Canad. Math. Bull. Vol. **67** (4), 2024, pp. 1092–1106 <http://dx.doi.org/10.4153/S0008439524000602> © The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

On the sign changes of Dirichlet coefficients of triple product *L*-functions

Jinzhi Feng

Abstract. Let *f* and *g* be two distinct normalized primitive holomorphic cusp forms of even integral weight k_1 and k_2 for the full modular group $SL(2, \mathbb{Z})$, respectively. Suppose that $\lambda_{f \times f \times f}(n)$ and $\lambda_{g \times g \times g}(n)$ are the *n*-th Dirichlet coefficient of the triple product *L*-functions $L(s, f \times f \times f)$ and $L(s, g \times g \times g)$. In this paper, we consider the sign changes of the sequence $\{\lambda_{f \times f \times f}(n)\}_{n \geq 1}$ and $\{\lambda_{f \times f \times f}(n)\lambda_{g \times g \times g}(n)\}_{n \geq 1}$ in short intervals and establish quantitative results for the number of sign changes for $n \leq x$, which improve the previous results.

1 Introduction

Let H_k be the set of normalized primitive holomorphic cusp forms of even integral weight *k* for the full modular group $SL(2, \mathbb{Z})$, which are eigenfunctions of all the Hecke operators T_n . Then $f(z) \in H_k$ has a Fourier expansion at the cusp infinity

(1.1)
$$
f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{\frac{k-1}{2}} e(nz) \quad (\Im z > 0),
$$

where we normalize $f(z)$ so that $\lambda_f(1) = 1$. From the theory of Hecke operators, the Fourier coefficient $\lambda_f(n)$ is real and satisfies the multiplicative property

(1.2)
$$
\lambda_f(m)\lambda_f(n) = \sum_{d|(m,n)} \lambda_f\left(\frac{mn}{d^2}\right),
$$

where $m \ge 1$ and $n \ge 1$ are any integers. In 1974, Deligne [\[1\]](#page-13-0) proved the Ramanujan-Petersson conjecture: for all integers $n \geq 1$,

$$
(1.3) \t\t\t |\lambda_f(n)| \leq d(n),
$$

where $d(n)$ is the number of positive divisors of *n*.

The sign changes of Fourier coefficients attached to automorphic forms is an important problem and has been studied extensively by several scholars. In [\[12\]](#page-14-0), Knopp, Kohnen and Pribitkin showed $\{\lambda_f(n)\}_{n\geq 1}$ has infinitely many sign changes. After that, Ram Murty[\[20\]](#page-14-1) first considered the sign changes of the sequence of Fourier coefficients in short intervals. Later, Meher, Shankhadhar, and Viswanadham [\[19\]](#page-14-2) established lower bounds for the number of sign changes of the sequence $\{\lambda_f(n^j)\}_{n\geq 1}$ with $j = 2, 3, 4$.

Received by the editors August 8, 2024; revised August 28, 2024; accepted August 29, 2024. AMS subject classification: **11F11**, 11F30, 11F66.

Keywords: sign change, Dirichlet coefficient, cusp form.

However, the analogous questions of simultaneous sign changes of two cusp forms have also been investigated by a number of mathematicians. Let *f* and *g* be two different cusp forms. In [\[13\]](#page-14-3), Kumari and Ram Murty considered the simultaneous sign changes problem about $\{\lambda_f(n)\lambda_g(n)\}_{n>1}$. Later, Gun, Kumar, and Paul [\[3\]](#page-13-1) studied this problem about $\{\lambda_f(n)\lambda_g(n^2)\}_{n \geq 1}$. Recently, Lao and Luo [\[14\]](#page-14-4) also considered more general cases and obtained better results about $\{\lambda_f(n^i)\lambda_g(n^j)\}_{n\geq 1}$ for $i \geq 1$, $j \geq 2$. Further, Hua [\[5,](#page-13-2) [6\]](#page-13-3) investigated the analogous problem over a certain integral binary quadratic form.

The triple product *L*-function $L(s, f \times f \times f)$ satisfies analogous analytic properties such as those of the Hecke *L*-functions, and its coefficients also change signs. In this paper, we investigate the sign change about the sequence $\{\lambda_{f \times f \times f}(n)\}_{n \geq 1}$ and ${\lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n)}_{n \ge 1}$ in short intervals and prove the following theorems.

Theorem 1.1 Let $f \in H_k$ and $\lambda_{f \times f \times f}(n)$ be the n-th normalized Dirichlet coefficient *of the triple product L-function L(s, f* \times *f* \times *f). Then for* $j \ge 2$ *and any* δ *with*

$$
1 - \frac{315}{40\sqrt{30} + 8442} = 0.963\cdots < \delta < 1,
$$

the sequence $\{\lambda_{f \times f \times f}(n)\}_{n \geq 1}$ *has at least one sign change for n* \in $(x, x + x^{\delta})$ *for sufficiently large x. Moreover, the number of sign changes of the above sequence for* $n \leq x$ $is \gg x^{1-\delta}$.

Remark 1.2 By comparison, in Theorem [1.1,](#page-1-0) our results about the number of sign changes for $n \leq x$ improve the results of Hua [\[7,](#page-13-4) Theorem 1.1].

Theorem 1.3 Let $f \in H_{k_1}$, $g \in H_{k_2}$ be two different forms. Also let $\lambda_{f \times f \times f}(n)$ and *λg*×*g*×*^g*(*n*) *be the n-th normalized Dirichlet coefficient of the triple product L-function* $L(s, f \times f \times f)$ *and* $L(s, g \times g \times g)$ *, respectively. Then for any* δ *with*

$$
1 - \frac{882}{400\sqrt{21} + 1771497} = 0.99950\dots < \delta < 1,
$$

the sequence $\{\lambda_{f \times f \times f}(n)\lambda_{g \times g \times g}(n)\}_{n \geq 1}$ *has at least one sign change for n* $\in (x, x + x^{\delta})$ *for sufficiently large x. Moreover, the number of sign changes of the above sequence for* $n \leq x$ *is* $\gg x^{1-\delta}$.

