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Plane Couette flow at Reynolds number Re = 1200 (based on the channel half-height
and half the velocity difference between the top and bottom plates) is investigated with a
spatial domain designed to retain only two spanwise integral length scales. In this system,
the computation of invariant solutions that are physically representative of the turbulent
state has been understood to be challenging. To address this challenge, our approach is
to employ an accurate reduced-order model with 600 degrees of freedom (Cavalieri &
Nogueira, Phys. Rev. Fluids, vol. 7, 2022, L102601). Using the two-scale energy budget
and the temporal cross-correlation of key observables, it is first demonstrated that the
model contains most of the multi-scale physical processes identified recently (Doohan
et al., J. Fluid Mech., vol. 913, 2021, A8); i.e. the large- and small-scale self-sustaining
processes, the energy cascade for turbulent dissipation, and an energy-cascade mediated
small-scale production mechanism. Invariant solutions of the reduced-order model are
subsequently computed, including 96 equilibria and 43 periodic orbits. It is found that
none of the computed equilibrium solutions are able to reproduce an accurate energy
balance associated with the multi-scale dynamics of the turbulent state. Incorporation of
unsteadiness into invariant solutions is seen to be essential for a sensible description of
the multi-scale turbulent dynamics and the related energetics, at least in this type of flow,
as periodic orbits with a sufficiently long period are mainly able to describe the complex
spatio-temporal dynamics associated with the known multi-scale phenomena.

Key words: turbulent boundary layers, nonlinear dynamical systems

† Email address for correspondence: matthew.mccormack@ed.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 983 A33-1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

mailto:matthew.mccormack@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/jfm.2024.108&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


M. McCormack, A.V.G. Cavalieri and Y. Hwang

1. Introduction

The theory of chaotic dynamical systems has played an increasing role in the study of
turbulence in recent years, stemming from the work of Hopf (1948), who envisaged
the state space of a fluid flow as that of the infinite-dimensional function space of the
Navier–Stokes equations. In this view, each unique flow field is represented by a single
point in the state space, with a time evolving flow tracing a continuous curve. As in
traditional finite-dimensional dynamical systems theory, this trajectory through the state
space is largely influenced and organised by invariant solutions such as equilibria, periodic
orbits and higher-dimensional tori, which attract and repel trajectories along their stable
and unstable manifolds.

This approach has seen notable success in describing the laminar–turbulent transition
in parallel wall-bounded shear flows that exhibit a sub-critical transition (e.g. Kerswell
2005; Eckhardt et al. 2007; Kawahara, Uhlmann & Van Veen 2012; Graham & Floryan
2021), especially when the computational domain of interest is sufficiently small so that
the concept of ‘space’ in transition can be ignored – note that when the domain size is
very large, the spatial evolution of disturbances becomes important and transition has
been understood to be better described by the framework of statistical mechanics, such
as directed percolation (for this issue, see Barkley 2016). In this case, the transition,
induced by finite-amplitude perturbations, can be viewed to be initiated by a saddle-node
bifurcation, through which a pair of non-trivial exact solutions to the Navier–Stokes
equations emerge. As the Reynolds number is increased, the solution with higher
skin friction (upper branch) subsequently experiences a bifurcation cascade involving
homoclinic tangency (e.g. Kreilos & Eckhardt 2012; Lustro et al. 2019) and evolves into a
chaotic saddle (i.e. a chaotic state with finite lifetime). On the contrary, the solution with
lower skin friction (lower branch) often becomes part of the laminar–turbulent separatrix,
referred to as edge of turbulence, a high-dimensional surface in the state space, where
a relative attractor, known as the edge state, lives (Itano & Toh 2001; Skufca, Yorke &
Eckhardt 2006; Schneider, Eckhardt & Yorke 2007).

The application of dynamical systems concepts to wall-bounded shear flows has
been largely restricted to the minimal flow unit of Jiménez & Moin (1991). This
flow unit, periodic in both the streamwise and spanwise directions, represents the
smallest near-wall flow domain that can sustain turbulence, in units based on the
viscous inner length scale (δν = ν/uτ , where ν is the kinematic viscosity and uτ

the friction velocity), hereafter referred to with a ·+ superscript. This box size
is directly related to the spanwise spacing of streaks (λ+z ≈ 100) found in the
near-wall region of turbulent flows, first identified experimentally by Kline et al.
(1967). Therefore, by construction, the minimal flow unit isolates a single pair of
low- and high-speed streaks and captures the related minimal dynamics required to
sustain turbulence, often referred to as the self-sustaining process (Hamilton, Kim &
Waleffe 1995).

This represents a quasi-cyclic process whereby streaks are first generated by streamwise
vortices that take energy from the mean shear through the lift-up effect (Moffatt 1965;
Ellingsen & Palm 1975; Landahl 1980, 1990; Butler & Farrell 1993; del Alamo & Jimenez
2006; Cossu, Pujals & Depardon 2009; Pujals et al. 2009; Hwang & Cossu 2010a;
McKeon & Sharma 2010). The streaks then undergo a normal-mode instability and/or
transient growth, forming downstream undulation of streaks, which subsequently promote
the generation of streamwise vortices as a result of nonlinear self-interactions (Hamilton
et al. 1995; Schoppa & Hussain 2002; Park, Hwang & Cossu 2011; Hwang & Bengana
2016; Cassinelli, de Giovanetti & Hwang 2017; Lozano-Durán et al. 2021).
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Multi-scale invariant solutions in plane Couette flow

From a dynamical systems perspective, the self-sustaining process has firmly been
associated with a variety of non-trivial invariant solutions that have been computed
in plane Couette flow (Nagata 1990; Clever & Busse 1997; Kawahara & Kida 2001;
Viswanath 2007; Gibson, Halcrow & Cvitanović 2009; Cvitanović & Gibson 2010; Hall
& Sherwin 2010; Deguchi, Hall & Walton 2013), as well as in other canonical shear
flows such as pipe flow (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Willis, Short
& Cvitanović 2016), plane Poiseuille flow (Waleffe 1998, 2001; Park & Graham 2015;
Hwang, Willis & Cossu 2016; Yang, Willis & Hwang 2019), stress-driven shear flows
(Doohan, Willis & Hwang 2019; Doohan et al. 2022) and boundary layer flow (Khapko
et al. 2013; Kreilos et al. 2013; Deguchi & Hall 2014). In the minimal flow unit, these
invariant solutions have been shown to form a skeleton for the chaotic dynamics of the
flows (Gibson, Halcrow & Cvitanović 2008; Willis et al. 2016; Doohan et al. 2019), and
are typically seen to capture the underlying mathematical structure and dynamics of the
coherent structures. These solutions typically have both stable and unstable manifolds
which attract and repel chaotic trajectories throughout the state space, with turbulence
being viewed as a chaotic walk between these solutions (Kawahara et al. 2012; Graham
& Floryan 2021). In this sense, periodic orbits have been understood to provide a
low-dimensional representation of a smooth dynamical system, and suitable averaging
over these solutions has the ability to yield a meaningful statistical description of the
chaotic state (Artuso, Aurell & Cvitanovic 1990; Chandler & Kerswell 2013; Yalnız, Hof
& Budanur 2021; Page et al. 2022).

As the Reynolds number is increased, it has been shown that the self-sustaining process
possibly exists at each of the integral length scales varying from the viscous inner to the
large-scale outer units in wall-bounded turbulence (Flores & Jiménez 2010; Hwang &
Cossu 2010b, 2011; Hwang 2015; Hwang & Bengana 2016). At each integral length scale,
the self-sustaining process supports energy-containing coherent structures, composed of
streaks and streamwise vortices, and they are statistically and dynamically self-similar
with respect to the integral length scale, consistent with the attached eddy hypothesis
of Townsend (1956). There have been efforts to characterise the possible interactions
between these self-similar coherent structures and the related turbulent energy transfer
(Cho, Hwang & Choi 2018; Lee & Moser 2019), but the dynamical processes underpinning
these scale interactions currently remain poorly understood.

The simplest system containing the dynamics of these interactions was recently studied
by Doohan, Willis & Hwang (2021), who considered a computational domain twice
greater than the minimal flow unit, referred to as the minimal multi-scale flow unit. By
construction, this domain only admits the coherent structures at two integral length scales
(i.e. λ+z � 100, 200). Several important multi-scale processes have been numerically
identified: (i) large- and small-scale self-sustaining processes; (ii) energy cascade via the
streak instability (or transient growth) and breakdown; (iii) energy transport from the large
to small scales which drives small-scale turbulent production; (iv) the feeding of energy
from small to large scales (Doohan et al. 2021). Furthermore, a number of equilibria
and two periodic orbits in this system were computed (Doohan et al. 2022). However,
none of them were representative of the full system’s chaotic dynamics, as had been seen
previously in the minimal flow unit – most of them were found to contain the single-scale
dynamics only associated with the corresponding self-sustaining process, and they did not
appear to be key players forming the state space structure of turbulence, since they lacked
some of the other physically relevant processes.

The observations of Doohan et al. (2022) raise some questions regarding the structure
of the state space of turbulence at high Reynolds numbers. It has often been believed
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that the closure of a set of relevant invariant solutions of the Navier–Stokes equations
form the ergodic subspace of the turbulent state, in the sense that the solution trajectory
visits or shadows many of these solutions, at least for some amount of time. This is an
important requirement for a meaningful statistical description of the turbulent state in
terms of the invariant solutions. However, as the Reynolds number is increased, many
of these solutions, especially those which are relatively easily accessible through the
numerical continuation of their counterpart computed at lower Reynolds numbers, are
no more directly relevant to turbulence, as the solution trajectory appears to very rarely
visit them. This now emphasises the necessity of capturing the invariant solutions buried
around the turbulent state at high Reynolds numbers. Such solutions are expected to
contain the full multi-scale features of the turbulent state like the one recently obtained
by Motoki, Kawahara & Shimizu (2021) for thermal convection.

