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We present a framework for analysing plasma flow in a rotating mirror. By making a
series of physical assumptions, we reduce the magnetohydrodynamic (MHD) equations in
a three-dimensional cylindrical system to a one-dimensional system in a shallow, cuboidal
channel within a transverse magnetic field, similar to the Hartmann flow in ducts. We
then solve the system both numerically and analytically for a range of values of the
Hartmann number and calculate the dependence of the plasma flow speed on the thickness
of the insulating end cap. We observe that the mean flow overshoots and decelerates
before achieving a steady-state value, a phenomenon that the analytical model cannot
capture. This overshoot is directly proportional to the thickness of the insulating end cap
and the external electric field, with a weak dependence on the external magnetic field.
Our simplified model can act as a benchmark for future simulations of the supersonic
mirror device CMFX (centrifugal magnetic fusion experiment), which will employ more
sophisticated physics and realistic magnetic field geometries.

Key words: fusion plasma, plasma simulation

1. Introduction

Rotating mirrors present a novel research direction in magnetic confinement fusion
(Post 1987). This approach typically employs a large background magnetic field combined
with an externally supplied current, generating plasma rotation at supersonic speeds.
Compared with more complex magnetic configurations, this method offers a potentially
simpler design for fusion reactors. Previous experiments have demonstrated the feasibility
of supersonic rotating mirrors for nuclear fusion, as reported in the literature (Reid et al.
2014; Ellis et al. 2005).
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FIGURE 1. A simplified version of the supersonic mirror in a cylindrical coordinate system
(r, θ, z). The background field B0ẑ is generated by external magnets (not shown). The device
comprises an inner electrode, which is a solid conducting rod of radius R0, and an outer
conducting shell of radius R1. On both ends, the grey part of the end cap denotes an insulator,
whereas the white part denotes an imperfect conductor. Plasma remains in the annular region
between the two electrodes. Due to the external potential difference between the electrodes, the
radial current jextr̂ flows through the plasma; coupled with the background field B0 = B0ẑ causes
the plasma to rotate in the azimuthal (θ̂ ) direction.

The CMFX (centrifugal magnetic fusion experiment), funded by the ARPA-E BETHE
(Breakthroughs Enabling THermonuclear-fusion Energy) program (Romero-Talamás et al.
2021), aims to achieve a significant fusion triple product — with the product of plasma
density, temperature and confinement time greater than 1020 (keV s) m−3. The success of
this endeavour would mark a substantial advance in the development of practical fusion
energy.

The effectiveness of this approach may depend on the choice of materials for the
plasma end caps. These disk-shaped components are critical for maintaining axial plasma
confinement and enabling magnetic field rotation. Therefore, the material characteristics
of the end caps are important for the efficiency and viability of the fusion process.

In this study, we examine how the electrical properties and thickness of the end-cap
materials affect plasma flow. To simplify the analysis, we assume a model that transforms
the problem from laminar flow in a cylindrical geometry to laminar flow in a shallow,
cuboidal channel within a transverse magnetic field, similar to Hartmann flow in ducts
(Hartmann & Lazarus 1937a,b).

Previous research, including the work by Huang (2004), has studied the impact of the
Hartmann boundary layer on plasma flow and magnetohydrodynamic (MHD) stability.
Hassam & Huang (2019) have also explored the effect of perfectly conducting walls
and the emergence of small-scale physical oscillations in a one-dimensional (1-D)
MHD channel flow. Recent work by Zhang et al. (2022) has analysed flow regimes
in rectangular channels over a wide range of magnetic and fluid Reynolds numbers.
However, a comprehensive solution that encompasses end-cap fields and their impact on
flow remains elusive. Our simplified model aims to establish an analytical relationship,
providing a benchmark for future simulations employing more sophisticated physics and
realistic magnetic field geometries. The principles derived here are adaptable to broader
scenarios using complex numerical or analytical models. Figure 1 illustrates the set-up of
the supersonic mirror device.

