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Over the last decade, substantial progress has been made in understanding the topology
of quasi-two-dimensional (2-D) non-equilibrium fluid flows driven by ATP-powered
microtubules and microorganisms. By contrast, the topology of three-dimensional (3-D)
active fluid flows still poses interesting open questions. Here, we study the topology of a
spherically confined active flow using 3-D direct numerical simulations of generalized
Navier–Stokes (GNS) equations at the scale of typical microfluidic experiments.
Consistent with earlier results for unbounded periodic domains, our simulations confirm
the formation of Beltrami-like bulk flows with spontaneously broken chiral symmetry
in this model. Furthermore, by leveraging fast methods to compute linking numbers,
we explicitly connect this chiral symmetry breaking to the entanglement statistics of
vortex lines. We observe that the mean of linking number distribution converges to the
global helicity, consistent with the asymptotic result by Arnold [In Vladimir I. Arnold
– Collected Works (ed. A.B. Givental, B.A. Khesin, A.N. Varchenko, V.A. Vassiliev &
O.Y. Viro), pp. 357–375. Springer]. Additionally, we characterize the rate of convergence
of this measure with respect to the number and length of observed vortex lines, and
examine higher moments of the distribution. We find that the full distribution is well
described by a k-Gamma distribution, in agreement with an entropic argument. Beyond
active suspensions, the tools for the topological characterization of 3-D vector fields
developed here are applicable to any solenoidal field whose curl is tangent to or cancels at
the boundaries of a simply connected domain.
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1. Introduction

Active turbulence, similar to its passive classical counterpart, is characterized by the
emergence of highly complex bulk flow dynamics (Alert, Casademunt & Joanny 2022;
Bentkamp et al. 2022; Matsuzawa et al. 2023). Active fluids based on motile bacteria
(Sokolov et al. 2007; Wensink et al. 2012; Dunkel et al. 2013b), molecular motors
(Sanchez et al. 2012) and self-propelled colloids (Bricard et al. 2013) can display a rich
set of topological structures, from spontaneously forming and annihilating point-defects
in two-dimensional (2-D) films (Doostmohammadi et al. 2016) to entangled vortex lines
in three-dimensional (3-D) bulk flows (Čopar et al. 2019). Building on classic work on
the statistical mechanics of point defects (Onsager 1949; Kosterlitz & Thouless 1973), the
dynamics and statistics of topological defects have been extensively studied in (quasi) 2-D
active fluids (Thampi, Golestanian & Yeomans 2014; Giomi 2015; James, Bos & Wilczek
2018; Chardac et al. 2021). By contrast, the diverse and complex singular structures
realized by active flows in 3-D space (Binysh et al. 2020) were, until recently, inaccessible
to experimental and numerical studies. With modern experimental imaging techniques
(Duclos et al. 2020) and simulation methods, it is now possible to probe 3-D topological
structures and their statistics (Kralj, Ravnik & Kos 2023).

Topological approaches have helped progress theoretical fluid mechanics since the
observation by Moffatt (1969) that the tangling of vortex lines is related to the total helicity
of the associated ideal incompressible flow. The total helicity H is an inviscid invariant of
incompressible flow defined by the integral (Moffatt 1969)

H(t) =
∫

V
d3x u(x, t) · ω(x, t), (1.1)

where u is the flow velocity and ω = ∇ × u is its associated vorticity. Moffatt showed that
for a system of N closed and isolated vortex lines in simply connected domains, the total
helicity can be expressed as

H =
N∑

i,j=1

κiκjLij, (1.2)

where κi is the circulation around the ith vortex tube, and Lij is the linking number between
the centrelines of the ith and jth vortex tubes, a topological measure counting the signed
integer number of times the jth vortex tube wraps around the ith. This connection between
helicity and flow topology has been measured in hydrodynamic experiments (Kleckner &
Irvine 2013; Scheeler et al. 2017) and applies generally to solenoidal fields with discrete
localization of their curl, including magnetic fields (Berger & Field 1984) or quantum
flows (Hänninen & Baggaley 2014; Zuccher & Ricca 2017).

Intuitively, H measures the winding of vortex lines around each other, and non-zero
helicities indicate chiral flows in which vortex lines curl around each other in a preferred
orientation. While this connection between helicity and topology is far-reaching, in most
flows of interest, the topology of the vorticity field is much more complex than a set
of potentially interlinked discrete vortex tubes. As turbulence emerges, experimental
resolution of vortex lines becomes more challenging in the absence of localized vortex
tubes (Matsuzawa et al. 2023), and (1.2) does not directly hold: for general vorticity
fields, vortex lines are not necessarily closed, and an asymptotic formulation of (1.2)
due to Arnold (1974) provides an extension of Moffatt’s result. Although theoretically
useful, Arnold’s formulation has been relatively underutilized in practice due to the high
computational cost involved in the computation of the relevant topological quantities.
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It is thus desirable to establish practical means to characterize the topological structure
of diffuse vorticity fields, independently of the dynamics through which these arise.

Here, building on these core ideas, we study the statistics of vortex line entanglement
in a turbulent flow governed by the incompressible generalized Navier–Stokes (GNS)
equations (Słomka & Dunkel 2017b; Słomka, Suwara & Dunkel 2018; Supekar et al. 2020)

∂tu+ (u · ∇)u = −∇p+ Γ0∇2u− Γ2∇4u+ Γ4∇6u, (1.3a)

∇ · u = 0, (1.3b)

which model flows with advected active constituents driving a generic linear instability
(Rothman 1989; Beresnev & Nikolaevskiy 1993; Tribelsky & Tsuboi 1996). The GNS
equations (1.3) provide a coarse-grained phenomenological description of active fluid
flows on scales larger than those of the individual microorganisms or self-propelled
particles that drive these flows. Linkmann et al. (2020) showed how such GNS equations
can be derived from a more complex active suspension model.

