspective of the mathematical formula, the attention mechanism just 
replaces the past average or sum operation with a weighted sum or weighted aver-
age operation. However, the inspiration of this mechanism for deep learning recom-
mender systems is significant, because the introduction of “attention score” reflects 
the innate “attention mechanism” characteristics of human beings. The simulation 
of this mechanism makes the recommender system’s logic closer to the user’s real 
thinking process, so as to achieve the purpose of improving the recommendation 
effect.

Starting from the “attention mechanism,” more and more improvements to the 
structure of deep learning models are based on deep observations of user behavior. 
Compared with academia, which pays more attention to theoretical innovation, rec-
ommendation engineers in the industry need to focus more on their understanding of 
the actual business problem while developing new recommendation models.

3.9 DIEN: Combination of Sequence Model and Recommender Systems

After Alibaba proposed the DIN model, it did not stop the evolution of its recom-
mendation model, and formally introduced an updated version of the DIN model, 
DIEN [13], in 2019. The application scenario of the DIEN model is exactly the 
same as that of DIN. So we will not repeat it in this section. The innovation lies 
in simulating the evolution process of user interest with the sequence model. The 
main ideas of DIEN and the design of the interest evolution part are introduced in 
detail next.
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3.9.1 Motivation of the DIEN Model

No matter whether it is e-commerce purchase history, video website viewing history, 
or news application reading history, the historical behavior of a specific user can be 
always considered as a time sequence. Since it is a time series problem, there must be 
some level of dependency on the chronological order among the history items. Such 
chronological information is undoubtedly valuable for the recommendation process. 
But do all the models introduced earlier in this chapter make use of this sequential 
information? The answer is negative. Even the AFM or DIN model that introduces 
the attention mechanism only scores the importance of different actions, which is 
time-independent and sequence-independent.

Why is sequential information valuable for recommendation? The behavior of a 
typical e-commerce user can illustrate this point. For a common e-commerce busi-
ness, the migration of user interests is actually very fast. For example, a user was 
picking a pair of basketball shoes last week. After he completes his purchase, his 
shopping interest this week may turn to buying a mechanical keyboard. The impor-
tance of sequence information lies in:

 (1) It reinforces the influence of recent behavior on the prediction of the next behav-
ior. In the previous example, the probability that the user has recently purchased a 
mechanical keyboard is significantly higher than the probability of buying another 
pair of basketball shoes.

 (2) Sequential models can learn information about buying trends. In this example, the 
sequence model can establish the transition probability from “basketball shoes” 
to “mechanical keyboard” to a certain extent. If this transition probability is high 
enough in a global statistical sense, recommending a mechanical keyboard will 
be a good option when users buy basketball shoes. Intuitively, the user groups of 
the two are likely to be the same.

If the sequence information is abandoned, the model’s ability to learn the time-based 
or trend-based information can be quite weak. The recommendation model without 
 considering sequential dimension just generates a prediction based on the user’s 
 overall  purchase history, rather than providing a ‘next purchase’ recommendation. 
Obviously, from a  business point of view, the sequence model is the correct objective 
of a  recommender system.

3.9.2 Network Structure of the DIEN Model

Based on the motivation of introducing “sequential” information, Alibaba has further 
developed the DIN model and eventually formed the structure of the DIEN model. As 
shown in Figure 3.25, the model is still composed of an input layer, an embedding 
layer, a connection layer, a multilayer fully connected neural network, and the final 
output layer. The colored “interest evolution network” in the figure is considered to 
be an embedding representation of user interest, and its final output is the user interest 
vector ′h T( ). The innovation of the DIEN model is how to build an interest evolution 
network in a recommendation model.
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The interest evolution network is divided into three layers from bottom to top:

 (1) Behavior Layer (color green): converts the original behavior sequence into an 
embedding behavior sequence;

 (2) Interest Extraction Layer (color beige): its main function is to extract user inter-
ests by simulating the process of user interest migration;

 (3) Interest Evolving Layer (light red): this layer simulates the interest evolution pro-
cess related to the current target advertisement by adding an attention mechanism 
based on the interest extraction layer.

In the interest evolution network, the structure of the behavior sequence layer is con-
sistent with the typical embedding layer. The key to simulating the evolution of user 
interests lies mainly in the interest extraction layer and interest evolution layer.

3.9.3 Interest Extraction Layer

The basic structure of the interest extraction layer is a Gated Recurrent Unit (GRU) 
network. Compared with the traditional sequence model RNN (recurrent neural 
network), GRU solves the vanishing gradients problem commonly seen in RNN. 
Compared with LSTM (long short-term memory network), GRU has fewer parame-
ters and faster training convergence speed. All of the aforementioned reasons result in 
the final adoption of the GRU network in the DIEN model.

The specific form of each GRU unit is defined as:
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 (3.17)

where σ  is the sigmoid activation function,  is the element-wise product operation, 
W W W U U Uu r h z r h, , , , ,  are six sets of parameter matrices to be learned. it is the 
input state vector, that is the embedding vector e t( ) of each behavior in the behavior 
sequence layer. ht  is the tth hidden state vector in the GRU network

Following the interest extraction layer with multiple GRUs, the user’s behavior 
vector b( )t  is further abstracted to form the interest state vector h( )t . In theory, 
based on the sequence of interest state vectors, the GRU network can already pre-
dict the next interest state vector, but why does DIEN further add the interest evo-
lution layer?

3.9.4 Structure of Interest Evolution Layer

The biggest distinction between the interest evolution layer and the interest 
extraction layer is the addition of an attention mechanism. This mechanism is in 
the same vein as DIN. It can be seen from the connection of the attention units in 
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Figure  3.25. The generation process of the attention score of the interest evolu-
tion layer is exactly the same as that of DIN, which is the result of the interaction 
between the current state vector and the target advertisement vector. That is to say, 
DIEN needs to consider the relevance of targeted advertisements in the process of 
simulating interest evolution.