In Section [2,](#page-1-1) we give some preliminary lemmas. In Section [3,](#page-7-0) we prove three propositions which play an important part in proving Theorem [1.1](#page-1-0) and Theorem [1.3.](#page-1-2) In Section [4](#page-12-0) and Section [5,](#page-13-5) we complete the proofs of Theorem [1.1](#page-1-0) and Theorem [1.3,](#page-1-2) respectively. And, throughout the paper, we denote by *ε* a sufficiently small positive constant, whose value may not be necessarily the same in all occurrences.

2 Preliminary and some lemmas

In this section, we will establish and recall some preliminary results for the proofs of Theorem [1.1](#page-1-0) and Theorem [1.3.](#page-1-2) We first recall the definitions about some specific *L*-functions.

<https://doi.org/10.4153/S0008439524000602>Published online by Cambridge University Press

The Hecke *L*-function attached to $f \in H_k$ is given by

(2.1)
$$
L(s, f) = \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s} = \prod_p \left(1 - \frac{\alpha_f(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s}\right)^{-1},
$$

which converges absolutely for $\Re(s) > 1$. The local parameters $\alpha_f(p)$ and $\beta_f(p)$ satisfy

(2.2)
$$
\alpha_f(p) + \beta_f(p) = \lambda_f(p)
$$
 and $|\alpha_f(p)| = |\beta_f(p)| = 1$.

The *j*-th symmetric power *L*-function attached to $f \in H_k$ is defined as

(2.3)
$$
L(s, \text{sym}^j f) \coloneqq \prod_p \prod_{m=0}^j \left(1 - \alpha_f(p)^{j-m} \beta_f(p)^m p^{-s}\right)^{-1},
$$

for $\Re(s) > 1$. Then, $L(s, \text{sym}^j f)$ can be expressed as the Dirichlet series

(2.4)
$$
L(s, \text{sym}^jf) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}^jf}(n)}{n^s} = \prod_p \left(1 + \sum_{k\geq 1} \frac{\lambda_{\text{sym}^jf}(p^k)}{p^{ks}}\right),
$$

where $\lambda_{\text{sym}} f(n)$ is a real multiplicative function, and

(2.5)
$$
L(s, \text{sym}^0 f) = \zeta(s), \qquad L(s, \text{sym}^1 f) = L(s, f).
$$

According to [\(2.1\)](#page-2-0) and [\(2.3\)](#page-2-1), we obtain

(2.6)
$$
\lambda_{sym^jf}(p) = \sum_{m=0}^j \alpha^{j-m}(p)\beta^m(p) = \lambda_f(p^j).
$$

Remark 2.1 The result of Newton-Thorne [\[21\]](#page-14-5) implies that sym^{*j*} $f (j \ge 1)$ is an automorphic cuspidal representation of $GL(j + 1)$. This means that $L(s, sym^j f)$ has an analytic continuation as an entire function in the whole complex plane C and satisfies a certain functional equation of Riemann zeta-type of degree *j* + 1.

The Rankin–Selberg L -function associated with sym ${}^{i}f$ and sym ${}^{j}g$ is defined by

$$
L(s, \text{sym}^{\textit{i}} f \times \text{sym}^{\textit{j}} g) = \prod_{p} \prod_{u=0}^{i} \prod_{v=0}^{j} \left(1 - \frac{\alpha_f(p)^{i-u} \beta_f(p)^u \alpha_g(p)^{j-v} \beta_g(p)^v}{p^s} \right)^{-1}
$$
\n
$$
= \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}^{\textit{i}} f \times \text{sym}^{\textit{j}} g}(n)}{n^s}, \qquad \Re(s) > 1,
$$

where $\lambda_{sym^i f \times sym^j g}(n)$ is a real multiplicative function, and

(2.8)
$$
\lambda_{sym^{i}f \times sym^{j}g}(p) = \sum_{u=0}^{i} \sum_{v=0}^{j} \alpha_{f}(p)^{i-2u} \alpha_{g}(p)^{j-2v} = \lambda_{sym^{i}f}(p) \lambda_{sym^{j}g}(p).
$$

In particular, we have

$$
(2.9) \quad L(s, \text{sym}^1 f \times \text{sym}^1 g) = L(s, f \times g), \ L(s, \text{sym}^2 \times \text{sym}^1 g) = L(s, \text{sym}^2 f \times g).
$$

Remark 2.2 Due to the works of Jacquet and Shalika [\[10\]](#page-13-6) [\[11\]](#page-13-7), Shahidi [\[26\]](#page-14-6) [\[27\]](#page-14-7), Rudnick and Sarnak [\[25\]](#page-14-8), Lau and Wu [\[15\]](#page-14-9) and Newton-Thorne [\[21\]](#page-14-5), the Rankin-Selberg function $L(s, \text{sym}^i f \times \text{sym}^j g)$ ($f \in H_{k_1}, g \in H_{k_2}$ are two different forms) has an analytic continuation as an entire function in the whole complex plane C and satisfies a certain functional equation of Riemann zeta-type of degree $(i + 1)(j + 1)$.

The triple product *L*-function associated with *f* is defined by

$$
L(s, f \times f \times f) = \prod_{p} \left(1 - \frac{\alpha_f(p)^3}{p^s} \right)^{-1} \left(1 - \frac{\alpha_f(p)}{p^s} \right)^{-3} \left(1 - \frac{\beta_f(p)^3}{p^s} \right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s} \right)^{-3}
$$
\n
$$
(2.10) \qquad := \sum_{n=1}^{\infty} \frac{\lambda_{f \times f \times f}(n)}{n^s}, \qquad \Re(s) > 1,
$$

where $\lambda_{f \times f \times f}$ is real and multiplicative.