Nonlinear advection is nominally negligible in the low-Reynolds-number regime typical
of microfluidic experiments with passive fluids or dilute active suspensions. By contrast,
the presence of active stresses in non-dilute microswimmer suspensions can significantly
alter the viscous balance, effectively cancelling the fluid viscosity (López et al. 2015;
Nambiar, Nott & Subramanian 2017) and creating an unstable band of modes. These modes
can saturate nonlinearly via the advective term, and the resulting system can therefore
have a large effective Reynolds number and exhibit turbulent-like behaviour (Dunkel et al.
2013a; Koch & Wilczek 2021). The GNS equations model this behaviour by inducing
a band-limited linear instability via the Γ terms which saturates in a finite-amplitude,
statistically stationary flow. For Γ0, Γ4 > 0 and Γ2 < 0, the parameters (Γ0, Γ2, Γ4)
together define a characteristic energy injection length scale Λ and bandwidth κ , along
with a characteristic time scale τ:

Λ = π

√
−2Γ4

Γ2
, κ =

(
−Γ2

Γ4
− 2

√
Γ0

Γ4

)1/2

, τ = 2Γ4

Γ2

(
Γ0 −

Γ 2
2

4Γ4

)−1

. (1.4a–c)

Physically, Λ prescribes the characteristic vortex size, while κ determines how
many modes with wavelengths around Λ are excited by the linear instability. The
phenomenology of typical microfluidic experiments with bacterial suspensions (Dunkel
et al. 2013b; Wioland et al. 2016; Čopar et al. 2019; Peng, Liu & Cheng 2021) can be
recovered by setting Λ ∼ 75 μm, κ ∼ 30 mm−1 and with a characteristic speed U =
2πΛ/τ ∼ 10 μm s−1 (Słomka & Dunkel 2017b). Other, more complex linear dispersion
relations produce structurally similar flow patterns (Słomka et al. 2018).

In this active fluid context, the dynamics of helicity become especially interesting: the
combination of a linear instability and nonlinear advection can lead to a partial 3-D inverse
energy transport mediated by chiral symmetry breaking (Biferale, Musacchio & Toschi
2012; Słomka & Dunkel 2017b). Following the traditional characterization of the inverse
energy transport in 2-D passive turbulence through vortex coarsening (Boffetta & Ecke
2012), here we investigate the 3-D topology of vortex lines in 3-D GNS flows.

While previous analytical and numerical studies of (1.3) and other active fluids in 3-D
have focused on unbounded domains (Słomka & Dunkel 2017b; Urzay, Doostmohammadi
& Yeomans 2017; Słomka et al. 2018), analysing topological structures in a typical
experimental set-up requires confined simulations. Moreover, Moffatt’s and Arnold’s
theorems, like many theoretical tools relying on topological properties of the ambient
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h/σ(h)

>10–1<

(b)(a)

Figure 1. Simulations of the active GNS model (1.3) confined in the ball demonstrate spontaneous
parity-breaking and helical flows. Structures are more pronounced for a narrow spectral energy injection
bandwidth ((a) κ = 4/R) than a wider one ((b) κ = 16/R). Iso-value surfaces of the helicity density h = u · ω

are shown, rescaled by the standard deviation σ(h). Regions of positive helicity (red) dominate in the bulk and
negative regions (blue) are mostly present near the boundary. The vortex scale parameter is Λ = R/8 in both
simulations, and time units are chosen such that τ = 1.

space, are technically applicable only in simply connected domains. We hence choose
a 3-D ball of radius R as our simulation domain, which is qualitatively similar to
experimentally realisable microfluid cavities (Wioland et al. 2013).

In this work, we leverage spectral direct numerical simulations (Burns et al. 2020) and
recent methods to efficiently compute linking numbers (Qu & James 2021) to explore
the topological structure of a numerical realization of active turbulence in confinement
(figure 1). However, the methodology developed here is applicable to any incompressible
flow, including passive and active fluids. Our active model spontaneously breaks spatial
parity and, consistent with earlier results for periodic domains (Słomka & Dunkel 2017b),
produces a quasi-Beltrami flow in the bulk of a closed domain, as will be shown
in § 2. We then characterize the topological structure of the emergent Beltrami flow by
numerically computing the entanglement statistics of vortex lines in § 3. To validate this
characterization, we observe that the mean linking number between two vortex lines
converges to the asymptotic results due to Arnold (1974). Beyond this result, the full
distribution of linking numbers is well described by a k-Gamma distribution, in agreement
with an entropic argument previously encountered in granular and living matter for
distributions of one-sided random variables with constraints on the mean (Aste & Di
Matteo 2008; Atia et al. 2018; Day et al. 2022). This statistical argument is detailed in § 4.

2. Chiral symmetry breaking in linearly forced active flows

The unbounded GNS equations admit exact chiral solutions. These solutions are Beltrami
flows, in which the vorticity is colinear with the velocity (Słomka & Dunkel 2017b). More
specifically, the exact GNS solutions have a velocity field which is an eigenfunction of the
curl operator

ω = ∇ × u = λu, (2.1)

with λ the eigenvalue corresponding to the characteristic wavenumber of the mode;
such solutions are sometimes called Trkalian flows (Lakhtakia 1994). The initial linear
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instability drives modes with λ ≈ π/Λ and both positive and negative helicities. Triadic
interactions break the symmetry and spontaneously select an overall handedness for the
flow (Słomka et al. 2018). Simulations in periodic domains that start from initially random
small velocity fields therefore spontaneously produce statistically stationary chiral flows
with non-zero mean helicity. However, it has remained an open question whether such
solutions can robustly manifest themselves in the presence of boundaries.