This also answers the question at the end of Section 3.9.3. The interest evolution 
layer is added on top of the interest extraction layer in order to simulate the interest 
evolution path related to the target advertisement in a more targeted manner. Due to the 
characteristics of e-commerce such as Alibaba, users are very likely to purchase mul-
tiple categories of goods at the same time. For example, while purchasing a “mechan-
ical keyboard,” they are still viewing the goods under the “clothing” category. As a 
result, the attention mechanism is particularly important under such condition. When 
the target advertisement is an electronic product, the interest evolution path related to 
the purchase of “mechanical keyboard” is obviously more important than the evolu-
tion path of purchasing “clothes.” Such distinction logic doesn’t exist in the interest 
extraction layer.

The interest evolution layer achieves application of the attention mechanism by 
adopting the GRU with Attentional Update gate (AUGRU) structure. AUGRU adds 
the attention score to the structure of the update gate of the original GRU. The specific 
form is shown in Eq. 3.18:
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Comparing with Eq. 3.17, it can be seen that AUGRU adds the attention score at on 
the basis of the original ut

′, where ut
′ is the original update gating vector and similar to 

ut in Eq. 3.17. The generation method of the attention score is basically the same as 
that of DIN, which uses the attention activation units.

3.9.5 Inspiration of the Sequence Model to Recommender Systems

This section introduces Alibaba’s recommendation model DIEN that incorpo-
rates sequence models. Because the sequence model has a strong ability to express 
time series, it is very suitable for predicting the user’s next action after a series of 
behaviors.

In fact, it is not only Alibaba that has successfully applied the sequence model to its 
e-commerce recommendation model, but video streaming companies such as YouTube 
and Netflix have also successfully applied the sequence model to their video recom-
mendation models to predict the user’s next streaming preferences (such as next watch).

However, it is necessary to pay attention to the high training cost of the model 
and the latency in online inferencing caused by serial prediction in a large sequence 
model. The complexity of sequence model undoubtedly increases the difficulty of 
its productization. So system optimization turns very important in the engineering 
implementation. Experiences with implementing a sequence model in production will 
be discussed in Chapter 8.
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3.10 Combination of Reinforcement Learning and  
Recommender Systems

Reinforcement learning is a very popular research topic in the field of machine 
learning in recent years. It is originated from the field of robotic studies, and aimed 
at modeling the decision-making and learning process of an agent in a changing 
environment. In the learning process of the agent, it will complete the collection of 
external feedback (Reward), change its own state (State), and then make decisions 
on the next action (Action) according to its current state, and continue to repeat 
the cycle. This process is usually referred to as the “action-feedback-state update” 
cycle.

The concept of agent is very similar to the robots, and the entire reinforcement 
learning process can be understood by analogizing the robots learning human actions. 
If the recommender system is viewed as an agent, with its learning and updating 
process equivalent to the agent’s cycle of “action-feedback-state update,” then apply-
ing reinforcement learning concepts to recommender systems becomes much more 
intuitive.

In 2018, the reinforcement learning model DRN [14] was firstly proposed by 
researchers from Penn State University and Microsoft Research Asia. This was an 
attempt to apply reinforcement learning knowledge to news recommendation.

3.10.1 Deep Reinforcement Learning Recommender Systems Framework

The deep reinforcement learning recommender systems framework is proposed based 
on the classic process of reinforcement learning. Readers can use the specific scenar-
ios of the recommender system to further familiarize themselves with the concepts of 
agent, environment, state, action, and feedback in reinforcement learning. As shown 
in Figure 3.26, the diagram clearly shows the various components of the deep rein-
forcement learning recommender systems framework and the iterative process of the 
entire reinforcement learning. The specific explanation of each element in the recom-
mender systems scenario is as follows:

• Agent: The recommender system itself, which includes a recommendation 
model based on deep learning, an exploration strategy, and related data storage 
(memory);

• Environment: The external environment of the entire recommender system con-
sisting of news websites or apps, and users. In the environment, the user receives 
the recommended results and makes corresponding feedback;

• Action: For a news recommender system, an action refers to the system pushing 
ranked news to the user;

• Feedback: After the user receives the recommendation result, the user will give 
positive or negative feedback. For example, click behavior is considered to be a 
typical positive feedback, while impression but nonclick is a negative feedback 

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005


913.10 Reinforcement Learning in Recommender Systems

signal. In addition, the user’s activity level and the interval between the app open-
ing are also considered as valuable feedback signals;

• State: State refers to the description of the environment and its current specific sit-
uation. In the news recommendation scenario, the state can be viewed as a feature 
vector representation of all actions and feedback received, as well as all relevant 
information about the user and news. From the perspective of traditional machine 
learning, “state” can be seen as the collection of all the data that has been received 
and can be used for training.

Under such a reinforcement learning framework, the learning process of the model 
can be iterated continuously. The iterative process mainly includes the following 
steps:

 (1) Initialize the recommender system, which is the agent in this case.
 (2) The recommender system ranks news (actions) based on the currently collected 

data (state) and pushes them to the website or app (environment).
 (3) The user receives the recommendation list and clicks or ignores (feedback) the 

recommendation result.
 (4) The recommender system receives feedback and updates the current state or 

updates the model through model training.
 (5) Repeat the tasks from Step 2.

Readers may have realized that reinforcement learning models have an advantage over 
traditional deep models in that they can perform online learning. In other words, the 
reinforcement learning models can constantly update themselves with newly learned 
knowledge, and make timely adjustments and feedback. This is one of the advantages 
of applying reinforcement learning to recommender systems.