Remark 2.3 Recalling that the triple product *L*-functions $L(s, f \times f \times f)$ are automorphic *L*-functions has been showed by Garrett [\[2\]](#page-13-8), Piatetski-Shapiro and Rallis [\[24\]](#page-14-10), etc. Furthermore, we learn that the *L*-function $L(f \times f \times f, s)$ has an analytic continuation as an entire function in the whole complex plane C and satisfies certain Riemann zeta-type functional equations of degree 8.

Thus for $i, j \ge 1$, $L(s, sym^jf)$ and $L(s, sym^jf \times sym^jg)$ are also general *L*-functions in the sense of Perelli [\[23\]](#page-14-11). For general *L*-functions, we have the following result.

Lemma 2.4 Suppose that $\mathfrak{L}(s)$ is a general L-function of degree m. Then, for any $\varepsilon > 0$, *we have*

$$
(2.11) \t\t\t\t\t\mathfrak{L}(\sigma+it) \ll (1+|t|)^{\max\{\frac{m(1-\sigma)}{2},0\}+\varepsilon},
$$

uniformly for $1/2 \le \sigma \le 1 + \varepsilon$ *and* $|t| \ge 1$ *. And*

(2.12)
$$
\int\limits_{1}^{T} |\mathfrak{L}(\sigma+it)|^2 dt \ll T^{\max\{m(1-\sigma),1\}+\varepsilon},
$$

uniformly for $\frac{1}{2} \le \sigma \le 2$ *and* $T \ge 1$ *.*

Proof See [\[23\]](#page-14-11). \blacksquare

Lemma 2.5 *Let* $k = \frac{8}{63}\sqrt{15} = 0.4918...$ *Then for any ε* > 0*, we have*

$$
\zeta(\sigma + it) \ll t^{k(1-\sigma)^{3/2} + \varepsilon}
$$

uniformly for $|t| \geq 1$ *and* $1/2 \leq \sigma \leq 1$ *.*

Proof The bound is proved by Heath-Brown in [\[4,](#page-13-9) Theorem 5].

Lemma 2.6 *For any* $\varepsilon > 0$ *, we have*

$$
(2.14) \tL(\sigma+it,sym^2f) \ll (1+|t|)^{\max\{\frac{6}{5}(1-\sigma),0\}+\varepsilon},
$$

uniformly for $\frac{1}{2} \le \sigma \le 2$ *and* $|t| \ge 1$ *.*

Proof See [\[16,](#page-14-12) Corollary 1.2].

Suppose that π is a unitary cuspidal automorphic representation of $GL_r(\mathbb{A}_{\mathbb{Q}})$ and *L*(*s*, *π*) is the automorphic *L*-function related to *π*. For $1/2 < σ < 1$, let *m*(*σ*) ≥ 2 be the supremum of all numbers *m* such that

$$
\int\limits_{1}^{T}|L(s,\pi)|^{m}dt\ll T^{1+\varepsilon}.
$$

Lemma 2.7 Let $m(\sigma)$ *be defined by [\(2.15\)](#page-4-0). Then for each* $1 - 1/r < \sigma < 1$ *with* $r \geq 4$ *, we have*

(2.16)
$$
m(\sigma) \geq \frac{2}{r(1-\sigma)}.
$$

Proof See [\[8,](#page-13-10) Theorem 1.1]. ■

Newton and Thorne [\[21,](#page-14-5) [22\]](#page-14-13) proved that sym^{*j*} f corresponds to a cuspidal automorphic representation of $GL_r(\mathbb{A}_{\mathbb{Q}})$ for all $j \geq 1$ with $f \in H_k$. As a result, we obtain the following lemma.

Lemma 2.8 *For* $f \in H_k$ *and any* $\varepsilon > 0$ *, we have*

(2.17)
$$
\int_{1}^{T} |L(23/25 + it, \text{sym}^{4} f)|^{5} dt \ll T^{1+\epsilon},
$$

uniformly for $T \geq 1$ *.*

Proof According to Lemma [2.7,](#page-4-1) for $r = 5$, we take $\sigma = 23/25$.

Lemma 2.9 *For* $f \in H_k$ *, we have*

$$
(2.18) \tL(s, f \times f \times f) = L(s, f)^2 L(s, sym^3 f).
$$

Proof See [\[18,](#page-14-14) Lemma 2.1]. ■

Lemma 2.10 For $f \in H_k$ *and* $\Re(s) > 1$ *, let*

$$
L(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f\times f\times f}^2(n)}{n^s}.
$$

<https://doi.org/10.4153/S0008439524000602>Published online by Cambridge University Press

Then we have

(2.20)
$$
L(s) = \zeta^5(s)L^9(s, \text{sym}^2 f)L^5(s, \text{sym}^4 f)L(s, \text{sym}^6 f)U(s),
$$

where the function $U(s)$ *is a Dirichlet series absolutely convergent in* $\Re(s) > 1/2$ *and* $U(s) \neq 0$ *for* $\Re(s) = 1$ *.*

Proof See [\[17,](#page-14-15) Lemma 5]. ∎

Lemma 2.11 *Let* f ∈ H_{k_1} , g ∈ H_{k_2} *be two different forms. For* $\Re(s) > 1$ *, let*

(2.21)
$$
G(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n)}{n^s}.
$$

Then we have

 (2.22)

$$
(2.22)
$$

G(s) = L(s, sym³f × sym³g)L²(s, f × sym³g)L²(s, sym³f × g)L⁴(s, f × g)V(s),

where the function $V(s)$ *is a Dirichlet series absolutely convergent in* $\Re(s) > 1/2$ *and* $V(s) \neq 0$ *for* $\Re(s) = 1$ *.*