Using the spectral solver Dedalus (Burns et al. 2020), we simulate a confined GNS flow
inside the three-dimensional ball of radius R (figure 1). Starting from an initially small
random flow, we evolve the GNS equations (1.3) subject to the boundary conditions:

u(R, t) = 0, (2.2a)

n · ∇u(R, t) = 0, (2.2b)

n · n · ∇∇u(R, t) = 0, (2.2c)

where n is the outward pointing unit normal vector and R any point on the boundary.
The no-slip condition here ensures there is no normal vorticity at the boundary
(a necessary condition for Arnold’s theorem), and the higher order terms are chosen to
simply suppress shear at the boundary, but other choices are possible (Słomka & Dunkel
2017a). Throughout, we set Λ = R/8 and adopt time units such that τ = 1. To simulate
the GNS equations (1.3) with boundary conditions (2.2), we discretize the ball along
the (r, θ, φ) coordinates using (Nr, Nθ , Nφ) = (64, 64, 128) grid points. Time stepping is
done using a third-order four-stage implicit–explicit Runge–Kutta scheme (Ascher, Ruuth
& Spiteri 1997). Additional details of the numerical implementation and initial condition
construction are summarized in the Appendix.

As has been observed in periodic domains (Słomka & Dunkel 2017b), after an initial
transient, the GNS dynamics lead to the spontaneous emergence of vortical flows which
saturate at a finite energy E(t) = (1/2)

∫
V d3x|u(x, t)|2 (figures 1 and 2). The asymmetry

between positive and negative helicity density regions suggests that the emergent flow
violates parity invariance (figure 1): while the GNS equations – including the chosen
boundary conditions – are invariant under the transformation x→−x, solutions with a
non-zero total helicity are not invariant under this transformation. To quantify the extent
of this parity-symmetry breaking, we compute the helicity of the flow H(t) through
its integral definition. We find that H(t), like the energy E(t), starts at a small value
and grows until saturating at a much larger amplitude. However, unlike the energy, the
steady-state helicity has a sign that is determined by the random initial condition (figure 2).
It is interesting to note the variability in transient behaviour between samples, with the
presence of dynamics on multiple time scales. This phenomenon is reminiscent of mode
competition in nonlinear systems such as multimode lasers (Hodges et al. 1997) and
population dynamics (Hastings et al. 2018; Morozov et al. 2020).

What is the structure of these emergent chiral solutions? To compare our flows with the
expected Beltrami solutions in the bulk, we compute a ‘Beltrami factor’ β = u · ω/(λ|u|2)
with λ = π/Λ. If the flow followed the structure of the periodic solutions (2.1), we would
expect this measure to be peaked around±1 in the bulk, with+1 corresponding to positive
helicity solutions. Indeed, as we decrease κ and fewer modes are excited, β peaks around
1, with the notable appearance of secondary peaks (figure 3a). Those new peaks can be
simply explained: in confined domains, solutions to (2.1) cannot also be solutions to the
GNS equations (1.3) subject to the chosen boundary conditions (2.2). This frustration leads
to the appearance of a boundary layer (as can be seen in figure 1 for κ = 4/R), and indeed
β is peaked around unity in the bulk of the sphere (figure 3b). By Taylor expanding near
r = R to third order with the chosen boundary conditions (2.2), and matching to the typical
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Figure 2. Spontaneous chiral flows in confined GNS. Energy and total helicity as a function of time for
different initial conditions: (a) 20 simulations with Λ = R/8, κ = 4/R; (b) 19 simulations with Λ = R/8, κ =
16/R. In both panels (a,b), the initial conditions spontaneously break parity symmetry, and τ = 1 sets the time
unit.

third derivative in the bulk ∼U/Λ3, the characteristic boundary layer scale is expected to
be w = 61/3Λ ≈ 1.8Λ, which matches well with our simulations (figure 3b,c).

The generalized Navier–Stokes equation hence spontaneously generate quasi-Beltrami
flows in the bulk for narrow energy injection bandwidths. Why do GNS solutions
converge to such flows? Chiral symmetry breaking has been explained in previous work
by noticing that the advection term selects for chiral solutions in the bulk in the presence
of energy injection by linear instability (Słomka et al. 2018). This selection effect is
theorized to be more pronounced as the energy injection bandwidth κ narrows, in
accordance with our numerical observations, as both the absolute value of the helicity
and β decrease with larger bandwidths (figures 2b and 3). As Beltrami flows minimize
enstrophy E = (1/2)

∫
d3xω2 at fixed helicity (Woltjer 1958) and are steady solutions

to the Euler equations, one might speculate that in our effectively low-viscosity flows
(López et al. 2015), the selection of helical modes naturally leads to such Beltrami flows
away from boundaries (Słomka & Dunkel 2017b). While out-of-equilibrium dynamics
do not necessarily follow any extremization principle, we note that this property of
Beltrami flows is purely geometric and does not depend on the nature of the flow. It
would thus be interesting to see under what conditions other helical turbulence generation
mechanisms also produce Beltrami flows, and whether this regime could be realized in
microfluidic experiments using semi-dense bacterial suspensions (Wioland et al. 2013) or
other biological or synthetic active matter.

3. Quantifying chiral symmetry breaking through vortex linking statistics

In the previous section, we showed that the GNS flow in the ball spontaneously produces
quasi-Beltrami flows with non-zero helicity. To connect the helicity of the flow to the
linking statistics of vortex lines, we follow an approach inspired by theorems by Moffatt
(1969) and Arnold (1974).

