
3 Top of the Tide
Application of Deep Learning in Recommender
Systems

With the introduction of Microsoft’s Deep Crossing, Google’s Wide&Deep, and a
large number of excellent deep learning recommendation models such as Factorization-
machine-supported Neural Network (FNN) and Product-based Neural Network
(PNN) in 2016, the field of recommender systems and computational advertising has
fully entered the era of deep learning. Today, deep learning models have become a
 well-deserved mainstream in the field of recommender systems and computational adver-
tising. In Chapter 2, we discuss the structural characteristics and evolution of traditional
 recommendation models. After entering the era of deep learning, the recommendation
model has made significant progress mainly in the following two aspects:

 (1) Compared with traditional machine learning models, deep learning models have
stronger expressivity and can mine more hidden patterns in data.

 (2) The model structure of deep learning is very flexible. The model structure can
be adjusted according to business use cases and data characteristics, so that the
model fits perfectly with the application scenario.

From a technical point of view, the deep learning recommendation model learns from
many deep learning techniques in computer vision, and in speech and natural lan-
guage processing, and has undergone rapid evolution in its model structure.

This chapter summarizes the deep learning recommendation models with great
influence in the recommendation field, constructs the evolution map between them,
and introduces the technical characteristics of each model. The criteria for selecting a
model should follow the following three principles:

 (1) Models have great influence in industry and academia.
 (2) The model has been successfully applied by well-known IT companies such as

Google, Alibaba, and Microsoft.
 (3) It plays an important role in the development of deep learning recommender systems.

Now, we will enter the “top of the tide” of recommender systems technology and
explore how deep learning is transforming its application.

3.1 Evolution Graph of Deep Learning Recommendation Models

Figure 3.1 shows the evolution graph of the state-of-art deep learning recommen-
dation models. Taking the Multi-Layer Perceptron (MLP) as the core, by changing

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

493.1 Deep Learning Model Evolution

the structure of the neural network, a deep learning recommendation model with
different characteristics is constructed. The main evolution directions are as
follows:

 (1) Changing the complexity of the neural network. From the simplest single-layer
neural network model AutoRec (autoencoder recommendation) to the classic
deep neural network structure Deep Crossing (deep feature crossing), the main
evolutionary method is increasing the depth, that is, the number of layers and the
structural complexity of the neural network.

 (2) Changing the way features are crossed. The main change in this type of
model is to enrich the way features are crossed in deep learning networks. For
example, the NeuralCF (Neural Collaborative Filtering) changes the man-
ner of user vector and item vector interoperability, and the PNN (Product-
based Neural Network) model defines multiple types of feature vector cross
operations.

 (3) Ensemble models. This type of model mainly refers to the Wide&Deep model
and its subsequent variants, for example, Deep and Cross, DeepFM, and so
on. The idea is to improve the model’s comprehensive ability by combining

Figure 3.1 Evolution graph of mainstream deep learning recommendation models.

Add
Product
Layer

Use LR as Wide Part
and Combine with MLP

Deep Part

Add Attention to DNN

ResNet CTR Model

User FM Latent Vector to
Initialize Embedding

Combine with
Reinforcement

Learning

Deep Neural Network /
MultiLayer Perceptron

DCN
(Deep&Cross

Network)

Replace Deep Part with
Bi-interaction MLP

Wide&Deep

Add Attention Net
to Deep Part

NFM (Neural
Factorization
Machines)

AFM (Attention
Neural Factorization

Machines)
DeepFM

PNN (Product-
Based Neural

Network)

FNN (Factorization-Machine
Supported Neural Networks)

User Sequential Model to
Represent Interest Evolution

DIN (Deep Interest
Network)

Apply BERT to Recommendation Model

DIEN (Deep Interest
Evolution Network)

Deep Crossing

Replace Wide Part with
Cross Layer Network

 Replace Wide Part
with FM

Wide Part
Improvement

Deep Part
Improvement

FM

AutoRec

Rec Model Based on
AutoEncoder

NeuralCF (Neural
Collaborative Filtering)

Use NN to Replace
Dot Product in CF

DRN (Deep
Reinforcement Learning

Network)

BERT4Rec &
UNBERT

LLM (Large
Language Model)

Revolution

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

50 Deep Learning Applications in Recommender Systems

two deep learning networks with different characteristics and complementary
advantages.

 (4) Evolving the FM models based on deep learning framework. The traditional
recommendation model FM has many upgraded versions in the deep learn-
ing era, including NFM (Neural Factorization Machine), FNN (Factorization-
machine-supported Neural Network), AFM (Attention neural Factorization
Machine), and so on. These upgraded models improve FM in different direc-
tions. For example, NFM mainly uses neural networks to improve the capa-
bility of feature interaction on the second-order term. AFM is an FM model
that introduces an attention mechanism, and FNN uses the results of FM to
initialize the network.

 (5) Combining attention mechanism and recommendation models. This type of model
mainly applies the “attention mechanism” to the deep learning recommendation
model, mainly including AFM, which combines FM and attention mechanism,
and DIN (Deep Interest Network), which introduces the attention mechanism for
CTR prediction.

 (6) Combining sequence models and recommendation models. This type of model
is characterized by using a sequence model to simulate the evolving trend of
user behavior or user interest. The representative model is DIEN (Deep Interest
Evolution Network).

These summaries clearly show the rapid development and broad thinking of deep
learning models in recommendation applications. But each model is not a tree with-
out roots, and its appearance is traceable. As with the structure of Chapter 2, we will
explore together to learn the details of each model on the evolution graph as shown
in Figure 3.1.

3.2 AutoRec: A Single Hidden-Layer Neural Network
Recommendation Model

The AutoRec [1] model was proposed by the Australian National University in 2015.
It combines the idea of AutoEncoder with collaborative filtering, and proposes a sin-
gle hidden-layer neural network recommendation model. Because of its concise net-
work structure and easy-to-understand theory, AutoRec is very suitable for learning
as an entry model for deep learning recommender systems.

3.2.1 Theories of AutoRec

The AutoRec model is a standard autoencoder, and its basic theory is to use the
co-occurrence matrix in collaborative filtering to complete the autoencoding of item
vectors or user vectors. Then it uses the result of self-encoding to get the user’s esti-
mated rating of the item, and lastly performs recommendation ranking.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

513.2 AutoRec: A Single Layer Neural Network Model

Assuming that there are m users and n items, the user will rate one or several of the
n items, and the unrated items can be represented by the default value or the average
score. Then the ratings of all m users can form a scoring matrix with the dimension of
m n× , which is also known as a co-occurrence matrix in collaborative filtering.

For an item i, the ratings of all the m users can form an m-dimensional vector
r i

i mi
T

R R� � � �� �1 , , . As mentioned in Basics: Autoencoder, the problem that AutoRec
solves is to construct a reconstruction function h r;�� �, so that the sum of the squared
residuals between all the score vectors generated by the reconstruction function and
the original score vector is minimized (Eq. 3.1).

After obtaining the reconstruction function of the AutoRec model, the final recom-
mendation list can be obtained through the process of score estimation and ranking.
The following section will introduce two key points of the AutoRec model: the model
architecture of the reconstruction function, and the process of using the reconstruction
function to obtain the final recommendation list.

3.2.2 Network Structure of the AutoRec Model

AutoRec uses a single hidden-layer neural network to build a reconstruction function.
As shown in Figure 3.2, the input layer of the network is the item’s rating vector r,
and the output is a multiclassification layer. The blue neurons in Figure 3.2 represent
a k-dimensional hidden layer of the model, where k m� .

Basics: Autoencoder
As the name suggests, an autoencoder is a model that is capable of “self-encoding”
data. Whether it is image, audio, or text data, it can be converted into a vector for
expression. Assuming the featured data vector is r , the function of the autoencoder
is to take the vector r through a reconstruction function. It will keep the obtained
output vector as close to itself as possible after it is applied.

Assuming that the reconstruction function of the autoencoder is h r;�� �, then
the objective function of the autoencoder is

 min ;
�

�
r

r r
�
� � � �

S

h
2

2
 (3.1)

where S is the entire training dataset.
After completing the training of the autoencoder, it is equivalent to storing the

“essence” of all data vectors in the reconstruction function h r;�� �. In general, the
number of parameters in the reconstruction function is much smaller than the num-
ber of dimensions of the input vector, so the autoencoder is functionally equivalent
to data compression and dimensionality reduction.

Due to the “generalization” process, the output vector generated by the auto-
encoder will not be completely equivalent to the input vector, so it has a certain
prediction ability for the missing dimensions. This is also the reason why the auto-
encoder can be used for recommender systems.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

52 Deep Learning Applications in Recommender Systems

V and W in Figure 3.2 represent a parameter matrix from the input layer to the
hidden layer and the hidden layer to the output layer, respectively. The reconstruction
function is defined as follows,

 h f g br W Vr;� �� � � �� � �� �� (3.2)

where f ()⋅ and g()⋅ are the activation functions of the output layer and the hidden
layer, respectively.

In order to prevent overfitting of the reconstruction function, the L2 regularization
term is added. Then, the AutoRec objective function becomes,

 min ;

�
�

i

n
i i

F F
h

�

� � � �� � � � � � �� �
1

2 2 2

2
r r W V

O

�
 (3.3)

Since the AutoRec model is a standard three-layer neural network, the model can be
trained using a gradient backpropagation approach.

Basics: Neuron, Neural Network, and Backpropagation
In this section, the basic concepts related to deep learning are mentioned many
times, such as neurons, neural networks, and gradient backpropagation – the main
training method of neural networks. We will briefly walk through these concepts.

Neuron, also known as Perceptron, is the same as a logistic regression unit from
the model structure perspective. Here, we will use an example of a two-dimensional
input vector to elaborate it. Assuming that the input vector of the model is a
two-dimensional feature vector x x1 2,� �, the model structure of a single neuron is
depicted in Figure 3.3.

In Figure 3.3, the elements in the blue circle can be viewed as a linear weighted
summation, plus a constant bias b, and the final input can be expressed as follows

x w x w b1 1 2 2�� � � �� � �

Figure 3.2 Architecture of the AutoRec model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

533.2 AutoRec: A Single Layer Neural Network Model

The entire blue circle in Figure 3.3 is a representation of the activation function.
Its main role is to map an unbounded input variable to a normalized, bounded
range of values. In addition to the sigmoid function introduced in Section 2.4, the
other common activation functions are tanh, ReLU, and so on. Due to the limita-
tion of the simple structure, the single neuron has poor fitting ability. Therefore,
when solving complex problems, multiple neurons are often linked as a network,
so that it can have the ability to fit any complex function. Such a network is what
we often call a Neural Network. Figure 3.4 illustrates a simple neural network
consisting of an input layer, a two-neuron hidden layer, and a single-neuron out-
put layer.

In Figure 3.4, the neurons (blue circles) have the same structure as that of the
perceptron described here. The inputs to neurons h1 and h2 are the feature vector
(,)x x1 2 and the inputs to neuron o1 are h1 and h2. Here, we show the simplest form
of neural network. As the development of deep learning continues, researchers’
exploration of different connection methods of neurons leads to different genera-
tions of deep learning networks with different characteristics.

After introducing the structure of a basic neural network, the next important
question is how to train a neural network. We will start with two important con-
cepts in the neural network training – Forward Propagation and Backpropagation.

Figure 3.3 The model structure of a single neuron.

OutputInput

x1

x2

y
x

x
+

Figure 3.4 A simple neural network.

Input Layer Hidden Layer Output Layer

O1

h1

h2

x1

x2

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

54 Deep Learning Applications in Recommender Systems

The purpose of forward propagation is to obtain the predicted value of the model’s
input based on the current network parameters. This process is also often referred
to as the model inference. After getting the predicted value, you can use the defi-
nition of the loss function to calculate the loss of the model. For the output layer
neurons (o1 in Figure 3.4), the gradient descent method can be used directly to
calculate the gradient of the associated weights (that is, the weights w5 and w6 in
Figure 3.5), so as to update the weights. But for the hidden layer, how could we use
the gradient descent to update the parameters for the neurons in the hidden layer
(for example, w1 in Figure 3.5) based on the loss from the output layer?

It can be solved through the gradient backpropagation. The gradient backprop-
agation is used to derive model weights based on model loss utilizing the chain
rule. As shown in the following equation, the gradient of the final loss function to
the weight w1 is obtained by multiplying the partial derivative of the loss function
to the output of the neuron h1 and the partial derivative of the output of the neuron
h1 to the weight w1. That is, the final gradient is propagated back layer by layer,
leading to the update of the weight w1.

�

�
�
�

�
�
�
�

L

w

L

h

h

w
o o1 1

1 1

1

1

In the specific calculation, it is necessary to clarify the form of the final loss func-
tion and the form of the activation function of each layer of neurons, and then
calculate the partial derivative according to the specific function.

To summarize, a neuron is the basic structure in neural networks. The specific
implementation, mathematical expression, and training methods are consistent
with logistic regression models. A neural network is a network formed by connect-
ing multiple neurons in a certain way. The training method of a neural network is
gradient backpropagation based on the chain rule.

Input Layer

Height

Weight Gender

Hidden Layer Output Layer

O1

h1
w1

w2

w3

w4

w5

w6

b1

b2

b3

h2

Figure 3.5 A schematic diagram of neural network structure
and its weights.

3.2.3 Recommendation Process Based on the AutoRec Model

The recommendation process based on the AutoRec model is not complicated. Given
the rating vector of the input item i is r i� �, the output vector of the model h(;)r i� � � is

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

553.3 Deep Crossing Model Overview

the prediction of ratings for the item i by all users. Then, R̂ui represents the rating
prediction of user u for item i, as shown in Eq. 3.4.

 ˆ ˆ;R h i

u
ui � � �� �� �r � (3.4)

By traversing the input item vector, the rating predictions of all items from user u
can be obtained. Then the recommendation list can be generated based on the rating
predictions.

Like the collaborative filtering algorithm introduced in Section 2.2, AutoRec is also
divided into item-based AutoRec and user-based AutoRec. The input vector in the
formula introduced here is the rating vector of the item, so it can be called I-AutoRec
(Item-based AutoRec). If the user’s rating vector is used as the input vector, then we
will get U-AutoRec (User-based AutoRec). In the process of recommendation list
generation, the advantage of U-AutoRec over I-AutoRec is that it only needs to input
the user vector of the target user once, and then the user’s rating vector for all items
can be constructed. That is to say, only one model inference process is needed to
obtain the user’s recommendation list; the disadvantage is that the sparsity of the user
vector may affect the model’s effectiveness.