To describe the evolution of the flow under an external azimuthal force, we use the MHD
model. In § 2, we explain the three-dimensional (3-D) MHD model and the assumptions
used to simplify it to a 1-D model. We then solve the 1-D model in all three media:
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imperfect conductor, insulator and plasma. We present the evolution of the time-dependent
solution at different values of the Hartmann number. In § 3, we demonstrate how the mean
plasma flow overshoots and decelerates, before reaching a steady-state value, and how the
thickness of the insulator and the external fields affect the mean flow. In § 4, we present
our conclusions.

2. Solving the MHD model: theory and analysis

In this section, we present a theoretical framework for analysing plasma behaviour in
a rotating mirror. We adopt the incompressible MHD model, which assumes a constant
plasma density, to describe plasma dynamics. To facilitate our analysis, we initially
simplify the model to a 1-D representation based on a set of well-defined assumptions
appropriate to the CMFX device. The resulting simplified 1-D model is then solved
numerically, and further simplified and solved analytically to provide insights into the
plasma behaviour under the influence of the rotating magnetic field in the mirror set-up.

For plasma, we start with the incompressible MHD (Freidberg 2014) model

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + j × B + μ∇2u + F , (2.2)

(
∂

∂t
+ u · ∇

)
p
ργ

= 0, (2.3)

−∂B
∂t

= ∇ × E, (2.4)

μpj = ∇ × B − 1
c2

∂E
∂t

, (2.5)

E = −u × B + ηj, (2.6)

∇ · B = 0, (2.7)

where ρ is the plasma density, u is the plasma flow velocity, B = B0 + B1 is the total
magnetic field, B0 is the static background field generated by the external coils, B1 is the
time-dependent field generated by the plasma, j is plasma-generated current density, p is
the plasma pressure and F = jext × B0 is the external force on the plasma generated by the
current jext generated due to the externally applied potential difference. The constants μ, η

and μp are the dynamic viscosity, magnetic field diffusivity and magnetic permeability of
the plasma, respectively. In equilibrium, we assume a uniformly magnetized static plasma
with p = p0, ρ = ρ0, u = 0, B = B0.

Similarly, inside the plasma wall materials described in figure 1, we solve Maxwell’s
equations

−∂B
∂t

= ∇ × E, (2.8)

μcj = ∇ × B − 1
c2

∂E
∂t

, (2.9)

where μc is the magnetic field permeability of the imperfect conductor. By definition,
inside an insulator, the current

j = 0, (2.10)
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and for an imperfect conductor that satisfies Ohm’s law,

j = σcE, (2.11)

where σc denotes the conductivity of the imperfect conductor. The last two equations are
the result of the electrical properties of the end-cap materials. The electric and magnetic
fields in all three regions: imperfect conductor, insulator and plasma, must be continuous,
since there is no charge accumulation or surface current on the interfaces. We begin by
normalizing the model equations and describing the various assumptions we make to
simplify the 3-D MHD model.

2.1. Normalization and cylinder-to-slab transformation
In this section, we simplify the model by normalizing it as follows:

B̃ = B
B0

, ũ = u
vA

, vA = B0√
μpρ0

, Ẽ = E
vAB0

, t̃ = tvA

L
, z̃ = z

L
, r̃ = r

R0
,

(2.12a–g)

where B0 is the magnetic field due to the coils, vA is the Alfvén speed, L is axial length
and R0 is the radial size of the device. Solving (2.1)–(2.11) analytically in a 3-D cylindrical
geometry is not possible. To reduce the complexity of this model, we adopt an asymptotic
ordering that differentiates between multiple scales and various quantities by employing
the small parameter ε:

ũr, ũz ∼ εũθ ∼ ε2, B̃r, B̃z ∼ εB̃θ ∼ εB̃v0 ∼ ε2, Ẽr ∼ εẼv0 ∼ ε2, (2.13a–c)

ẑ · ∇ ∼ 1/L ∼ (r̂, θ̂) · ∇ ∼ 1/R0, (R1 − R0)/R0 ∼ ε, β ∼ ε2, |F | ∼ ε.

(2.14a–d)

In these orderings, the subscript letter r, θ or z denotes the component of a quantity,
while the subscript v denotes the external fields in the vacuum region, and β = 2μop/B2

0
is the ratio of plasma pressure to magnetic pressure. The assumptions r̂ · ∇ ∼ 1/R and
(R1 − R0)/R0 ∼ ε imply a shallow device with small spatial gradient that enables us to
eliminate any radial variation in our annular domain. By making assumptions that remove
radial variation and impose azimuthal symmetry, the problem in three dimensions can
be effectively transformed into a configuration that resembles a 1-D slab or rectangular
channel.