Computation of multi-scale invariant solutions organised around the turbulent state,
however, appears to be increasingly challenging as the Reynolds number is increased.
This is directly connected to the extremely high computational expense of finding
these solutions, as the computation typically involves a large number of iterative direct
numerical simulations (DNS) combined with a suitable searching algorithm, such as the
Newton–Krylov method (Viswanath 2007; Willis, Cvitanović & Avila 2013) and adjoint
method (Farazmand 2016). Furthermore, any recurrence measure, monitored to find a
suitable initial condition for the searching algorithm, becomes increasingly large with
increased Reynolds number, as turbulence contains increasingly many different scales.
Therefore, a few new approaches to bypass this difficulty have been proposed (Page &
Kerswell 2020; Azimi, Ashtari & Schneider 2022; Page et al. 2022; Parker & Schneider
2022). Finally, the leading Lyapunov exponent of turbulence grows faster than the inverse
of the Kolmogorov time scale (Mohan, Fitzsimmons & Moser 2017), indicating that
finding good initial guesses for a periodic orbit becomes increasingly difficult at higher
Reynolds numbers, at least with some of the most popular techniques currently available
(Viswanath 2007; Willis et al. 2013).

In earlier studies, these difficulties have been bypassed by modelling some physical
processes of turbulence instead of using full DNS. A popular approach taken was to
model the small-scale eddies around the large-scale coherent structures of interest using
an eddy viscosity implemented by an over-damped large-eddy simulation (Rawat et al.
2015; Hwang et al. 2016; van Veen, Vela-Martín & Kawahara 2019; Yang et al. 2019;
Azimi, Cossu & Schneider 2020; Sasaki, Kawahara & Jiménez 2021). However, this
approach eliminates the complex nonlinear interactions between the large-scale coherent
structures and background turbulence, often offering only limited information on the
physical process involved (e.g. self-sustaining process). To this end, in the present
study, a step forward from the early approach will be taken. In particular, the objective
of the present study is to explore the state space of a reduced-order model (ROM)
for the minimal multi-scale (i.e. two-scale) flow unit in plane Couette flow with the
computation of its invariant solutions. We will see that the ROM-based approach enables
us to delicately control the degrees of freedom of the flow to be sufficiently low
(only 600 degrees of freedom), while retaining all the multi-scale physical processes
of interest. This significantly relieves the difficulties in the computation of invariant
solutions, allowing us to compute a large number of equilibria and unstable periodic
orbits.

The ROM used in the present study was recently proposed by Cavalieri & Nogueira
(2022), who demonstrated that it exhibits long-time numerical stability with reasonable
statistical agreement to reference DNS. A classical approach to formulating a ROM is
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Multi-scale invariant solutions in plane Couette flow

based on the Galerkin projection of the proper orthogonal decomposition (POD) modes,
first introduced in the context of turbulence by Lumley (1967). In this approach, the POD
basis functions, representing coherent structures, are ranked by their turbulent kinetic
energy, allowing the highest energy-containing structures to be included in the model. The
approach has been used extensively in a wide variety of applications in fluid dynamics
using both experimental and numerical data (e.g. Aubry et al. 1988; Noack et al. 2003;
Smith, Moehlis & Holmes 2005; Khoo, Chan & Hwang 2022 and many others). Such an
approach, however, requires a priori DNS data to construct the model, and thus it can be
computationally demanding. A benefit of the approach by Cavalieri & Nogueira (2022)
is that the orthogonal basis functions considered are the POD modes of the stochastic
response of the linearised Navier–Stokes equations, as such basis functions can be obtained
a priori by solving the related Lyapunov equation (Farrell & Ioannou 1993; Bamieh &
Dahleh 1999; Jovanović & Bamieh 2005) at minimal computational cost.

The ROM of Cavalieri & Nogueira (2022) is designed for plane Couette flow, but the
multi-scale nonlinear processes of interest in this study were discovered from the shear
stress-driven flow model of Doohan et al. (2021). Given that the only difference between
the two systems is the top boundary condition, we expect that the multi-scale processes
of interest will be well captured by the ROM of Cavalieri & Nogueira (2022) – indeed,
we shall see that this ROM retains all the multi-scale physical processes discovered by
Doohan et al. (2021), thereby making the dynamics of its invariant solutions physically
meaningful. Furthermore, plane Couette flow is a flow configuration where a large number
of equilibria and periodic orbits previously computed are well documented (e.g. Gibson
et al. 2009; Cvitanović & Gibson 2010). As will be evident (see also § 5), the ROM of
Cavalieri & Nogueira (2022) also has the potential to be used for the improvement of
existing search methods for equilibria and periodic orbits. From this perspective, retaining
the plane Couette flow setting in the ROM would also be beneficial.

This paper is organised as follows: § 2 summarises the formulation of the ROM,
§ 3 discusses its validation with respect to a time-averaged energy budget as well as
the temporal dynamics of spatially averaged relevant observables, § 4 discusses the
computation of the invariant solutions and the corresponding results, followed by a
conclusion in § 5. Additional details about the terms in the energy budget equations are
contained in Appendix A, and further results discussing the validity of the ROM are
contained in the supplementary material available at https://doi.org/10.1017/jfm.2024.108.

2. Reduced-order model

2.1. Model formulation
Incompressible plane Couette flow is considered, where two infinitely wide and long
parallel plates, separated by a wall-normal distance 2h, are set to move in opposite
directions with velocity ±U0. All variables are made dimensionless with length and
velocity scales h and U0, respectively. The dimensionless flow domain of interest
is considered to be x(= (x, y, z)) ∈ [0, 2π] × [−1, 1] × [0, π], equipped with periodic
boundary conditions in the streamwise (x) and spanwise (z) directions and the velocity
ũ|y=±1 = (±1, 0, 0) specified on the upper and lower wall-normal ( y) boundaries. The
velocity field is first decomposed into the laminar state, u0 = ( y, 0, 0), and the fluctuations
about this state, u′

ũ(x, t) = u0( y) + u′(x, t). (2.1)
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The evolution of this fluctuating velocity field is described by the following equations:

∂tu′ + (u0 · ∇)u′ + (u′ · ∇)u0 + (u′ · ∇)u′ = −∇p + 1
Re

∇2u′, (2.2)

∇ · u′ = 0, (2.3)

with boundary conditions given by u′|y=±1 = (0, 0, 0), where Re = U0h/ν is the
Reynolds number, and ν is the kinematic viscosity.

Following the formulation of Cavalieri & Nogueira (2022), we define an inner product

〈 f , g〉 = 1
4π2

∫ π

0

∫ 1

−1

∫ 2π

0
f (x) · g(x) dx dy dz, (2.4)

and introduce a modal decomposition of the fluctuating velocity field

u′(x, t) =
N∑

j=1

aj(t)Φ j(x), (2.5)

where the modes Φ j are defined to be divergence free ∇·Φ j = 0, and orthonormal
with respect to the defined inner product, i.e. 〈Φ i, Φ j〉 = δij, where δij is the Kronecker
delta. Hence, by construction, any linear superposition of modes satisfies both the
incompressibility condition and the boundary conditions of the system.

Substituting the decomposition (2.5) into (2.2) and taking an inner product with the
mode Φ i leads to a system of ordinary differential equations describing the evolution of
the mode coefficients ai(t)

dai

dt
= 1

Re

N∑
j=1

Lijaj +
N∑

j=1

L̃ijaj +
N∑

j=1

N∑
k=1

Qijkajak, (2.6)

where

Lij = 〈∇2Φ j, Φ i〉, (2.7a)

L̃ij = −〈(Φ j · ∇u0 + u0 · ∇Φ j), Φ i〉, (2.7b)

Qijk = −〈(Φ j · ∇Φk), Φ i〉. (2.7c)

Here, Lij and L̃ij represent the viscous term and the linear interaction with the laminar
state, respectively, whereas Qijk represents the quadratic nonlinear interaction between the
different modes. The pressure dependence is seen to vanish due to the divergence-free
property of the modes.

This system of ordinary differential equations still describes the exact dynamics in the
limit as N → ∞ by the orthogonality of the modes, although here we attempt to choose
the modes in an optimal way such that we can model the dynamics of the system using a
greatly reduced number of degrees of freedom.

Many choices exist for the modes Φ j(x). In this study, POD modes of the stochastic
response of the linearised Navier–Stokes equations are chosen, and the detailed
computational procedure is described in Cavalieri & Nogueira (2022), who followed
the method of Jovanović & Bamieh (2005). The velocity covariance resulting from
the stochastic response is obtained by formulating the controllability Gramian of the
Navier–Stokes equations linearised about the laminar basic state, u0, and is computed
by solving the associated Lyapunov equation. The POD modes are obtained by computing

983 A33-6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


Multi-scale invariant solutions in plane Couette flow

the eigenfunctions of the velocity covariance that are ranked in terms of their energy (i.e.
eigenvalue).

Compared with a typical POD approach, the use of POD modes from the stochastic
response of the linearised Navier–Stokes equations removes the necessity to form these
modes using large numerical or experimental datasets, as they can be directly computed
from the forced linear system. The results of Cavalieri & Nogueira (2022) suggest that
these modes provide an efficient set of basis functions for the construction of the ROM, as
the resulting ROM provides equal or more accurate results than a Galerkin–POD approach
constructed from DNS data, at least in terms of the second-order velocity statistics.