Proof Noting that $\lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n)$ is multiplicative and satisfies the upper bound $O(n^{\varepsilon})$ due to [\(1.3\)](#page-0-1), we obtain for $\Re(s) > 1$,

$$
(2.23) \qquad G(s) = \prod_p \left(1 + \frac{\lambda_{f \times f \times f}(p) \lambda_{g \times g \times g}(p)}{p^s} + \frac{\lambda_{f \times f \times f}(p^2) \lambda_{g \times g \times g}(p^2)}{p^{2s}} + \cdots \right).
$$

From Lemma [2.9,](#page-4-2) we have

(2.24)
$$
\lambda_{f \times f \times f}(p) = \lambda_{\text{sym}^3 f}(p) + 2\lambda_f(p).
$$

÷.

Then,

$$
\lambda_{f \times f \times f}(p) \lambda_{g \times g \times g}(p) = (\lambda_{sym^3 f}(p) + 2\lambda_f(p)) (\lambda_{sym^3 g}(p) + 2\lambda_g(p))
$$

= $\lambda_{sym^3 f}(p) \lambda_{sym^3 g}(p) + 2\lambda_f(p) \lambda_{sym^3 g}(p) + 2\lambda_{sym^3 f}(p) \lambda_g(p) + 4\lambda_f(p) \lambda_g(p)$
:= $b(p)$.
(2.25)

Define

(2.26)

$$
G_1(s) = L(s, \text{sym}^3 f \times \text{sym}^3 g) L^2(s, f \times \text{sym}^3 g) L^2(s, \text{sym}^3 f \times g) L^4(s, f \times g).
$$

Then it can be written as

$$
(2.27) \tG1(s) = \prod_{p} \left(1 + \sum_{k \geq 1} \frac{b(p^k)}{p^{ks}}\right).
$$

As a result,

$$
G(s) = G_1(s) \times \prod_p \left(1 + \frac{\lambda_{f \times f \times f}(p^2) \lambda_{g \times g \times g}(p^2) - b(p^2)}{p^{2s}} + \cdots \right)
$$

 := L(s, sym³ f \times sym³ g) L²(s, f \times sym³ g) L²(s, sym³ f \times g) L⁴(s, f \times g) V(s),
(2.28)

where *V*(*s*) converges absolutely and uniformly in the half-plane $\Re(s) > 1/2$. ■

Lemma 2.12 Let f ∈ *H*_{*k*¹}, *g* ∈ *H*_{*k*₂} *be two different forms. For* $\Re(s) > 1$ *, let*

(2.29)
$$
H(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f\times f\times f}^2(n)\lambda_{g\times g\times g}^2(n)}{n^s}.
$$

Then we have

(2.30)
$$
H(s) = H_1(s)W(s),
$$

where

$$
H_1(s) = \zeta^{25}(s) L^{45}(s, \text{sym}^2 f) L^{45}(s, \text{sym}^2 g) L^{25}(s, \text{sym}^4 f) L^{25}(s, \text{sym}^4 g) L^5(s, \text{sym}^6 f)
$$

$$
L^5(s, \text{sym}^6 g) L(s, \text{sym}^6 f \times \text{sym}^6 g) L^5(s, \text{sym}^6 f \times \text{sym}^4 g) L^9(s, \text{sym}^6 f \times \text{sym}^2 g)
$$

$$
L^5(s, \text{sym}^4 f \times \text{sym}^6 g) L^{25}(s, \text{sym}^4 f \times \text{sym}^4 g) L^{45}(s, \text{sym}^4 f \times \text{sym}^2 g)
$$

$$
L^9(s, \text{sym}^2 f \times \text{sym}^6 g) L^{45}(s, \text{sym}^2 f \times \text{sym}^4 g) L^{81}(s, \text{sym}^2 f \times \text{sym}^2 g),
$$

and the function $W(s)$ *is a Dirichlet series absolutely convergent in* $\Re(s) > 1/2$ *and* $W(s) \neq 0$ *for* $\Re(s) = 1$ *.*

Proof From [\(2.6\)](#page-2-2) and Lemma [2.9,](#page-4-2) we have

(2.31)
$$
\lambda_{f \times f \times f}(p) = \lambda_{\text{sym}^3 f}(p) + 2\lambda_f(p) \quad \text{and} \quad \lambda_{\text{sym}^j f}(p) = \lambda_f(p^j).
$$

According to [\(1.2\)](#page-0-2), we have

$$
\lambda_{f \times f \times f}^{2}(p) = (\lambda_{f}(p^{3}) + 2\lambda_{f}(p))^{2} = \lambda_{f}^{2}(p^{3}) + 4\lambda_{f}^{2}(p) + 4\lambda_{f}(p^{3})\lambda_{f}(p)
$$

= $\lambda_{f}(p^{6}) + 5\lambda_{f}(p^{4}) + 9\lambda_{f}(p^{2}) + 5 = \lambda_{sym^{6}f}(p) + 5\lambda_{sym^{4}f}(p) + 9\lambda_{sym^{2}f}(p) + 5.$

From [\(2.8\)](#page-2-3),

$$
\lambda_{f \times f \times f}^{2}(p) \lambda_{g \times g \times g}^{2}(p)
$$
\n= $\lambda_{sym^{6}f \times sym^{6}g}(p) + 5\lambda_{sym^{6}f \times sym^{4}g}(p) + 9\lambda_{sym^{6}f \times sym^{2}g}(p) + 5\lambda_{sym^{6}f}(p)$
\n+ $5\lambda_{sym^{4}f \times sym^{6}g}(p) + 25\lambda_{sym^{4}f \times sym^{4}g}(p) + 45\lambda_{sym^{4}f \times sym^{2}g}(p) + 25\lambda_{sym^{4}f}(p)$
\n+ $9\lambda_{sym^{2}f \times sym^{6}g}(p) + 45\lambda_{sym^{2}f \times sym^{4}g}(p) + 81\lambda_{sym^{2}f \times sym^{2}g}(p) + 45\lambda_{sym^{2}f}(p)$
\n+ $5\lambda_{sym^{6}g}(p) + 25\lambda_{sym^{4}g}(p) + 45\lambda_{sym^{2}g}(p) + 25$.