Both theorems are concerned with the instantaneous entanglement of vortex lines, which
are defined as the streamlines (in the mathematical sense) of the vorticity field, satisfying
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Figure 3. GNS spontaneously produces bulk quasi-Beltrami flows for narrow unstable bandwidth. (a) Beltrami
factor β = u · ω/(λ|u2|) with λ = π/Λ is increasingly peaked for systems with narrower spectral bandwidth
κ . The depicted flows all have positive helicity, but opposite parity solutions appear with equal probability.
(b) Two-dimensional histogram of the Beltrami factor against the radial position, revealing an approximate
Beltrami flow in the bulk of the ball with adjustments in a boundary layer of relative thickness ŵ = 61/3Λ/R.
At higher bandwidths (inset), more modes are excited and the Beltrami factor is less clustered. In all simulations
in panels (a,b), Λ = R/8. (c) Beltrami factor for simulations with κR = 4 and varying Λ support the expected
boundary layer scaling. The histograms in panels (b,c) are constructed from 104 uniformly random sample
points. All values are in simulation units where R = 1, τ = 1.

the differential equation

dr
ds̃
= ω(r(s̃)), (3.1)

where s̃ is a parameter with units of length × time. Here and in what follows, this
integration is always performed at a fixed simulation time point t, considering the vorticity
field ω as a ‘frozen-in’ structure at time t. To avoid numerical issues due to varying
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(b)(a)

Figure 4. Vortex lines, corresponding to integral curves of the vorticity field at fixed time t as defined in (3.1),
starting at evenly spaced intervals along the black line, rapidly diverge and tangle around each other. (a) Lines
of length L ≈ 0.3R; the two longer lines have L ≈ 0.9R. Colour indicates starting position. (b) The same lines
as in panel (a) extended to L = 5R. The vorticity field is from the statistically stationary turbulent state with
Λ = R/8, κ = 4/R.

magnitude of ω, we consider the equivalent differential equation

dr
ds
= ω

|ω|(r(s)) (3.2)

now re-parametrized such that a vortex line integrated from an initial position r(0) = r0
over s ∈ [0, L] has length L. We numerically integrate (3.2) by using a linear interpolation
of the field ω between the quadrature nodes of the spectral direct numerical simulation.

Vortex lines are experimentally accessible flow structures in the limit of localized
vorticity, as buoyant particles such as bubbles in water are attracted to regions of high
vorticity while heavier particles are expelled away from them. This makes vortex lines
readily visible in flows where vorticity is confined to tube-like regions (Durham et al.
2013; Kleckner & Irvine 2013). However, vortex line geometry is often complex even
in the presence of relatively simple flow fields, as illustrated by the chaotic field lines
in the Arnold–Beltrami–Childress (ABC) flow (Dombre et al. 1986; Qin & Liao 2023).
Integration of vortex lines in our helical flows indeed lead to erratic trajectories, where
initially close vortex lines rapidly diverge and tangle around each other (figure 4).

To measure pair-wise entanglement of vortex lines, we use the linking number between
two oriented closed curves γ1 and γ2 defined by Gauss’ integral formula (Qu & James
2021)

L(γ1, γ2) = 1
4π

∮
γ1

∮
γ2

(r1 − r2)

|r1 − r2|3 · (dr1 × dr2). (3.3)

This integer-valued quantity counts the signed number of times one curves winds around
the other. The linking number possesses notable properties: if one curve is reversed,
the linking number flips sign and it is symmetric since L(γ1, γ2) = L(γ2, γ1). Most
importantly, L is invariant under continuous deformation of the curves. The linking
number is therefore a topological invariant playing a central role in the study of knots
and linked curves (Vologodskii & Cozzarelli 1994; Kauffman 1995; Panagiotou 2019).
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Figure 5. Linking numbers are topological invariants measuring the entanglement of oriented closed curves.
(a) Example configurations with their linking numbers. Positive and negative crossings are illustrated by⊕ and
�. (b) Linking number of two example open curves closed using the scheme used to apply Arnold’s theorem.
(c) Illustration of the additive property of linking numbers with respect to curve concatenation. (d) The additive
property can be used to compute linking numbers as sums of contributions from subsegments of two curves.

An equivalent viewpoint is to define L as the sum of half-integer contributions from each
crossing of the curves under a planar projection, with the sign depending on the relative
orientation of the curves (figure 5a). As an invariant, L is independent of the choice of the
projection plane.

While the definition of L in (3.3) calls for closed curves, vortex lines in complex
flows are not closed in general. To leverage the connections between linking numbers
and helicity, we thus have to consider slightly modified vortex lines. Consider two open
vortex lines γ1 and γ2 of length L starting at points x1 and x2, respectively. We then define
the asymptotic linking number ΛL(x1, x2) between γ1 and γ2 as follows. We construct
the curve γ̃i as by closing the curve γi by a straight segment connecting its start and end
points. We then note ΛL(x1, x2) the linking number of the two curves γ̃1, γ̃2 (figure 5b)
normalized by Ti and Tj:

ΛL(x1, x2) = 1
T1T2

L(γ̃1, γ̃2), (3.4)

where Ti =
∫
γi

ds/|ω(r(s))| is the integrated inverse circulation, which has units of length
× time; the product TiTj is the normalization factor of the asymptotic linking number.