2.2. Numerical implementation
To implement this model numerically, the POD modes from the controllability Gramian
are represented using a Fourier discretisation in the streamwise and spanwise directions,
and a Chebyshev discretisation in the wall-normal direction

Φ j(x) = Φ̂ j( y) ei(mkx,0x+nkz,0z), (2.8)

where ·̂ denotes the Fourier transform, and kx,0 = 2π/Lx = 1 and kz,0 = 2π/Lz =
2 denote the fundamental wavenumbers in the streamwise and spanwise directions,
respectively. In particular, we use the modes constructed in Cavalieri & Nogueira (2022)
with the number of modes N = 600: m = {0, 1, 2}, n = {−2, −1, 0, 1, 2} with Ny = 24,
where Ny is the number of POD modes used in the expansion for a given m and n. Here,
we note that only positive streamwise wavenumbers need be considered since negative
wavenumber modes can be reconstructed by complex conjugation. The number of degrees
of freedom here was chosen by running a preliminary test, and N = 600 was found to be
close to the smallest possible dimension for a system retaining self-sustaining processes
at two scales. Two wavenumbers must be considered for each of the two wall-parallel
directions to retain the ‘two’ scales, and Ny = 24 was chosen to ensure the linear stability
of the laminar solution. A bifurcation analysis of the ROM was subsequently carried
out, revealing that its behaviour is remarkably similar to that of plane Couette flow; i.e.
saddle-node bifurcation and the resulting bifurcation cascade leading to turbulence (e.g.
Kreilos & Eckhardt 2012). These modes can then be used to construct the system of
ordinary differential equations (2.6) which are integrated in time using a standard fourth-
or fifth-order Runge–Kutta scheme at Re = 1200 using the ode45 function in MATLAB.

The time evolution of this system starting from a random initial condition displays
chaotic behaviour consistent with turbulence, as shown by Cavalieri & Nogueira (2022).
The long trajectory was initialised from a random perturbation of the mode coefficients
ai with the amplitude between 0 and 0.1, and was time integrated using ode45 with
a relative error tolerance of 10−8. Temporal averaging of the flow snapshots from the
model over a sufficiently long time leads to the mean and root mean square (r.m.s.)
velocity profiles shown in figure 1. These profiles have been compared with reference
DNS statistics at a grid resolution of (Nx, Ny, Nz) = (64, 65, 64) computed using the
open-source code Channelflow (Gibson 2014, http://channelflow.org/), showing reasonable
agreement relative to the greatly reduced computational cost. Note that the number of
degrees of freedom of the DNS is NDNS ≈ 106. Computation of the velocity gradient
at the wall leads to a friction Reynolds number Reτ ≈ 80, giving a domain size of
(L+

x , L+
y , L+

z ) = (504, 160, 250) based on inner units. These dimensions are bigger than
the minimal flow unit configurations of Hamilton et al. (1995) and Kawahara & Kida
(2001), and are of similar size to that of the minimal multi-scale flow unit formulated by
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Figure 1. Mean and r.m.s. velocity profiles: (a) U+; (b) u+
rms; (c) v+

rms; (d) w+
rms. The superscript (·)+ denotes

the viscous inner-scaled variables. Here, the black and blue lines indicate those from the ROM and DNS,
respectively.

Doohan et al. (2019). In this regard, we expect similar two-scale behaviour as observed by
Doohan et al. (2019) to be captured by the ROM.

3. Energy budget and dynamics

To ensure that any invariant solutions found for the ROM are physically relevant to the
corresponding exact flow, we first examine the two-scale time-averaged energy budget of
the flow as a function of the wall-normal direction. The results of this energy budget can
then be qualitatively compared with the results of the energy budget analysis of the similar
two-scale system studied by Doohan et al. (2021).

3.1. Two-scale energy budget
To formulate a relevant energy budget for a statistically stationary turbulent state, the full
velocity field is decomposed as

ũ(x, t) = U( y) + u(x, t), (3.1)

where U describes the mean flow, defined as U(x) = (1/T)
∫ T

0 ũ(x, t) dt for some suitably
long time interval T , and u(x, t) is the velocity fluctuation about the mean flow.

As discussed in Doohan et al. (2019), the inner-scaled flow domain at Reτ (� 80)

considered here is approximately L+
z � 250. Given that the smallest spanwise size

of energy-containing structures is λ+z � 100, the computational domain would admit
energy-containing structures mainly at two different spanwise length scales: λ+z �
125, 250. To understand the interactions of the two different scales within the flow, we
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Multi-scale invariant solutions in plane Couette flow

further decompose the fluctuating velocity field into a large- and small-scale fluctuating
velocity field

u(x, t) = ul(x, t) + us(x, t), (3.2)

where the large- and small-scale velocity fields are defined through the large- and
small-scale projection operators, Pl{·} and Ps{·}, which split the fields by spanwise
wavenumber in the following way:

ul(x, t) = Pl{u(x, t)} =
∑

|m|≤mx

∑
|n|≤1

û( y) ei(mkx,0x+nkz,0 z), (3.3a)

us(x, t) = Ps{u(x, t)} =
∑

|m|≤mx

∑
2≤|n|≤nz

û( y) ei(mkx,0x+nkz,0 z). (3.3b)

The split by spanwise wavenumber here is justified by the observation that the statistical
structure of eddies in wall-bounded flows is self-similar with respect to the spanwise
wavelength and proportional to the distance from the wall (Hwang 2015). Additionally,
both large and small scales are expected to contain a range of streamwise wavenumbers
due to the presence of both long streaks and short streamwise vortices as part of the
self-sustaining process (Hwang 2015).

The evolution equations for turbulent fluctuations are subsequently projected onto the
large- and small-scale velocity subspaces using the definition of Pl{·} and Ps{·}, yielding
two fluctuation equations, one equation each for the large and small scales, respectively.
Multiplying each of these equations by the corresponding large- or small-scale velocity
and averaging in the streamwise and spanwise direction yields energy budget equations
for each component of the velocity at large

∂Eul

∂t
= Pul + Tul + Πul + Tν,ul + εul, (3.4a)

∂Evl

∂t
= Tvl + Πvl + Tν,vl + Tp,vl + εvl, (3.4b)

∂Ewl

∂t
= Twl + Πwl + Tν,wl + εwl, (3.4c)

and small scales

∂Eus

∂t
= Pus + Tus + Πus + Tν,us + εus, (3.5a)

∂Evs

∂t
= Tvs + Πvs + Tν,vs + Tp,vs + εvs, (3.5b)

∂Ews

∂t
= Tws + Πws + Tν,ws + εws, (3.5c)

where P denotes the energy production, T the turbulent transport, Π the pressure strain,
Tν the viscous transport, Tp the pressure transport and ε the dissipation at each scale
and component, where the subscripts l and s denote large and small scales, and u, v and
w the streamwise, wall-normal and spanwise components. Full details of each term are
included in Appendix A. Since only the velocity field is computed directly by the ROM,
the fluctuating pressure field must be computed using the Poisson equation for pressure
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projected onto the large and small scales

∇2pl = −U
∂2ul

∂x2 − ∂vl

∂x
∂U
∂y

− Pl{∇ · (u · ∇u)}, (3.6a)

∇2ps = −U
∂2us

∂x2 − ∂vs

∂x
∂U
∂y

− Ps{∇ · (u · ∇u)}, (3.6b)

with boundary conditions specified as ∂ypl|y=±1 = 0, and ∂yps|y=±1 = 0 (Kim 1989).
The various multi-scale energy budget terms have been computed from the ROM. The

temporal averaging has been taken over a dataset which is roughly 18 000 dimensionless
time units in length (T+ = Tu2

τ /ν ≈ 96 500). They have been plotted over a channel
half-height as a function of the wall-normal direction in figure 2. The overall statistical
behaviour of the two-scale energy budget terms are qualitatively very similar to those
found by Doohan et al. (2021), who used the DNS results of their two-scale shear
stress-driven flow model.

A large amount of energy production is seen in both the large and small scales (blue
lines in figure 2a,b), featuring peaks in production in the near-wall region at approximately
y+ ≈ 10, the location of which is consistent with that reported by Bech et al. (1995) and
Afzal, Seena & Bushra (2018) as well as many others. The magnitude of the peak of the
small-scale production is seen to be larger than that of the large scales, similar to the results
reported by Doohan et al. (2021), although slightly less production is observed overall in
the logarithmic region of the flow compared with this work.

The pressure strain terms (yellow lines in figure 2) sum to zero at each scale as
a consequence of continuity, i.e. Πul + Πvl + Πwl = 0 and Πus + Πvs + Πws = 0. The
streamwise components of the pressure strain are negative across the whole wall-normal
domain, whereas the wall-normal and spanwise pressure strains are seen to be positive,
except at y+ � 20. This is indicative of the pressure strain terms being responsible for the
redistribution of the turbulent kinetic energy from the streamwise to the wall-normal and
spanwise components, also observed in Doohan et al. (2021). However, the pressure strain
terms have a relative magnitude lower than that of Doohan et al. (2021), presumably due
to the low number of streamwise and spanwise Fourier modes used for the present ROM.
For y+ � 20, large peaks in the spanwise and wall-normal components are observed. The
near-wall negative wall-normal pressure strain is attributed to the well-known ‘splat effect’
(Mansour, Kim & Moin 1988; Perot & Moin 1995; Lee & Moser 2019), whereby fluid
motions moving towards the wall must be turned to move parallel to the wall due to its
impermeability.