Now the lemma follows by standard argument like Lemma [2.11,](#page-5-0) so we omit it here. ■

Lemma 2.13 *For* $f \in H_k$ *and any* $\varepsilon > 0$ *, we have*

$$
\sum_{n \leq x} \lambda_{f \times f \times f}(n) \ll x^{7/10 + \varepsilon}.
$$

Proof See [\[18,](#page-14-14) Theorem 1.1].

3 The main proposition

In this section, we shall establish asymptotic formula of the sum

$$
(3.1) \sum_{n\leq x} \lambda_{f\times f\times f}^2(n), \sum_{n\leq x} \lambda_{f\times f\times f}(n) \lambda_{g\times g\times g}(n) \text{ and } \sum_{n\leq x} \lambda_{f\times f\times f}^2(n) \lambda_{g\times g\times g}^2(n),
$$

respectively (see Propositions [3.1,](#page-7-1) [3.2,](#page-9-0) [3.3\)](#page-10-0). These asymptotic formulas are the key to prove Theorem [1.1](#page-1-0) and Theorem [1.3.](#page-1-2)

3.1 Proof of Proposition [3.1](#page-7-1)

Proposition 3.1 *For* $f \in H_k$ *and any* $\varepsilon > 0$ *, we have*

(3.2)
$$
\sum_{n \leq x} \lambda_{f \times f \times f}^2(n) = xP(\log x) + O_{f,\varepsilon}(x^{1-\frac{315}{40\sqrt{30}+8442}+\varepsilon}),
$$

where P(*t*) *is a polynomial of degree 4.*

Proof Recalling Lemma [2.10](#page-4-3) and applying Perron's formula (see [\[9,](#page-13-11) Proposition 5.54]), we have

(3.3)
$$
\sum_{n\leq x}\lambda_{f\times f\times f}^2(n)=\frac{1}{2\pi i}\int_{b-iT}^{b+iT}L(s)\frac{x^s}{s}ds+O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where $b = 1 + \varepsilon$ and $3 \le T \le x$ is a parameter to be chosen later.

Then, we move the line of integration to the parallel segment with $\Re s = 23/25$. By Cauchy's residue theorem, we obtain

$$
(3.4) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}^{2}(n)=\operatorname{Res}_{s=1}\left\{L(s)\frac{x^{s}}{s}\right\}+\frac{1}{2\pi i}\int\limits_{\mathfrak{L}}L(s)\frac{x^{s}}{s}ds+O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where \mathcal{L} is the contour joining $1 + \varepsilon - iT$, $23/25 - iT$, $23/25 + iT$, $1 + \varepsilon + iT$ with straight lines. The residue at $s = 1$ is equal to $xP(\log x)$, $P(t)$ is a polynomial of degree 4. We also have $U(s) \ll 1$ in that the absolutely convergence of $U(s)$ for $\Re(s) \geq 1/2 + \varepsilon$. Consequently, formula [\(3.4\)](#page-7-2) can be written as

(3.5)
$$
\sum_{n \leq x} \lambda_{f \times f \times f}^2(n) = xP(\log x) + O\left(\beta_1^h + \beta_1^v + \frac{x^{1+\varepsilon}}{T}\right),
$$

where

(3.6)
$$
\mathcal{J}_1^h := \frac{1}{T} \int\limits_{23/25}^{1+\epsilon} |L(\sigma + iT)| x^{\sigma} d\sigma \ll \sup\limits_{23/25 \leq \sigma \leq 1+\epsilon} x^{\sigma} T^{-1} |L(\sigma + iT)|,
$$

1100 J. Feng

and

$$
(3.7) \quad \mathcal{J}_1^{\nu} := x^{23/25} \int\limits_{1}^{T} |L(23/25 + it)| \frac{dt}{t} \ll x^{23/25 + \epsilon} \sup\limits_{3 \leq T_1 \leq T} T_1^{-1} \int\limits_{T_1}^{2T_1} |L(23/25 + it)| dt.
$$

By Lemma [2.5,](#page-3-0) $k = \frac{8}{63}\sqrt{15} = 0.4918...,$ for any *ε* > 0, we have

(3.8)
$$
\zeta(23/25 + it) \ll t^{\frac{\sqrt{2}k}{5} \times \frac{2}{25} + \varepsilon}.
$$

Following from the well-known Phragmen-Lindelof principle, we obtain

(3.9)
$$
\zeta(\sigma + it) \ll t^{\max\{\frac{\sqrt{2}k}{5}(1-\sigma),0\}+\varepsilon},
$$

uniformly for $23/25 \le \sigma \le 2$ and $|t| \ge 3$. According to Lemma [2.4,](#page-3-1) Lemma [2.6,](#page-4-4) and [\(3.9\)](#page-8-0), we deduce that for $23/25 \le \sigma \le 1 + \varepsilon$,

$$
|L(\sigma+iT)| \ll T^{\{5\cdot \frac{\sqrt{2}k}{5}+9\cdot \frac{6}{5}+5\cdot \frac{5}{2}+\frac{7}{2}\}(1-\sigma)+\varepsilon} = T^{\{\sqrt{2}k+\frac{134}{5}\}(1-\sigma)+\varepsilon}.
$$