With these preliminary definitions, Arnold (1974) provides a connection between the
helicity of an incompressible flow and the asymptotic linking number of vortex lines via
the asymptotic equality:

H =
∫

V
d3x (u · ω)(x) = 1

V2

∫∫
V×V

d3x1 d3x2 lim
L→+∞

ΛL(x1, x2). (3.5)
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This equality between the helicity and the volume averages of the asymptotic linking
numbers is valid on any simply connected domain for any incompressible velocity field, as
long as the normal component of the vorticity vanishes at the boundary (n · [∇ × u] = 0).
Since our simulations have a no-slip boundary condition u = 0, by Stokes’ theorem, the
vorticity flux through any arbitrary loop drawn on the boundary cancels, and we can apply
(3.5).

To characterize the topology of the active Beltrami flow, we hence construct a statistical
ensemble of linking numbers using the numerical solutions of (3.2), verifying our
approach against the expectation of (3.5) for the mean of this distribution.

As a first step towards an estimate of the helicity using Arnold’s theorem, we integrate
N vortex lines of length L and then close them as in figure 5(b). To compute the linking
number between two such closed vortex lines, which are numerically represented as a set
of connected line segments with lengths δ < 10−2R, a naive discretization of the Gauss
integral of (3.3) between two lines of length L would require O(L2/δ2) operations. This
quadratic scaling leads to a prohibitive computational cost for large linking numbers.
However, N-body simulations often require the evaluation of integrands which decay as
∝ 1/r2, as is the case for (3.3). For this class of functions, one can leverage Barnes–Hut
and fast multipole-type methods to bring down the algorithmic complexity of the linking
number computation to O((L/δ) log(L/δ)). Qu & James (2021) designed and implemented
such methods for computing linking numbers, along with topology-preserving curve
simplification algorithms in a publicly available C++ package. We have built and released
a Python wrapper for their code (see Data availability statement).

To monitor convergence of the mean of the asymptotic linking numbers to H as
a function of line length L, we can exploit the linearity of the curve integrals in
(3.3). By decomposing the linking number into contribution from subloops, we can
avoid recomputing linking numbers from scratch (Moffatt 1969). Let γ1γ2 denote the
concatenation of the oriented closed curves γ1 and γ2 sharing a start and end point, then
we have L(γ1γ2, γ3) = L(γ1, γ3)+ L(γ2, γ3) (figure 5c). Contributions from subloops
can then be summed up to recover the full linking number of longer curves (figure 5d).

With these ingredients in hand, we can compute the linking number distribution
and construct an ‘Arnold estimate’ of the helicity, by constructing a Monte Carlo
approximation to the integral in the right-hand side of (3.5) as follows.

(i) Sample N initial points {xi} uniformly in the domain.
(ii) Integrate vortex lines and their inverse circulation for a length L. Closing the vortex

lines by a line segment, we obtain a set of {g(xi), Ti}.
(iii) Compute the N(N − 1)/2 distinct linking numbers λij := L(g(xi), g(xj)) using fast

methods (Qu & James 2021).
(iv) Normalize the linking numbers to obtain the approximations ΛL and average those

contributions to estimate the average helicity :

Ĥ = 2
N(N − 1)

∑
0<i<j≤N

1
TiTj
λij. (3.6)

Applying this program, we study the convergence of the estimate Ĥ to H as a function of N
and L for a snapshot of a given simulation at a fixed time point once the GNS has entered
the statistically stationary state.

Integrating vortex lines, we find normalization factors TiTj increasing as ∼L2, as can be
expected for long vortex lines with L� R which traverse the entire domain such that
Ti ≈ L/〈|ω|〉, with 〈.〉 denoting the volume average (figure 6a). Note that boundaries
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Figure 6. The average linking number converges to the total helicity as vortex line length is increased.
(a) Heatmap of the normalization factor TiTj as a function of vortex line length L averaged over N = 1000
vortex lines, in (a i) linear and (a ii) log scale. Continuous lines indicate mean, dashed lines standard deviation.
Notice that the mean sits above the mode of the distribution, as the normalization factor distribution has a
long tail due to interactions with the boundaries. (b) Heatmap of the pair-wise linking number L as a function
of vortex line length L, in (b i) linear and (b ii) log scale for a positive helicity flow. For better visualization,
each column in panels (a,b) is normalized to the column-wise standard deviation. Results are averaged over
N = 1000 vortex lines and their N(N − 1)/2 = 5× 105 pairs. The logarithmic plot shows an asymptotic
scaling of L ∼ L2. Inset shows the set of linking numbers L for L = 100R as a function of the distance
d between the vortex lines starting points. There is no correlation between L and d. (c) Helicity estimate
as a function of vortex line length for increasing number of vortex lines. (d) Helicity estimate for various
samples (different colours) computed from N = 500 vortex lines as a function of L. Remarkably, even short
lines capture the helicity sign, suggesting that even limited observations of vortex lines could be used to detect
chiral symmetry breaking in experiments.

are irrelevant to the computation: as Ti diverges to +∞ when u vanishes, vortex lines
intersecting the boundary layer have very large normalization factors. The contributions
from such ‘boundary’ vortex lines are hence suppressed from the estimate (3.6), and the
mean of TiTj is larger than its mode. Once the vortex lines are computed, we compute
our ensemble of linking numbers; consistent with the implication of (3.6) that ΛL must
converge to a finite value, our computed linking numbers have their average value scaling
with L2 (figure 6b). It is interesting to note that vortex lines longer than a few domain
radius will almost certainly link with other vortex lines with the sign of the total helicity.
Additionally, the linking number between vortex lines is independent of vortex line starting
position; this is consistent with the picture that vortex line integration is chaotic (figure 6b,
inset).