The streamwise turbulent transport term at the large scales is seen to be positive,
especially in the near-wall region (green line in figure 2a), implying that the turbulent
transport from the small scales injects energy into the large scales. This is the inverse
energy transfer (or energy feeding from the small scales), previously observed (Cho et al.
2018; Doohan et al. 2021), and it gradually disappears on increasing y+. In general, the
turbulent transport terms follow similar trends to those of Doohan et al. (2021) but are
more oscillatory (green lines in figure 2). This lack of smoothness is likely a result of
the nonlinear interactions between the truncated modes not being fully captured by the
model, although the consequences of this are not immediately clear. For this reason, the
turbulent transport terms have been further decomposed and studied in § 3.2 as their role
is of significant interest in relation to the accuracy of the multi-scale behaviour in ROM.

The largest amounts of dissipation are seen in the near-wall region through the
streamwise component (orange line in figure 2a), similar to Doohan et al. (2021). There
is slightly greater large-scale dissipation than small-scale dissipation for all components
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Figure 2. Wall-normal variation of the time-averaged terms of the energy budget equations (3.4) and (3.5) for
(a,b) streamwise, (c,d) wall-normal and (e, f ) spanwise components: (a,c,e) large scale; (b,d, f ) small scale.

(orange lines in figure 2), suggesting that the cascade of energy from large to small scales
(Kolmogorov 1941) is not fully resolved. This is likely due to the truncated nature of
the model, whereby energy cannot be transferred to the smaller scales neglected by the
model, as a result of spectral blocking. Nevertheless, the amounts of dissipation at each
scale are still comparable due to the low Re considered here, as in Doohan et al. (2021).
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However, at higher Reynolds numbers, the energy cascade is expected to be more poorly
resolved due to the increasing number of small-scale eddies for turbulence dissipation. As
such, the number of degrees of freedom of the ROM would need to be increased further.

Lastly, the pressure and viscous transport terms appropriately balance the other terms,
and their behaviours are also consistent with those found in Doohan et al. (2019). The
integrated energy is seen to be balanced over all terms to within 2 % relative to the
magnitude of the turbulent production.

3.2. Inter- and intra-scale energy transport
To access the role of the turbulent transport in greater detail, we decompose these terms
further, following the methods of Doohan et al. (2021) and Kawata & Alfredsson (2019)

Tul = Tul,− + Tul,# − Tu,�, (3.7a)

Tvl = Tvl,− + Tvl,# − Tv,�, (3.7b)

Twl = Twl,− + Twl,# − Tw,�, (3.7c)

Tus = Tus,− + Tus,# + Tu,�, (3.7d)

Tvs = Tvs,− + Tvs,# + Tv,�, (3.7e)

Tws = Tws,− + Tws,# + Tw,�. (3.7f )

Here, T− denotes the intra-scale spatial turbulent transport, T# the inter-scale spatial
turbulent transport and T� the inter-scale turbulent transport. Here, the use of intra refers
to the involvement of velocity fields of only the same scale, whereas inter refers to terms
that include the nonlinear coupling of velocity fields of different scales. Spatial transport
refers to terms that can be rewritten as the divergence of a vector field, meaning that they
do not contribute to the loss or gain of energy when integrated over the spatial domain.
On the contrary, the inter-scale turbulent transport cannot be written as the divergence
of a vector field and is thus directly responsible for energy exchanges between the large
and small scales. Importantly, these inter-scale turbulent transport terms appear in both
the large- and small-scale energy transport equations with opposing signs, thus cancelling
each other out when considering the total energy budget of both the large and small scales.
The full details of these equations are included in Appendix A.

The time-averaged energy transport terms in (3.7) are plotted as a function of the
wall-normal direction in figure 3. The inter-scale turbulent transport terms, T�, are
responsible for the direct transport of energy between scales. In the streamwise component,
only inter-scale turbulent transport, T�, from the small to large scales is observed across
the entire domain in the mean (figure 3a,b). This is contrary to the DNS results of Doohan
et al. (2021), which show a contribution to the energy cascade in the outer region of the
flow in the streamwise direction. With that being said, the spanwise and wall-normal
components are seen to contribute to the energy cascade from large to small scale in a
similar way to that of Doohan et al. (2021), suggesting that the cascade is still being
captured, at least to some degree, in the outer region of the flow (figure 3c–f ). The
streamwise and spanwise components of the inter-scale turbulent transport, T�, show a
large amount of energy transport from the small to large scales in the near-wall region
(figure 3). This is representative of the near-wall energy feeding process from small to
large scale, consistent with both Cho et al. (2018) and Doohan et al. (2021). Note that this
inverse energy transfer from small to large scale (e.g. Cho et al. 2018; Andreolli, Quadrio &
Gatti 2021) has been known to break the self-similarity of the energy-containing motions
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Figure 3. Wall-normal variation of the time-averaged intra- and inter-scale energy transport terms in (3.7) for
(a,b) streamwise, (c,d) wall-normal and (e, f ) spanwise components: (a,c,e) large scale; (b,d, f ) small scale.

in the region close to the wall, where the attached eddy hypothesis is not supposed to be
valid (for a further discussion, see Hwang 2016).

The inter-scale spatial transport, T#, describes an energy transport that results from
interactions between the different scales. The streamwise inter-scale spatial transport terms
show local maxima at a wall-normal location similar to that of the peaks of the inter-scale
turbulent transport and production, suggesting that these transport terms also play a role
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in transporting the turbulent kinetic energy produced by the flow between the scales.
However, all of these inter-scale spatial transport terms exhibit similar trends at both the
large and small scales (at least with respect to their signs) to those in Doohan et al. (2021),
suggesting that these terms act in a similar manner at both scales.

The intra-scale spatial transport, T−, represents energy transport within each scale. At
the large scales, these terms follow reasonably similar trends to Doohan et al. (2021).
However, no intra-scale transport is exhibited by the ROM at the small scales, a feature
that is not in line with the DNS results of Doohan et al. (2021). This is a consequence of
the spanwise averaging over the small-scale intra-scale transport terms equalling zero. For
example, the streamwise intra-scale spatial turbulent transport is given by

Tus,− = −〈us(us · ∇us)〉x,z. (3.8)

We note that Tus,− takes the form 〈 f (x, y, n, t) ei2(n1+n2+n3)z〉x,z, where ni refers to the
spanwise wavenumber related to the ith term in the triple correlation of (3.8). Since
n1 + n2 + n3 /= 0 at the small scales on account of the model’s truncation (i.e. ni = ±2
from (3.3)), this spanwise average will always be zero at the small scales unless additional
wavenumbers are considered in the present ROM.

The immediate effect of this on the results of the model is not apparent, but with that
being said, intra-scale processes that are responsible for the transport of energy from the
production to the dissipation are seen to persist, with the pressure strain being largely
responsible for this redistribution. Additionally, the viscous transport, Tν , which itself only
involves intra-scale terms, is seen to be active in relation to the production and dissipation
terms at both scales.

3.3. Temporal dynamics
Having studied the time-averaged variation of the different terms in the energy equations,
it is also of interest to study the temporal relationship between these quantities and
to confirm the presence of known dynamic processes found in the similar system of
Doohan et al. (2021). These include the large- and small-scale self-sustaining process,
the energy cascade, the driving mechanism which transports energy from large-scale
processes and injects it into the small scales through the small-scale production and
the feeding mechanism which is responsible for transporting energy from small to large
scales. To study the temporal correlation of such quantities, we introduce the temporal
cross-correlation of two time-varying functions f (t) and g(t)

{ f � g}(τ ) =

∫
	T

f (t + τ)g(t) dt(∫
	T

f (t)2 dt
)1/2 (∫

	T
g(t)2 dt

)1/2 , (3.9)

where 	T is a suitable time interval of interest.
Of particular interest is the presence of the large- and small-scale self-sustaining

processes (Hwang & Bengana 2016; Doohan et al. 2021). With this in mind, the energy
related to the different velocity components is separated into streamwise-dependent and
-independent parts (Lucas & Kerswell 2017; Doohan et al. 2019, 2021). Specifically, these
provide observables based on the kinetic energy for the structural components of the
self-sustaining process; i.e. straight streaks (Ess), wavy streaks (Ews), straight rolls (Esr)
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Multi-scale invariant solutions in plane Couette flow

and wavy rolls (Ewr) at both the large

Ess,l(t) = 1
2 〈〈ul〉2

x〉z
∣∣80
0 , (3.10a)

Ews,l(t) = 1
2 〈(ul − 〈ul〉x)

2〉x,z|80
0 , (3.10b)

Esr,l(t) = 1
2 〈〈vl〉2

x + 〈wl〉2
x〉z|80

0 , (3.10c)

Ewr,l(t) = 1
2 〈(vl − 〈vl〉x)

2 + (wl − 〈wl〉x)
2〉x,z|80

0 , (3.10d)

and small scales

Ess,s(t) = 1
2 〈〈us〉2

x〉z|40
0 , (3.11a)

Ews,s(t) = 1
2 〈(us − 〈us〉x)

2〉x,z|40
0 , (3.11b)

Esr,s(t) = 1
2 〈〈vs〉2

x + 〈ws〉2
x〉z|40

0 , (3.11c)

Ewr,s(t) = 1
2 〈(vs − 〈vs〉x)

2 + (ws − 〈ws〉x)
2〉x,z|40

0 , (3.11d)

where the shorthand f (t)|y2
y1 denotes averaging of quantity f (t) in the wall-normal direction

over the interval [y1, y2] given in wall units. The choice of y+ = 40 to separate the
boundary of the near-wall region (viscous sublayer and buffer layer) from the logarithmic
region is chosen to approximately separate phenomenological differences observed in
these regions based on figures 1–3. In practice, small changes in the choice of this
separating y+ value was seen to have little impact on the results of the following sections.