Then it follows that

$$
(3.10) \quad \mathcal{J}_1^h \ll T^{\sqrt{2}k + \frac{129}{5} + \varepsilon} \sup_{23/25 \le \sigma \le 1 + \varepsilon} \left(\frac{x}{T^{\sqrt{2}k + \frac{134}{5}}} \right)^{\sigma} \ll x^{23/25 + \varepsilon} T^{\frac{80\sqrt{30} + 9009}{7875}} + \frac{x^{1+\varepsilon}}{T}.
$$

For \mathcal{J}_1^{ν} , we have

J*v* ¹ ≪ *x*23/25+*^ε* sup 3≤*T***1**≤*T I*1,1(*T*1) *T*1 2*T***¹** ∫ *T***1** ∣*L*(23/25 + *it*, sym⁴ *f*)∣ ⁵ (3.11) *dt*,

where

$$
I_{1,1}(T_1) = \max_{T_1 \leq t \leq 2T_1} \zeta^5 (23/25 + it) L^9 (23/25 + it, \text{sym}^2 f) L(23/25 + it, \text{sym}^6 f).
$$

According to Lemma [2.4,](#page-3-1) Lemma [2.6,](#page-4-4) Lemma [2.8,](#page-4-5) and [\(3.8\)](#page-8-1), we have

$$
(3.12) \tI_{1,1}(T_1) \ll T_1^{5 \times \frac{8\sqrt{15}}{63} \times (\frac{2}{25})^{3/2} + 9 \times \frac{6}{5} \times \frac{2}{25} + \frac{7}{2} \times \frac{2}{25} + \epsilon} = T_1^{\frac{80\sqrt{30} + 9009}{7875} + \epsilon},
$$

and

(3.13)
$$
\int_{T_1}^{2T_1} |L(23/25 + it, \text{sym}^4 f)|^5 dt \ll T_1^{1+\epsilon}.
$$

Consequently,

J*v* ¹ ≪ *x*²³/25+*^ε ^T* **⁸⁰**√**30**+**⁹⁰⁰⁹ ⁷⁸⁷⁵** (3.14) .

Inserting [\(3.10\)](#page-8-2) and [\(3.14\)](#page-8-3) into [\(3.5\)](#page-7-3), and taking $T = x^{\frac{315}{40\sqrt{30}+8442}}$, we obtain

(3.15)
$$
\sum_{n \leq x} \lambda_{f \times f \times f}^2(n) = xP(\log x) + O(x^{1 - \frac{315}{40\sqrt{30} + 8442} + \epsilon}).
$$

3.2 Proof of Proposition [3.2](#page-9-0)

Proposition 3.2 *Let* $f \in H_k$, $g \in H_k$, be two different forms. For any $\varepsilon > 0$, we have

(3.16)
$$
\sum_{n \leq x} \lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n) \ll x^{31/32 + \varepsilon}.
$$

Proof According to Lemma [2.11](#page-5-0) and applying Perron's formula (see [\[9,](#page-13-11) Proposition 5.54]), we have

(3.17)
$$
\sum_{n \leq x} \lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n) = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} G(s) \frac{x^s}{s} ds + O\left(\frac{x^{1+\epsilon}}{T}\right),
$$

where $b = 1 + \varepsilon$ and $3 \le T \le x$ is a parameter to be chosen later.

Then, we move the line of integration to the parallel segment with $\Re s = 1/2$. By Cauchy's residue theorem, we deduce that

$$
(3.18) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}(n)\lambda_{g\times g\times g}(n)=\frac{1}{2\pi i}\int\limits_{\mathfrak{L}}G(s)\frac{x^{s}}{s}ds+O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where $\mathfrak L$ is the contour joining $1 + \varepsilon - iT$, $1/2 - iT$, $1/2 + iT$, $1 + \varepsilon + iT$ with straight lines. *G*(*s*) has no poles in the half-plane $\Re(s) > 1/2$ by using the analytic properties of Rankin-Selberg *L*-functions. We also have $V(s) \ll 1$ in that the absolutely convergence of $V(s)$ for $\Re(s) \ge 1/2 + \varepsilon$. Consequently, formula [\(3.18\)](#page-9-1) can be written as

(3.19)
$$
\sum_{n\leq x}\lambda_{f\times f\times f}(n)\lambda_{g\times g\times g}(n)=O\left(\beta_1^h+\beta_1^v+\frac{x^{1+\varepsilon}}{T}\right),
$$

where

J*h* ¹ ∶= ¹ *T* 1+*ε* ∫ 1/2 ∣*G*(*σ* + *iT*)∣*x ^σdσ* ≪ sup 1/2≤*σ*≤1+*ε x ^σT*[−]¹ (3.20) ∣*G*(*σ* + *iT*)∣,

and

J*v* ¹ ∶= *x*¹/² *T* ∫ 1 [∣]*G*(1/² ⁺ *it*)∣ *dt t* ≪ *x*¹/2+*^ε* sup 3≤*T***1**≤*T T*[−]¹ 1 2*T***¹** ∫ *T***1** (3.21) ∣*G*(1/2 + *it*)∣*dt*.

According to Lemma [2.4,](#page-3-1) we obtain for $1/2 \le \sigma \le 1 + \varepsilon$

(3.22)
$$
|G(\sigma + iT)| \ll T^{\frac{16+16+16+16}{2}(1-\sigma)+\varepsilon} = T^{32(1-\sigma)+\varepsilon}.
$$

Therefore,

J*h* ¹ ≪*T*³¹+*^ε* sup 1/2≤*σ*≤1+*ε* (*x ^T*³²) *σ* ≪ *x*¹/2+*^ε T*¹⁵ + *x*¹+*^ε ^T* (3.23) .