3.2.4 Strengths and Limitations of the AutoRec Model

The AutoRec model uses a single hidden layer autoencoder to generalize user or
item ratings, so that the model has a certain level of generalization and expressivity.
Because the structure of the AutoRec model is relatively simple, it has a certain prob-
lem of insufficient expressivity.

In terms of model structure, the AutoRec model is exactly the same as the later
word-to-vector model (Word2vec), but with different optimization targets and train-
ing methods. After learning Word2vec, interested readers can compare the similarities
and differences between these two models.

From the perspective of deep learning, the proposal of the AutoRec model opened
the prelude to the use of deep learning to solve the recommendation problem, and
provided ideas for the construction of complex deep learning networks.

3.3 Deep Crossing Model: A Classic Deep Learning Architecture

If the AutoRec model is an initial attempt to apply deep learning to the recommender
system, then the Deep Crossing model [2] proposed by Microsoft in 2016 is a complete
application of the deep learning architecture in the recommender system. Although
companies have claimed that they have applied deep learning models in their recom-
mender systems since 2014, it was not until the year when the Deep Crossing model
was released that there were official papers sharing the technical details of the complete
deep learning recommender system. Compared with some problems of poor expressiv-
ity caused by the simple network structure of the AutoRec model, the Deep Crossing
model completely solves a series of deep learning implementation issues from feature

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

56 Deep Learning Applications in Recommender Systems

engineering, sparse vector densification, and multilayer neural network optimization
target fitting. The solutions provided in this model have laid a good foundation for
much subsequent research.

3.3.1 Application Scenarios of the Deep Crossing Model

The application scenario of the Deep Crossing model is the search advertisement rec-
ommendations in the Microsoft search engine Bing. After a user enters a search term
in the search box, the search engine will not only return relevant results but also return
advertisements related to the search term, which is also the main profit source of most
search engines. Based on the business model, the most important module of an ads
system is to build a CTR model to accurately predict click-through rate and further lift
performance of ads recommendation. Therefore, CTR naturally become the optimiza-
tion objective of the Deep Crossing model.

The features used by Microsoft under this use case are shown in Table 3.1. These
features can be divided into three categories – the categorical features that can be pro-
cessed into one-hot or multi-hot vectors, including user search terms (that is, query),
ad keyword, ad title, landing page, match type; the numeric features, which Microsoft
calls counting features, including CTR and click prediction; the other one is the fea-
tures that need further processing, including advertising campaign, impression, click,
and so on. Strictly speaking, these are not independent features but rather a group
of features that need further processing. For example, the budget in the advertising
campaign can be used as a numerical feature, and the ID of the advertising plan can
be used as a categorical feature.

Categorical features can be processed into feature vectors through one-hot
or multi-hot encoding, and numerical features can be directly concatenated into

Table 3.1 Features in the Deep Crossing model

Feature Feature meaning

Search term The search term entered by the user in the search box
Ad keyword Keywords that the advertiser adds to the ad to describe their product
Ad title The titles of the ads
Landing page The first page after ad is clicked
Match type Advertiser-selected ad-search term match type (including exact

match, phrase match, semantic match, and so on)
CTR Ad’s historical CTR
Click prediction CTR prediction from another CTR model
Ad campaign The ad delivery plan created by the advertiser, including budget,

targeting conditions, and so on
Impression Sample An example of an ad “impression” that records the contextual

information about the ad in the actual impression scene
Click Sample An example of an ad “click” that records the contextual information

about the ad in the actual click scenario

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

573.3 Deep Crossing Model Overview

feature vectors. After generating the vector representation of all input features, the
Deep Crossing model uses the feature vectors to predict CTR. The characteristic
of a deep learning network is that the network structure can be flexibly adjusted
according to the business and engineering needs, so as to achieve the end-to-end
training from the original input features to the final optimization target. Next, by
analyzing the network structure of the Deep Crossing model, we can explore how
deep learning can accurately predict the CTR through the layer-by-layer process-
ing of features.

3.3.2 Network Structure of Deep Crossing Model

In order to achieve end-to-end training, the Deep Crossing model needs to solve the
following problems in its network:

 (1) How to solve the problem of densification of sparse feature vectors since one-hot
encoding feature is too sparse, which is not in favor of direct training;

 (2) How to solve the problem of automatic feature crossovers;
 (3) How to achieve the optimization target set by the problem in the output layer.

The Deep Crossing model sets up different neural network layers to solve these prob-
lems. As shown in Figure 3.6, the network structure mainly includes four layers: the
embedding layer, the stacking layer, the multiple residual units layer, and the scoring

Figure 3.6 Structure diagram of the Deep Crossing model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

58 Deep Learning Applications in Recommender Systems

layer. Next, the functions and implementations of each layer will be introduced from
bottom to top.

• Embedding layer: The role of the embedding layer is to convert sparse categorical
features into dense embedding vectors. As can be seen from Figure 3.6, each feature
(such as Feature#1, here refers to the one-hot encoded sparse feature vector) will be
converted into the corresponding embedding vector (such as Embedding#1) after
passing through the embedding layer.

The structure of the embedding layer is mainly based on the classic fully con-
nected layer structure, but the embedding technology itself, as a very widely
studied topic in the deep learning domain, has derived many other differ-
ent embedding methodologies such as Word2vec, Graph Embedding, and so
on. Chapter 4 will give a more detailed introduction to the state-of-the-art
embedding models.

Generally speaking, the dimension of the embedding vectors should be much
smaller than the original sparse feature vector, and tens to over one hundred
dimensions can generally meet the requirements. It should be noted here that
Feature#2 in Figure 3.6 actually represents a numerical feature. The numerical
feature does not need to go through the embedding layer, but directly enters the
stacking layer.

• Stacking layer: The function of the stacking layer is relatively simple. It is to con-
catenate different embedding features and numerical features to form a new feature
vector containing all features. This layer is also usually referred as the concatenate
layer.

• Multiple Residual Units layer: The main structure of this layer is a MLP. Compared
with the standard neural network with a perceptron as the basic unit, the Deep
Crossing model uses a multilayer residual network as the MLP implementation.
The most famous residual network is the 152-layer residual network proposed by
Microsoft researcher Yuming He in the ImageNet competition [3]. The application
of residual networks in the Deep Crossing model is also the first successful exten-
sion of residual networks outside the field of computer vision.

Through the multilayer residual network, the various dimensions of the feature
vector are fully crossed, so the model can capture more information about non-
linear features and combined features. As a result, the deep learning model is
more expressive than traditional machine learning models.

Basics: Residual Neural Networks and Its Characteristics
Residual neural network is a neural network composed of residual units. The spe-
cific structure of the residual unit is depicted in Figure 3.7.

Different from the traditional perceptron, the residual unit has two main
characteristics:

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

593.3 Deep Crossing Model Overview

Figure 3.7 The specific structure of a residual unit.

 (1) The residual unit contains a fully connected layer with ReLU as the activation
function.

 (2) The input is directly connected with ReLU output through a shortcut path.

Under such a structure, what the residual unit is actually fitting is the “residual
difference” ()x x0 1− between the output and the input, which is the origin of the
name of the residual neural network.

The birth of the residual neural network is mainly to solve two problems:

 (1) For traditional perceptron-based neural networks, when the network is deep-
ened, there is often an overfitting problem; that is, the deeper the network, the
worse the performance on the test set. In the residual neural network, due to
the existence of short-circuit of the input vector, the two-layer ReLU network
can be skipped in many cases to reduce the occurrence of overfitting.

 (2) When the neural network is deep enough, there is often a serious gradient van-
ishing phenomenon. The vanishing gradient phenomenon means that in the pro-
cess of gradient backpropagation, the closer to the input end, the smaller the
magnitude of the gradient, and then the slower the parameter convergence speed.
To solve this problem, the residual unit uses the ReLU activation function to
replace the original sigmoid activation function. In addition, short-circuiting the
input vector is equivalent to directly passing the gradient to the next layer with-
out modification, which also makes the residual network converge faster.

• Scoring layer: The scoring layer, as the output layer, is to fit the optimization objec-
tive. For binary classification problems such as CTR prediction, the scoring layer
often uses a logistic regression model, while for multiclassification problems such
as image classification, the scoring layer often uses a softmax model.

This is the model structure of Deep Crossing. On this basis, the gradient backpropaga-
tion method is used for training, and finally the CTR prediction model based on Deep
Crossing is obtained.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

60 Deep Learning Applications in Recommender Systems

3.3.3 The Revolution to Feature Crossing Method by Deep Crossing Model

From the view of the current deep learning world, the Deep Crossing model is unre-
markable, because it does not introduce any special model structure such as atten-
tion mechanism, sequence model, and so on. It just uses the typical deep learning
architecture with embeddings and a multilayer neural network. But from a historical
perspective, the emergence of the Deep Crossing model is revolutionary. There is
no manual feature engineering involved in the Deep Crossing model. The original
features are fed into the neural network layer after the embedding layer, and the task
of feature crossing is all handed over to the model. Compared with the previously
introduced FM and FFM models, which only have the ability to cross second-order
features, the Deep Crossing model can perform “deep crossover” among features
by adjusting the depth of the neural network, which is the origin of the name Deep
Crossing.

3.4 NeuralCF Model: Combination of CF and Deep Learning

In Section 2.2, we introduce the classic algorithm of a recommender system –
 collaborative filtering. The Matrix Decomposition technique is then developed along
the idea of collaborative filtering (Section 2.3), which decomposes the co-occurrence
matrix in collaborative filtering into the user vector matrix and item vector matrix.
In this model, the inner product of the hidden vector of user u and the hidden vector
of item i is the prediction of the rating of item i by user u. Following the develop-
ment path of Matrix Decomposition and combining with deep learning knowledge,
researchers from the National University of Singapore proposed a deep-learning-
based collaborative filtering model NeuralCF [4] in 2017.

3.4.1 Revisiting Matrix Factorization Models from the Perspective
of Deep Learning

As mentioned in the introduction to the Deep Crossing model in Section 3.3, the main
function of the embedding layer is to convert sparse vectors into dense vectors. In fact,
if we view the Matrix Decomposition model from the perspective of deep learning,
the user-hidden vector and item-hidden vector of the matrix decomposition layer can
be treated as one kind of embedding method. The final “scoring layer” is to obtain the
“similarity” after the inner product of the user’s latent vector and the item’s latent vec-
tor. The “similarity” here is the prediction of the rating. In summary, the architecture
of the matrix factorization model can be described by a deep learning network like
structure, as shown in Figure 3.8.

In the process of training and evaluating models using Matrix Decomposition, it
is often found that the model is prone to underfitting. The reason is that the model
structure of matrix decomposition is relatively simple, especially the output layer
(that is, the scoring layer), which cannot effectively fit the optimization objective.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

613.4 NeuralCF: CF + Deep Learning

This requires the model to have stronger expressivity. Inspired by this motivation,
researchers from the National University of Singapore proposed the NeuralCF
model.

3.4.2 Network Structure of the NeuralCF Model

As shown in Figure 3.9, NeuralCF replaces the simple inner product operation in the
matrix factorization model with the structure of the multilayer neural network and
output layer. The benefits of doing so are intuitive. First, the user vector and the item
vector can be more effectively crossed to obtain more valuable feature combination
information; the second is to introduce more nonlinear features to make the model
more expressive.

In fact, the interaction layer of user and item vectors can be replaced by any other
form of manipulations. Such type of model is the so-called Generalized Matrix
Factorization model.

The original matrix decomposition uses the “inner product” method to allow the
user to interact with the item vector. In order to further allow the vectors to fully cross
in each dimension, the element-wise product (that is, multiplying the corresponding
elements from two vectors with the same dimension) is used for interoperability. Then
the final prediction target is fitted through the output layer, such as logistic regression.
The use of neural networks to fit interaction functions in NeuralCF is a generalized
form of feature crossing. In the chapters that introduce the PNN model and the Deep
and Cross model, more feasible forms of interaction functions will be introduced.

Further, the feature vectors obtained through different interaction networks can be
concatenated and passed to the output layer for fitting. An example of integrating two

Figure 3.8 Representation of matrix factorization in a deep learning network-like structure.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.9
 F

ro
m

 tr
ad

iti
on

al
 m

at
ri

x
fa

ct
or

iz
at

io
n

to
 N

eu
ra

lC
F.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

633.4 NeuralCF: CF + Deep Learning

networks is given in the NeuralCF paper [4] (shown in Figure 3.10). Such a model is
called the hybrid NeuralCF. It can be seen that the hybrid NeuralCF model integrates
with the original NeuralCF model mentioned earlier and the generalized matrix fac-
torization model with element-wise results, such as interoperability. This allows the
model to have stronger feature crossing and nonlinearity.

Basics: What Is the Softmax Function?
While introducing the Deep Crossing and NeuralCF models, it has been mentioned
many times that the softmax function is used as the final output layer of the model
to solve the fitting of multiclassification problems. So what is the softmax function
and why is the softmax function able to solve multiclassification problems?

Mathematical Definition of Softmax Function
Given an n-dimensional vector, the softmax function maps it to a probability dis-
tribution. The standard softmax function � : 

n n� is defined by the following
formula,

� X� � �
� �
� �

� � � � �

��i

i

j

n
j

n
T nx

x
n x x

exp

exp
, , , ,

1

11 where andi � � �X

It can be seen that the softmax function solves the problem of mapping from an orig-
inal n-dimensional vector to an n-dimensional probability distribution. Then in the
multiclass classification problem, assuming that the number of classes is n, what the
model wants to predict is the probability distribution of a sample on n classes. If a

Figure 3.10 The hybrid NeuralCF model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

64 Deep Learning Applications in Recommender Systems

deep learning model is used for prediction, then the final output layer is composed of
n neurons. The output of the n neurons then become the input (a n-dimensional vec-
tor) to the final softmax function. Eventually, the final multiclass probability distri-
bution can be obtained from the output of the softmax function. In a neural network,
the structure of the softmax output layer can be presented as shown in Figure 3.11.