Combining linking numbers and normalization factors to compute Ĥ, we find rapid
convergence with length and number: N = 125 vortex lines of length ∼30R give an
estimate accurate within 10 %. Remarkably, even short vortex lines lead to the correct
sign and order of magnitude of the helicity, across tested samples (figure 6d).
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Figure 7. Tracking chiral symmetry-breaking through vorticity linking. (a) Direct integration of the helicity
density (solid line) matches the Arnold estimate of the helicity by vortex linking number statistics (solid
circles). Dashed line indicates the average helicity at steady state. (b) The Arnold estimate is accurate even
at short times, and notably captures the helicity sign change, with red dots denoting negative values and
blue dots indicating positive values. The y-axis is linear between [−10−7, 10−7] and logarithmic elsewhere.
(c) Time evolution of the probability distribution of pair-wise linking numbers. Colour indicates time.
(d) Mean, standard deviation and moment coefficient of skewness of the linking number distribution as a
function of time. The final non-zero mean reflects chirality of flow, while increasing skewness indicates the
departure from Gaussian statistics. We note that at time 10, an outlier point with skewness 40 is not shown.
Results are shown for N = 150 vortex lines of length L = 100R. Colour of scatter points in panels (a,c,d) all
follow the colour map of panel (c).

Settling on N = 150, L = 100R to construct our Arnold estimate Ĥ, we run the above
algorithm at various time points to monitor the time-evolution of vorticity linking
(figure 7). The Arnold estimate is an accurate estimate of the helicity during the initial
period, linear instability and saturation phase, with an approximately constant relative
error (figure 7a,b). In line with our previous observation that even short vortex lines led
to the correct helicity sign, Ĥ has the correct sign even when the helicity magnitude is
close to zero. This raises the interesting possibility of tracking chiral symmetry breaking in
experiments using tracer particles to uncover vortex lines, especially at low tracer densities
that would make standard velocity reconstruction methods challenging.
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The dynamics of vortex lines is key to understanding the emergence of fine structures
in turbulence through their connection to helicity as an inviscid invariant (Scheeler
et al. 2017; McKeown et al. 2020; Matsuzawa et al. 2023). In active flows, however,
helicity can be created and destroyed. Our techniques allow the characterization of
the statistically averaged topology of the flow as it evolves to a statistically stationary
state with non-zero total helicity. Here, our construction of Ĥ provides us with the full
distribution p(L) of linking numbers as a function of time, beyond Arnold’s result on
the mean degree of linkage of vortex lines (figure 7c). Studying the moments of this
distribution, one finds that, as expected, the mean linking number goes from 0 to finite
non-zero number reflecting the emergence of chiral flows (figure 7d). The behaviour
of the standard deviation and skewness are however non-trivial: the standard deviation
shows large fluctuations during the instability growth phase, while the distribution displays
non-zero skewness at late times. In the next section, we will use general constraints on the
linking number distribution to rationalize its statistics at steady state.

4. The distribution of linking numbers obeys a maximum entropy law

The construction from the previous part allows us to obtain the distribution of pair-wise
linking numbers of N vortex lines of length L, which contains several notable features at
steady state. First, for the strongly chiral flows considered here, all pairs of sufficiently
long vortex lines are linked with probability 1. Second, the mean 〈L〉 is approximately
constrained by Arnold’s theorem to be equal to the flow’s total helicity. Third, we find no
correlation between linking numbers and vortex line starting points for sufficiently long
vortex lines, suggesting ‘chaotic tangling’ and a notion of ergodicity in the system, with
two randomly selected vortex lines eventually capturing the global helicity as their lengths
tend to infinity. Together, these features suggest that in this geometrically and topologically
complex system, statistical principles could explain the observed linking distribution.

Maximal-entropy reasoning has been successfully applied to explain the packing
statistics of confined granular and living matter (Edwards & Oakeshott 1989; Bi et al. 2015;
Atia et al. 2018; Day et al. 2022) and topological defect distributions in two-dimensional
turbulence (Eyink & Sreenivasan 2006; Giomi 2015). As these problems naturally share
features with our system of confined topological defects, the maximal-entropy method is
a viable candidate to explain linking number statistics.

To apply a maximum entropy approach, we translate the above observations into
constraints that the distribution of linking number must plausibly satisfy. The first
observation implies that for a given length L, the linking numbers must be bounded from
below L ≥ Lmin for a positive helicity flow; in negative helicity flows, L ≤ Lmax. The
second observation implies that the sum of linking numbers must be approximately equal
to the flow helicity by (3.5):

∑
i,j

Lij ≈
(

VNL
〈|ω|〉

)2

H ≡ H̄. (4.1)

Here, we assumed long enough vortex lines L� R such that we can take the flow to
be homogeneous and Ti ≈ 〈|ω|〉/L. Numerically, we do observe

∑
i,j Lij to scale with

L2 (figure 6b). Finally, the third observation above suggests that there is effectively no
correlation between linking numbers, or even perhaps between linking numbers of ‘long
enough’ vortex line sub-segments; under this assumption, one can consider the linking
number distribution as drawn from an emergent thermodynamic ensemble.
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To proceed, we consider the distribution p(L) which maximizes the Shannon entropy
subject to the constraints outlined above. To this end, we consider p(L) as the probability
of the ‘macroscopic state’ where one vortex line of length L links L times with
another vortex line. Many ‘microscopic states’ corresponding to possible vortex line
conformations are compatible with such macro-states. Following Aste & Di Matteo
(2008), we consider the Shannon entropy S written as

S =
∑
L∈Z
−p(L) log p(L)+

∑
L∈Z

p(L)S(L), (4.2)

where S(L) is the entropy of the state with linking L. Under the assumption that
all microscopic states are equiprobable, S(L) = log Ω(L) with Ω(L) the number of
micro-states with linking L. Under the maximum entropy principle, p(L) is given by
optimizing the entropy functional S under the helicity constraint

1
N2 H̄ =

∑
L∈Z

p(L)L. (4.3)

The solution of this optimization problem is given by a Boltzmann-type distribution:

p(L) ∝ Ω(L)e−L/χ (4.4)

with χ−1 the Lagrange multiplier fixing the helicity constraint. To fully determine the
maximal-entropy distribution, the last step is to compute Ω(L).