For \mathcal{J}_1^{ν} , we get

J*v* ¹ ≪ *x*¹/2+*^ε* sup 1≤*T***1**≤*T I*2,1(*T*1) *T*1 2*T***¹** ∫ *T***1** ∣*L*(1/2 + *it*, *f* × sym³ *g*)∣² (3.24) *dt*,

where

$$
(3.25) \quad I_{2,1}(T_1) = \max_{\substack{T_1 \le t \le 2T_1, \\ s_0 = 1/2 + it}} L\left(s_0, \text{sym}^3 f \times \text{sym}^3 g\right) L^2\left(s_0, \text{sym}^3 f \times g\right) L^4\left(s_0, f \times g\right).
$$

By Lemma [2.4,](#page-3-1) we have

$$
(3.26) \tI_{2,1}(T_1) \ll T_1^{12+\epsilon} \t and \t \int_{T_1}^{2T_1} |L(1/2+it, f \times sym^3 g)|^2 dt \ll T_1^{4+\epsilon}.
$$

As a result,

J*v* ¹ ≪ *x*1/2+*^ε T*15+*^ε* (3.27) .

Inserting [\(3.23\)](#page-9-2) and [\(3.27\)](#page-10-1) into [\(3.19\)](#page-9-3), and taking $T = x^{1/32}$, we obtain

$$
(3.28) \qquad \qquad \sum_{n \leq x} \lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n) \ll x^{31/32 + \varepsilon}.
$$

3.3 Proof of Proposition [3.3](#page-10-0)

Proposition 3.3 *Let* $f \in H_k$, $g \in H_k$, be two different forms. For any $\varepsilon > 0$, we have

$$
(3.29) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}^{2}(n)\lambda_{g\times g\times g}^{2}(n)=xQ(\log x)+O\left(x^{1-\frac{882}{400\sqrt{21}+1771497}}+\varepsilon\right),
$$

where Q(*t*) *is a polynomial of degree 24.*

Proof Recalling Lemma [2.12,](#page-6-0) we obtain

$$
(3.30) \quad H_1(s) := \zeta^{25}(s) L^{45}(s, \text{sym}^2 f) L^{45}(s, \text{sym}^2 g) L^5(s, \text{sym}^4 f \times \text{sym}^6 g) H_2(s),
$$

where

$$
H_2(s) = L^{25}(s, \text{sym}^4 f) L^{25}(s, \text{sym}^4 g) L^5(s, \text{sym}^6 f) L^5(s, \text{sym}^6 g) L(s, \text{sym}^6 f \times \text{sym}^6 g)
$$

$$
L^5(s, \text{sym}^6 f \times \text{sym}^4 g) L^9(s, \text{sym}^6 f \times \text{sym}^2 g) L^{25}(s, \text{sym}^4 f \times \text{sym}^4 g)
$$

$$
L^{45}(s, \text{sym}^4 f \times \text{sym}^2 g) L^9(s, \text{sym}^2 f \times \text{sym}^6 g) L^{45}(s, \text{sym}^2 f \times \text{sym}^4 g)
$$

$$
L^{81}(s, \text{sym}^2 f \times \text{sym}^2 g)
$$

is a general *L*-function of degree 3626.

Applying Perron's formula (see [\[9,](#page-13-11) Proposition 5.54]), we have

$$
(3.31) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}^2(n)\lambda_{g\times g\times g}^2(n)=\frac{1}{2\pi i}\int\limits_{b-iT}^{b+iT}H(s)\frac{x^s}{s}ds+O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where $b = 1 + \varepsilon$ and $3 \leq T \leq x$ is a parameter to be chosen later.

Then, we move the line of integration to the parallel segment with $\Re s = 34/35$. By Cauchy's residue theorem, we obtain

$$
(3.32)\quad \sum_{n\leq x}\lambda_{f\times f\times f}^2(n)\lambda_{g\times g\times g}^2(n)=\operatorname{Res}_{s=1}\left\{H(s)\frac{x^s}{s}\right\}+\frac{1}{2\pi i}\int\limits_{\mathcal{Q}}H(s)\frac{x^s}{s}ds+O\left(\frac{x^{1+\varepsilon}}{T}\right),
$$

where \mathcal{L} is the contour joining $1 + \varepsilon - iT$, $34/35 - iT$, $34/35 + iT$, $1 + \varepsilon + iT$ with straight lines. The residue at $s = 1$ is equal to $xQ(\log x)$, $Q(t)$ is a polynomial of degree 24. We also have $W(s) \ll 1$ in that the absolutely convergence of $W(s)$ for $\Re(s) \ge 1/2 + \varepsilon$. Consequently, formula [\(3.32\)](#page-11-0) can be written as

$$
(3.33) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}^{2}(n)\lambda_{g\times g\times g}^{2}(n)=xQ(\log x)+O\left(\beta_{3}^{h}+\beta_{3}^{v}+\frac{x^{1+\varepsilon}}{T}\right),
$$

where

J*h* ³ ∶= ¹ *T* 1+*ε* ∫ 34/35 ∣*H*(*σ* + *iT*)∣*x ^σdσ* ≪ sup 34/35≤*σ*≤1+*ε x ^σT*−¹ (3.34) ∣*H*(*σ* + *iT*)∣,

and

(3.35)

$$
\mathcal{J}_3^{\nu} := x^{34/35} \int\limits_{1}^{T} |H(34/35 + it)| \frac{dt}{t} \ll x^{34/35 + \varepsilon} \sup\limits_{3 \leq T_1 \leq T} T_1^{-1} \int\limits_{T_1}^{2T_1} |H(34/35 + it)| dt.
$$