The cross-correlation of these energies at both scales has been computed and is shown in
figure 4. Indeed, correlation does exist between the different kinetic energies, with the shift
of the peak of the correlations revealing the order of the processes: Esr → Ess → Ews →
Ewr → Esr, consistent with the results of Hamilton et al. (1995), Hwang & Bengana (2016)
and Doohan et al. (2021), indicating that the self-sustaining process at both scales is
captured by the ROM. Further, the time scale of these processes both at the large and
small scales is also similar to that found by Doohan et al. (2021). The small-scale process
occurs on a time scale that is significantly shorter than that of its large-scale counterpart,
as seen by the width of the cross-correlation functions.

Similar correlations have been produced for the other energy transport processes
identified by Doohan et al. (2021), namely for the energy cascade, driving and feeding
processes, all showing agreement with those found in the original DNS. The details of
these correlations can be found in the supplemental material of this paper. In summary,
this system contains an energy cascade which transports energy from the large-scale
production to small-scale wall-normal and spanwise dissipations mainly through a
particular part of the wall-normal inter-scale turbulent transport

Tv,�c = 〈vl(ul · ∇vs)〉x,z. (3.12)

Energy transported from large to small scales also involves the driving mechanism,
the activation process of small-scale production via energy cascade. The related energy
transport is well characterised by the other part of the wall-normal inter-scale turbulent
transport

Tv,�d = −〈vs(us · ∇vl)〉x,z. (3.13)

It results in subsequent activation of the small-scale production via the Orr mechanism
(Orr 1907), promoting a range of other processes such as an increase in small-scale
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Figure 4. Temporal cross-correlation between the energy observables associated with the structural
components of the self-sustaining process at (a) large and (b) small scales. Markers show the peak of each
cross-correlation.

dissipation in response to the breakdown of small-scale wavy streaks as well as a feeding
process which transports energy from the small to large scales. Finally, the feeding
process is also seen to transport energy from small-scale production mainly to large-scale
dissipation terms through the streamwise and spanwise inter-scale turbulent transport, and
it involves the activation of small-scale wavy streaks and small-scale wavy rolls (through
the spanwise pressure strain).

4. Equilibria and periodic orbits

Having validated the ROM by ensuring that it captures the time-averaged energy budget
both at large and small scales, as well as capturing the known processes associated with
the temporal energy dynamics of the flow, we now search for invariant solutions using the
model.

Equilibria and periodic orbits were searched using a trust-region algorithm,
implemented in the fsolve function in MATLAB. Equilibria are steady states of (2.6), such
that

1
Re

N∑
j=1

Lijaj +
N∑

j=1

L̃ijaj +
N∑

j=1

N∑
k=1

Qijkajak = 0, (4.1)

whereas periodic orbits are solutions of (2.6) satisfying aj(t + T) = aj(t), j = 1, . . . , N.
Equilibria may be sought by looking directly for the zeros of (4.1). Periodic orbits are
searched as zeros of the normalised residual

r(a) = ‖a(t + T) − a(t)‖
‖a(t)‖ , (4.2)

where the a vector collects the temporal coefficients aj(t) of the ROM.
In order to avoid travelling waves and relative periodic orbits, and thus

simplify the search for invariant solutions, the reflection symmetry [u, v, w](x, y, z) =
[−u, −v, −w](−x, −y, −z) was imposed in the ROM; this is accomplished by truncating
the ROM to the modes that satisfy the said symmetry, resulting in 300 degrees of freedom.
This lower dimension simplifies the search for invariant solutions. When looking for
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Multi-scale invariant solutions in plane Couette flow

equilibria, the analytical Jacobian of (4.1) was supplied to the Newton solver, which greatly
accelerates the search by reducing the number of function calls. Periodic orbits require
time integrations to obtain the Jacobian, and using the direct linearisation of the ROM
did not lead to clear benefits in our tests; we have thus resorted to a finite-difference
approximation of the Jacobian of the normalised error of (4.2). The tolerance of the solver
was specified such that (4.1) is correct to within 10−8 for equilibria, and that the residual
is lower than 10−5 for periodic orbits – the final residuals of many periodic orbits were
of O(10−6) − O(10−7). Lastly, the convergence of time period, which was updated in the
Newton iterations, was not explicitly monitored, although an approach for this was recently
proposed (Page et al. 2022).

Using this method, starting from initial guesses taken from a recurrence analysis of
chaotic trajectories, 96 equilibria, named EQ1 to EQ96, and 43 periodic orbits, named
PO1 to PO43, have been computed. The period of the periodic orbits found varies in the
range T+ ∈ [26.53, 141.57]. In the following sections, the inner units are formulated with
respect to the friction velocity of the ROM for each invariant solution and not the friction
velocity of each invariant solution unless specified otherwise.

Equilibria and periodic orbits computed in the similar two-scale system of Doohan et al.
(2022) through DNS were not seen to capture the full multi-scale behaviour of the system.
They typically captured the dynamics of only a single integral length scale. The solutions
that appeared to capture any of the multi-scale dynamics were from the upper branch,
i.e. the solution family characterised by a large wall shear stress (i.e. high Reτ ). Even
still, these upper branch solutions failed to capture the full multi-scale dynamics of the
long-time chaotic state.

To compare the solutions of Doohan et al. (2022) with those found in this study using the
ROM, we have constructed phase portraits of similar observables, as well as the mean and
r.m.s. statistics of the invariant solutions, which are presented in the following sections,
first for the equilibria, followed by the periodic orbits. This is followed by a discussion of
periodic orbits identified to contain essential dynamics relating to key physical processes
in the flow.

4.1. Equilibria
The mean and r.m.s. velocity profiles of the computed equilibrium solutions as functions
of the wall-normal direction are shown in figure 5, compared with a long-time trajectory
from the ROM shown in black and the DNS in blue. Four of these solutions have been
highlighted in figure 5 which closely capture the wall shear stress of the long-time
trajectory. Phase portraits showing similar energy observables to those of Doohan et al.
(2022) are shown in figure 6, also highlighting the same equilibria as in the velocity
profiles. Here, we note that many of the computed equilibria have non-negligible amounts
of energy and production at both large and small scales (figure 6a–d) and, in this sense,
they may be viewed to be multi-scale equilibrium solutions.

A large number of the equilibria are found to capture the mean flow reasonably well,
especially in the near-wall region (figure 5a). However, many did not accurately capture
the velocity fluctuations of the flow and are not seen to be highly representative of the
chaotic state with respect to observables other than the mean flow. The equilibria found
are typically seen to overestimate the near-wall streamwise velocity fluctuations. This is
clearly observed in the maxima of the streamwise r.m.s. profiles (figure 5b), which appear
to be related to the large amount of energy associated with straight streaks in figure 6(a).
Equilibria overestimating the amount of energy related to straight streaks compared with
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Figure 5. Mean and r.m.s. velocity profiles for the equilibrium solutions (grey) compared with the long-time
trajectory generated by the ROM (black) and DNS (blue): (a) U+; (b) u+

rms; (c) v+
rms; (d) w+

rms. Highlighted
equilibria are EQ8 (orange); EQ28 (cyan); EQ48 (purple); EQ52 (green).

the long-time trajectory were also observed by Doohan et al. (2022) with the relative
magnitude of the overestimation being similar, especially for the small-scale straight
streaks.

Wall-normal fluctuations are seen to be of generally lower magnitude than that of
the long-time trajectory, although some of the highlighted equilibria with high friction
Reynolds numbers are seen to capture the wall-normal r.m.s. velocity profiles quite well
(EQ8, EQ28 and EQ48; figure 5c). With an accurate reproduction of the mean wall shear
stress, some of the computed equilibria capture the energy production of the large and
small scales reasonably well (figure 6e). The spanwise r.m.s. velocities of the computed
equilibria are also typically lower than that of the chaotic trajectory (figure 5d). These
observations are consistent with some of the phase portraits, in which straight rolls, wavy
streaks and rolls are not well captured by the equilibria (figure 6b–d).

Finally, the phase portraits associated with energy cascade and nonlinear scale
interactions show that most of the equilibria computed do not properly capture the
dynamics of the chaotic trajectory. The streamwise dissipation of many equilibria does
not appear near the chaotic trajectory (figure 6f ). Furthermore, the phase portraits of the
wall-normal and spanwise dissipation (figure 6g), inter-scale energy transport (figure 6h)
and pressure strain (figure 6i) all show that most of the computed equilibria have much
smaller amplitudes than those of the instantaneous chaotic state. This is consistent with
the finding of the DNS study by Doohan et al. (2021). However, it should be pointed out
that most of their equilibria feature the self-sustaining process either at large or small
scale, whereas many equilibria in this study have non-negligible amounts of energy and
production at both of the scales (figure 6a,b,e) – note that the equilibria of Doohan
et al. (2021) were obtained by continuing the existing solutions obtained in a smaller
computational domain (equivalent to lower Reynolds number), whereas those in our
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Figure 6. Phase portraits of the large- and small-scale energy observables of the (a–d) self-sustaining process
(equations (3.10), (3.11)) and (e–i) the two scale energy budget (equations (3.4), (3.5), (3.7)) for the equilibria
(blue), EQ8 (orange), EQ28 (cyan), EQ48 (purple), EQ52 (green), compared with linearly spaced contours of
the respective bivariate probability density function (dark–light grey) generated from a long-time trajectory of
the ROM.

study are obtained by directly looking for the zeros of (4.1). This observation suggests
that the relatively low amplitude of the observables associated with energy cascade and
nonlinear scale interactions is possibly more associated with the lack of unsteadiness in
the equilibria, as we shall indeed see in § 4.2.