Figure 3.26 Deep reinforcement learning recommender systems framework.
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3.10.2 Deep Reinforcement Learning Recommendation Models

The agent part is the core of the reinforcement learning framework. For the recom-
mendation agent, the model is the “brain” of the system. In the DRN framework, the 
role of the “brain” is the Deep Q-Network, DQN for short, where Q is the abbreviation 
of “Quality.” It means that by evaluating the quality of the action, the utility score of 
the action is calculated and used for decision-making.

The network structure of DQN is shown in Figure 3.27. The concepts of rein-
forcement learning – state vector and action vector – are applied in feature engineer-
ing. User features and context features are classified as state vectors, because they 
are action independent. User-news crossing features and news features are treated as 
action features since they are related to the action of recommending news.

User features and environmental features are fitted by the multilayer neural net-
work on the left to generate a value score V ( )s . The state vector and action vector are 
used to generate an advantage score A( , )s a . Finally, the score from both parts are 
combined to obtain the final quality score Q( , )s a .

3.10.3 Learning of the DRN Model

The learning process of DRN is the main focus of the entire reinforcement  learning 
recommender systems framework. It is the online learning process that gives 
the  reinforcement learning model more real-time advantages than other “static” 
deep learning models. Figure 3.28 vividly depicts the learning process of DRN in 
 chronological order.

Figure 3.27 The model structure of the DQN model.
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The important steps in the DRN learning process are illustrated in chronological 
order from left to right in Figure 3.28:

 (1) In the offline part, the DQN model is trained according to the historical data as the 
initialization model of the agent;

 (2) At the stage t t1 2→ , the initial model is used to power the recommendation in the 
push service for a period of time to accumulate feedback data;

 (3) At the time point t2, the user click data accumulated in the t t1 2→  stage is used to 
perform a minor update of the model;

 (4) At the time point t4, a major update of the model is performed using the user click 
data and user activity data in the t t1 4→  stage;

 (5) Repeat Steps 2–4.

The model main update operation in Step 4 can be understood as retraining using 
historical data to replace the existing model with the trained model. So how does the 
minor update in Step 3 work? This involves a new online training method used by 
DRN – Dueling Bandit Gradient Descent Algorithm.

3.10.4 Online Learning of the DRN Model: Dueling Bandit Gradient Descent 
Algorithm

The flow of DRN’s dueling bandit gradient descent algorithm is shown in Figure 3.29.
The main steps are as follows:

 (1) For the current network Q that has been trained, add a small random perturbation 
∆W  to its model parameter W to obtain a new model parameter W . Here the net-
work corresponding to W  is called the exploration network Q;

 (2) The recommendation lists L and L are generated respectively with current net-
work Q and the exploration network Q. Then, the two recommendation lists are 
combined into one recommendation list by interleaving (described in detail in 
Section 7.5) and pushed to the user.

 (3) Collect user feedback in real-time. If the feedback of the content generated by the 
exploration network Q is better than the current network Q, replace the current 
network with the exploration network and enter the next iteration, otherwise keep 
the current network

In the first step, the exploration network Q is generated from the current network Q,  
and the formula for generating random disturbance is shown in Eq. 3.19,

 �W W� �� �� � �rand 1 1,  (3.19)

where α  is the exploration factor, which determines the degree of the exploration. 
rand �� �1 1,  means a random number between �� �1 1, .

The online learning process of DRN utilizes the idea of “exploration,” and the 
granularity of the model updates can be refined to once per feedback. This process 
is very similar to the idea of stochastic gradient descent. Although the results of one 
sample may produce random disturbances, as long as the total decent trend is correct, 
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the optima can be finally reached through a large number of attempts. In this way, 
DRN keeps the model synchronized with the “freshest” data at all times, and inte-
grates the latest feedback information into the model in real-time.

3.10.5 Inspiration of Reinforcement Learning for Recommender Systems

The application of reinforcement learning in recommender systems once again opens 
the world of recommendation models from a different angle. The difference between 
this and the other deep learning models mentioned earlier is that it changes the learn-
ing process from static to dynamic, which brings the importance of model real-time 
learning to a prominent position.

It also brings us a question worth thinking about – should we build a heavy-weight, 
“perfect” model with a large update delay, or should we build a lightweight and sim-
ple model that can be trained in real-time? Of course, there are no assumptions or 
conjectures in engineering systems, we can only tell which approach is better through 
actual experiment results. Also, the relationship between “weight” and “real-time” is 
by no means antagonistic, but before finalizing a technical solution, plenty of evalua-
tion and experiments are necessary for this kind of real-world problem.

Figure 3.29 The online learning approach of the DRN model.
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3.11 Applications of BERT in a Recommendation Model

Bidirectional Encoder Representations from Transformers (BERT) is a  powerful 
natural language processing model that was introduced by Google in 2018 [15] and 
achieved state-of-the-art performance in multiple NLP tasks. Like the attention mech-
anism introduced in Section 3.8, the BERT model was also borrowed into the recom-
mendation world after its demonstrated success in the NLP field. Part of the application 
of the BERT model in recommender systems is still utilizing its ability to process and 
understand the natural languages and capture the semantic interpretations for the text 
data, which will not be covered in this section. In this section, we will mainly walk 
through two BERT-based recommendation models, the BERT for Recommendation 
(BERT4Rec) model [16] and User-News Matching BERT (UNBERT) model [17], 
which adopt the BERT model structure in the sequential recommendation scenarios.

Before introducing the BERT4Rec and UNBERT models, let us briefly review 
some foundations of the BERT – the Transformer model and self-attention 
mechanism.

Basics: The Transformer Model and Self-Attention Mechanism
The Transformer model is a revolutionary deep learning architecture that has had a 
significant impact on NLP tasks, and it builds a foundation for the development of 
many succeeding language models. Two well-known succeeding language models 
are the BERT model and the GPT model. The Transformer model was introduced 
in the famous paper titled “Attention is All You Need” by Vaswani et al. in 2017 
[16]. Compared to the traditional RNN (Recurrent Neural Networks) and LSTM 
(Long Short-Term Memory Networks), the Transformer model has demonstrated 
state-of-the-art performance in various NLP tasks as well as increasing model 
training efficiency by increasing the training parallelism.