In multiclass classification problems, the softmax function is often used together
with the cross-entropy loss function,

LossCross Entropy �� � �� �� ln
i

i i
y � x

where yi is the ground truth label value of the ith category, and σ ()x i represents the
predicted value of the ith category by the softmax function. Because the softmax
function normalizes the classification output into the probability distribution of
multiple classifications, and the cross entropy describes the similarity between the
predicted classification and the actual result, the softmax function is often used in
conjunction with the cross entropy. When using cross-entropy as the loss function,
the gradient descent form of the entire output layer becomes extremely simple. The
derivative of the softmax function turns,

� � �
�

�
� � � � �� � �

� � � � � � �

�
�
�

��

� � �

� �

x x x

x x

i

j

i j

i j
x

i j

i j

1 ,

,

Based on the chain rule, the derivative of the cross-entropy function to the
j th-dimensional input x j of the softmax function can be expressed as,

�
�

�
�
� � �

�
� � �
�

Loss Loss

x xj j�
�

x

x

1 2 n······

[x1, x2, , xn]

Softmax function

[p1, p2, , pn]

Output layer

Figure 3.11 The structure of the softmax output layer.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

653.5 PNN: Enhancing Feature Cross

In a multiclass classification problem, only one dimension of 1 is in the ground
truth label, and the rest of the dimensions are all 0. Assuming that the kth dimen-
sion is 1, that is, yk = 1, then the cross-entropy loss function can be simplified into
the following form,

LossCross Entropy �� � �� � � � � � �� � � � � �� �� ln ln ln
i

i i k k k
y y� � �x x x

Then,

�
�

�
� � � �� �� �

� � �
�
� � �
�

� �
� �

�
� � �
�

�
Loss

x x xj

k

k

k

j k

k

j

ln �

�

�

�

� �x

x

x

x

x1 xx

x

� � � �

� � �

�
�
�

��

j

j

j k

j k

1,

,�

From this, it can be seen that the combination of softmax function and cross
entropy is not only perfectly aligned in mathematical meaning, but also makes
the gradient formula concise. Based on this gradient equation, the update of the
weight of the entire neural network can be completed by the method of gradient
backpropagation.

3.4.3 Strengths and Limitations of NeuralCF Models

The NeuralCF model actually proposes a model framework – it is based on the two
embedding layers of the user vector and the item vector, uses different interaction layers
to cross the features, and can flexibly concatenate different interaction layers. From this,
we can see the advantages of deep learning in building a recommendation model – using
the ability of neural networks to fit arbitrary functions in theory, flexibly combining
different features, and increasing/decreasing the complexity of the model as needed.

In practice, it should be noted that it is not always true that the more complex the
model structure and the more features, the better. We need to understand the conse-
quence induced by adding more complexities to the model: (1) risk of overfitting; (2)
demand of a larger amount of training data; and (3) longer training time. These afore-
mentioned aspects are what algorithm engineers need to consider while making trade-
off decisions between model practicability, real-time performance, and effectiveness.

The NeuralCF model also has its own limitations. Since it is developed on the basis
of collaborative filtering, the NeuralCF model does not introduce other types of fea-
tures, which undoubtedly wastes other valuable information in practical applications.
In addition, there is no further exploration and categorization of feature interaction
types in the model. It requires deeper dives in the follow-up research.

3.5 PNN Model: A Way of Enhancing Feature Cross Capabilities

The main idea of the NeuralCF model introduced in Section 3.4 is to use a multilayer
neural network to replace the dot product operation of classical collaborative filtering
to enhance the expressiveness of the model. In a broader sense, any manipulation

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

66 Deep Learning Applications in Recommender Systems

method between vectors can be used to replace the inner product operation of col-
laborative filtering, and the corresponding model can be called a generalized matrix
factorization model. However, the NeuralCF model only mentions two fields of fea-
ture vectors, the user vector and the item vector. How to design the feature crossing
method if multiple sets of feature vectors are added? In 2016, the PNN (Product-
based Neural Networks) model proposed by researchers from Shanghai Jiao Tong
University [5] gave several design ideas for feature interaction.

3.5.1 Network Structure of the PNN Model

The purpose of the PNN model proposal is also to solve the problem of CTR pre-
diction in the recommender system, so the application scenarios of the model will
be omitted here. Figure 3.12 shows the model structure diagram. Compared with the
Deep Crossing model (as shown in Figure 3.6), the PNN model is similar in most parts
of the overall structure, including the input layer, embedding layer, MLP layer, and
final output layer. The only difference is that the PNN model replaces the stacking
layer in the Deep Crossing model with a product layer. In other words, the embedding
vectors of different features are no longer simply concatenated; instead, a product
operation is applied to each pair of embedding vectors to capture cross-feature infor-
mation in a more structured manner.

In addition, compared with NeuralCF, the input of the PNN model not only
includes user and item information but can also have more features in different forms

Figure 3.12 Structure diagram of the PNN model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

673.5 PNN: Enhancing Feature Cross

and sources, followed by generating the dense embedding feature vectors of the same
length through the encoding of the embedding layer. To model feature crossing,
the PNN model also provides more specific interaction methods.

3.5.2 Multiple Feature Intersection Forms in the Product Layer

The main innovation of the PNN model for the deep learning structure is the introduction
of the product layer. Specifically, the product layer of the PNN model consists of
a linear operation part (block z of the product layer in Figure 3.12) and a product
 operation part (block p of the product layer in Figure 3.12). Among them, the product
feature interaction part can be divided into inner product type and outer product type.
The PNN model using inner product operation is called Inner Product-based Neural
Network (IPNN), and the PNN model using outer product operation is called Outer
Product-based Neural Network (OPNN).

Whether it is an inner product type or an outer product type, it is a form of pairwise
combination of different feature embedding vectors. In order to ensure the smooth
operation of the product, the dimensions of each embedding vector must be the same.

The inner product is a classic vector manipulation method. Assuming that the input
feature vectors are fi and f j respectively, the inner product equation g i jinner (),f f can
be defined as,

 g i j i jinner f f f f, ,� � � (3.5)

The outer product operation is to cross each dimension of the input feature vectors fi
and f j for each pair of elements to generate a feature cross matrix. The outer product
equation g i jouter (),f f can be defined as,

 g i j i jouter
Tf f f f,� � � (3.6)

The outer product operation generates a square matrix with the dimension of M M× ,
where M is the dimension of the input vector. It is clear that such an operation will
directly increase the complexity of the algorithm from the order of M originally to M2.
In order to reduce the burden of model training, a dimensionality reduction method
was introduced in the PNN model paper. The results of the outer product of the feature
embedding vectors are super-positioned to form a combined outer product matrix p,
as shown,

 p f f f f f f f f� � � � � �
� � � � �
�� �� �
i

N

j

N

i j
i

N

j

N

i j
i

N

ig
1 1 1 1 1

outer
T T, ,� � � (3.7)

From the final form of Equation 3.7, the final superposition matrix p is similar to
applying an average pooling on all the feature embeddings and then performing the
outer product operation.

In practical applications, the operation of average pooling should also be treated
with caution. Because the corresponding dimensions of different features are aver-
aged, it is actually assumed that the corresponding dimensions of different features
have similar physical meanings. But obviously, if one feature is “age” and the other

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

68 Deep Learning Applications in Recommender Systems

is “region,” then after these two features have passed through their respective embed-
ding layers, the embedding vectors of the two are not in the same vector space, which
is obviously not comparable. At this time, averaging the two will obscure a lot of valu-
able information. The average pooling often occurs in the embeddings in the same
domain; for example, the embedding of multiple items browsed by the user is aver-
aged. Therefore, the outer pooling operation of the PNN model needs to be cautious,
and carefully balanced between training efficiency and model performance.

In fact, after the linear and product operations of the features, the PNN model
does not directly send the results to the upper L1 fully connected layer (as shown in
Figure 3.12), but performs a local fully connected layer conversion inside the product
layer. It maps the linear portion z, the product portion p into D1-dimensional input
vectors lz and lp respectively. D1 is the number of hidden units in the L1 hidden layer.
The mapped vectors lz and lp are superimposed and passed into the hidden layer. This
part of the operation is commonly seen and can be replaced by other types of transfor-
mation operations, so it will not be described in detail here.

3.5.3 Strengths and Limitations of the PNN Model

The highlight of the PNN model is that it emphasizes the versatility of interaction
methods between feature embedding vectors. Compared with the simple, undifferenti-
ated processing in the fully connected layer, the inner product and outer product oper-
ations adopted by the PNN model obviously focus more on the interaction between
different features, which makes it easier for the model to capture the interacting rela-
tionship of the features.

However, the PNN model also has some limitations. For example, in the practical
application of the outer product operation, a lot of simplification operations have to
be performed to optimize the training efficiency. Furthermore, performing an indis-
criminate crossover of all features, to some extent, ignores the valuable information
contained in the original feature vector. It then comes down to questions such as
how to integrate original features and crossed features to make feature crossing more
efficient. The Wide&Deep model and various deep learning models based on FM
introduced in the later sections will give their solutions.

3.6 Wide&Deep Model: Combining Memorization and Generalization

This section introduces a model that has had great influence in the industry since it
was proposed: the Wide&Deep model, presented by Google in 2016 [6]. The main
idea of the Wide&Deep model, as its name suggests, is a hybrid model consisting of
a single-layer “wide” substructure and a multilayered “deep” substructure. Among
them, the main function of the wide part is to make the model have strong memo-
rization ability, while the main responsibility of the deep part is to make the model
have more generalization ability. It has the advantages of logistic regression as well

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

693.6 Wide&Deep Model: Memory + Generalization

as deep neural network. That is, it can quickly process and memorize a large number
of historical behavioral characteristics, and also has strong expressivity. It not only
quickly became the state-of-art model in the industry at that time, but also derived a
large number of hybrid models based on the foundations of the Wide&Deep model.
Its influence still continues today.

3.6.1 Memorization and Generalization of the Wide&Deep Model

The original intention of the Wide&Deep model and its greatest value are from strong
memorization ability and generalization ability at the same time. This is the first time
we have mentioned the Memorization concept in this book. Although generalization has
been mentioned many times in previous chapters, it has never given a detailed expla-
nation. In this section, we will give a detailed explanation of both these two concepts.

Memorization can be understood as the ability of the model to directly learn and
utilize the “co-occurrence frequency” of items or features in the historical data.
Generally speaking, simple models such as collaborative filtering and logistic regres-
sion have strong “memorization capabilities.” Due to the simple structure of this
type of model, the original data can often directly affect the recommendation results,
resulting in inductive recommendations like “if you have clicked on A, recommend
B.” This is equivalent to the model directly remembering the distribution of historical
data characteristics, and use these memories to make recommendations.

Since the Wide&Deep model was originally proposed by the Google Play recom-
mendation team, here we take the scenario of app recommendation as an example to
explain the model’s memorization capability.

Suppose that the following combined features are adopted during
the training process of the Google Play recommendation model,
AND netflix; impression pandorainstalled_app appuser � �� �, or (netflix & pandora). This
feature means that the user has installed the Netflix app and sees the Pandora app rec-
ommended in the Google Play App store. If we use a successful Pandora installation
as a positive label, it is easy to count the co-occurrence frequency between the feature
of (Netflix and Pandora) and the positive labels of Pandora installation. Assuming that
the co-occurrence frequency of the two is as high as 10% (the global average appli-
cation installation rate is 1%), this feature is so strong that when designing a model,
we expect that the model will recommend Pandora as soon as it finds this feature. It
is like a memorable point imprinted in people’s minds. This is the so-called memori-
zation of the model. For simple models such as logistic regression, if such a “strong
feature” is found, its corresponding weight will be greatly adjusted during the model
training process, thus reflecting the direct memory of this feature. On the other hand,
for a multilayer neural network, the feature will be processed through multiple layers
and continuously crossed with other features, so the model’s memory of any strong
feature is not as prominent as that of a simple model.

The generalization ability can be understood as the relevancy in the feature
transfer, and the ability to discover the latent correlation between the features and
ground truth label, especially when the features are sparse or never appeared. Matrix

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

70 Deep Learning Applications in Recommender Systems

decomposition has a stronger generalization ability than collaborative filtering, since
matrix decomposition introduces a structure such as a hidden vector, which lets users
or items with sparse data generate hidden vectors to obtain data-driven recommen-
dation scores. This is a typical example of passing global data to the sparse items
to improve generalization. For another example, deep neural networks can deeply
explore latent patterns in data through multiple automatic crossings of the features.
Even with very sparse input feature vectors, we can still obtain a relatively stable and
smooth recommendation probability through a deep neural network structure. This is
the generalization ability that simple models lack.

3.6.2 Network Structure of the Wide&Deep Model

Given the strong memorization ability of the simple model and the strong general-
ization ability of the deep neural network, the direct motivation for designing the
Wide&Deep model is to combine these two structures. The specific model structure
is shown in Figure 3.13.

The Wide&Deep model combines a wide part with a single input layer, and a deep
part, which consists of the embedding layer and multiple hidden layers. Then both
parts are fed to the final output layer to generate the prediction. The single-layer side
(wide side) is good at dealing with a large number of sparse ID features while the deep
side uses the strong expressive ability of the neural network to perform deep feature
crossing and mine the data patterns hidden behind the features. Finally, using the
logistic regression model, the output layer combines the outputs from the wide part
and the deep part to generate the final prediction.

The specific feature engineering and input layer design present a deep understand-
ing of the business use cases from the Google Play Recommendation team. From
Figure 3.14, we can learn in detail which features the Wide&Deep model uses as the
input of the deep part and which features are used as the input of the wide part.

Figure 3.13 The structure of the Wide&Deep model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

713.6 Wide&Deep Model: Memory + Generalization

The input of the deep part is the full set of feature vectors, including user age, num-
ber of installed applications, device type, installed applications, impression applica-
tions, and so on. The category features, such as installed applications and impression
applications, need to go through the embedding layer before entering the connection
layer, where embeddings are concatenated into a 1200-dimensional vector. Then this
vector is passed through three layers of ReLU fully connected layers, and finally fed
to the output layer with the log-loss function.

The input of the wide part only includes two types of features – installed applications
and impressed applications, where the installed applications represent the user’s histori-
cal behavior, and the impressed applications represent the current application candidate
to be recommended. The reason for choosing these two types of features is to take full
advantage of the memorization ability of the wide part. As mentioned in the memori-
zation example in Section 3.6.1, simple models are good at memorizing information in
user behavior characteristics, and can directly influence recommendation results.

The function of combining the feature installed application and impressed appli-
cation in the wide part is called the Cross Product Transformation function, and its
definition is shown as follows,

 �� X x c
i

d

i
c

ki
ki� � � �� �

�
�

1

0 1, (3.8)

where cki is a Boolean variable and xi is the ith feature. When the ith feature
belongs to the kth crossed feature, the value of cki is 1, otherwise it is 0. For exam-
ple, for the crossed feature AND(user netflix impression pandora)installed_app app= =; ,
the corresponding cross-product transform function output is 1 only when both two
individual features user netflixinstalled_app = and impression pandoraapp = are positive,
otherwise it is 0.