4.2. Periodic orbits
Similar data as shown for the equilibria are now shown for the periodic orbits computed
using the ROM, with mean and r.m.s. velocity profiles shown in figure 7, and phase
portraits of large- and small-scale energy observables in figure 9. Highlighted periodic
orbits in figures 7 and 9 are chosen as they show reasonable agreement with the mean and

983 A33-19

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


M. McCormack, A.V.G. Cavalieri and Y. Hwang

15

10

U +

5

0

(a) (b)

0

v
+ rm

s

1.4

1.2

1.0

0.8

0.6

0.4

0.2

(c)

10–1 100 101 0 20 40 60 80

0 20 40 60 8020 40

y+ y+

60 80

2.0

1.5

1.0

0.5

w
+ rm

s

(d )

5

4

3

2

1

u+ rm
s

Figure 7. Mean and r.m.s. velocity profiles for the periodic orbits (grey) compared with the long-time
trajectory generated by the ROM (black) and DNS (blue): (a) U+; (b) u+

rms; (c) v+
rms; (d) w+

rms. Highlighted
periodic orbits: PO17 (cyan); PO20 (purple); PO26 (green); PO42 (orange).

r.m.s. statistics, and their dynamics in the state space will be further explored with respect
to figure 9.

In general, the periodic orbits characterise the chaotic state more accurately than the
equilibria, showing closer agreement to the long-time trajectory in many cases. The mean
profiles displayed by the periodic orbits appear to be similar to those shown by the
equilibria, with the wall shear stress being captured well (figure 7a). Large maxima seen
in the near-wall region of the streamwise r.m.s. velocity profiles in the equilibria are less
apparent in the periodic orbits with a multitude of periodic orbits capturing this profile
well (compare figure 7b with 5b). Similar to the equilibria, the wall-normal fluctuations
displayed by the periodic orbits appear to be mostly smaller than that of the long-time
trajectory or DNS, although wall-normal fluctuations in the near-wall region are seen to
be a little closer to the long-time trajectory than those of the equilibria (compare figure 7c
with 5c). The spanwise r.m.s. profiles also generally exhibit values less than that of the
long-time trajectory, although some periodic orbits replicate the near-wall peaks better
than those of the equilibria: PO17 and PO26, in particular (compare figure 7c with 5c).

Some recent studies have suggested that taking simple averages over computed invariant
solutions (Chandler & Kerswell 2013; Page et al. 2022) is often found to be as good as
other more sophisticated approaches (cyclic expansion; Cvitanovic et al. 2005). In figure 8,
turbulence statistics obtained from a simple average of equilibria and periodic orbits are
further compared with those of the long-time trajectory of DNS and ROM. While there is
very little difference in the mean profiles from the simple average of equilibria and periodic
orbits (figure 8a), the velocity fluctuations from periodic orbits show better agreements
with those from the long-time trajectory of DNS and ROM (figure 8b–d). However, the
velocity fluctuations from periodic orbits still show considerable differences from those
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Figure 8. Mean and r.m.s. velocity profiles from simple average over the equilibria (red) and the periodic
orbits (green) compared with those of the long-time trajectory generated by the ROM (black) and DNS (blue):
(a) U+; (b) u+

rms; (c) v+
rms; (d) w+

rms.

from the long-time trajectory of ROM, indicating that there are a number of orbits which
may not be near the turbulent solution trajectory in the state space.

The periodic orbits generally appear to capture the cross-streamwise velocity
fluctuations better than the equilibria, as seen in figure 7. The observables associated with
energy transport between different velocity components would therefore be better captured
by them, and pressure strain has been understood to be mainly involved in this process (e.g.
Tennekes & Lumley 1967; Cho et al. 2018). Given the form of pressure strain shown in
(A4) and (A11), the state-space projections of the periodic orbits with the observables
involving ∂u/∂x are expected to be improved compared with that of the equilibria. Indeed,
an examination of the phase portraits in figure 9 reveals that such observables are more
convincingly captured in the periodic orbits at both large and small scales than in the
equilibria: for example, wavy streaks (figure 9c), cross-streamwise dissipation (figure 9g)
and pressure strain (figure 9i), in particular.

Overall, the periodic orbits describe the chaotic trajectory both statistically and
dynamically better than the equilibria. The periodic orbits are seen to be more
representative with respect to the energy of straight streaks in the flow, with less
high-energy small-scale outliers, although these high-energy outliers continue to be seen
at the large scales (figure 9a). There is a modest improvement in the description of rolls by
the periodic orbits (figure 9b,d). Production and dissipation appear to be more consistently
captured by the periodic orbits than the equilibria (figure 9e–g). The inter-scale energy
transport terms from the periodic obits are also able to explore more of the state space
than those from the equilibria.

Despite the improved state-space dynamics offered by the periodic orbits compared with
that by the equilibria, the periodic orbits computed in this study do not sufficiently cover
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Figure 9. Phase portraits of the large- and small-scale energy observables of the (a–d) self-sustaining process
(equations (3.10), (3.11)) and (e–i) the two scale energy budget (equations (3.4), (3.5), (3.7)) for the periodic
orbits (blue), PO17 (cyan), PO20 (purple), PO26 (green), PO42 (orange), compared with linearly spaced
contours of the respective bivariate probability density function (dark–light grey) generated from a long-time
trajectory of the ROM.

the state space visited by the chaotic trajectory, as is evident from figure 9. Imposition of
the reflection symmetry might be a potential reason, but the phase portrait and turbulence
statistics from the chaotic trajectory subject to the symmetry did not yield any significant
difference to those without the symmetry (see Appendix B). It is, however, important
to mention that this does not necessarily imply a ‘theoretical’ failure of the attempt to
construct the chaotic dynamics in terms of periodic orbits. As mentioned earlier, the
periods of the computed orbits are less than T+ ≤ 141.57. However, the time scale of
the self-sustaining process at large scale is expected to be T+ ∼ 400–500 (Hwang &
Bengana 2016; Doohan et al. 2021), considerably longer than the periods of the computed
orbits in this study. Therefore, it is presumable that the lack of state-space coverage by the
computed orbits originates from their relatively short periods, and the computation of the

983 A33-22

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


Multi-scale invariant solutions in plane Couette flow

Reτ T+ max{u+
rms} dim(Wu) μ1 λ1

ROM 80.2 — 3.00 — — 0.107
PO17 72.2 61.51 2.97 97 −5.4813 0.1483
PO20 78.9 65.11 3.13 88 1.1523 ± 3.1462i 0.0995
PO26 75.8 89.26 2.96 96 4.8058 ± 4.3897i 0.1125
PO42 78.9 124.83 3.41 103 −9.4228 ± 11.8629i 0.1167

Table 1. Friction Reynolds number Reτ (with respect to the friction velocity of each orbit), period T+ (with
respect to the friction velocity of the ROM), maximum streamwise r.m.s. velocity max{u+

rms}, the dimension of
the unstable manifold dim(Wu), the largest Floquet multiplier μ1 and corresponding Lyapunov exponent λ1
of selected periodic orbits, compared with the ROM whenever possible.

periodic orbits with longer periods is expected to improve the state-space description by
the periodic orbits. Nevertheless, the computation of orbits with longer periods has been
found to be challenging even with the present ROM. In particular, we have observed the
vanishing recurrence of the chaotic trajectory on increasing Reynolds numbers, causing
trouble in identifying suitable initial conditions for the Newton algorithm. This also
suggests that a numerical approach with a fundamentally different concept would probably
be required to overcome this challenge. The Newton method employed for the computation
of periodic orbits in this study is expected to have limited applicability, when the leading
Lyapunov exponent of the given system is too large – the leading Lyapunov exponent of
the present ROM computed using the algorithm in Parker & Chua (1989) was λ1 = 0.107
(λ+1 = 0.58), comparable to the leading eigenvalues of the periodic orbits in table 1. This
is also a common feature of some of the most popular algorithms currently available based
on the same type of Newton iteration (e.g. Viswanath 2007; Willis et al. 2016). There have
been a few recent works addressing this challenge, and the proposed algorithms do not
appear to depend on the magnitude of the leading Lyapunov exponent (e.g. Azimi et al.
2022; Page et al. 2022; Parker & Schneider 2022). Employing such a technique may be a
way to overcome this challenge in the future.

4.3. Multi-scale dynamics in periodic orbits
Thus far, we have seen that a few periodic orbits computed appear to provide some
multi-scale dynamics representative of the chaotic state, consistent with the results of
figure 9, which show contributions in energy terms from both the large and small scales.
Now, we will consider some periodic orbits, highlighted with distinct colours in figures 7
and 9 (PO17, PO20, PO26, PO42, in particular), to explore the exact dynamics that each
orbit offers. We shall see that these orbits describe: (i) the self-sustaining process at small
and large scales (Hwang & Bengana 2016); (ii) the driving mechanism of small-scale
production via energy (Doohan et al. 2021); (iii) energy cascade from large to small scales.
An overview of these chosen orbits is tabulated in table 1. In particular, their stability
properties show a large number of unstable modes with a high leading Lyapunov exponent,
with values much larger than those reported at low Reynolds numbers (Viswanath 2007).
We also note the large dimension of the unstable manifold of these orbits, comparable to
or larger than that of the multi-scale equilibrium solution found in Doohan et al. (2022)
(i.e. LL2b). Invariant solutions with a high-dimensional unstable manifold have often been
observed to more closely resemble the turbulent state (see also Doohan et al. 2019).