Now, we will briefly introduce the structure of the Transformer model (as 
depicted in Figure 3.30).

The transformer model consists of an encoder component (left in Figure 3.30) 
and a decoder component (right side in Figure 3.30).

Both the encoder and decoder are composed of a stack of N identical layers. 
On the encoder side, each layer has two sub-layers, one a multihead self-attention 
mechanism layer and one position-wise fully connected feed-forward layer. The 
output of each sub-layer is followed by a layer normalization and connected with 
the residual connections. On the decoder side, in addition to the multihead atten-
tion layer and feed-forward sublayer, there is a third sublayer to connect the output 
of the encoder stack with a multihead attention module.

To better understand the encoder and decoder structures, we need to grasp sev-
eral key components and features first.

Self-Attention Mechanism: Unlike the attention mechanism introduced in 
Section 3.8, the self-attention mechanism is used to encode the sequence directly. 
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Figure 3.30 The Transformer model architecture [18].

It allows the Transformer model to weigh the importance of each token in the 
sequence with respect to all other tokens in the same sequence. The attention 
matrix (as shown in Figure 3.31(a)) is defined as

 Attention softQ K V
QK

d
V

T

k

, , max� � �
�

�
��

�

�
��  (3.20)

where matrices Q K, , and V  are corresponding to “Query,” “Key,” and “Value,” 
respectively. These matrices don’t have actual physical meanings in the 
Transformer model; rather, they are borrowed from information retrieval contexts 
to help understanding.

Multihead Attention: The Transformer model adopted a multihead atten-
tion mechanism in both the encoder and decoder. The multihead attention layer 
is depicted in Figure 3.31(b). Compared to a single-head attention structure, 
the multihead attention mechanism leverages different linear projects to learn 
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different relationships from training data. The multihead attention function can 
be described as:

 
Multihead Attention Concat

where

Q K V head head W

head

O, , , ,� � � �� �1 2

ii i i iAttention Q K V� � �, ,
 (3.21)

where Q Ki i, , and Vi are query, key, and value matrices for headi.
One benefit of the multihead attention mechanism is that each head atten-

tion matrices can be computed in parallel, which significantly improves training 
efficiency.

Positional Encoding: Unlike the traditional sequence models, the Transformer 
does not understand the positional order of different tokens in a sequence. In 
order to solve this problem, a positional encoding function is added to the input 
embeddings at the beginning of both encoder and decoder tasks. In the origi-
nal paper, authors used the sine and cosine functions of different frequencies as 
follows,
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 (3.22)

where pos is the position and i is the dimension. According to the authors, these 
positional encoding functions were chosen because they could allow the model to 
easily learn to attend by relative positions.

There are some other key components in the Transformer model structure, like 
layer normalization, masking, and so on. These contents won’t be discussed in 
detail; readers can refer to the original paper for more information.

Figure 3.31 (a) Scaled dot-production attention unit; (b) illustration of multihead attention 
layer [18].
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3.11.1 Relationship between BERT and Transformer

The BERT model is a specific implementation of the Transformer architecture, so it 
is actually one type Transformer model. But compared with the original Transformer 
model proposed in the “Attention is All You Need” paper [18], the BERT model has 
the following differences:

• Model Structure: Instead of using both encoder and decoder stacks, BERT just 
used a stack of encoders in the model structure.

• Training: The training steps of a BERT model in an NLP application usually 
involve two steps of training – pre-training and fine-tuning. BERT uses Masked 
Language Model (MLM) objectives and task-specific objectives in the fine-tuning 
task. In pre-training, the MLM objective enables the BERT model to fuse both 
left and right contexts. This is also where “bi-directional” is from, in the BERT 
model name.

• Model Usage: As the BERT model only includes encoder stacks, its direct output 
are vectors. As a result, the major applications of BERT model are embedding gen-
erations and classifications. However, the major use case for the Transformer model 
is sequence-to-sequence generation.

The following section mainly focuses on the BERT model’s applications and its 
derivatives in recommender systems.

3.11.2 BERT4Rec: BERT for Recommendation Model

After the success of the BERT model in the NLP fields, people started to wonder if the 
BERT model structure could be also applied to some other fields to handle some other 
sequential machine learning tasks. In 2019, the BERT4Rec model was introduced, 
and it successfully transferred the BERT model approaches to sequential recommen-
dations. Section 3.9 introduces a sequence recommendation model, DIEN, which uses 
an RNN to represent the user’s historical behaviors and demonstrates the benefits of 
a sequential model in the next-item predictions. In contrast to the conventional RNN-
based sequential model (as shown in Figure 3.32), the benefits of the BERT4Rec 
model structure mainly include:

 (1) It can gather the learning from both previous and future items during the 
training.

 (2) The multihead attention structure can make overall learning more efficient.

As with many other sequential models, the BERT4Rec model also targeted solving 
the next-item prediction problem, which can be described as predicting the interac-
tion probability of each item in the candidate pool given the interaction history Su  
for user u, The BERT4Rec model architecture is depicted in Figure 3.32(b). It con-
sists of multiple stacks of transformer layer. The details in the Transformer units 
are illustrated in Figure 3.32(a). As with its predecessor, the BERT4Rec model 
only used the encoder in the Transformer units. For the output layer, a two-layer 
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feed-forward network with GELU activation to generate the probability distribu-
tion of all the candidate items,

 P v t
L p p T O� � � � �soft GELUmax( ( )h W b E b  (3.23)

where W p is the learnable projection matrix, bp and bO are the bias terms, and 
E d� �



V  is the embedding matrix for the item set V .
In the model training, BERT4Rec model adopted the same objective as the original 

BERT model, Masked Language Model objective, in the sequence recommendation 
to avoid information leaking. The items in the user behavior sequence were randomly 
masked as shown in Figure 3.33, and the correspondingly generated hidden vectors 
are passed into the output layer to generate the softmax matrix for training.