We also assume that the azimuthal flow dominates the other components of the flows
and that the plasma-generated azimuthal magnetic field is greater than the rest of the
components of the field. Such behaviour of the plasma leads to a set of equations where all
the nonlinear terms involving interaction between the flow and fields completely vanish,
transforming our model into a set of linear equations. Another important assumption to be
used is that the power supply generates electric and magnetic fields Ev and Bv that are of
the same order as the plasma-generated fields. These fields will be an important part of
our conclusion in the last section.

The conceptualization and simplification of the 3-D domain is further elucidated in
figure 2. In the slab limit, we substitute the subscripts r, θ and z with x, y and z,
respectively. Note that such equations only involve the radial component of the electric
field Ẽr(z) (or Ẽx(z) in a slab), the azimuthal components of the magnetic field B̃θ (z) (or
B̃y(z) in a slab) and plasma flow ũθ (z) (or ũy(z) in a slab) throughout this paper. To further
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(a) (b)

FIGURE 2. (a) Rotating mirror set-up of a large aspect ratio mirror device in the form of an
annular cylinder. (b) A simplified slab (rectangular channel) model showing a cut section of the
mirror in panel (a). The region outside the end caps is treated as a vacuum with external vacuum
fields Ev, Bv . The equilibrium field B0 points in the z-direction whereas the plasma flow uy and
plasma-generated magnetic field By are in the azimuthal y-direction.

simplify the notation, we omit ˜ in normalized quantities. In the following section, we
begin by solving Maxwell’s equation in an imperfectly conducting end cap.

Throughout the paper, we impose even parity on the flow and electric field, and odd
parity on the magnetic field about the z = 0 plane,

uy(z) = uy(−z), Ex(z) = Ex(−z), By(z) = −By(−z). (2.15a–c)

2.2. Time-dependent fields in the vacuum region
We start by assuming the fields outside the device as

Ev = Ev0[1 − exp(−c0t)],
Bv = Bv0 sgn(z)[1 − exp(−c0t)],

}
(2.16)

where Bv0, Ev0 are the steady-state vacuum electric and magnetic fields due to external
sources such as the power supply, and we can use the outside fields as boundary conditions
to calculate the coefficients in the rest of the media.

The external electric and magnetic fields arise from the voltage difference and the
current flowing through the power lines. The time-dependent form of the fields is similar
to that of the current and potential of a resistor circuit. The parameter c0 corresponds to the
time taken for a typical experimental discharge, typically hundreds of Alfvén time periods.

These fields will be used as boundary conditions for the time-dependent fields inside
the imperfect conductor in the next section.

2.3. Time-dependent solution inside the imperfect conductor
Our analysis begins by solving Maxwell’s equations within the imperfect conductor. We
employ the magnetic and electric fields in the vacuum region as boundary conditions to
fully determine the field characteristics up to the interface between the imperfect conductor
and the insulator. We use the induction equation,

∂By

∂t
= −∂Ex

∂z
, (2.17)

and Ampere’s law,

Ex = 1
Sc

jx = − 1
Sc

∂zBy, Sc = vALσcμc, (2.18)
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where μc is the magnetic field permeability of the imperfect conductor, σc is the electric
conductivity and Sc is the Lundquist number which is a measure of magnetic diffusion
inside a material. We have neglected the displacement current term because it scales as
(vA/c)2 � 1 which is small compared with the Alfvénic time scale t ∼ 1 of the problem.

The general fields inside the imperfect conductor can be written as

Ex = −D3

Sc
+

√
c0

Sc
exp(−c0t)[D5 cos(

√
Scc0z) + D6 sgn(z) sin(

√
Scc0z)],

By = D3z + D4 − exp(−c0t)[D5 sin(
√

Scc0z) − D6 sgn(z) cos(
√

Scc0z)].