Figure 10 shows the large- and small-scale velocity fields at an instant in time in PO42. It
is clear that a large pair of streaks that extends from the wall into the centre of the domain
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Figure 10. (a) Instantaneous large-scale streamwise velocity isosurfaces u+
l = ±1.5 (red/blue) and

(b) instantaneous small-scale streamwise velocity isosurfaces u+
s = ±0.75 (red/blue) shown at the same instant

in time in PO42.

dominates the large-scale field, with twice as many small-scale streaks dominating the
near wall of the small-scale velocity field, in agreement with the phenomenology of the
large- and small-scale self-sustaining processes. This structure in the large- and small-scale
velocity fields, common to a number of the computed periodic orbits, combines to exhibit
a rich variety of dynamics.

A number of the spatio-temporal processes statistically identified in the long-time
chaotic trajectory have also been found in the periodic orbits. Evidence of the small-scale
self-sustaining process has been seen in a large number of the periodic orbits, with an
example (PO20) shown in figure 11. The time trace of the observables of the small-scale
self-sustaining process shows a consistent interchange of dominance between its structural
components: Esr,s → Ess,s → Ews,s → Ewr,s → Esr,s. The flow field reconstructions of
figure 11 show the evolution of two pairs of streaks (red/blue u+

s contours) and vortices
(black ωx,s contours), showing straight streaks undergoing an instability, resulting in a
wavy streak. This wavy streak is accompanied by a growth of intensity of the neighbouring
streamwise vortices which slowly begin to grow between approximately t+ = 60 and
t+ = 10 in the absence of streaks. During this time, straight streaks are seen to regenerate
and the cycle continues.

Due to the increased difficulty and expense of converging longer periodic orbits,
evidence of the large-scale self-sustaining process has only been found in a single longer
orbit (PO42), shown in figure 12. As in the case of the small-scale self-sustaining process,
we see a consistent interchange of dominance between the structural components of the
large-scale self-sustaining process: Esr,l → Ess,l → Ews,l → Ewr,l → Esr,l. A single pair
of large-scale streaks (red/blue u+

l contours) are seen to dominate the flow field, starting
as straight streaks, slowly undergoing an instability to form a wavy streak, resulting in a
breakdown in the streak along its length. From this point, a large intensity of large-scale
streamwise vorticity is formed which sits alongside the remnants of the broken streak.
This vortex is then seen to stretch in the streamwise direction (Schoppa & Hussain
2002) accompanying the regeneration of the original straight streak occupying the full
streamwise length of the domain.

Other processes, such as the energy cascade and the driving mechanism, identified
statistically in long-time chaotic trajectories of the ROM (§ 3.3) as well as in the
DNS of Doohan et al. (2021), have also been identified in a number of the periodic
orbits. An example of the driving mechanism is observed in PO26, shown in figure 13.

983 A33-24

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


Multi-scale invariant solutions in plane Couette flow

1.0

0.9

0.8

0.7

0.6

0.5
0 10 20 30 40 50 60

1

0

–1
3

2
1

0 0
1

2
3

4
5

6y

z x

1

0

–1
3

2
1

0 0
1

2
3

4
5

6y

z x

1

0

–1
3

2
1

0 0
1

2
3

4
5

6y

z x

t+

t+ = 50 t+ = 60

t+ = 10

E+
ss,s E+

sr,sE+
ws,s E+

wr,s

(a) (b)

(c) (d )

Figure 11. (a) The evolution of the small-scale self-sustaining process observables normalised by their
maximum values over a single period of PO20. (b–d) Flow field visualisations at selected times show
small-scale streamwise velocity isosurfaces u+

s = ±1.5 (red/blue), and small-scale streamwise vorticity
isosurfaces ωx,s = ±0.55 (black).

The first snapshot (t+ = 10) shows a point of inactivity in the cycle featuring small
amounts of small-scale production accompanying some high u+

s (streaky) structures
(figure 13b). By the second snapshot at t+ = 40, a large peak in the driving wall-normal
inter-scale turbulent transport (see (3.13)) from large to small scale (i.e. positive T+

v,�d) is
observed both in the centre of the channel and around the streaks, transporting energy from
large to small scales. This is accompanied by a rise in turbulent production (figure 13c),
due to an injection of energy into the wall-normal small-scale velocity v+

s (see also
figure 13a). The result of this is an amplification of the small-scale streaky motions
observed at t+ = 60 (figure 13d).

An example of the energy cascade is observed in PO17, shown in figure 14. In the
statistical analysis of the long-time chaotic trajectory, energy transport primarily through
a particular part of the wall-normal inter-scale turbulent transport associated with the
cascade Tv,�c (see (3.12)) was seen to transport energy from the large-scale production
to the wall-normal small-scale dissipation near y ± 0.5. Thus, figure 14 shows snapshots
of the flow in the central region of the channel. Large-scale production isosurfaces reveal
long streak-like structures in the centre of the channel at the peak of the large-scale
production at around t+ = 12 (figure 14b). Between t+ = 12 and t+ = 30 these structures
shorten slightly in length accompanied by a growth in regions of high wall-normal
inter-scale turbulent transport (figure 14c), which are seen to move down and intersect
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Figure 12. (a) The evolution of the large-scale self-sustaining process observables normalised by their
maximum values over a single period of PO42. (b–d) Flow field visualisations at selected times show
large-scale streamwise velocity isosurfaces u+

l = ±1.5 (red/blue), and large-scale streamwise vorticity
isosurfaces ωx,l = ±1 (black).

with the small-scale dissipation contours at t+ = 35, continuing until roughly t+ = 50
(figure 14d,e). At this point, an increase in the wall-normal small-scale dissipation is
observed, with a drift of the small-scale dissipation isosurfaces towards the central region
of the channel. It is also interesting to note that T+

v,�c < 0 during this time interval,
indicating the possible existence of an inverse energy cascade, although the time-averaged
value of T+

v,�c is positive. From t+ = 50 to t+ = 60 (figure 14f ), the large-scale production
increases again, correlated to the intensification of large-scale straight streaks, completing
the cycle.

5. Conclusions

In this paper, we have validated the model of Cavalieri & Nogueira (2022) for plane
Couette flow retaining only two integral length scales through a two-part process. The
first involved the examination of the time-averaged two-scale energy budget based on a
split by spanwise wavenumber, including accessing the exchange of energy within and
between scales. Overall, a qualitative agreement was seen between the ROM and the
DNS results of Doohan et al. (2021) in nearly every respect. The second part of
the model validation process involved examining these processes further by studying the
temporal cross-correlations of various energy measures integrated over the spatial domain.
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Figure 13. (a) The evolution of the small-scale streak energy E+
ss,s, driving component of wall-normal

inter-scale turbulent transport T+
v,�d and small-scale production P+

us normalised by their maximum values
over a single period of PO26, showing the driving mechanism. (b–d) The flow field visualisations at selected
times show small-scale streamwise velocity isosurfaces u+

s = ±2.25 (red/blue), driving wall-normal inter-scale
turbulent transport isosurfaces T+

v,�d = 0.11 (black) and small-scale production isosurfaces P+
us = 0.67 (grey).

Identified in the model was both a large- and small-scale self-sustaining process, an
energy cascade from large to small scales, the driving of small-scale production via energy
transport from the large scales in the near-wall region and a feeding process transporting
energy from the small to large scales. The underlying mechanisms of these processes, at
least in relation to the various energy budget terms and the structural components of the
self-sustaining process at each scale, have been analysed and compared with the results of
Doohan et al. (2021), with good qualitative agreement.

A total of 96 equilibria and 43 periodic orbits have subsequently been computed
for the ROM, the statistics and phase portraits of which have been directly compared
with those of a long-time chaotic trajectory generated using the ROM. In general, the
invariant solutions of the ROM reproduce its multi-scale dynamics more convincingly
than those found by Doohan et al. (2022) for the full Navier–Stokes equations. Equilibrium
solutions were largely seen to capture straight streaks and rolls, resulting in large near-wall
peaks in the streamwise r.m.s. velocity profiles, with high Reτ equilibria seen to exhibit
energy production values very similar to that of the mean long-time trajectory. In
general, equilibria failed to accurately capture wavy streaks and rolls, as well as the
wall-normal and spanwise energy dissipation. The periodic orbits were seen to characterise
the chaotic state more accurately than the equilibria, showing closer agreement to the
long-time trajectory in nearly all cases, exhibiting a rich range of multi-scale dynamics
and spatio-temporal evolution.

The periodic orbits in particular have been seen to contain useful dynamical information
about the known processes in the flow, which have been more easily identified than
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Figure 14. (a) The evolution of the large-scale production P+
ul, cascade component of the wall-normal

inter-scale turbulent transport T+
v,�c and wall-normal small-scale dissipation ε+

vs normalised by their maximum
values over a single period of PO17, showing the energy cascade. (b–d) The flow field visualisations at selected
times show large-scale production isosurfaces P+

ul = 0.22 (grey), wall-normal inter-scale turbulent transport
isosurfaces T+

v,�c = 0.22 (black) and wall-normal and spanwise small-scale dissipation ε+
vs + ε+

ws = −0.3
(cyan).

by using a statistical approach applied to the long-time chaotic trajectory. In particular,
various periodic orbits have contained valuable information, including the large- and
small-scale self-sustaining process, the driving mechanism which transports energy from
the large scales to the small-scale production and the energy cascade, allowing for a more
clear physical interpretation of these processes. It might be seen as evident that periodic
orbits would be more useful and relevant than equilibrium solutions for the statistical
and dynamical description of turbulence. However, it is probably worth pointing out
that, at lower Reynolds numbers, where the flow is characterised by a single integral
length scale (i.e. the minimal flow unit), many equilibrium solutions in plane Couette
flow have also previously been found to be organised around the turbulent trajectory
in the state space (e.g. Gibson et al. 2008; Doohan et al. 2019). These equilibrium
solutions often contain the most fundamental physical ingredients for the underlying
physical mechanism of sustaining turbulence (i.e. the self-sustaining process). Similarly,
in Rayleigh–Bénard convection, the recent study by Motoki et al. (2021) showed that
there exists a multi-scale equilibrium solution which resembles turbulence. Even from
a dynamical systems viewpoint, the equilibrium solutions can still act as a signpost for the
chaotic solution trajectory through the formation of homoclinic/heteroclinic orbits. From
this perspective, it is interesting to observe that a large number of the equilibrium solutions

983 A33-28

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

16
5.