The negative log-likelihood of the masked targets is defined as the loss function for 
each masked input,

  � � �� �
�
�1

S
P v v S

u
m

v S
m m u

m u
m

log |* �  (3.24)

where Su
′  is the masked version for user behavior history Su, Su

m is the random masked 
items in the user behavior history, and vm

*  is the true item for the masked item vm.
For model inference, the special token “[mask]” is appended to the user interaction 

history, and then the entire input sequence is fed into the model to generate the pre-
dicted probabilities that the user interacts with each item. The item with the maximum 
probability will be the next recommended item. To make the BERT4Rec model out-
put cover the target sequential recommendation task (that is, predicting the next item 
after a sequence of interacted items), the authors also added training samples that only 
mask the last item in training data.

3.11.3 UNBERT: A BERT-Based Model Combining Sequential 
Recommendation and NLP

The BERT4Rec model only borrows the model structure from BERT and transfers it 
to a sequential recommendation model. It does not have the advantage of the original 
BERT model’s natural language understanding capabilities. This section introduces 
the UNBERT model (User-News Matching BERT model), which combines both lan-
guage understanding and sequential recommendations in the same piece.

The application scenario of UNBERT mode is given a user u with a sequence of 
clicked news [ , , , ]n n nu u

n
u

u
1 2 …  and a set of candidate news V v v vu Vu

� �{ , , , }1 2 . The 
objective of this model is to predict the click probability on the i-th candidate news vi 
by user u. The probability score can be denoted by ˆ ( , )y f u vi= .

Figure 3.33 Randomly masked interaction sequence and training data generation.
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The model structure is depicted in Figure 3.34. The UNBERT model is mainly 
composed of two key modules – word-level module and news-level module, each of 
which can be considered a separate “BERT module.” Each module consists of mul-
tiple layers of Transformer stack, including a multihead self-attention sublayer and a 
position-wise feed-forward layer.

Input Sequence and Embedding Layer
The input sequence construction and embedding layers are illustrated in Figure 3.35. 
It includes “News Sentence” and “User Sentence,” where the News Sentence is sim-
ply the text description of the candidate news item, and the User Sentence is the 
concatenation of the news sequence that the user clicked in the history. The historical 
news items are separated by a special segment token (NSEP). Each clicked news 
is also represented by some text-based descriptions. The News Sentence and User 
Sentence are separated by another special token (SEP). Additionally, a classification 
token (CLS) is added at the beginning of concatenated sequence to help generate the 
classification embedding ew as shown in Figure 3.34.

There are four layers of embeddings generated for each token – token embed-
ding, segment embedding, position embedding, and news segment embedding. The 
token, segment, and position embeddings are trained using masked LM, and segment 
embedding is randomly initialized and further updated in the fine-tuning task. The 
final input token representation Et  is constructed by summing all four embeddings.

Word-Level Module
The word-level module (WLM) mainly applies the Transform Layers to the con-
catenated input sequence and generates hidden representations for the input tokens. 
The conventional encoder structure is adopted in the Transformer unit, including the 

Figure 3.34 The overall architecture of the UNBERT model [17].
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multihead self-attention layer, the position-wise feed-forward layer, plus the residual 
connections and layer normalization between the two layers.

News-Level Module
The news-level module (NLM) aggregates the word’s hidden representations of each 
news from the world-level module and feeds the aggregated vectors to multiple trans-
former layers to generate the final news representations and matching signal at the 
news level.

Three different aggregations were studied:

 (1) The NSEP Aggregator directly used the generated embeddings of special tokens 
(NSEP) from the WLM output.

 (2) The Mean Aggregator averages the word embeddings for each news segment.
 (3) Attention Aggregators apply a lightweight attention network. The attention net-

work applied a fully connected neural network with a tanh activation function. 
Then it connects with another fully connected neural network to generate the 
combination weights f . The weights then are applied in the linear combination of 
word embeddings as in Eq. 3.25,

 n f w fij
i S

i i
i Sj j

�
� �
� �  (3.25)

where the wi  is the word embeddings from WLM for i-th word and S j is the j-th news 
representation.

Click Predictor
The click predictor module takes the word-level matching signal ew from WLM and 
news-level matching signal en from NLM to generate the user click probability of 
each item. The prediction function is as follows,

 y e e W bw n
c c� � � �� �softmax ;  (3.26)

In the UNBERT training, the pre-trained bert-base-uncased model weight is used directly 
to initialize the word-level module. Then, the entire model was fine-tuned using the MIND 
datasets – a real-world news recommendation dataset collected from MSN News logs.

Figure 3.35 UNBERT input sequence construction and embedding layer structures.
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Since the UNBERT model has used a pre-trained BERT model as the foundation 
model, so it can capture some generalized knowledge outside the fine-tuning data-
set. As a result, the UNBERT model has proved excellent performance on cold-start 
items. This strength is very beneficial for News recommender systems as there are 
tons of new news generated every day. Considering the importance of news freshness 
to the user, it is very important that the model can pick up new news items from the 
candidate pools and recommend to the relevant user in a timely way.

3.11.4 Inspiration of BERT Applications in Recommender Systems

The BERT model’s application in recommender systems provides another efficient 
way of handling sequential input data in both text form and user behavior sequence 
form. The multihead self-attention mechanism lets the model capture the contexts from 
long-ranged surrounding items. Besides, it can provide the hidden representations of 
text-based features, which inherent the original use case of BERT model in NLP tasks.