⎫⎬
⎭ (2.19)

Matching the tangential fields Ex and By with the outside fields Ev and Bv, respectively, we
obtain and simplify the fields inside the conductor as

Ex = Ev0 − exp(−c0t)
[

Ev0 cos(
√

Scc0(z − sgn(z)(0.5 + di + dc)))

+
√

c0

Sc
Bv0 sgn(z) sin(

√
Scc0(z − sgn(z)(0.5 + di + dc)))

]
, (2.20)

By = −ScEv0(z − sgn(z)(0.5 + di + dc)) + Bv0 sgn(z)

+ exp(−c0t)

[√
Sc

c0
Ev0 sin(

√
Scc0(z − sgn(z)(0.5 + di + dc)))

− Bv0 sgn(z) cos(
√

Scc0(z − sgn(z)(0.5 + di + dc)))

]
. (2.21)

Equations (2.20) and (2.21) represent the electromagnetic fields within the imperfect
conductor. We note that the expressions include a sgn function that is discontinuous at
z = 0. However, since the domain of the imperfect conductor does not include the point
z = 0, the fields remain continuous inside the conductor and the use of a sgn function is
valid. Note that these solutions are only valid for finite values of Sc. These results will
serve as boundary conditions for the subsequent analysis of the fields within the insulator,
as explained in the following section.

2.4. Time-dependent solution inside the insulator
After solving for the field inside the imperfect conductor, we solve for the electromagnetic
fields inside the insulator end cap. The fields inside the perfect insulator must satisfy the
induction equation

∂By

∂t
= −∂Ex

∂z
, (2.22)

and Ampere’s law

jx = −∂zBy = 0. (2.23)

In the insulator, the magnetic field is spatially uniform, whereas the electric field varies in
response to the time-dependent magnetic field. The tangential components of the magnetic
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By and electric Ex fields are

Ex = Ev0 + exp(−c0t)
{[

−Ev0 cos(
√

Scc0dc) +
√

c0

Sc
Bv0 sin(

√
Scc0dc)

]

− c0(|z| − 0.5 − di)

[√
Sc

c0
Ev0 sin(

√
Scc0 dc) + Bv0 cos(

√
Scc0 dc)

]}
, (2.24)

By = sgn(z)(ScEv0dc + Bv0)

− sgn(z) exp(−c0t)

[√
Sc

c0
Ev0 sin(

√
Scc0dc) + Bv0 cos(

√
Scc0dc)

]
. (2.25)

The magnetic field stays the same as the boundary between the imperfect conductor and
the insulator, but the electric field changes linearly with the insulator thickness due to the
induction equation.

Similar to the previous section, we have neglected the displacement current term
because it scales as (vA/c)2 � 1 which is small compared with the Alfvénic time scale
t ∼ 1 of the problem. However, it is important to note that close to t = 0, the fields
Ev = Bv = 0, whereas the fields inside the imperfect conductor and insulator have finite
values which violates causality. This violation of causality arises from the omission of the
displacement current term. In Appendix A, we show that incorporating the displacement
current resolves this issue, and neglecting the displacement current does not influence the
long-time solution or any outcomes of this study.

The effect of these external fields on the plasma dynamics is explored in § 3.

2.5. Time-dependent solution inside the plasma
After solving the fields in the imperfect conductor and the insulator, we solve the equation
inside the plasma. This will completely define the solution in all three media.

The lowest order equations correspond to the equilibrium: p = p0, ρ = ρ0, B =
B0 and u = 0, and time-dependent quantities arise only at first order. The plasma
satisfies (2.1)–(2.7) which, using the orderings defined in (2.13a–c) and (2.14a–d) for a
shallow-channel case with dominant azimuthal plasma flow and magnetic fields, can be
reduced to a set of coupled 1-D partial differential equations:

∂tuy = ∂zBy + 1
Re

∂2
z uy + F0(1 − exp(−c0t)), Re = ρ0vAL

μ
, (2.26)

∂tBy = ∂zuy + 1
Rm

∂2
z By, Rm = vALμp

η
, (2.27)

Ex = −uy − 1
Rm

∂zBy, (2.28)

subject to time-dependent boundary conditions on the insulator–plasma interface. The
flow uy = uy(z) and field By = By(z), and the external forcing term Fy = F0(1 −
exp(−c0t)). Note that the form of the forcing function is chosen to be similar to that of
the start-up stage of a rotating mirror. The forcing and external fields Ev, Bv are generated
by discharging a voltage source, typically an array of capacitors, and therefore have the
same time evolution, i.e. (1 − exp(−c0t)). For simplicity, we assume that the electrical
properties of the plasma do not change during operation.