Figure 3.14 The structure of the Wide&Deep model with more feature details.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

72 Deep Learning Applications in Recommender Systems

After the features are crossed through the cross-product transformation layer opera-
tion, the wide part feeds the combined features into the final log-loss output layer, and
participates in the final objective fitting together with the output from the deep part.

3.6.3 Evolution of the Wide&Deep Model: The Deep and Cross Model

The development of the Wide&Deep model not only integrates memorization and
generalization, but also opens up a new idea for the integration of different network
structures. After the Wide&Deep model, more and more works focus on improving the
Wide&Deep parts, respectively. A representative model is the Deep and Cross model
(DCN) proposed by researchers from Stanford University and Google in 2017 [7].

The structure diagram of the Deep and Cross model is shown in Figure 3.15. The
main idea is to use the cross network to replace the original wide part. Since the design
idea of the deep part has not changed substantially, this section focuses on the design
idea and specific implementation of the cross part.

Figure 3.15 The structure of the Deep and Cross model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

733.6 Wide&Deep Model: Memory + Generalization

The purpose of designing the cross network is to increase the interaction strength
between the features, and use a multilayer cross layer to perform feature crossover on
the input vector. Assuming that the output vector of the lth cross layer is xl , then the
output vector of the ()l +1 th layer can be expressed as,

 x x x W b xl l l l l� � � �1 0
T (3.9)

It can be seen that the second-order term of the cross-layer operation is very similar
to the outer product operation mentioned in the PNN model in Section 3.5. On this
basis, the weight vector wl of the outer product operation, as well as the original input
vector xl and bias vector bl are added. The operation of the cross layer is shown in
Figure 3.16.

It can be seen that the cross layer is relatively “conservative” in increasing parame-
ters. Each layer only adds an n dimensional weight vector wl, where n is the input vector
dimension, and the input vector is retained in each layer. So the change between output
and input will not be particularly noticeable. The cross network composed of multiple
interaction layers performs automatic feature crossover, which is more advanced than
the wide part in the Wide&Deep model. This can help reduce the efforts on feature
crossing based on human business understanding. Similar to that in the Wide&Deep
model, the deep part of the Deep and Cross model is more expressive than the cross
part, which gives the model a stronger learning ability on nonlinear relationships.

3.6.4 Influence of the Wide&Deep Model

The influence of the Wide&Deep model is undoubtedly significant. Not only has it
been successfully applied to many first-tier IT companies, but its subsequent improve-
ment and innovation work has continued to this day. In fact, DeepFM, NFM, and
other models can be viewed as extensions of the Wide&Deep model. The key to the
success of the Wide&Deep model is that:

 (1) It grasps the essential characteristics of business problems, and can integrate the
advantages of memorization ability from the traditional models and generaliza-
tion ability from the deep learning models;

 (2) The structure of the model is not complicated, and it is relatively easy to imple-
ment, train and productionize, which accelerates its popularization and applica-
tion in the industry.

Figure 3.16 The operation of the cross-layer.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

74 Deep Learning Applications in Recommender Systems

It is also from the Wide&Deep model that more and more model structures are added
to the recommendation model, and the structure of the deep learning model begins to
develop in a diversified and complex direction.

3.7 Integration of FM and Deep Learning Models

The evolution of the FM model family has been presented in detail in Section 2.5.
After entering the era of deep learning, the evolution of FM has never stopped. The
FNN, DeepFM, and NFM models introduced in this section use different methods
to apply or improve the FM model, and integrate them into the deep learning model,
continuing the advantages in an easy feature combination.

3.7.1 FNN: Embedding Layer Initialization with the Hidden Vector of FM

The FNN model was proposed by researchers at University College London in 2016
[8]. The structure of this model (as shown in Figure 3.17) is a classic deep neural
network similar to the Deep and Cross model. It also includes a typical embedding
layer to map the sparse input vector to dense vector. So how exactly is the FNN model
combined with the FM model?

The key to the problem is the improvement of the embedding layer. In the param-
eter initialization process of the neural network, random initialization is often used,

Figure 3.17 Structure of the FNN model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

753.7 Integration of FM and Deep Learning Models

which does not contain any prior information. Because the input of the embedding
layer is extremely sparse, the convergence rate of the embedding layer is very slow.
In addition, the number of parameters of the embedding layer often accounts for more
than half of the parameters of the entire neural network, so the convergence speed of
the entire model is often limited by the embedding layer.

Aiming at the problem of the convergence speed of the embedding layer, the solu-
tion of the FNN model is to initialize the parameters of the Embedding layer with
each feature latent vector trained by the FM model, which is equivalent to intro-
ducing valuable prior information when initializing the neural network parameters.
That is to say, the starting point of neural network training is closer to the target
optimal point, which naturally accelerates the convergence process of the entire
neural network.

Let’s review the mathematical form of FM again, as shown in (Eq. 3.10).

 yFM sigmoidx w w x x x
i

N

i i
i

N

j i

N

i j i j� � � � �
�

�
�
�

�

�
�
�

� � � �
� � �: ,0

1 1 1

v v (3.10)

Basics: Why the Convergence Rate of the Embedding Layer Tends to Be Slow
In a deep learning network, the role of the embedding layer is to convert the sparse
input vector into a dense vector, but the existence of the embedding layer often
slows down the convergence speed of the entire neural network for the following
two reasons:

 (1) The number of parameters in the embedding layer is huge. A simple cal-
culation can be done here. Assuming that the dimension of the input layer
is 100 000, the output dimension of the embedding layer is 32. There
are five layers of 32-dimensional fully connected layers added above
the embedding layer, and the final output layer dimension is 10. Then,
the number of parameters from the input layer to the embedding layer is
32 100 000 3200 000� � . The total number of parameters for all remaining
layers is () .32 32 4 32 10 4416� � � � � As a result, the total weight of the
embedding layer is 3200 000 3200 000 4416 99 86/ . %.()� � That is to say,
the weight of the embedding layer accounts for the vast majority of the
weight of the entire network. It is not hard to understand that most of the
training time and computational overhead are attributed to the embedding
layer.

 (2) Since the input vector is too sparse, in the process of stochastic gradient
descent, only the weight of the embedding layer connected to the nonzero
feature will be updated (please refer to the parameter update formula in the sto-
chastic gradient descent for understanding), which further reduces the embed-
ding layer convergence speed.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

76 Deep Learning Applications in Recommender Systems

The parameters mainly include constant bias w0, the first-order term parameter wi and
second-order hidden vector vi. The corresponding relationship between the parameters
of FM and the parameters of the embedding layer in FNN is depicted in Figure 3.18.

It should be noted that although the parameters in FM are pointed to each neuron in
the embedding layer in Figure 3.18, its specific meaning is to the connection weight
between the embedding neuron and the input neuron. Assuming that the dimension
of the FM hidden vector is m, the hidden vector of the k-th dimension feature of the
i-th feature field is vi k i k i k i k

l
i k
mv v v v, , , , ,(, , , , ,)� � �1 2 , then the l-th dimension vi k

l
, of the

hidden vector will become the initial value of the connection weight between the input
neuron k and embedding neuron l.

In the process of the FM model training, the feature fields are not distinguished.
However, in the FNN model, the features are divided into different feature fields.
Each feature field has a corresponding embedding layer, and the dimension of
embedding in each feature field should be consistent with the dimension of the FM
hidden vector.

In addition to using FM parameters to initialize the weights of the embedding
layer, the FNN model also introduces another processing method for the embedding
layer in the real application – pre-training. More details are introduced in Chapter 4.

Figure 3.18 The process of using FM to initialize the embedding layer.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

773.7 Integration of FM and Deep Learning Models

3.7.2 DeepFM: Replacing the Wide Part with FM

FNN uses the training result of FM as the initialization weight, and does not adjust
the structure of the neural network, while DeepFM [9] jointly proposed by Harbin
Institute of Technology and Huawei in 2017 integrates the model structure of FM with
the Wide&Deep model. Its model structure diagram is shown in Figure 3.19.

As mentioned in Section 3.6, after the Wide&Deep model, many other models
follow the structure of the dual-model combination, and DeepFM is one of them. The
improvement of DeepFM on top of the Wide&Deep model is that it replaces the orig-
inal wide part with FM, which strengthens the ability of partial feature combination of
the shallow network. As shown in Figure 3.19, the FM part on the left shares the same
embedding layer with the deep neural network part on the right. The FM part on the
left crosses the embeddings of different feature fields in pairs, that is, the embedding
vector is treated as the feature hidden vector in the original FM. Finally, the output of
the FM and the output of the deep part are input into the final output layer to partici-
pate in the final prediction.

Compared with the Wide&Deep model, the improvement of the DeepFM model is
mainly aimed at mitigating the shortage that the wide part of the Wide&Deep model
does not have the ability to automatically cross features. The motivation for improve-
ment here is exactly the same as that of the Deep and Cross model. The only differ-
ence is that the Deep and Cross model uses a multilayer cross network for feature

Figure 3.19 The structure diagram of the DeepFM model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

78 Deep Learning Applications in Recommender Systems

combination, while the DeepFM model uses FM structure for feature combination. Of
course, the specific application effects still need to be compared through experiments.

3.7.3 NFM: FM Model’s Neural Network Attempt

When we introduced the limitations of FM in Section 2.5, it mentions that whether
it is FM or its improved model FFM, it is still basically a simple model with the
second-order feature intersection. Affected by the “Curse of Dimensionality” issue,
it is almost impossible for FM to extend the feature crossing beyond the third order,
which inevitably limits the expressivity of the FM model. So is it feasible to use
the stronger expressive power of deep neural networks to improve the FM model?
In 2017, researchers from the National University of Singapore made an attempt to
explore this and proposed the NFM [10] model.

The mathematical form of the classical FM is presented in Eq. 3.10. The main
idea of the NFM model is to replace the part of the inner product of the second-order
latent vector in the original FM with a function with stronger expressivity, as shown
in Figure 3.20.

If the traditional machine learning idea is used to design the function f x() in the
NFM model, it usually leads to a more expressive function through a series of math-
ematical derivations. But after entering the era of deep learning, since theoretically
the deep learning network has the ability to fit any complex function, the construction
of f x() can be completed by a deep learning network and learned through gradient
backpropagation. In the NFM model, the neural network structure used to replace the
second-order part of the FM is shown in Figure 3.21.

The characteristic is to add a feature cross-pooling layer (Bi-Interaction Pooling
Layer) between the embedding layer and the multilayer neural network. Assuming
that Vx is the embedding set of all feature domains, the specific operation of the feature
cross-pooling layer is shown in Eq. 3.11,

 f V x v x v
i

n

j i

n

i i j jBI x� � � � � � �
� � �
� �

1 1

 (3.11)

where  represents the element-wise product operation of two vectors, that is, the cor-
responding dimension of two vectors with the same length is multiplied to obtain an
element-wise product vector. The element-wise product operation on the kth dimen-
sion is as follows,

 v vi j k ik jk� � ��� �� (3.12)

After performing the element-wise product operation of the two embedding vectors,
the crossed feature vectors are summed to obtain the output vector of the pooling
layer. The vector is then input into the upper multilayer fully connected neural net-
work for further interaction.

The first-order structure has been omitted in the NFM architecture diagram shown
in Figure 3.21. If the first-order part of NFM is viewed as a linear model, then
the architecture of NFM is equivalent to the evolution of the Wide&Deep model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

793.7 Integration of FM and Deep Learning Models

Compared with the original Wide&Deep model, the NFM model adds a cross-pooling
layer to its deep part, which strengthens the feature interaction. This is another aspect
to understand with the NFM model.

3.7.4 Strengths and Limitations of FM-Based Deep Learning Models

This section introduces three deep learning models (FNN, DeepFM, NFM) that were
developed on top of FM approach. They are all characterized by adding targeted fea-
ture crossover operations to classic multilayer neural networks, so that the model has
stronger nonlinear expressivities.

Following the idea of feature engineering automation, the deep learning model has
come all the way from PNN, through Wide&Deep, Deep and Cross, FNN, DeepFM,

Figure 3.20 Improvement of NFM to the second-order term of FM.

Figure 3.21 The model structure (partial) of the NFM model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

80 Deep Learning Applications in Recommender Systems

NFM and other models, and has made a lot of attempts based on different feature
interaction ideas. However, the idea of feature engineering has almost exhausted all
possible attempts, and the room for further improvement of the model is quite small,
which is also one limitation of such type of model.

Since then, more and more deep learning recommendation models have started
to explore some “structural” modifications. For example, attention mechanism,
sequence model, reinforcement learning, and other model structures that shine
in other fields have gradually entered the field of recommendation world. These
attempts have achieved remarkable results in the improvement of the recommendation
model.

3.8 Application of Attention Mechanism in the Recommendation Model

The “attention mechanism” comes from the natural human habit of attention. The most
typical example is that when users browse the web, they will selectively pay attention
to specific areas of the page and ignore other areas. Figure 3.22 is the heat map of page
attention from research by the Google Search team by conducting eye-tracking exper-
iments on a large number of users. It can be seen that the distribution of users’ atten-
tion to the areas of the page is very different. Based on this observation, it indicates
that considering the attention mechanism on the prediction in the modeling process
may result in some good benefits.

In recent years, the attention mechanisms have been widely used in various fields
of deep learning studies, and attention models have achieved great success in the fields
of natural language processing, speech recognition, or computer vision. Since 2017,
the recommendation field has also begun to try to introduce the attention mechanism
into the model, among which the most influential works are AFM [11], proposed by
Zhejiang University, and DIN [12], proposed by Alibaba.

3.8.1 AFM: FM Model with Attention Mechanism

The AFM model can be considered as a continuation of the NFM model intro-
duced in Section 3.7. In the NFM model, the feature embedding vectors of differ-
ent domains are crossed by the feature cross-pooling layer, and the crossed feature
vectors are “summed” and input to the output layer through a multilayer neural
network. The crux of the problem lies in the operation of sum pooling, which is
equivalent to treating all intersecting features “equally,” regardless of the degree of
influence of different features on the result. In fact, this sum operation eliminates a
lot of valuable information.