Motivated by our observation that even short vortex lines almost certainly link with
others, we consider dividing a vortex line into k sub-loops of an approximately constant
size δL which we see as characteristic of the domain, such that k ≈ L/δL. A mesoscopic
description of the linking of two vortex lines can be given by the linking numbers of
each sub-loop of the first vortex line with the entire other line {�i}i=1,...,k; in the case of a
positive helicity flow, each sub-loop must link at least �min = Lmin/k times and

∑
i�i = L

with the assumption of mutual independence of the �i. Then, approximating discrete sums
as integrals for large enough linking numbers, Ω(L) is given by the volume of the simplex

Ω(L) =
∫ L

�min

d�1

∫ L

�min

d�2 · · ·
∫ L

�min

d�k δ

( k∑
i=1

�i − L
)
= (L− Lmin)

k−1

(k − 1)!
, (4.5)

where the integration bounds correspond to the case of a positive helicity flow, in which
linking numbers are bounded from below. Combining (4.4) and (4.5) while eliminating
χ = (〈L〉 − Lmin)/k using (4.3), we obtain the k-Gamma distribution:

p(L) = kk

Γ (k)
(L− Lmin)

k−1

(〈L〉 − Lmin)
k exp

(
−k

L− Lmin

〈L〉 − Lmin

)
, (4.6)

where Γ is the Euler Gamma function. The k-Gamma distribution can be understood as
a Gamma distribution with shape parameter k for the scaled and shifted random variable
(L− Lmin)/(〈L〉 − Lmin). Note that in the case of negative helicity flows, we still obtain
a k-Gamma distribution by substituting L←−L and Lmin ←−Lmax.

To test the validity of this approach, we fit the probability distribution function in (4.6)
to the linking number distribution obtained from N = 1000 vortex lines sampled from a
positive helicity flow using maximum likelihood estimates of Lmin, 〈L〉 and k as a function
of the vortex line length L (figure 8). We sample 2× 104 points from the fitted distribution
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Figure 8. The linking number distribution at a fixed time is well described by a k-Gamma distribution. (a) For
a flow with positive helicity (Λ = R/8, κ = 4/R), the empirical probability distribution function of L (blue
curves) for different vortex line lengths is well fit by a k-Gamma distribution (red curves), including up to shot
noise for long enough vortex lines (log scale inset). Distributions are shown for L/R = 30, 40, 50, 60, 80, 100,
with N = 1000 vortex lines. (b) Plotting centred and scaled distributions for L/R ≥ 50 highlights the deviation
from the normal distribution (black line) and shows the quality of the fit for large L. (c) The linking distribution
has a Fano factor σ 2/〈L〉 > 1, showing super-Poissonian behaviour that is well captured by the k-Gamma fits
in panel (c i). The skewness of fits asymptotically matches the data, which scales as 1/

√
L, in agreement with

the hypothesis of independent increments, shown in panel (c ii). (d) The fitted exponent k scales linearly with
L (dashed lines as visual guide).

and find excellent agreement with the k-Gamma distribution, with p(L) for long (L =
100R) vortex lines matching the fit down to shot noise. This increase in fit quality with
increasing L is consistent with the expectation that our independence and discrete sum
approximations become more justified for longer vortex lines (figure 8a,b).

As expected from (3.5) and (4.1), the fitted value of 〈L〉 recovers Arnold’s equality.
The fitted k-Gamma distributions also recover the correct scaling of mean and variance
of data, notably displaying the super-Poissonian behaviour of the linking distribution as
shown by its Fano factor σ 2/〈L〉 > 2, and show the asymptotic behaviour of the skewness
(figure 8c).
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In previous applications of the k-Gamma distribution, k is fit as a shape parameter
determined by the variance σ 2 of the distribution as k = (〈L〉 − Lmin)/σ

2 (Aste et al.
2007; Aste & Di Matteo 2008; Atia et al. 2018; Day et al. 2022). To obtain parameter
estimates as a function of vortex line length, we similarly fit our observed distribution
using a maximum likelihood optimization. This procedure is agnostic to our arguments
leading to (4.5), which posits that k is set by the number of independent sub-domains of
vortex lines. In support of the validity of the decomposition of vortex line linking numbers
into contributions from sub-loops, we find that the fitted parameter k linearly increases
with the vortex line length L (figure 8d). As we find that k ≈ L/(2R), we can estimate that
topologically correlated domains have a characteristic size δL ≈ 2R, indicating that this
emergent correlation length is set by the diameter of the ball.

As we consider longer vortex lines, since k ∝ L, we predict that the linking number
distribution must eventually tend to the normal distribution. With k→+∞, the k-Gamma
distribution converges to the Gaussian N (μ = 〈L〉, σ 2), consistent with figure 8(b).
This convergence is also expected of a sum of linking numbers �i from an increasingly
large number of statistically independent sub-loops. For �i independent and identically
distributed, the skewness of the resulting sum is expected to scale as L−1/2 when each �i is
drawn from a skewed distribution (Hall 1992). Further validating the mesoscopic picture
that we used to compute Ω(L), this inverse-square root scaling behaviour is observed in
figure 8(c).