https://doi.org/10.1017/S0022377824000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000928


8 R. Gaur, I.G. Abel, B. Tripathi and E. Kolemen

Coupled equations (2.26) and (2.27) describe the evolution of the azimuthal plasma
flow and magnetic field, while (2.28) determines the electric field. We also introduce a
new dimensionless parameter, the Hartmann number, defined as Ha ≡ √

ReRm, which
will be used in the subsequent analysis. To further understand this model, we numerically
solve it and provide analysis of the solution in the next section.

3. Results from the simplified 1-D Hartmann model

In this section, we solve the simplified 1-D Hartmann flow model and present a detailed
analysis of our results. We will then explain how plasma flow depends on the insulator
wall thickness.

We numerically solve (2.26) and (2.27) using the spectral numerical code Dedalus
(Burns et al. 2020) implementing time-dependent boundary conditions on electric and
magnetic fields obtained from the solution in the insulating end caps, given by (2.25)
and (2.24) at z = ±0.5. We apply a no-slip boundary condition to the flow. We use a
Chebyshev grid with nz = 128 grid points to resolve rapidly varying spatial features, such
as the boundary layer. The Chebyshev polynomial is well suited for this problem, as the
grid points are mostly clustered at the edge of the domain, which efficiently resolves the
boundary layer. For the time-stepper, we use a second-order backward difference (SBDF2)
time-stepping routine. An implicit method such as SBDF2 helps us avoid the unphysical
oscillations associated with a stiff system such as this. We solve the model for two values
of the Hartmann number and present the results in figure 3.

The plasma behaviour is governed by ideal MHD in the core, with non-ideal effects
dominating the boundary layer. The forcing term is balanced by the curvature of the
magnetic field in the core region (around z = 0), which is frozen in the fluid, flowing with
a nearly uniform speed. However, in the boundary layer, the plasma can move relative
to the magnetic field lines, which allows it to slip over the boundary. The thickness of the
boundary layer is proportional to 1/

√
Ha – a system with a high Ha has a thinner boundary

layer. Additionally, the core flow speed appears to be unaffected by the Hartmann number.
Since Ha � 1 for supersonic rotating plasmas, the presence of a boundary layer

introduces a new length scale that we can use to solve the problem analytically (Bender &
Orszag 2013). This process, the analytical solution, and its comparison with the numerical
solution are presented in Appendix B.

An important feature that we observe is the overshooting of the mean core plasma flow

ūy = 2
∫ 0.25

−0.25
dzuy, (3.1)

beyond its steady-state value. We demonstrate this phenomenon in figure 4. As the
boundary conditions are time dependent, the system adjusts to the new boundary values
through the generation of Alfvén waves. However, time-dependent boundary conditions
lead to an overshooting of the mean flow before it decelerates to a steady-state value.
We observe this phenomenon in our model over a wide range of input parameters, and
overshooting continues to occur in systems with high Hartmann numbers, regardless
of whether the mean flow is calculated over the entire domain or just the core.
Therefore, for the CMFX device, it is crucial to ensure a sub-Alfvénic mean flow, as
approaching Alfvénic speeds can induce various instabilities and reduce the confinement
time (Teodorescu et al. 2010).

Finally, for the same parameter values used in figure 3, we also plot the dependence
of the mean flow normalized by the external electric field ūy/Ev0 as a function of the
thickness of the insulator di in figure 5 for two different values of the external magnetic
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(a) (b)

FIGURE 3. Plasma flow and magnetic field profiles as functions of cylindrical distance z at three
different time values with (a) Re = 50, Ha = 50 and (b) Re = 50, Ha = 500. For this solution,
we have chosen F0 = 0.5, c0 = 10−2, Sc = 104, dc = 5 × 10−3, di = 10−2, Ev0 = −1, Bv0 =
1. Due to non-ideal effects, the plasma forms a sharp boundary layer near the insulating end
caps. Note that the fields and flows have been scaled by 1/ε to avoid adding factors of ε to all
quantities on the y axis.