Here, the “attention mechanism” comes in handy. It is based on the assumption that
different crossed features have different effects on the results. Take a more intuitive
business scenario as an example to illustrate how users may pay different attention
to different cross-features. If the application scenario is to predict the likelihood of a
male user buying a keyboard, the cross-feature of “gender=male & purchase history

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

813.8 Attention Mechanism in Recommendation Models

includes a mouse” is likely more important than the feature “gender=male & user
age=30.” Thus, the model pays more “attention” to the preceding features. Because of
this, it makes sense to combine the attention mechanism with the NFM model.

Specifically, the AFM model introduces an attention mechanism by adding an
attention net between the feature intersection layer and the final output layer. The
model structure of AFM is shown in Figure 3.23. The role of the attention network is
to provide weights for each cross feature, that is, the attention score.

Figure 3.22 Google search engine page attention heatmap.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

82 Deep Learning Applications in Recommender Systems

Like NFM, the feature intersection process of AFM also uses the element-wise
product operation, as shown next,

 f x xi j i j
i j

PI �� � � � �� �� ��
v v

x



, 
 (3.13)

The pooling process after AFM is added to the attention score is expressed as,

 f f a x x
i j

ij i j i jAtt PI �� �� � � � �
� ��
�

, x

v v (3.14)

For the attention score aij, the easiest presentation method is to use a weight param-
eter. But in order to prevent the weight parameter from convergence issues due to
the sparse problem of crossed feature, the AFM model uses a pairwise feature inter-
action and the attention network between the pooling layer to generate the attention
score.

The structure of the attention network is a simple structure of a single fully connected
layer plus a softmax output layer, and its mathematical form can be expressed as,

a x x

a
a

a

ij
T

i j i j

ij
ij

i j ij

�

� ��

� � �� �

�
� �

� ��

�

�

�

h W v v b

x

ReLU 

exp

exp
, 

 (3.15)

The model parameters to be learned are the weight matrix W from the feature inter-
section layer to the fully connected layer of the attention network, the bias vector b,
and the weight vector h from the fully connected layer to the softmax output layer.
Together with the other components in the model, the attention network is also trained
through backpropagation to obtain the final weight parameters.

AFM is a positive attempt by researchers to improve the model structure. It has
nothing to do with specific application scenarios. However, Alibaba’s introduction
of the attention mechanism into its deep learning recommendation model is a model
improvement based on business observation. Next we will introduce Alibaba’s well-
known recommendation model in the industry: the DIN model.

Figure 3.23 The structure diagram of the AFM model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

833.8 Attention Mechanism in Recommendation Models

3.8.2 DIN: Deep Learning Network with Attention Mechanism

Compared with many previous deep learning models with academic style, the DIN
model proposed by Alibaba is obviously more business-centric. Its application sce-
nario is Alibaba’s e-commerce advertisement recommendation. When predicting the
probability of a user u clicking on an advertisement a, the input features of the model
are naturally divided into two parts. One part is the feature group of user u, as shown
in Figure 3.24, and the other part is the feature group of candidate advertisement a,
as shown in the advertisement feature group in Figure 3.24. Both users and adver-
tisements contain two very important features – product ID (good_id) and shop ID
(shop_id). The product ID in the user feature is a sequence, representing the set of
products that the user has clicked on, and the same is true for the store ID. The prod-
uct ID and store ID in the advertisement feature set are the IDs corresponding to the
advertisement (the advertisement on the Alibaba platform). Most of them are products
that participate in some promotional program).

In the original basic model (the base model in Figure 3.24), the product sequence
and store sequence in the user feature group enter the upper neural network for further
training after a simple average pooling operation. The product and store sequences
have not distinguished the level of importance, and have no explicit relationship with
the product ID in the advertisement features.

However, in fact, the degree of correlation between advertising features and user
features is very strong, and the use case introduced in Section 3.7 can illustrate the
strong correlations. Assuming that the product in the advertisement is a keyboard,
there are several different product IDs in the user’s click history, for example, mouse,
T-shirt, and facial cleanser. Based on common sense, the historical commodity ID
of “mouse” should be more important for predicting the click-through rate of “key-
board” ads than the latter two. From the model’s point of view, the “attention” given
to different features in the modeling process should be different, and the calculation
of the “attention score” should be related to the advertising features.

It is also intuitive to reflect the aforementioned idea of “attention” into the model.
A weight is calculated by using the correlation between candidate products and his-
torically interacted products. This weight represents the strength of “attention.” The
DIN model adds the attention weight in the network structure, in which the attention
part is formularized as,

 ,V V V V V Vu a� � � � � � � � �
� �
� �f w g
i

N

i i
i

N

i a i
1 1

 (3.16)

where Vu is the embedding vector of the user u, Va is the embedding vector of the
candidate advertisement product, and Vi is the embedding vector of the ith action of
the user u. Here, the user’s action is to browse the product or store, so the embedding
vector of the action is the embedding vector of the browsed product or store.

Because the attention mechanism is added, Vu has changed from the simple sum of
Vi in the past to the weighted sum of Vi and the weight wi of Vi is determined by the
relationship between Vi and Va, which is g i(,)V Va in Eq. 3.16. This term is also known
as the Attention Score.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.2
4

T
he

 s
tr

uc
tu

re
 d

ia
gr

am
s

of
 th

e
ba

se
 m

od
el

 a
nd

 D
IN

 m
od

el
.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

853.9 DIEN: Sequence Model in Recommender Systems

Then, what is the good representation for the g i a(,)V V function? The answer is to
use an attention activation unit to generate the attention score. This attention activa-
tion unit is essentially a small neural network, and its specific structure is shown in the
activation unit at the upper right corner of Figure 3.24.

It can be seen that the input layer of the activation unit is two embedding vectors.
After the element-wise minus operation, they are connected with the original embed-
ding vector to form the input of the fully connected layer. Finally, the attention score
is generated through the single neuron output layer.

If you pay attention to the red line in Figure 3.24, you can find that the store ID
from the advertisement feature only interacts with the store ID sequence in the user’s
historical behavior, and the product ID of advertisement only works with the user’s
product ID sequence, as the weight of attention should be determined more by the
correlation of same category of information.

Compared with the FM-based AFM model, the DIN model is a more typical
attempt to improve the deep learning network structure. Since the introduction of
the DIN model starts from an actual business scenario, it also gives recommendation
engineers more substantial inspiration.

3.8.3 Inspiration of Attention Mechanism to Recommender Systems

From the perspective of the mathematical formula, the attention mechanism just
replaces the past average or sum operation with a weighted sum or weighted aver-
age operation. However, the inspiration of this mechanism for deep learning recom-
mender systems is significant, because the introduction of “attention score” reflects
the innate “attention mechanism” characteristics of human beings. The simulation
of this mechanism makes the recommender system’s logic closer to the user’s real
thinking process, so as to achieve the purpose of improving the recommendation
effect.

Starting from the “attention mechanism,” more and more improvements to the
structure of deep learning models are based on deep observations of user behavior.
Compared with academia, which pays more attention to theoretical innovation, rec-
ommendation engineers in the industry need to focus more on their understanding of
the actual business problem while developing new recommendation models.

3.9 DIEN: Combination of Sequence Model and Recommender Systems

After Alibaba proposed the DIN model, it did not stop the evolution of its recom-
mendation model, and formally introduced an updated version of the DIN model,
DIEN [13], in 2019. The application scenario of the DIEN model is exactly the
same as that of DIN. So we will not repeat it in this section. The innovation lies
in simulating the evolution process of user interest with the sequence model. The
main ideas of DIEN and the design of the interest evolution part are introduced in
detail next.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

86 Deep Learning Applications in Recommender Systems

3.9.1 Motivation of the DIEN Model

No matter whether it is e-commerce purchase history, video website viewing history,
or news application reading history, the historical behavior of a specific user can be
always considered as a time sequence. Since it is a time series problem, there must be
some level of dependency on the chronological order among the history items. Such
chronological information is undoubtedly valuable for the recommendation process.
But do all the models introduced earlier in this chapter make use of this sequential
information? The answer is negative. Even the AFM or DIN model that introduces
the attention mechanism only scores the importance of different actions, which is
time-independent and sequence-independent.

Why is sequential information valuable for recommendation? The behavior of a
typical e-commerce user can illustrate this point. For a common e-commerce busi-
ness, the migration of user interests is actually very fast. For example, a user was
picking a pair of basketball shoes last week. After he completes his purchase, his
shopping interest this week may turn to buying a mechanical keyboard. The impor-
tance of sequence information lies in:

 (1) It reinforces the influence of recent behavior on the prediction of the next behav-
ior. In the previous example, the probability that the user has recently purchased a
mechanical keyboard is significantly higher than the probability of buying another
pair of basketball shoes.

 (2) Sequential models can learn information about buying trends. In this example, the
sequence model can establish the transition probability from “basketball shoes”
to “mechanical keyboard” to a certain extent. If this transition probability is high
enough in a global statistical sense, recommending a mechanical keyboard will
be a good option when users buy basketball shoes. Intuitively, the user groups of
the two are likely to be the same.

If the sequence information is abandoned, the model’s ability to learn the time-based
or trend-based information can be quite weak. The recommendation model without
 considering sequential dimension just generates a prediction based on the user’s
 overall purchase history, rather than providing a ‘next purchase’ recommendation.
Obviously, from a business point of view, the sequence model is the correct objective
of a recommender system.

3.9.2 Network Structure of the DIEN Model

Based on the motivation of introducing “sequential” information, Alibaba has further
developed the DIN model and eventually formed the structure of the DIEN model. As
shown in Figure 3.25, the model is still composed of an input layer, an embedding
layer, a connection layer, a multilayer fully connected neural network, and the final
output layer. The colored “interest evolution network” in the figure is considered to
be an embedding representation of user interest, and its final output is the user interest
vector ′h T(). The innovation of the DIEN model is how to build an interest evolution
network in a recommendation model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.2
5

T
he

 s
tr

uc
tu

re
 d

ia
gr

am
 o

f
th

e
D

IE
N

 m
od

el
.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

88 Deep Learning Applications in Recommender Systems

The interest evolution network is divided into three layers from bottom to top:

 (1) Behavior Layer (color green): converts the original behavior sequence into an
embedding behavior sequence;

 (2) Interest Extraction Layer (color beige): its main function is to extract user inter-
ests by simulating the process of user interest migration;

 (3) Interest Evolving Layer (light red): this layer simulates the interest evolution pro-
cess related to the current target advertisement by adding an attention mechanism
based on the interest extraction layer.

In the interest evolution network, the structure of the behavior sequence layer is con-
sistent with the typical embedding layer. The key to simulating the evolution of user
interests lies mainly in the interest extraction layer and interest evolution layer.

3.9.3 Interest Extraction Layer

The basic structure of the interest extraction layer is a Gated Recurrent Unit (GRU)
network. Compared with the traditional sequence model RNN (recurrent neural
network), GRU solves the vanishing gradients problem commonly seen in RNN.
Compared with LSTM (long short-term memory network), GRU has fewer parame-
ters and faster training convergence speed. All of the aforementioned reasons result in
the final adoption of the GRU network in the DIEN model.

The specific form of each GRU unit is defined as:

u W U h b

r W i U h b

h W i U

t
u

t
u

t
u

t
r

t
r

t
r

t
h

t t

i

r

� � �� �
� � �� �
� �

�

�

�

�

1

1

tanh� � hh
t

h

t t t t t

h b

h u h u h

�

�

�� �
� �� � �

1

11 � � �

 (3.17)

where σ is the sigmoid activation function,  is the element-wise product operation,
W W W U U Uu r h z r h, , , , , are six sets of parameter matrices to be learned. it is the
input state vector, that is the embedding vector e t() of each behavior in the behavior
sequence layer. ht is the tth hidden state vector in the GRU network

Following the interest extraction layer with multiple GRUs, the user’s behavior
vector b()t is further abstracted to form the interest state vector h()t . In theory,
based on the sequence of interest state vectors, the GRU network can already pre-
dict the next interest state vector, but why does DIEN further add the interest evo-
lution layer?

3.9.4 Structure of Interest Evolution Layer

The biggest distinction between the interest evolution layer and the interest
extraction layer is the addition of an attention mechanism. This mechanism is in
the same vein as DIN. It can be seen from the connection of the attention units in

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

893.9 DIEN: Sequence Model in Recommender Systems

Figure 3.25. The generation process of the attention score of the interest evolu-
tion layer is exactly the same as that of DIN, which is the result of the interaction
between the current state vector and the target advertisement vector. That is to say,
DIEN needs to consider the relevance of targeted advertisements in the process of
simulating interest evolution.

This also answers the question at the end of Section 3.9.3. The interest evolution
layer is added on top of the interest extraction layer in order to simulate the interest
evolution path related to the target advertisement in a more targeted manner. Due to the
characteristics of e-commerce such as Alibaba, users are very likely to purchase mul-
tiple categories of goods at the same time. For example, while purchasing a “mechan-
ical keyboard,” they are still viewing the goods under the “clothing” category. As a
result, the attention mechanism is particularly important under such condition. When
the target advertisement is an electronic product, the interest evolution path related to
the purchase of “mechanical keyboard” is obviously more important than the evolu-
tion path of purchasing “clothes.” Such distinction logic doesn’t exist in the interest
extraction layer.

The interest evolution layer achieves application of the attention mechanism by
adopting the GRU with Attentional Update gate (AUGRU) structure. AUGRU adds
the attention score to the structure of the update gate of the original GRU. The specific
form is shown in Eq. 3.18:

%

% % %o o

u a u

h u h u h
t t t

t t t t t

� �

� � � � �

� �

� �� � ��1 1
 (3.18)

Comparing with Eq. 3.17, it can be seen that AUGRU adds the attention score at on
the basis of the original ut

′, where ut
′ is the original update gating vector and similar to

ut in Eq. 3.17. The generation method of the attention score is basically the same as
that of DIN, which uses the attention activation units.

3.9.5 Inspiration of the Sequence Model to Recommender Systems

This section introduces Alibaba’s recommendation model DIEN that incorpo-
rates sequence models. Because the sequence model has a strong ability to express
time series, it is very suitable for predicting the user’s next action after a series of
behaviors.

In fact, it is not only Alibaba that has successfully applied the sequence model to its
e-commerce recommendation model, but video streaming companies such as YouTube
and Netflix have also successfully applied the sequence model to their video recom-
mendation models to predict the user’s next streaming preferences (such as next watch).