5. Conclusion

Building on recent progress in spectral simulation techniques for spherical domains (Burns
et al. 2020), we simulated a generalized Navier–Stokes (GNS) model for actively driven
fluid flow in a confined 3-D domain to characterize the topology of the spontaneously
forming chiral flow. Driven by a generic linear instability (Rothman 1989; Beresnev &
Nikolaevskiy 1993; Tribelsky & Tsuboi 1996), we find that the GNS system produces an
active Beltrami flow in the bulk for narrow energy injection bandwidth, a regime that could
likely be realized in microfluidic experiments using semi-dense bacterial (Wioland et al.
2016) or other microbial suspensions.

Leveraging recently published fast algorithms (Qu & James 2021), we characterized the
topological structure of this spontaneous flow through the pair-wise linking numbers of
sampled vortex lines. We explicitly measured the convergence of the mean vortex line
entanglement to the total helicity of the flow, as described asymptotically by Arnold.
Importantly, these results apply to all simply confined solenoidal vector fields with
appropriate boundary conditions, making our methodology applicable well beyond active
matter models, including high-Reynolds-number and magnetohydrodynamic flows. In the
active flow considered here, we found that a k-Gamma density describes the linking
number distribution well, and propose a maximum entropy argument to explain this result.

We note that there has been substantial work on understanding the asymptotic behaviour
of the winding number of two-dimensional random walks with or without chiral drift,
in the presence of repulsion or confinement (Spitzer 1958; Drossel & Kardar 1996;
Wen & Thiffeault 2019). In particular, it is known that the winding number of 2-D
confined random walks eventually becomes normally distributed for long-enough walks.
This convergence holds even in the presence of chiral drift, although the presence of
drift leads to long-lasting skewness in the winding distribution (Drossel & Kardar 1996;
Wen & Thiffeault 2019). In comparison, the study of the linking number of confined
random Brownian walks still presents many open questions (Orlandini & Whittington
2007), with to our knowledge no proof of convergence to normality, although results
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exist for the scaling of moments of drift-free polygonal Brownian walks (Panagiotou,
Millett & Lambropoulou 2010; Marko 2011). The numerically observed convergence to the
normal distribution for the linking number of long confined vortex lines (figure 8) suggests
connections between winding statistics and the linking numbers of random trajectories.
Moreover, given the generic nature of our entropic reasoning, it is possible that the
k-Gamma distribution is a universal feature of vortex line entanglement in chiral systems.

Finally, our analysis shows that even a small number of vortex lines with lengths L ∼ R
are sufficient to infer both the helicity sign and the helicity value. This rapid convergence
indicates that observations of vortex line entanglement – for instance through tracer
particles (Kleckner & Irvine 2013) or embedded filaments (Kirchenbuechler et al. 2014;
Du Roure et al. 2019) – could provide reliable measurements of chiral symmetry breaking
in 3-D experimental flows even with limited data.
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Appendix. Numerical methods

We solve the GNS equations (1.3) and (2.2) using Dedalus v3 (Burns et al. 2020). The
variables are discretized using the full-ball basis from Vasil et al. (2019); Lecoanet et al.
(2019), consisting of spin-weighted spherical harmonics in the angular directions and
one-sided Jacobi polynomials in radius. This discretization satisfies the exact regularity
conditions of smooth tensor fields at the poles and the origin, without having to excise any
regions around the coordinate singularities. Other attempts to simulate the GNS equations
in the ball using alternate discretizations have exhibited stability issues (Boullé, Słomka &
Townsend 2021), which may be related to their inexact imposition of regularity conditions
at the origin.

In Dedalus, the equations are integrated semi-implicitly with the linear terms solved
implicitly and the nonlinear computed explicitly using a third-order four-stage mixed
Runge–Kutta (RK) scheme (Ascher et al. 1997, § 2.8). The nonlinear terms are computed
pseudospectrally with 3/2 dealiasing. Incompressibility is directly enforced by implicitly
solving for the dynamic pressure as a Lagrange multiplier in each RK substep. The
boundary conditions are implemented using a generalized tau method, where radial tau
terms are explicitly added to the linear system. The system is evolved with a fixed time
step from random initial noise until reaching a statistically stationary state.
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Figure 9. The flow statistics in steady state are independent of initial condition amplitude. Energy and total
helicity as a function of time for random initial conditions with different amplitudes σ . All simulations have
Λ = R/8, κ = 4/R, τ = 1. (a) 20 simulations with σ = 10−2. (b) 20 simulations with σ = 10−4. The bottom
panel shows the energy on a semi-logarithmic scale, indicating an exponential growth of the energy at early
times, characteristic of a linear instability. (c) 20 simulations with σ = 10−5. We note that the main text results
are all reported for σ = 10−3. All values are in simulation units where R = 1, τ = 1.

The initial conditions for velocity are Gaussian white fields with mean value 〈u〉 = 0
and spatial correlations between components of the velocity 〈ui(x)uj(y)〉 = σ 2δijδ(x−
y), where i, j index the velocity components. The random field is then projected onto its
incompressible component such that ∇ · u = 0. We find that the statistical steady state is
independent of the amplitude of the initial amplitude σ (figure 9), consistent with the fact
that the initial transient regime is dominated by a linear instability.

Vortex line integration is performed using Scipy’s ordinary differential equation
integrator called through the method solve_ivp. The RK45 solver is used with absolute
tolerance 10−6, relative tolerance 10−12 and maximal step size 10−2 (in length units where
the ball radius is R = 1). Linear interpolation of the vorticity field between points on the
numerical quadrature grid is used to integrate the vortex lines.
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