(a) (b)

FIGURE 4. Mean core plasma flow speed ūy = 2
∫ 0.25
−0.25 dzuy as a function of time t for (a)

Ha = 50 and (b) Ha = 500, and compare the numerical and the simplified analytical solutions.
The inset shows the initial part of the numerical and analytical solutions. The solutions agree
well, but only close to the steady state. However, the analytical model cannot capture the Alfvénic
dynamics in the beginning, or the overshooting and subsequent deceleration (shaded region) of
the flow. The parameters used for these figures are the same as those used in figure 3.
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(a) (b)

FIGURE 5. Dependence of the mean flow ūy normalized by the vacuum electric field Ev0 against
the insulator end cap thickness di at different times and for different values of the external
magnetic field. (a) Ha = 500, Bv0 = 1 and (b) Ha = 500, Bv0 = 10. The flow velocity has a
strong dependence on the thickness of the insulator at the beginning. We see that the flow
transitions from overshooting to undershooting the steady-state value with increasing insulator
thickness, around di = 2 in panel (a) and di = 2.5 in panel (b). Hence, to avoid overshooting the
flow velocity, one must choose a thicker insulator end cap. Note that all plasma-generated flows
and fields have been scaled up by 1/ε because of their small size compared with the respective
background quantities.

field Bv0. We find that the magnitude of the plasma flow reduces with increasing insulator
end cap thickness and is sensitive to the values of the external electric and magnetic fields,
especially during the ramp-up phase of the device. However, the dependence of the mean
flow on the insulator thickness is strongly affected by the external vacuum electric field
Ev0. Therefore, to avoid overshooting of the plasma flow from the target value, one must
carefully choose the insulator end cap thickness. As the system approaches steady state,
the dependence of the mean flow on the insulator goes down and at steady state, they are
completely independent.

To accurately determine the flow magnitude, we must accurately and self-consistently
calculate the fields Ev0 and Bv0. However, in general, the electric field Ev0 =
Ev0(V0, R0, R1) is a complex function of V0, the potential difference across the electrodes,
and R0, R1, the radial positions of the electrodes. The current Iv0 = Iv0(V0, σp, μp) in the
external wires is an unknown function of V0 and the electrical properties of the plasma.
The magnetic field between the circular electrodes will be Bv0 = Bv0(Iv0, R0, R1, σp, μp).
Hence, the values of the fields depend on the electrical properties of the plasma and how
they change over time. To better understand it, one would require a nonlinear, multi-physics
solver.

4. Conclusions

We simplified the 3-D MHD model by transforming the equations describing a
supersonic rotating plasma in cylindrical geometry into a 1-D slab model by making
a set of assumptions appropriate for the CMFX. We then numerically and analytically
solved our simplified model and calculated the dependence of the plasma flow speed on
the thickness of the insulating end cap. Our analysis shows that the mean flow speed of the
plasma is linearly reduced with the thickness of the insulator wall. This reduction in mean
flow is stronger for large external electric fields. Moreover, to avoid the plasma flow from
overshooting beyond its steady-state value, one must carefully choose the insulator end
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cap thickness. Therefore, the design of the CMFX device must carefully take into account
the electrical properties of the end caps and the external electric and magnetic fields.

This work opens many avenues for future research. A key step forward is to extend
our technique to calculate the effect of the insulator thickness on the plasma flow by
solving the 3-D equations in all the different materials simultaneously using a multiphysics
solver. Our simplified model can act as a benchmarking tool for these sophisticated solvers.
The analysis could also be repeated with different boundary conditions, realistic magnetic
field geometry, and with temperature dependence, gyroviscosity, Hall effects and kinetic
effects.

Furthermore, our analysis has potential implications for ongoing liquid lithium-metal
experiments, as detailed by Saenz et al. (2022), which are crucial for liquid divertor
concepts in future tokamak fusion power plants. The similarity of these experiments with
our 1-D slab model solution further underscores the relevance of our findings in practical
fusion applications.
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Appendix A. Effect of ignoring displacement current at t = 0

As we are addressing the model on the time scale associated with the Alfvén speed,
we have neglected the faster time scale associated with the speed of light, which emerges
from the displacement current term in Ampere’s law. This results in an apparent violation
of causality when, at t = 0, the fields in the vacuum region are zero, but the fields inside
the end caps are finite. In this appendix, we show that including the displacement current
effect and solving Maxwell’s equations on a faster time scale resolves this issue.