However, it is necessary to pay attention to the high training cost of the model
and the latency in online inferencing caused by serial prediction in a large sequence
model. The complexity of sequence model undoubtedly increases the difficulty of
its productization. So system optimization turns very important in the engineering
implementation. Experiences with implementing a sequence model in production will
be discussed in Chapter 8.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

90 Deep Learning Applications in Recommender Systems

3.10 Combination of Reinforcement Learning and
Recommender Systems

Reinforcement learning is a very popular research topic in the field of machine
learning in recent years. It is originated from the field of robotic studies, and aimed
at modeling the decision-making and learning process of an agent in a changing
environment. In the learning process of the agent, it will complete the collection of
external feedback (Reward), change its own state (State), and then make decisions
on the next action (Action) according to its current state, and continue to repeat
the cycle. This process is usually referred to as the “action-feedback-state update”
cycle.

The concept of agent is very similar to the robots, and the entire reinforcement
learning process can be understood by analogizing the robots learning human actions.
If the recommender system is viewed as an agent, with its learning and updating
process equivalent to the agent’s cycle of “action-feedback-state update,” then apply-
ing reinforcement learning concepts to recommender systems becomes much more
intuitive.

In 2018, the reinforcement learning model DRN [14] was firstly proposed by
researchers from Penn State University and Microsoft Research Asia. This was an
attempt to apply reinforcement learning knowledge to news recommendation.

3.10.1 Deep Reinforcement Learning Recommender Systems Framework

The deep reinforcement learning recommender systems framework is proposed based
on the classic process of reinforcement learning. Readers can use the specific scenar-
ios of the recommender system to further familiarize themselves with the concepts of
agent, environment, state, action, and feedback in reinforcement learning. As shown
in Figure 3.26, the diagram clearly shows the various components of the deep rein-
forcement learning recommender systems framework and the iterative process of the
entire reinforcement learning. The specific explanation of each element in the recom-
mender systems scenario is as follows:

• Agent: The recommender system itself, which includes a recommendation
model based on deep learning, an exploration strategy, and related data storage
(memory);

• Environment: The external environment of the entire recommender system con-
sisting of news websites or apps, and users. In the environment, the user receives
the recommended results and makes corresponding feedback;

• Action: For a news recommender system, an action refers to the system pushing
ranked news to the user;

• Feedback: After the user receives the recommendation result, the user will give
positive or negative feedback. For example, click behavior is considered to be a
typical positive feedback, while impression but nonclick is a negative feedback

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

913.10 Reinforcement Learning in Recommender Systems

signal. In addition, the user’s activity level and the interval between the app open-
ing are also considered as valuable feedback signals;

• State: State refers to the description of the environment and its current specific sit-
uation. In the news recommendation scenario, the state can be viewed as a feature
vector representation of all actions and feedback received, as well as all relevant
information about the user and news. From the perspective of traditional machine
learning, “state” can be seen as the collection of all the data that has been received
and can be used for training.

Under such a reinforcement learning framework, the learning process of the model
can be iterated continuously. The iterative process mainly includes the following
steps:

 (1) Initialize the recommender system, which is the agent in this case.
 (2) The recommender system ranks news (actions) based on the currently collected

data (state) and pushes them to the website or app (environment).
 (3) The user receives the recommendation list and clicks or ignores (feedback) the

recommendation result.
 (4) The recommender system receives feedback and updates the current state or

updates the model through model training.
 (5) Repeat the tasks from Step 2.

Readers may have realized that reinforcement learning models have an advantage over
traditional deep models in that they can perform online learning. In other words, the
reinforcement learning models can constantly update themselves with newly learned
knowledge, and make timely adjustments and feedback. This is one of the advantages
of applying reinforcement learning to recommender systems.

Figure 3.26 Deep reinforcement learning recommender systems framework.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

92 Deep Learning Applications in Recommender Systems

3.10.2 Deep Reinforcement Learning Recommendation Models

The agent part is the core of the reinforcement learning framework. For the recom-
mendation agent, the model is the “brain” of the system. In the DRN framework, the
role of the “brain” is the Deep Q-Network, DQN for short, where Q is the abbreviation
of “Quality.” It means that by evaluating the quality of the action, the utility score of
the action is calculated and used for decision-making.

The network structure of DQN is shown in Figure 3.27. The concepts of rein-
forcement learning – state vector and action vector – are applied in feature engineer-
ing. User features and context features are classified as state vectors, because they
are action independent. User-news crossing features and news features are treated as
action features since they are related to the action of recommending news.

User features and environmental features are fitted by the multilayer neural net-
work on the left to generate a value score V ()s . The state vector and action vector are
used to generate an advantage score A(,)s a . Finally, the score from both parts are
combined to obtain the final quality score Q(,)s a .

3.10.3 Learning of the DRN Model

The learning process of DRN is the main focus of the entire reinforcement learning
recommender systems framework. It is the online learning process that gives
the reinforcement learning model more real-time advantages than other “static”
deep learning models. Figure 3.28 vividly depicts the learning process of DRN in
 chronological order.

Figure 3.27 The model structure of the DQN model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.2
8

T
he

 le
ar

ni
ng

 p
ro

ce
ss

 o
f

th
e

D
R

N
 m

od
el

.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

94 Deep Learning Applications in Recommender Systems

The important steps in the DRN learning process are illustrated in chronological
order from left to right in Figure 3.28:

 (1) In the offline part, the DQN model is trained according to the historical data as the
initialization model of the agent;

 (2) At the stage t t1 2→ , the initial model is used to power the recommendation in the
push service for a period of time to accumulate feedback data;

 (3) At the time point t2, the user click data accumulated in the t t1 2→ stage is used to
perform a minor update of the model;

 (4) At the time point t4, a major update of the model is performed using the user click
data and user activity data in the t t1 4→ stage;

 (5) Repeat Steps 2–4.

The model main update operation in Step 4 can be understood as retraining using
historical data to replace the existing model with the trained model. So how does the
minor update in Step 3 work? This involves a new online training method used by
DRN – Dueling Bandit Gradient Descent Algorithm.

3.10.4 Online Learning of the DRN Model: Dueling Bandit Gradient Descent
Algorithm

The flow of DRN’s dueling bandit gradient descent algorithm is shown in Figure 3.29.
The main steps are as follows:

 (1) For the current network Q that has been trained, add a small random perturbation
∆W to its model parameter W to obtain a new model parameter W . Here the net-
work corresponding to W is called the exploration network Q;

 (2) The recommendation lists L and L are generated respectively with current net-
work Q and the exploration network Q. Then, the two recommendation lists are
combined into one recommendation list by interleaving (described in detail in
Section 7.5) and pushed to the user.

 (3) Collect user feedback in real-time. If the feedback of the content generated by the
exploration network Q is better than the current network Q, replace the current
network with the exploration network and enter the next iteration, otherwise keep
the current network

In the first step, the exploration network Q is generated from the current network Q,
and the formula for generating random disturbance is shown in Eq. 3.19,

 �W W� �� �� � �rand 1 1, (3.19)

where α is the exploration factor, which determines the degree of the exploration.
rand �� �1 1, means a random number between �� �1 1, .

The online learning process of DRN utilizes the idea of “exploration,” and the
granularity of the model updates can be refined to once per feedback. This process
is very similar to the idea of stochastic gradient descent. Although the results of one
sample may produce random disturbances, as long as the total decent trend is correct,

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

953.10 Reinforcement Learning in Recommender Systems

the optima can be finally reached through a large number of attempts. In this way,
DRN keeps the model synchronized with the “freshest” data at all times, and inte-
grates the latest feedback information into the model in real-time.

3.10.5 Inspiration of Reinforcement Learning for Recommender Systems

The application of reinforcement learning in recommender systems once again opens
the world of recommendation models from a different angle. The difference between
this and the other deep learning models mentioned earlier is that it changes the learn-
ing process from static to dynamic, which brings the importance of model real-time
learning to a prominent position.

It also brings us a question worth thinking about – should we build a heavy-weight,
“perfect” model with a large update delay, or should we build a lightweight and sim-
ple model that can be trained in real-time? Of course, there are no assumptions or
conjectures in engineering systems, we can only tell which approach is better through
actual experiment results. Also, the relationship between “weight” and “real-time” is
by no means antagonistic, but before finalizing a technical solution, plenty of evalua-
tion and experiments are necessary for this kind of real-world problem.

Figure 3.29 The online learning approach of the DRN model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

96 Deep Learning Applications in Recommender Systems

3.11 Applications of BERT in a Recommendation Model

Bidirectional Encoder Representations from Transformers (BERT) is a powerful
natural language processing model that was introduced by Google in 2018 [15] and
achieved state-of-the-art performance in multiple NLP tasks. Like the attention mech-
anism introduced in Section 3.8, the BERT model was also borrowed into the recom-
mendation world after its demonstrated success in the NLP field. Part of the application
of the BERT model in recommender systems is still utilizing its ability to process and
understand the natural languages and capture the semantic interpretations for the text
data, which will not be covered in this section. In this section, we will mainly walk
through two BERT-based recommendation models, the BERT for Recommendation
(BERT4Rec) model [16] and User-News Matching BERT (UNBERT) model [17],
which adopt the BERT model structure in the sequential recommendation scenarios.

Before introducing the BERT4Rec and UNBERT models, let us briefly review
some foundations of the BERT – the Transformer model and self-attention
mechanism.

Basics: The Transformer Model and Self-Attention Mechanism
The Transformer model is a revolutionary deep learning architecture that has had a
significant impact on NLP tasks, and it builds a foundation for the development of
many succeeding language models. Two well-known succeeding language models
are the BERT model and the GPT model. The Transformer model was introduced
in the famous paper titled “Attention is All You Need” by Vaswani et al. in 2017
[16]. Compared to the traditional RNN (Recurrent Neural Networks) and LSTM
(Long Short-Term Memory Networks), the Transformer model has demonstrated
state-of-the-art performance in various NLP tasks as well as increasing model
training efficiency by increasing the training parallelism.

Now, we will briefly introduce the structure of the Transformer model (as
depicted in Figure 3.30).

The transformer model consists of an encoder component (left in Figure 3.30)
and a decoder component (right side in Figure 3.30).

Both the encoder and decoder are composed of a stack of N identical layers.
On the encoder side, each layer has two sub-layers, one a multihead self-attention
mechanism layer and one position-wise fully connected feed-forward layer. The
output of each sub-layer is followed by a layer normalization and connected with
the residual connections. On the decoder side, in addition to the multihead atten-
tion layer and feed-forward sublayer, there is a third sublayer to connect the output
of the encoder stack with a multihead attention module.

To better understand the encoder and decoder structures, we need to grasp sev-
eral key components and features first.

Self-Attention Mechanism: Unlike the attention mechanism introduced in
Section 3.8, the self-attention mechanism is used to encode the sequence directly.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

973.11 BERT Applications in Recommendation Models

Figure 3.30 The Transformer model architecture [18].

It allows the Transformer model to weigh the importance of each token in the
sequence with respect to all other tokens in the same sequence. The attention
matrix (as shown in Figure 3.31(a)) is defined as

 Attention softQ K V
QK

d
V

T

k

, , max� � �
�

�
��

�

�
�� (3.20)

where matrices Q K, , and V are corresponding to “Query,” “Key,” and “Value,”
respectively. These matrices don’t have actual physical meanings in the
Transformer model; rather, they are borrowed from information retrieval contexts
to help understanding.

Multihead Attention: The Transformer model adopted a multihead atten-
tion mechanism in both the encoder and decoder. The multihead attention layer
is depicted in Figure 3.31(b). Compared to a single-head attention structure,
the multihead attention mechanism leverages different linear projects to learn

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

98 Deep Learning Applications in Recommender Systems

different relationships from training data. The multihead attention function can
be described as:

Multihead Attention Concat

where

Q K V head head W

head

O, , , ,� � � �� �1 2

ii i i iAttention Q K V� � �, ,
 (3.21)

where Q Ki i, , and Vi are query, key, and value matrices for headi.
One benefit of the multihead attention mechanism is that each head atten-

tion matrices can be computed in parallel, which significantly improves training
efficiency.

Positional Encoding: Unlike the traditional sequence models, the Transformer
does not understand the positional order of different tokens in a sequence. In
order to solve this problem, a positional encoding function is added to the input
embeddings at the beginning of both encoder and decoder tasks. In the origi-
nal paper, authors used the sine and cosine functions of different frequencies as
follows,

PE pos

PE pos

pos i
i d

pos i

el
,

/

,

sin /

cos /

2
2

2 1
2

1000

1000

� �

�� �

� � �
�

mod

ii d el/ mod� �
 (3.22)

where pos is the position and i is the dimension. According to the authors, these
positional encoding functions were chosen because they could allow the model to
easily learn to attend by relative positions.

There are some other key components in the Transformer model structure, like
layer normalization, masking, and so on. These contents won’t be discussed in
detail; readers can refer to the original paper for more information.

Figure 3.31 (a) Scaled dot-production attention unit; (b) illustration of multihead attention
layer [18].

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

993.11 BERT Applications in Recommendation Models

3.11.1 Relationship between BERT and Transformer

The BERT model is a specific implementation of the Transformer architecture, so it
is actually one type Transformer model. But compared with the original Transformer
model proposed in the “Attention is All You Need” paper [18], the BERT model has
the following differences:

• Model Structure: Instead of using both encoder and decoder stacks, BERT just
used a stack of encoders in the model structure.

• Training: The training steps of a BERT model in an NLP application usually
involve two steps of training – pre-training and fine-tuning. BERT uses Masked
Language Model (MLM) objectives and task-specific objectives in the fine-tuning
task. In pre-training, the MLM objective enables the BERT model to fuse both
left and right contexts. This is also where “bi-directional” is from, in the BERT
model name.

• Model Usage: As the BERT model only includes encoder stacks, its direct output
are vectors. As a result, the major applications of BERT model are embedding gen-
erations and classifications. However, the major use case for the Transformer model
is sequence-to-sequence generation.

The following section mainly focuses on the BERT model’s applications and its
derivatives in recommender systems.

3.11.2 BERT4Rec: BERT for Recommendation Model

After the success of the BERT model in the NLP fields, people started to wonder if the
BERT model structure could be also applied to some other fields to handle some other
sequential machine learning tasks. In 2019, the BERT4Rec model was introduced,
and it successfully transferred the BERT model approaches to sequential recommen-
dations. Section 3.9 introduces a sequence recommendation model, DIEN, which uses
an RNN to represent the user’s historical behaviors and demonstrates the benefits of
a sequential model in the next-item predictions. In contrast to the conventional RNN-
based sequential model (as shown in Figure 3.32), the benefits of the BERT4Rec
model structure mainly include:

 (1) It can gather the learning from both previous and future items during the
training.