3.12 LLM: The New Revolution in AI and Its Application in Recommender 
Systems

Since the introduction of ChatGPT by OpenAI in 2022, it has had a profound impact 
on the AI field. An example conversation with ChatGPT is shown in Figure 3.36. At 
the beginning of the conversation, the user provides an input text or instruction to ini-
tiate the request for information or assistance. This input text is usually referred to as a 
“prompt” in the ChatGPT context. ChatGPT will generate the response corresponding 
to the prompt provided by the user. As we can see in this example, ChatGPT presents 
astonishing capabilities of reasoning and understanding, as well as the ability to gen-
erate more human-like dialogs based on given contexts and questions.

The success of ChatGPT pushes Large Language Models (LLM) to the front of 
stage and attracts tremendous interest. The LLM is not just limited to the models that 
support ChatGPT; it is rather a general term to represent a bunch of different language 
models with large parameter size and based on some neural network structures (for 
example, the Transformer structure as introduced in Section 3.1). It is usually pre-
trained with massive text corpuses from the public sources such as articles, Wikipedia, 
books, and some other Q&A-type conversational data. From the pretraining step, 
LLMs can learn numerous generalized knowledge from the public domain and trans-
fer the learnings to the downstream tasks. Sometimes, LLMs are also fine-tuned to let 
them pick the knowledge within specific domains to improve their performance on 
corresponding tasks. Thanks to LLMs’ powerful performance, it has opened up new 
possibilities of using them in many different domains outside NLP fields.

One of the extensions is adapting the LLM to recommender systems for model per-
formance and user experience improvements. In this section, we will follow a recently 
published literature survey [19] to explore “where” and “how” an LLM can be applied 
in recommender systems. The high-level scheme is illustrated in Figure 3.37.
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3.12.1 Where to Adapt LLM

In the survey, authors abstracted the following key components and elaborated on the 
applications of LLM in each of these key areas:

• Feature engineering
• Feature encoder

Figure 3.36 An example of a conversation with ChatGPT.

Figure 3.37 The decomposition of “where” and “how” to adapt the LLM in the recommender 
systems.
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• Scoring/ranking function
• Pipeline Controller

3.12.1.1 LLM in Feature Engineering
In the feature engineering application, LLM mainly generates the auxiliary textual 
features based on original input data (for example, user profiles, item descriptions, 
and so on) to augment the input features. During the feature generation, the strength 
of LLM in reasoning, understanding, and summarization can be leveraged to make 
the generated text-based features more accurate and concise than the original output.

One example of a feature engineering application is the MINT framework intro-
duced in [20]. MINT is an approach that targets the narrative-driven recommenda-
tion (NDR), where the user gives a verbose query including contextual information 
and requests, and the recommender system recommends the item based on the user’s 
query and interacted item history. One challenge of NDR model training is that it 
always lacks training data. MINT is designed to mainly generate synthetic training 
data pairs utilizing InstructGPT for final retrieval model training. The synthetic data 
generation and model training are depicted in Figure 3.38.

In the MINT approach, authors used InstructGPT model to generate the narrative 
queries. The prompt examples are shown in Figure 3.39. The few-shot strategy was 
adopted in the query generation task with a few examples are provided in the prompt. It 
is expected that InstructGPT will follow the examples provided in the prompt, capture 
the relationship between different parts of the example, and then finally generate the syn-
thetic queries to complete the target task. User’s historical interacted items, past review 
and actual user narrative query are provided in each few-shot example. The intention is 
to let LLM capture the interests and preferences from past activities and then artificially 
generate the corresponding queries, mimicking what a user may ask in a query.

The synthetic queries are then collected and paired with all the interacted items. 
Since the synthetic queries may only capture part of the interests, not all the items 
are relevant to the synthetic queries. So the authors used a filter model to filter 
low-relevance pairs. Finally, these synthetically generated data pairs are then used as 
the training samples for a retrieval model based on a bi-encoder structure.

This work provides an example of how LLM is being used to generate the synthetic 
data or input features to help with the model training. Through this approach, the general 

Figure 3.38 The illustration of the MINT approach to generate the narrative queries for set 
items liked by a user with an LLM. The generated queries will be paired with the item to form 
a training sample for an LM-based retrieval model.
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knowledge and reasoning abilities from the LLM can be carried over to text generation 
tasks, which can provide additional latent signals into the text input features.

3.12.1.2 LLM as Feature Encoder
In this application, LLM is used as a feature encoder to encode the textual features and 
use the encoded representations in the recommendation model. The benefits of using 
a LLM as a feature encoder are:

 (1) Enriching the user or item representations with more semantic meanings.
 (2) Transferring generalized knowledge from a pretrained LLM foundation model 

for cross-domain or cold start recommendations.

The UNBERT model introduced in Section 3.11.2 falls within this bucket. In the 
UNBERT model, a pre-trained BERT is adopted in the Word Level Module to encode 
the concatenated texts for target news and user-interacted news. Readers can refer to 
Section 3.11.2 for more details.

3.12.1.3 LLM as Scoring/Ranking Function
In this application, LLM is used to directly generate (1) the rating for the candidate 
item, (2) the recommendation list of the items, and (3) both rating and recommenda-
tion lists with a multitask setup.

In this section, we will briefly introduce one work by the Google team [21] and 
present an example of using LLM to finish the scoring task. In this work [21], authors 
explored the LLM’s ability to generate ratings with zero-shot, few-shot, and fine-
tuned settings. The task is to predict users’ ratings based on their viewing history.

The prompt design for zero-shot and few-shot are presented in Figure 3.40 (a) and 
(b), respectively. In the zero-shot prompt, the user’s interaction history is just listed 
down with the user rating, whereas a few rating prediction examples are included in 

Figure 3.39 Prompts used in InstructGPT to generate narrative queries.
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the prompt in the few-shot setting. Throughout the experiment, the authors found LLM 
can be very sensitive to the provided prompt and doesn’t always follow instructions.