We assume the same normalizations and orderings as described in (2.12a–g)–(2.14a–d)
and include the displacement current term in Ampere’s law:

Ex = 1
Sc

jx = − 1
Sc

∂zBy −
(vA

c

)2 ∂Ex

∂t
, (A1)

along with the induction equation (2.17), which gives us the following equation:

(vA

c

)2 ∂2Ex

∂t2
+ ∂Ex

∂t
= 1

Sc
∂2

z Ex. (A2)

On a very short time scale t ∼ (vA/c)2, we solve

(vA

c

)2 ∂2Ex

∂t2
+ ∂Ex

∂t
= 0. (A3)
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On the longer time scale t ∼ 1, we solve

∂Ex

∂t
= −∂2Ex

∂z2
, (A4)

and use the solutions from §§ 2.3 and 2.4. Here, we apply the boundary layer technique
on two different time scales instead of spatial scales, as done in Appendix B. The
general analytical solution to (A3) is Ex = A(1 − exp(−t(c/vA)

2)))Ex(x), where Ex(x) is
the spatial part that matches the long-time solution. Using the separation of variables, the
equations can be solved to obtain the following solution:

Ex = [1 − exp(−t(c/vA)
2)]Ev0

−
{

[exp(−c0t) − exp(−t(c/vA)
2)]

[
Ev0 cos(

√
Scc0(z − sgn(z)(0.5 + di + dc)))

+
√

c0

Sc
Bv0 sgn(z) sin(

√
Scc0(z − sgn(z)(0.5 + di + dc)))

]}
, (A5)

By = [1 − exp(−t(c/vA)
2)][−ScEv0(z − sgn(z)(0.5 + di + dc)) + Bv0 sgn(z)]

+
{

[exp(−c0t) − exp(−t(c/vA)
2)]

[√
Sc

c0
Ev0 sin(

√
Scc0(z − sgn(z)(0.5 + di + dc)))

−Bv0 sgn(z) cos(
√

Scc0(z − sgn(z)(0.5 + di + dc)))

]}
, (A6)

in the perfect conductor, and

Ex = [1 − exp(−t(c/vA)
2)]Ev0

+ [exp(−c0t) − exp(−t(c/vA)
2)]

{[
−Ev0 cos(

√
Scc0dc) +

√
c0

Sc
Bv0 sin(

√
Scc0dc)

]

− c0(|z| − 0.5 − di)

[√
Sc

c0
Ev0 sin(

√
Scc0dc) + Bv0 cos(

√
Scc0dc)

]}
, (A7)

By = [1 − exp(−t(c/vA)
2)] sgn(z)(ScEv0 dc + Bv0)

− sgn(z)[exp(−c0t) − exp(−t(c/vA)
2)]

[√
Sc

c0
Ev0 sin(

√
Scc0dc) + Bv0 cos(

√
Scc0dc)

]

(A8)

in the insulator. This shows that including the displacement current effects and solving
the complete Maxwell’s equations again yields a solution that satisfies causality – Ex =
By = 0 at t = 0 inside the end caps. Moreover, a few (vA/c)2 time periods after t = 0,
displacement current effects become negligible and these solutions become identical to
(2.20), (2.21), (2.24) and (2.25). Since the short-time solution is only dominant for t ∼
(vA/c)2 around t = 0, it does not affect the long-time dynamics, the steady-state solution
or any of the results in this paper.
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Appendix B. Analytical solution of MHD equations inside the plasma in the presence
of boundary layers

In this appendix, we demonstrate how the 1-D equations (2.26) and (2.27), which govern
the plasma dynamics, can be further simplified and solved analytically if we make a few
additional assumptions. We then compare the analytical solutions comprising the uy and
By profiles with the exact numerical solutions.