20
0,

 o
n 

28
 D

ec
 2

02
4 

at
 1

7:
35

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.108


Multi-scale invariant solutions in plane Couette flow

in a wall-bounded shear flow lose their statistical and dynamical importance on increasing
the Reynolds number. It remains to be seen if this is a general feature in other flows.

As a final remark, the invariant solutions computed using the ROM are not invariant
solutions of the exact system, and this is an important limitation of this study. However,
the computation of invariant solutions to the full Navier–Stokes equations is prohibitively
expensive and very challenging for high Reynolds numbers. The present study has
demonstrated that the significantly reduced cost of generating invariant solutions for
a carefully crafted ROM would provide a gateway to applying dynamical systems
approaches to flows at high Reynolds numbers and exploring the increasingly complex
multi-scale turbulent dynamics identified in the full-scale dynamics – indeed, the
dramatically reduced computational cost has enabled us to carry out an extensive search
of unstable periodic orbits buried in the turbulent state, a task that is likely impossible
to tackle using DNS at the current computational cost for the given Reynolds number.
In this respect, the key to the application of this approach is in the construction of a
successful ROM, which is able to capture the turbulent dynamics of interest. Thankfully,
there are an increasing number of studies towards the reliable construction of ROMs
for turbulent flows (e.g. see the review by Rowley & Dawson 2017). For the purpose of
extracting the key turbulent dynamics through invariant solutions, the ROM must be in
the form of a ‘nonlinear’ dynamical system, and it is highly desirable to preserve the
mathematical structure of the Navier–Stokes equations so that the dynamics described by
invariant solutions of the ROM can be analysed in comparison with that of the real flow.
By doing so, the invariant solutions would be able to describe the exact ‘reduced-order’
dynamics of the given turbulent flow and the underlying complex physical processes can
be studied by formulating a suitable energy budget analysis, a key tool to explore energy
cascade and scale interactions in turbulence. From this perspective, it is also important
to carefully control the construction of a ROM by recognising its exact capability in the
description of the turbulent dynamics. Lastly, it is worth noting that the invariant solutions
from a ROM could be continued with respect to the neglected modes of the exact system,
provided that the ROM has a sufficient number of degrees of freedom. This is a direction
we currently pursue towards a cost-effective method for the computation of physically
meaningful invariant solutions to the Navier–Stokes equations.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.108.
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Appendix A. Terms of the two-scale energy budget

In § 3, the terms of the two-scale energy budget i.e. (3.4), (3.5) were introduced. The
precise terms in these equations are summarised here.

The large-scale kinetic energies are given by

Eul = 1
2 〈u2

l 〉x,z, Evl = 1
2 〈v2

l 〉x,z, Ewl = 1
2 〈w2

l 〉x,z, (A1a–c)

the large-scale production is

Pul = −∂U
∂y

〈ulvl〉x,z, (A2)

the large-scale turbulent transport terms are

Tul = −〈ul(ul · ∇ul + ul · ∇us + us · ∇ul + us · ∇us)〉x,z, (A3a)

Tvl = −〈vl(ul · ∇vl + ul · ∇vs + us · ∇vl + us · ∇vs)〉x,z, (A3b)

Twl = −〈wl(ul · ∇wl + ul · ∇ws + us · ∇wl + us · ∇ws)〉x,z, (A3c)

the large-scale pressure strain terms are

Πul =
〈
pl

∂ul

∂x

〉
x,z

, Πvl =
〈
pl

∂vl

∂y

〉
x,z

, Πwl =
〈
pl

∂wl

∂z

〉
x,z

, (A4a–c)

the large-scale viscous transport terms are

Tν,ul = 1
2

1
Re

〈
∂2

∂y2 (u2
l )

〉
x,z

, Tν,vl = 1
2

1
Re

〈
∂2

∂y2 (v2
l )

〉
x,z

, Tν,wl = 1
2

1
Re

〈
∂2

∂y2 (w2
l )

〉
x,z

,

(A5a–c)
the large-scale pressure transport is

Tp,vl = −
〈

∂

∂y
(plvl)

〉
x,z

, (A6)

and the large-scale dissipation terms are

εul = − 1
Re

〈∇ul · ∇ul〉x,z, εvl = − 1
Re

〈∇vl · ∇vl〉x,z, εwl = − 1
Re

〈∇wl · ∇wl〉x,z.

(A7a–c)
Similarly, the small-scale kinetic energies are given by

Eus = 1
2 〈u2

s 〉x,z, Evs = 1
2 〈v2

s 〉x,z, Ews = 1
2 〈w2

s 〉x,z, (A8a–c)

the small-scale production is

Pus = −∂U
∂y

〈usvs〉x,z, (A9)

the small-scale turbulent transport terms are

Tus = −〈us(ul · ∇ul + ul · ∇us + us · ∇ul + us · ∇us)〉x,z, (A10a)

Tvs = −〈vs(ul · ∇vl + ul · ∇vs + us · ∇vl + us · ∇vs)〉x,z, (A10b)

Tws = −〈ws(ul · ∇wl + ul · ∇ws + us · ∇wl + us · ∇ws)〉x,z, (A10c)
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the small-scale pressure strain terms are

Πus =
〈
ps

∂us

∂x

〉
x,z

, Πvs =
〈
ps

∂vs

∂y

〉
x,z

, Πws =
〈
ps

∂ws

∂z

〉
x,z

, (A11a–c)

the small-scale viscous transport terms are

Tν,us = 1
2

1
Re

〈
∂2

∂y2 (u2
s )

〉
x,z

, Tν,vs = 1
2

1
Re

〈
∂2

∂y2 (v2
s )

〉
x,z

, Tν,ws = 1
2

1
Re

〈
∂2

∂y2 (w2
s )

〉
x,z

,

(A12a–c)
the small-scale pressure transport is

Tp,vs = −
〈

∂

∂y
(psvs)

〉
x,z

, (A13)

and the small-scale dissipation terms are

εus = − 1
Re

〈∇us · ∇us〉x,z, εvs = − 1
Re

〈∇vs · ∇vs〉x,z, εws = − 1
Re

〈∇ws · ∇ws〉x,z.

(A14a–c)

In addition to this, the turbulent transport terms were further decomposed in (3.7). The
intra-scale spatial turbulent transport terms are given by

Tul,− = −〈ul(ul · ∇ul)〉x,z = −∇ · 〈1
2 u2

l ul〉x,z, (A15a)

Tvl,− = −〈vl(ul · ∇vl)〉x,z = −∇ · 〈1
2v2

l ul〉x,z, (A15b)

Twl,− = −〈wl(ul · ∇wl)〉x,z = −∇ · 〈1
2 w2

l ul〉x,z, (A15c)

Tus,− = −〈us(us · ∇us)〉x,z = −∇ · 〈1
2 u2

s us〉x,z, (A15d)

Tvs,− = −〈vs(us · ∇vs)〉x,z = −∇ · 〈1
2v2

s us〉x,z, (A15e)

Tws,− = −〈ws(us · ∇ws)〉x,z = −∇ · 〈1
2 w2

s us〉x,z. (A15f )

The inter-scale spatial turbulent transport terms are given by

Tul,# = −∇ · 〈1
2 u2

l us〉x,z − ∇ · 〈ulusus〉x,z, (A16a)

Tvl,# = −∇ · 〈1
2v2

l us〉x,z − ∇ · 〈vlvsus〉x,z, (A16b)

Twl,# = −∇ · 〈1
2 w2

l us〉x,z − ∇ · 〈wlwsus〉x,z, (A16c)

Tus,# = −∇ · 〈1
2 u2

s ul〉x,z − ∇ · 〈ulusul〉x,z, (A16d)

Tvs,# = −∇ · 〈1
2v2

s ul〉x,z − ∇ · 〈vlvsul〉x,z, (A16e)

Tws,# = −∇ · 〈1
2 w2

s ul〉x,z − ∇ · 〈wlwsul〉x,z. (A16f )

The inter-scale turbulent transport terms are given by

Tu,� = 〈ul(ul · ∇us)〉x,z − 〈us(us · ∇ul)〉x,z, (A17a)

Tv,� = 〈vl(ul · ∇vs)〉x,z − 〈vs(us · ∇vl)〉x,z, (A17b)

Tw,� = 〈wl(ul · ∇ws)〉x,z − 〈ws(us · ∇wl)〉x,z. (A17c)
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Figure 15. Mean and r.m.s. velocity profiles of the long-time trajectory: (a) U+; (b) u+
rms; (c) v+

rms; (d) w+
rms.

Here: DNS (blue); full ROM (black); ROM with the reflection symmetry (red dashed).

Appendix B. Effect of reflection symmetry

In the search of invariant solutions, the reflection symmetry was imposed for the ROM as
discussed in § 4. Here, its effect on the turbulence statistics is reported. Figure 15 shows
the turbulence statistics from the full ROM and the ROM with the reflection symmetry.
All the one-point turbulence statistics (i.e. mean and velocity fluctuations) from the ROM
without and with the reflection symmetry are almost identical, indicating that the imposed
symmetry is not significantly restrictive. The same behaviour has also been found in the
various phase portraits examined in this study (not shown).
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