Then, the authors adopted fine-tuning and fine-tuned several models in the Flan-T5 
model families. In both decoder-only (Figure 3.40(c)) and encoder-decoder models 
(Figure 3.40(d)), a projection layer is added to generate the output for either the clas-
sification task or the regression task. Then, the model is fine-tuned with training sam-
ples to better fit the prediction task.

Through the experiments, the authors concluded that zero-shot and few-shot LLM 
approaches have lower performance than the fully supervised methods. Fine-tuned 
LLMs can help close the gap and bring benefits in (1) higher training data efficiency 
(that is, smaller training data size is needed), (2) much easier feature processing and 
modeling, and (3) new capabilities expansion with conversational recommendations.

3.12.1.4 LLM as Pipeline Controller
It has been proven that LLM doesn’t only understand textual information, but also 
presents strong capabilities for in-context learning and logical reasoning. As a result, 
it could also play a role as a controller to decide where logic flow should go in the 
entire recommendation pipeline.

In a recent work [22], the CHAT-REC system was introduced to bridge the rec-
ommender systems and LLMs. This system consists of several key components: the 
prompt constructor, the LLM (ChatGPT), and the conventional recommender system. 
The workflow of the CHAT-REC is depicted in Figure 3.41. We will use a pseudo 
example to illustrate how the system works:

 (1) The user sent a query, “Could you recommend some action movies to me?”
 (2) The prompt constructor collects different contexts to generate the prompt. The 

contexts’ sources include user raw query, recommender system interfaces, user 
profile, user-item history, and dialog history.

 (3) The generated prompt is then fed into the LLM (ChatGPT) module to generate 
the output. In the output, ChatGPT will decide if the conventional recommender 
system will be called.

 (4) In the first pass, the LLM decides to call the recommender system to generate 
the candidate set. Then the recommender system will generate the candidate sets 
and send them back to the prompt constructor.

 (5) The prompt constructor then generates the new prompt with the recommended 
candidate set, and sends it to the LLM module.

 (6) The LLM decides that no recommendation call is needed, and then conducts the 
reranking to pick the top five candidates to return to the user.

 (7) If he user asks for an explanation, the user query and other contexts will repeat the 
process from Step (1). The LLM module can determine that no recommendation 
call is needed and generate the responses to the user directly.

From this example workflow, we can see that the LLM model is being used as an 
orchestrator in the entire system by leveraging its excellent ability of reasoning and 
understanding and drives the interaction between the user and recommender systems.
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3.12.2 How to Adapt LLM

In this survey paper [19], the authors divided the usage of LLM in recommender sys-
tems into four quadrants, as shown in Figure 3.42. The four quadrants were:

 (1) Tuned LLM
 (2) Not tuned LLM
 (3) Infer with conventional recommendation model (CRM)
 (4) Not infer with conventional recommendation model (CRM)

In Figure 3.42, we can see the overall research development trajectory starts from 
tuned-LLM + infer with CRM and firstly moves toward the not-tuned LLM + infer 
w/o CRM quadrant. In this trajectory, the model size is significantly increased. As 
there is no model training in this quadrant, it is very fast for the model development, 
but the performance is sacrificed as a trade-off consequence. Then, the researchers 
start to diverge in both directions to two other quadrants – not tuned LLM + CRM and 
tuned LLM + w/o CRM. The main motivations are to achieve better model perfor-
mance as well as reduce the model size for faster training and inferencing.

As we have introduced one model in each quadrant in the previous section to show 
the adaptations of LLM with recommender systems, we will not expand to cover the 
other models here. Interested readers can follow the references from this survey paper 
[19] to continue exploring this new tide of revolution.

Figure 3.42 Four quadrant classification about how to adapt LLM to recommender systems. 
Circle size denotes the model size and the colors indicate the best benchmarking model that 
each model can beat. The light-colored arrows show the overall development trajectory.
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3.12.3 Inspiration and Challenges of LLM Adaptation in Recommender Systems

The recent developments of LLMs have not only attracted the world’s attention to 
the AI field, but also opened a new “gate” for recommender systems. The LLMs’ 
astonishing understanding and reasoning abilities give us a new angle on building 
recommender systems, and also add a new powerful tool to our toolbox. However, we 
also need to acknowledge the challenges that we are facing in the LLM world.

At the end of the survey [19], the authors summarized the challenges from three 
aspects: (1) efficiency, (2) effectiveness, and (3) ethics:

 (1) Efficiency: This includes both training and inference latency. As the model 
becomes bigger, it requires more training data to train the model effectively. Both 
the larger model size and larger training data can significantly increase the training 
efficiency. Also, the increased model parameter amount makes it challenging to 
finish the inferencing task under the limited time constraints in the online service.

 (2) Effectiveness: Even though many researchers have demonstrated the powerful-
ness of the LLMs, still the LLM can have its own shortcomings and limitations. 
Two examples are limited context window size and ID feature understanding. 
From past studies, we can see LLMs show a reduction of understanding ability 
when the input texts are too long in the prompt. For the other limitation, since the 
ID features are not semantically meaningful, so it will be quite hard for the LLMs 
to understand and differentiate the IDs in the model input.

 (3) Ethics: This is a quite common topic in recommender systems. The practitioners 
in the recommendation field have been studying many approaches for removing 
bias from recommender systems. It has also been found that LLMs can present 
certain biases originating from the pre-training corpus and could potentially gen-
erate harmful or offensive content.

Luckily, numerous researchers and engineers have been working on each aspect of 
these challenges and to create solutions to solve them. The reader can refer to the 
references in the survey to get more details about those solutions, to inspire research 
and actual implementations.

3.13 Summary: The Deep Learning Era of Recommender Systems

This section describes the relevant knowledge of state-of-the-art deep learning rec-
ommendation models, echoing the evolution diagram of deep learning models at the 
beginning of the chapter. In this section, we will summarize the key knowledge of 
deep learning recommendation models (as shown in Table 3.2).