First, we decouple (2.26) and (2.27) governing the plasma to obtain the following system
of equations:

∂2
t uy = ∂2

z uy +
(

1
Re

+ 1
Rm

)
∂t∂

2
z uy − 1

Ha2 ∂4
z uy + F0c0 exp(−c0t), (B1)

∂2
t By = ∂2

z By +
(

1
Re

+ 1
Rm

)
∂t∂

2
z By − 1

Ha2 ∂4
z By. (B2)

Next, we use the fact that the dimensionless numbers Re and Rm are large for a typical
fusion plasma and introduce a new small length scale, the Hartmann boundary layer width
corresponding to the Hartmann number Ha ≡ √

ReRm. Mathematically, this corresponds
to the introduction of an auxiliary small parameter

δ ∼ 1
Re

∼ 1
Rm

∼ 1
Ha

, δ � ε, (B3)

where ε is the small parameter of the system used in § 2. Introducing the small parameter
δ allows us to separate our solution into a core solution described by the ideal MHD
equations and a boundary layer solution determined by non-ideal effects. Due to the size
of the dimensionless constants, we can solve the model in two regions: a large core region
governed by

∂2
t uy = ∂2

z uy + F0c0 exp(−c0t), (B4)

and a thin boundary layer near the domain walls governed by the equation

∂2
z uy = 1

Ha2 ∂4
z uy. (B5)

These equations can be solved separately and the different solutions can be combined
to obtain an overall time-dependent solution. To further simplify the model, we impose
a parity on the solutions. A general solution is considered admissible if it satisfies the
parity conditions (2.15a–c), which allows us to solve equations only in one-half of the
domain along the z-axis. We also limit this study to solutions that have a non-growing
time-dependent part, as we argue based on the findings of Hassam (1999) and Huang &
Hassam (2001) that turbulence is suppressed towards the edge due to the presence of a
large velocity shear. Using these conditions, we solve (B1) and (B2) for various quantities
inside the plasma,

uy = A1 − A2 cosh(Haz) + exp(−c0t)
(

F0

c0
+ B1 cosh(−c0z) − B2 cosh(Haz)

)
, (B6)

By = −F0z + A2
Ha
Re

sinh(Haz) + exp(−c0t)
(

−B1 sinh(−c0z) + B2
Ha
Re

sinh(Haz)
)

.

(B7)
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(a) (b)

FIGURE 6. Comparison between the analytical and numerical solutions close to steady state
at two different Hartmann number values. The boundary layer approximation improves the
agreement between analytical and numerical solutions. Note that plasma-generated flows have
been scaled by 1/ε due to their small size compared with the Alfvén speed. (a) Ha = 50 and (b)
Ha = 500.

Using (2.28), we can write the lowest-order electric field as

Ex = −A1 − exp(−c0t)
(

F0

c0
+ B1 cosh(−c0z)

)
. (B8)

Note that c0 � Ha for a consistent solution. Finally, we ensure the consistency of the
tangential electric and magnetic fields by matching the field inside the plasma with the
values of fields inside the insulator, obtained by evaluating (2.25) and (2.24) on the
boundary. This gives us the expressions for the coefficients A1, A2, B1 and B2:

A1 = −Ev0, (B9)

A2 = Re
Ha

1
sinh(Ha/2)

[
ScEv0dc + Bv0 + F0

2

]
, (B10)

B1 = 1
cosh(−0.5c0)

[
(Ev0 − c0diBv0) cos(

√
Scc0dc)

−
√

c0

Sc
(Bv0 + ScdiEv0) sin(

√
Scc0dc) − F0

c0

]
, (B11)

B2 = 1
sinh(Ha/2)

Re
Ha

{
sinh(−c0/2)B1 −

[√
Sc

c0
Ev0 sin(

√
Scc0 dc) + Bv0 cos(

√
Scc0dc)

]}
.

(B12)

Note that this model is only valid in the presence of a thin boundary layer. To better
understand the boundary layer approximation, we compare these analytical solutions with
the numerical solutions used in figure 3 and present them in figure 6.

The comparison illustrates how well the analytical solutions perform close to
steady-state conditions. Nevertheless, when far from steady state or in scenarios governed
by a lower Hartmann number, the analytical model exhibits a significant deviation from
the actual numerical solution. Hence, we used numerical solutions for all the analyses
presented in this study.
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