 (2) The multihead attention structure can make overall learning more efficient.

As with many other sequential models, the BERT4Rec model also targeted solving
the next-item prediction problem, which can be described as predicting the interac-
tion probability of each item in the candidate pool given the interaction history Su
for user u, The BERT4Rec model architecture is depicted in Figure 3.32(b). It con-
sists of multiple stacks of transformer layer. The details in the Transformer units
are illustrated in Figure 3.32(a). As with its predecessor, the BERT4Rec model
only used the encoder in the Transformer units. For the output layer, a two-layer

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.3
2

(a
)T

ra
ns

fo
rm

er
 la

ye
r,

 a
nd

 it
s

di
ff

er
en

ce
s

co
m

pa
ri

ng
 w

ith
 (

b)
 B

E
R

T
4R

ec
 m

od
el

 a
rc

hi
te

ct
ur

e
w

ith
 th

e
(c

)
un

id
ir

ec
tio

na
l m

od
el

 S
A

SR
ec

 a
nd

(d

)
co

nv
en

tio
na

l R
N

N
-b

as
ed

 s
eq

ue
nc

e
m

od
el

 [
16

].

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1013.11 BERT Applications in Recommendation Models

feed-forward network with GELU activation to generate the probability distribu-
tion of all the candidate items,

 P v t
L p p T O� � � � �soft GELUmax(()h W b E b (3.23)

where W p is the learnable projection matrix, bp and bO are the bias terms, and
E d� �



V is the embedding matrix for the item set V .
In the model training, BERT4Rec model adopted the same objective as the original

BERT model, Masked Language Model objective, in the sequence recommendation
to avoid information leaking. The items in the user behavior sequence were randomly
masked as shown in Figure 3.33, and the correspondingly generated hidden vectors
are passed into the output layer to generate the softmax matrix for training.

The negative log-likelihood of the masked targets is defined as the loss function for
each masked input,

  � � �� �
�
�1

S
P v v S

u
m

v S
m m u

m u
m

log |* � (3.24)

where Su
′ is the masked version for user behavior history Su, Su

m is the random masked
items in the user behavior history, and vm

* is the true item for the masked item vm.
For model inference, the special token “[mask]” is appended to the user interaction

history, and then the entire input sequence is fed into the model to generate the pre-
dicted probabilities that the user interacts with each item. The item with the maximum
probability will be the next recommended item. To make the BERT4Rec model out-
put cover the target sequential recommendation task (that is, predicting the next item
after a sequence of interacted items), the authors also added training samples that only
mask the last item in training data.

3.11.3 UNBERT: A BERT-Based Model Combining Sequential
Recommendation and NLP

The BERT4Rec model only borrows the model structure from BERT and transfers it
to a sequential recommendation model. It does not have the advantage of the original
BERT model’s natural language understanding capabilities. This section introduces
the UNBERT model (User-News Matching BERT model), which combines both lan-
guage understanding and sequential recommendations in the same piece.

The application scenario of UNBERT mode is given a user u with a sequence of
clicked news [, , ,]n n nu u

n
u

u
1 2 … and a set of candidate news V v v vu Vu

� �{ , , , }1 2 . The
objective of this model is to predict the click probability on the i-th candidate news vi
by user u. The probability score can be denoted by ˆ (,)y f u vi= .

Figure 3.33 Randomly masked interaction sequence and training data generation.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

102 Deep Learning Applications in Recommender Systems

The model structure is depicted in Figure 3.34. The UNBERT model is mainly
composed of two key modules – word-level module and news-level module, each of
which can be considered a separate “BERT module.” Each module consists of mul-
tiple layers of Transformer stack, including a multihead self-attention sublayer and a
position-wise feed-forward layer.

Input Sequence and Embedding Layer
The input sequence construction and embedding layers are illustrated in Figure 3.35.
It includes “News Sentence” and “User Sentence,” where the News Sentence is sim-
ply the text description of the candidate news item, and the User Sentence is the
concatenation of the news sequence that the user clicked in the history. The historical
news items are separated by a special segment token (NSEP). Each clicked news
is also represented by some text-based descriptions. The News Sentence and User
Sentence are separated by another special token (SEP). Additionally, a classification
token (CLS) is added at the beginning of concatenated sequence to help generate the
classification embedding ew as shown in Figure 3.34.

There are four layers of embeddings generated for each token – token embed-
ding, segment embedding, position embedding, and news segment embedding. The
token, segment, and position embeddings are trained using masked LM, and segment
embedding is randomly initialized and further updated in the fine-tuning task. The
final input token representation Et is constructed by summing all four embeddings.

Word-Level Module
The word-level module (WLM) mainly applies the Transform Layers to the con-
catenated input sequence and generates hidden representations for the input tokens.
The conventional encoder structure is adopted in the Transformer unit, including the

Figure 3.34 The overall architecture of the UNBERT model [17].

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1033.11 BERT Applications in Recommendation Models

multihead self-attention layer, the position-wise feed-forward layer, plus the residual
connections and layer normalization between the two layers.

News-Level Module
The news-level module (NLM) aggregates the word’s hidden representations of each
news from the world-level module and feeds the aggregated vectors to multiple trans-
former layers to generate the final news representations and matching signal at the
news level.

Three different aggregations were studied:

 (1) The NSEP Aggregator directly used the generated embeddings of special tokens
(NSEP) from the WLM output.

 (2) The Mean Aggregator averages the word embeddings for each news segment.
 (3) Attention Aggregators apply a lightweight attention network. The attention net-

work applied a fully connected neural network with a tanh activation function.
Then it connects with another fully connected neural network to generate the
combination weights f . The weights then are applied in the linear combination of
word embeddings as in Eq. 3.25,

 n f w fij
i S

i i
i Sj j

�
� �
� � (3.25)

where the wi is the word embeddings from WLM for i-th word and S j is the j-th news
representation.

Click Predictor
The click predictor module takes the word-level matching signal ew from WLM and
news-level matching signal en from NLM to generate the user click probability of
each item. The prediction function is as follows,

 y e e W bw n
c c� � � �� �softmax ; (3.26)

In the UNBERT training, the pre-trained bert-base-uncased model weight is used directly
to initialize the word-level module. Then, the entire model was fine-tuned using the MIND
datasets – a real-world news recommendation dataset collected from MSN News logs.

Figure 3.35 UNBERT input sequence construction and embedding layer structures.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

104 Deep Learning Applications in Recommender Systems

Since the UNBERT model has used a pre-trained BERT model as the foundation
model, so it can capture some generalized knowledge outside the fine-tuning data-
set. As a result, the UNBERT model has proved excellent performance on cold-start
items. This strength is very beneficial for News recommender systems as there are
tons of new news generated every day. Considering the importance of news freshness
to the user, it is very important that the model can pick up new news items from the
candidate pools and recommend to the relevant user in a timely way.

3.11.4 Inspiration of BERT Applications in Recommender Systems

The BERT model’s application in recommender systems provides another efficient
way of handling sequential input data in both text form and user behavior sequence
form. The multihead self-attention mechanism lets the model capture the contexts from
long-ranged surrounding items. Besides, it can provide the hidden representations of
text-based features, which inherent the original use case of BERT model in NLP tasks.

3.12 LLM: The New Revolution in AI and Its Application in Recommender
Systems

Since the introduction of ChatGPT by OpenAI in 2022, it has had a profound impact
on the AI field. An example conversation with ChatGPT is shown in Figure 3.36. At
the beginning of the conversation, the user provides an input text or instruction to ini-
tiate the request for information or assistance. This input text is usually referred to as a
“prompt” in the ChatGPT context. ChatGPT will generate the response corresponding
to the prompt provided by the user. As we can see in this example, ChatGPT presents
astonishing capabilities of reasoning and understanding, as well as the ability to gen-
erate more human-like dialogs based on given contexts and questions.

The success of ChatGPT pushes Large Language Models (LLM) to the front of
stage and attracts tremendous interest. The LLM is not just limited to the models that
support ChatGPT; it is rather a general term to represent a bunch of different language
models with large parameter size and based on some neural network structures (for
example, the Transformer structure as introduced in Section 3.1). It is usually pre-
trained with massive text corpuses from the public sources such as articles, Wikipedia,
books, and some other Q&A-type conversational data. From the pretraining step,
LLMs can learn numerous generalized knowledge from the public domain and trans-
fer the learnings to the downstream tasks. Sometimes, LLMs are also fine-tuned to let
them pick the knowledge within specific domains to improve their performance on
corresponding tasks. Thanks to LLMs’ powerful performance, it has opened up new
possibilities of using them in many different domains outside NLP fields.

One of the extensions is adapting the LLM to recommender systems for model per-
formance and user experience improvements. In this section, we will follow a recently
published literature survey [19] to explore “where” and “how” an LLM can be applied
in recommender systems. The high-level scheme is illustrated in Figure 3.37.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1053.12 LLM Revolution in Recommender Systems

3.12.1 Where to Adapt LLM

In the survey, authors abstracted the following key components and elaborated on the
applications of LLM in each of these key areas:

• Feature engineering
• Feature encoder

Figure 3.36 An example of a conversation with ChatGPT.

Figure 3.37 The decomposition of “where” and “how” to adapt the LLM in the recommender
systems.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

106 Deep Learning Applications in Recommender Systems

• Scoring/ranking function
• Pipeline Controller

3.12.1.1 LLM in Feature Engineering
In the feature engineering application, LLM mainly generates the auxiliary textual
features based on original input data (for example, user profiles, item descriptions,
and so on) to augment the input features. During the feature generation, the strength
of LLM in reasoning, understanding, and summarization can be leveraged to make
the generated text-based features more accurate and concise than the original output.

One example of a feature engineering application is the MINT framework intro-
duced in [20]. MINT is an approach that targets the narrative-driven recommenda-
tion (NDR), where the user gives a verbose query including contextual information
and requests, and the recommender system recommends the item based on the user’s
query and interacted item history. One challenge of NDR model training is that it
always lacks training data. MINT is designed to mainly generate synthetic training
data pairs utilizing InstructGPT for final retrieval model training. The synthetic data
generation and model training are depicted in Figure 3.38.

In the MINT approach, authors used InstructGPT model to generate the narrative
queries. The prompt examples are shown in Figure 3.39. The few-shot strategy was
adopted in the query generation task with a few examples are provided in the prompt. It
is expected that InstructGPT will follow the examples provided in the prompt, capture
the relationship between different parts of the example, and then finally generate the syn-
thetic queries to complete the target task. User’s historical interacted items, past review
and actual user narrative query are provided in each few-shot example. The intention is
to let LLM capture the interests and preferences from past activities and then artificially
generate the corresponding queries, mimicking what a user may ask in a query.

The synthetic queries are then collected and paired with all the interacted items.
Since the synthetic queries may only capture part of the interests, not all the items
are relevant to the synthetic queries. So the authors used a filter model to filter
low-relevance pairs. Finally, these synthetically generated data pairs are then used as
the training samples for a retrieval model based on a bi-encoder structure.

This work provides an example of how LLM is being used to generate the synthetic
data or input features to help with the model training. Through this approach, the general

Figure 3.38 The illustration of the MINT approach to generate the narrative queries for set
items liked by a user with an LLM. The generated queries will be paired with the item to form
a training sample for an LM-based retrieval model.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1073.12 LLM Revolution in Recommender Systems

knowledge and reasoning abilities from the LLM can be carried over to text generation
tasks, which can provide additional latent signals into the text input features.

3.12.1.2 LLM as Feature Encoder
In this application, LLM is used as a feature encoder to encode the textual features and
use the encoded representations in the recommendation model. The benefits of using
a LLM as a feature encoder are:

 (1) Enriching the user or item representations with more semantic meanings.
 (2) Transferring generalized knowledge from a pretrained LLM foundation model

for cross-domain or cold start recommendations.

The UNBERT model introduced in Section 3.11.2 falls within this bucket. In the
UNBERT model, a pre-trained BERT is adopted in the Word Level Module to encode
the concatenated texts for target news and user-interacted news. Readers can refer to
Section 3.11.2 for more details.

3.12.1.3 LLM as Scoring/Ranking Function
In this application, LLM is used to directly generate (1) the rating for the candidate
item, (2) the recommendation list of the items, and (3) both rating and recommenda-
tion lists with a multitask setup.

In this section, we will briefly introduce one work by the Google team [21] and
present an example of using LLM to finish the scoring task. In this work [21], authors
explored the LLM’s ability to generate ratings with zero-shot, few-shot, and fine-
tuned settings. The task is to predict users’ ratings based on their viewing history.

The prompt design for zero-shot and few-shot are presented in Figure 3.40 (a) and
(b), respectively. In the zero-shot prompt, the user’s interaction history is just listed
down with the user rating, whereas a few rating prediction examples are included in

Figure 3.39 Prompts used in InstructGPT to generate narrative queries.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.4
0

(a
)

A
 z

er
o-

sh
ot

 e
xa

m
pl

e;
 (

b)
 a

 f
ew

-s
ho

t e
xa

m
pl

e;
 (

c)
 a

 d
ec

od
er

-o
nl

y
fin

e-
tu

ni
ng

 m
od

el
; (

d)
 a

n
en

co
de

r-
de

co
de

r-
ba

se
d

fin
e-

tu
ni

ng
 m

od
el

 f
or

 th
e

ra
tin

g
ta

sk
.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1093.12 LLM Revolution in Recommender Systems

the prompt in the few-shot setting. Throughout the experiment, the authors found LLM
can be very sensitive to the provided prompt and doesn’t always follow instructions.

Then, the authors adopted fine-tuning and fine-tuned several models in the Flan-T5
model families. In both decoder-only (Figure 3.40(c)) and encoder-decoder models
(Figure 3.40(d)), a projection layer is added to generate the output for either the clas-
sification task or the regression task. Then, the model is fine-tuned with training sam-
ples to better fit the prediction task.

Through the experiments, the authors concluded that zero-shot and few-shot LLM
approaches have lower performance than the fully supervised methods. Fine-tuned
LLMs can help close the gap and bring benefits in (1) higher training data efficiency
(that is, smaller training data size is needed), (2) much easier feature processing and
modeling, and (3) new capabilities expansion with conversational recommendations.

3.12.1.4 LLM as Pipeline Controller
It has been proven that LLM doesn’t only understand textual information, but also
presents strong capabilities for in-context learning and logical reasoning. As a result,
it could also play a role as a controller to decide where logic flow should go in the
entire recommendation pipeline.