With so many deep learning recommendation model options, the premise for read-
ers not to get lost is to be familiar with the relationship between each model and its 
applicable scenarios. It needs to be clear that in the era of deep learning, no specific 
model can be competent for all business scenarios, and it can be seen from Table 3.2 
that the characteristics of each model are different.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005


1133.13 Summary: Deep Learning Recommender Systems

Table 3.2 Key points of deep learning recommendation models

Model Name Mechanisms Characteristics Limitations

AutoRec Based on the auto-encoder, 
encode users or items, and 
use the generalization ability 
of the auto-encoder to make 
recommendations

The single hidden layer 
neural network has 
a simple structure, 
enabling fast training and 
deployment

Limited expressivity

Deep 
Crossing

Utilizing the classic deep learning 
framework of “Embedding layer + 
multihidden layer + output layer,” 
automatically finish the deep 
crossover of the features

Classic deep learning 
recommendation model 
framework

Use fully connected 
hidden layers for 
feature crossing, 
lacks specificity

NeuralCF Replace the dot product operation 
of the user vector and the item 
vector in the traditional matrix 
factorization with the interoperation 
of the neural network

Expressive enhanced 
version of matrix 
factorization model

Only the ID features of 
users and items are 
used, and no other 
features are added

PNN For cross operations between 
different feature domains, define 
multiple product operations such 
as “inner product” and “outer 
product”

Improving the feature 
crossover on the top of 
classic deep learning 
framework

The “outer product” 
operation is 
approximated, 
which affects its 
expressivity to a 
certain extent.

Wide&Deep Use the wide part to strengthen 
the “memorization” of the 
model, and use the deep part to 
strengthen the “generalization” of 
the model

Pioneered the construction 
method of the ensembled 
model, which has a 
significant impact on the 
subsequent development 
of the deep learning 
recommendation model

The wide part requires 
manual feature cross 
selection

Deep and 
Cross

Replacing the wide part in the 
Wide&Deep model with a cross 
network

Solved the problem of 
manual feature interaction 
in the Wide&Deep model

The complexity of the 
feature cross network 
is high

FNN Use the parameters of FM to 
initialize the parameters of the 
embedding layer of the deep 
neural network

Use FM to initialize the 
parameters to speed up 
the convergence of the 
entire network

The main structure 
of the model is 
relatively simple, and 
there is no objective-
oriented feature 
crossover layer

DeepFM On the basis of Wide&Deep model, 
replace the original linear wide 
part with FM

Enhanced the feature 
interactions of the  
wide part

No significant structural 
difference with the 
classic Wide&Deep 
model

NFM Replace the operation of second-
order hidden vector crossover in 
FM with a neural network

Compared with FM, NFM 
has stronger expressivity 
and feature intersection 
ability

Very similar to the 
structure of the PNN 
model

(continued)
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Table 3.2 (cont.)

Model Name Mechanisms Characteristics Limitations

AFM On the basis of FM, an attention 
score is added to each crossed 
result after the second-order 
hidden vector cross, and the 
attention score is learned through 
the attention network

Different crossed features 
have different importance

The training process of 
the attention network 
is complicated

DIN Based on the traditional deep 
learning recommendation model, 
an attention mechanism is 
introduced. The attention score is 
calculated by using the correlation 
between user behavior history 
items and target advertising items

Make more targeted 
recommendations given 
different advertising items

Not take advantage of 
the other features 
other than “historical 
behavior”

DIEN Combine the sequence model with 
the deep learning recommendation 
model, and use the sequence 
model to simulate the evolution 
process of users’ interests

The sequence model 
enhances the system’s 
ability to express the 
changes of user interests, 
so that the recommender 
system begins to consider 
the valuable information 
in the time-related 
behavior sequences

The training of the 
sequence model is 
complicated, and 
the latency of the 
online inferencing 
is relatively large. It 
requires engineering 
optimization in 
production.

DRN Apply the idea of reinforcement 
learning to the recommender 
system, and conduct online real-
time learning and updating of the 
recommendation model

The ability of the model to 
utilize the real-time data 
is greatly enhanced

The online inferencing 
is more complicated, 
and the engineering 
implementation is 
more difficult

BERT4Rec 
and 
UNBERT

The applications of BERT model 
in recommender systems provide 
an efficient way to handle the 
sequential input data in both  
text form and user behavior 
sequence form

The multihead self-attention 
mechanism lets the model 
capture the contexts from 
long-ranged surrounding 
items. Besides, it can 
provide the hidden 
representations of text-
based features, which 
inherent the original use 
case of BERT model in 
NLP tasks

The model complexity 
and online serving 
resources is much 
higher than other 
recommendation 
model

LLM Rebuild recommender system  
with LLM

The LLMs’ astonishing 
understanding and 
reasoning abilities give us 
a new angle to build the 
recommender system, and 
also add a new powerful 
tool to our toolbox

It’s a totally new 
domain to 
combine LLM 
with recommender 
system. There are 
still lots of new 
challenges that we 
are facing in the 
LLM world

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005


115References

For this reason, this chapter does not list any model performance benchmarking, 
because it is impossible to form authoritative test results with different datasets, dif-
ferent application scenarios, different evaluation methods and evaluation indicators. 
In the actual application process, it is also necessary for the engineers to select the 
most suitable deep learning recommendation model after sufficient parameter tuning 
and comparison based on their own business data.

The deep learning recommendation model has never stopped its development. 
From Alibaba’s multimodal and multiobjective deep learning model, to YouTube’s 
session-based recommendation model, to the LLM revolution, the deep learning rec-
ommendation model not only evolves faster and faster, but also has been applied 
to wider application scenarios. The following chapters introduce the application of 
deep learning models in recommender systems from different perspectives. We also 
hope that readers will continue their exploration into the latest development of deep 
learning recommendation models based on the knowledge introduced in this chapter.
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