In a recent work [22], the CHAT-REC system was introduced to bridge the rec-
ommender systems and LLMs. This system consists of several key components: the
prompt constructor, the LLM (ChatGPT), and the conventional recommender system.
The workflow of the CHAT-REC is depicted in Figure 3.41. We will use a pseudo
example to illustrate how the system works:

 (1) The user sent a query, “Could you recommend some action movies to me?”
 (2) The prompt constructor collects different contexts to generate the prompt. The

contexts’ sources include user raw query, recommender system interfaces, user
profile, user-item history, and dialog history.

 (3) The generated prompt is then fed into the LLM (ChatGPT) module to generate
the output. In the output, ChatGPT will decide if the conventional recommender
system will be called.

 (4) In the first pass, the LLM decides to call the recommender system to generate
the candidate set. Then the recommender system will generate the candidate sets
and send them back to the prompt constructor.

 (5) The prompt constructor then generates the new prompt with the recommended
candidate set, and sends it to the LLM module.

 (6) The LLM decides that no recommendation call is needed, and then conducts the
reranking to pick the top five candidates to return to the user.

 (7) If he user asks for an explanation, the user query and other contexts will repeat the
process from Step (1). The LLM module can determine that no recommendation
call is needed and generate the responses to the user directly.

From this example workflow, we can see that the LLM model is being used as an
orchestrator in the entire system by leveraging its excellent ability of reasoning and
understanding and drives the interaction between the user and recommender systems.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Fi
gu

re
 3

.4
1

O
ve

rv
ie

w
 o

f
C

H
A

T
-R

E
C

. T
he

 le
ft

 s
id

e
is

 th
e

di
al

og
 u

se
d

in
 th

e
co

m
m

un
ic

at
io

n
w

ith
 C

ha
tG

PT
. T

he
 m

id
dl

e
sh

ow
s

th
e

flo
w

ch
ar

t,
an

d
th

e
ri

gh
t

si
de

 s
ho

w
s

th
e

sp
ec

ifi
c

ju
dg

m
en

t i
n

th
e

flo
w

 [
22

].

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1113.12 LLM Revolution in Recommender Systems

3.12.2 How to Adapt LLM

In this survey paper [19], the authors divided the usage of LLM in recommender sys-
tems into four quadrants, as shown in Figure 3.42. The four quadrants were:

 (1) Tuned LLM
 (2) Not tuned LLM
 (3) Infer with conventional recommendation model (CRM)
 (4) Not infer with conventional recommendation model (CRM)

In Figure 3.42, we can see the overall research development trajectory starts from
tuned-LLM + infer with CRM and firstly moves toward the not-tuned LLM + infer
w/o CRM quadrant. In this trajectory, the model size is significantly increased. As
there is no model training in this quadrant, it is very fast for the model development,
but the performance is sacrificed as a trade-off consequence. Then, the researchers
start to diverge in both directions to two other quadrants – not tuned LLM + CRM and
tuned LLM + w/o CRM. The main motivations are to achieve better model perfor-
mance as well as reduce the model size for faster training and inferencing.

As we have introduced one model in each quadrant in the previous section to show
the adaptations of LLM with recommender systems, we will not expand to cover the
other models here. Interested readers can follow the references from this survey paper
[19] to continue exploring this new tide of revolution.

Figure 3.42 Four quadrant classification about how to adapt LLM to recommender systems.
Circle size denotes the model size and the colors indicate the best benchmarking model that
each model can beat. The light-colored arrows show the overall development trajectory.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

112 Deep Learning Applications in Recommender Systems

3.12.3 Inspiration and Challenges of LLM Adaptation in Recommender Systems

The recent developments of LLMs have not only attracted the world’s attention to
the AI field, but also opened a new “gate” for recommender systems. The LLMs’
astonishing understanding and reasoning abilities give us a new angle on building
recommender systems, and also add a new powerful tool to our toolbox. However, we
also need to acknowledge the challenges that we are facing in the LLM world.

At the end of the survey [19], the authors summarized the challenges from three
aspects: (1) efficiency, (2) effectiveness, and (3) ethics:

 (1) Efficiency: This includes both training and inference latency. As the model
becomes bigger, it requires more training data to train the model effectively. Both
the larger model size and larger training data can significantly increase the training
efficiency. Also, the increased model parameter amount makes it challenging to
finish the inferencing task under the limited time constraints in the online service.

 (2) Effectiveness: Even though many researchers have demonstrated the powerful-
ness of the LLMs, still the LLM can have its own shortcomings and limitations.
Two examples are limited context window size and ID feature understanding.
From past studies, we can see LLMs show a reduction of understanding ability
when the input texts are too long in the prompt. For the other limitation, since the
ID features are not semantically meaningful, so it will be quite hard for the LLMs
to understand and differentiate the IDs in the model input.

 (3) Ethics: This is a quite common topic in recommender systems. The practitioners
in the recommendation field have been studying many approaches for removing
bias from recommender systems. It has also been found that LLMs can present
certain biases originating from the pre-training corpus and could potentially gen-
erate harmful or offensive content.

Luckily, numerous researchers and engineers have been working on each aspect of
these challenges and to create solutions to solve them. The reader can refer to the
references in the survey to get more details about those solutions, to inspire research
and actual implementations.

3.13 Summary: The Deep Learning Era of Recommender Systems

This section describes the relevant knowledge of state-of-the-art deep learning rec-
ommendation models, echoing the evolution diagram of deep learning models at the
beginning of the chapter. In this section, we will summarize the key knowledge of
deep learning recommendation models (as shown in Table 3.2).

With so many deep learning recommendation model options, the premise for read-
ers not to get lost is to be familiar with the relationship between each model and its
applicable scenarios. It needs to be clear that in the era of deep learning, no specific
model can be competent for all business scenarios, and it can be seen from Table 3.2
that the characteristics of each model are different.

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

1133.13 Summary: Deep Learning Recommender Systems

Table 3.2 Key points of deep learning recommendation models

Model Name Mechanisms Characteristics Limitations

AutoRec Based on the auto-encoder,
encode users or items, and
use the generalization ability
of the auto-encoder to make
recommendations

The single hidden layer
neural network has
a simple structure,
enabling fast training and
deployment

Limited expressivity

Deep
Crossing

Utilizing the classic deep learning
framework of “Embedding layer +
multihidden layer + output layer,”
automatically finish the deep
crossover of the features

Classic deep learning
recommendation model
framework

Use fully connected
hidden layers for
feature crossing,
lacks specificity

NeuralCF Replace the dot product operation
of the user vector and the item
vector in the traditional matrix
factorization with the interoperation
of the neural network

Expressive enhanced
version of matrix
factorization model

Only the ID features of
users and items are
used, and no other
features are added

PNN For cross operations between
different feature domains, define
multiple product operations such
as “inner product” and “outer
product”

Improving the feature
crossover on the top of
classic deep learning
framework

The “outer product”
operation is
approximated,
which affects its
expressivity to a
certain extent.

Wide&Deep Use the wide part to strengthen
the “memorization” of the
model, and use the deep part to
strengthen the “generalization” of
the model

Pioneered the construction
method of the ensembled
model, which has a
significant impact on the
subsequent development
of the deep learning
recommendation model

The wide part requires
manual feature cross
selection

Deep and
Cross

Replacing the wide part in the
Wide&Deep model with a cross
network

Solved the problem of
manual feature interaction
in the Wide&Deep model

The complexity of the
feature cross network
is high

FNN Use the parameters of FM to
initialize the parameters of the
embedding layer of the deep
neural network

Use FM to initialize the
parameters to speed up
the convergence of the
entire network

The main structure
of the model is
relatively simple, and
there is no objective-
oriented feature
crossover layer

DeepFM On the basis of Wide&Deep model,
replace the original linear wide
part with FM

Enhanced the feature
interactions of the
wide part

No significant structural
difference with the
classic Wide&Deep
model

NFM Replace the operation of second-
order hidden vector crossover in
FM with a neural network

Compared with FM, NFM
has stronger expressivity
and feature intersection
ability

Very similar to the
structure of the PNN
model

(continued)

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

114 Deep Learning Applications in Recommender Systems

Table 3.2 (cont.)

Model Name Mechanisms Characteristics Limitations

AFM On the basis of FM, an attention
score is added to each crossed
result after the second-order
hidden vector cross, and the
attention score is learned through
the attention network

Different crossed features
have different importance

The training process of
the attention network
is complicated

DIN Based on the traditional deep
learning recommendation model,
an attention mechanism is
introduced. The attention score is
calculated by using the correlation
between user behavior history
items and target advertising items

Make more targeted
recommendations given
different advertising items

Not take advantage of
the other features
other than “historical
behavior”

DIEN Combine the sequence model with
the deep learning recommendation
model, and use the sequence
model to simulate the evolution
process of users’ interests

The sequence model
enhances the system’s
ability to express the
changes of user interests,
so that the recommender
system begins to consider
the valuable information
in the time-related
behavior sequences

The training of the
sequence model is
complicated, and
the latency of the
online inferencing
is relatively large. It
requires engineering
optimization in
production.

DRN Apply the idea of reinforcement
learning to the recommender
system, and conduct online real-
time learning and updating of the
recommendation model

The ability of the model to
utilize the real-time data
is greatly enhanced

The online inferencing
is more complicated,
and the engineering
implementation is
more difficult

BERT4Rec
and
UNBERT

The applications of BERT model
in recommender systems provide
an efficient way to handle the
sequential input data in both
text form and user behavior
sequence form

The multihead self-attention
mechanism lets the model
capture the contexts from
long-ranged surrounding
items. Besides, it can
provide the hidden
representations of text-
based features, which
inherent the original use
case of BERT model in
NLP tasks

The model complexity
and online serving
resources is much
higher than other
recommendation
model

LLM Rebuild recommender system
with LLM

The LLMs’ astonishing
understanding and
reasoning abilities give us
a new angle to build the
recommender system, and
also add a new powerful
tool to our toolbox

It’s a totally new
domain to
combine LLM
with recommender
system. There are
still lots of new
challenges that we
are facing in the
LLM world

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

115References

For this reason, this chapter does not list any model performance benchmarking,
because it is impossible to form authoritative test results with different datasets, dif-
ferent application scenarios, different evaluation methods and evaluation indicators.
In the actual application process, it is also necessary for the engineers to select the
most suitable deep learning recommendation model after sufficient parameter tuning
and comparison based on their own business data.

The deep learning recommendation model has never stopped its development.
From Alibaba’s multimodal and multiobjective deep learning model, to YouTube’s
session-based recommendation model, to the LLM revolution, the deep learning rec-
ommendation model not only evolves faster and faster, but also has been applied
to wider application scenarios. The following chapters introduce the application of
deep learning models in recommender systems from different perspectives. We also
hope that readers will continue their exploration into the latest development of deep
learning recommendation models based on the knowledge introduced in this chapter.

References

 [1] Suvash Sedhain, et al. Autorec: Autoencoders meet collaborative filtering. Proceedings of
the 24th International Conference on World Wide Web, May 18, 2015 (pp. 111–112).

 [2] Ying Shan, et al. Deep crossing: Web-scale modeling without manually crafted combi-
natorial features. Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, August 13, 2016 (pp. 255–262).

 [3] Kaiming He, et al. Deep residual learning for image recognition. Proceedings of the
IEEE conference on computer vision and pattern recognition, June 27–30, 2016 (pp.
770–778).

 [4] Xiangnan He, et al. Neural collaborative filtering. Proceedings of the 26th international
conference on world wide web. International World Wide Web Conferences Steering
Committee, April 3, 2017 (pp. 173–182).

 [5] Yanru Qu, et al. Product-based neural networks for user response prediction. IEEE 16th
International Conference on Data Mining (ICDM), December 12, 2016 (pp. 1149–1154).

 [6] Heng-Tze Cheng, et al. Wide & deep learning for recommender systems. Proceedings
of the 1st workshop on deep learning for recommender systems, September 15, 2016
(pp. 7–10).

 [7] Ruoxi Wang, et al. Deep & cross network for ad click predictions. Proceedings of the
ADKDD’17, August 14, 2017 (pp. 1–7).

 [8] Weinan Zhang, Tianming Du, Jun Wang. Deep learning over multi-field categorical
data – a case study on user response prediction. Advances in Information Retrieval: 38th
European Conference on Information Retrieval, March 20–23, 2016 (pp. 45–57).

 [9] Huifeng Guo, et al. DeepFM: A factorization-machine based neural network for CTR
prediction: arXiv preprint arXiv:1703.04247 (2017).

 [10] Xiangnan He, Tat-Seng Chua. Neural factorization machines for sparse predictive ana-
lytics. Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, August 7, 2017 (pp. 355–364).

 [11] Jun Xiao, et al. Attentional factorization machines: Learning the weight of feature inter-
actions via attention networks: arXiv preprint arXiv: 1708.04617 (2017).

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

Deep Learning Applications in Recommender Systems116

 [12] Guorui Zhou, et al. Deep interest network for click-through rate prediction. Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, July 19, 2018 (pp. 1059–1068).

 [13] Guorui Zhou, et al. Deep interest evolution network for click-through rate prediction.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 2019: 5941–5948.

 [14] Guanjie Zheng, et al. DRN: A deep reinforcement learning framework for news
Recommender. Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, April 23, 2018 (pp. 167–176).

 [15] Jacob Devlin, et al. Bert: Pre-training of deep bidirectional transformers for language
understanding: arXiv preprint arXiv:1810.04805 (2018).

 [16] Fei Sun, et al. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, November 3, 2019 (pp. 1441–1450).

 [17] Qi Zhang, et al. UNBERT: User-news matching BERT for news recommendation. IJCAI,
21, 2021: 3356–3362.

 [18] Ashish Vaswani, et al. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

 [19] Jianghao Lin, et al. How can recommender systems benefit from large language models:
A survey: arXiv preprint arXiv:2306.05817 (2023).

 [20] Sheshera Mysore, Andrew McCallum, Hamed Zamani. Large language model aug-
mented narrative driven recommendations. Proceedings of the 17th ACM Conference on
Recommender Systems, September 14, 2023 (pp. 777–783).

 [21] Wang-Cheng Kang, et al. Do LLMs understand user preferences? Evaluating LLMs on
user rating prediction: arXiv preprint arXiv:2305.06474 (2023).

 [22] Yunfan Gao, et al. Chat-rec: Towards interactive and explainable LLMs-augmented rec-
ommender system: arXiv preprint arXiv:2303.14524 (2023).

https://doi.org/10.1017/9781009447515.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009447515.005