By Lemma [2.5,](#page-3-0) $k = \frac{8}{63}\sqrt{15} = 0.4918...,$ for any *ε* > 0, we have

$$
\zeta(34/35 + it) \ll t^{\frac{k}{\sqrt{35}} \times \frac{1}{35} + \epsilon}.
$$

Following from the well-known Phragmen-Lindelof principle, we obtain

$$
\zeta(\sigma+it)\ll t^{\max\{\frac{k}{\sqrt{35}}(1-\sigma),0\}+\varepsilon},
$$

uniformly for $34/35 \le \sigma \le 2$ and $|t| \ge 3$. According to Lemma [2.4,](#page-3-1) Lemma [2.6,](#page-4-4) and [\(3.37\)](#page-11-1), we obtain for 34/35 ≤ *σ* ≤ 1 + *ε*

$$
|H(\sigma+iT)| \ll T^{\{25\cdot \frac{k}{\sqrt{35}}+45\cdot \frac{6}{5}+45\cdot \frac{6}{5}+5\cdot \frac{35}{2}+\frac{3626}{2}\}(1-\sigma)+\varepsilon} = T^{\{\frac{25k}{\sqrt{35}}+\frac{4017}{2}\}(1-\sigma)+\varepsilon}.
$$

Therefore,

$$
\mathcal{J}_3^h \ll T^{\frac{25k}{\sqrt{35}} + \frac{4015}{2} + \varepsilon} \sup_{34/35 \le \sigma \le 1 + \varepsilon} \left(\frac{x}{T^{\frac{25k}{\sqrt{35}} + \frac{4017}{2}}} \right)^{\sigma}
$$
\n
$$
\ll x^{34/35 + \varepsilon} T^{\{\frac{25k}{\sqrt{35}} + \frac{3947}{2}\} \cdot \frac{1}{35}} + \frac{x^{1+\varepsilon}}{T}.
$$

According to [\(3.30\)](#page-10-2), we deduce that

$$
(3.39) \qquad \mathcal{J}_3^{\nu} \ll x^{34/35+\epsilon} \sup_{3 \leq T_1 \leq T} \frac{I_{3,1}(T_1)}{T_1} \int_{T_1}^{2T_1} |L(34/35+it,\text{sym}^4 f \times \text{sym}^6 g)|^2 dt,
$$

1104 J. Feng

where

$$
I_{3,1}(T_1) = \max_{\substack{T_1 \leq t \leq 2T_1, \\ s_0 = 34/35 + iT_1}} \zeta^{25}(s_0) L^{45}(s_0, \text{sym}^2 f) L^{45}(s_0, \text{sym}^2 g) L^3(s_0, \text{sym}^4 f \times \text{sym}^6 g) H_2(s_0).
$$

From Lemma [2.4,](#page-3-1) Lemma [2.6,](#page-4-4) and [\(3.36\)](#page-11-2), we have

$$
(3.40) \tI_{3,1}(T_1) \ll T_1^{\left\{25 - \frac{k}{\sqrt{35}} + 45 \cdot \frac{6}{5} + 45 \cdot \frac{6}{5} + 3 \cdot \frac{35}{2} + \frac{3626}{2}\right\}/35 + \varepsilon} = T^{\left\{\frac{25k}{\sqrt{35}} + \frac{3947}{2}\right\} \cdot \frac{1}{35} + \varepsilon},
$$

and

(3.41)
$$
\int_{T_1}^{2T_1} |L(34/35 + it, \text{sym}^4 f \times \text{sym}^6 g)|^2 dt \ll T_1^{1+\epsilon}.
$$

As a result,

J*v* ³ ≪ *x*34/35+*^ε ^T*{ [√]**25^k ³⁵** ⁺ **³⁹⁴⁷ ²** }⋅ **¹ ³⁵** (3.42) .

Inserting [\(3.38\)](#page-11-3) and [\(3.42\)](#page-12-1) into [\(3.33\)](#page-11-4), and taking $T = x^{\frac{882}{400\sqrt{21}+1771497}}$, we obtain

$$
(3.43) \qquad \sum_{n\leq x}\lambda_{f\times f\times f}^2(n)\lambda_{g\times g\times g}^2(n)=xQ(\log x)+O\left(x^{1-\frac{882}{400\sqrt{21}+1771497}+\epsilon}\right).
$$

4 Proof of Theorem [1.1](#page-1-0)

In this section, we prove Theorem [1.1](#page-1-0) by the argument of contradiction. Let

(4.1)
$$
1 - \frac{315}{40\sqrt{30} + 8442} = 0.963\cdots < \delta < 1.
$$

Suppose that the sequence $\{\lambda_{f \times f \times f}(n)\}_{n \geq 1}$ has the same sign in the interval(*x*, *x* + x^{δ}]. Without loss of generality, let the sign is positive. Then by Lemma [2.13](#page-7-4) and Deligne's bound [\(1.3\)](#page-0-1), we obtain

(4.2)
$$
\sum_{x \leq n \leq x + x^{\delta}} \lambda_{f \times f \times f}^{2}(n) \ll x^{\epsilon} \sum_{x \leq n \leq x + x^{\delta}} \lambda_{f \times f \times f}(n) \ll x^{7/10 + \epsilon}.
$$

According to Proposition [3.1,](#page-7-1) we deduce that

$$
\sum_{x \le n \le x + x^{\delta}} \lambda_{f \times f \times f}^{2}(n) = (x + x^{\delta})P(\log(x + x^{\delta})) - xP(\log x) + O_{f, \varepsilon}(x^{1 - \frac{315}{40\sqrt{30} + 8442} + \varepsilon})
$$
\n
$$
\ge (x + x^{\delta})P(\log x) - xP(\log x) + O_{f, \varepsilon}(x^{1 - \frac{315}{40\sqrt{30} + 8442} + \varepsilon})
$$
\n
$$
= x^{\delta}P(\log x) + O_{f, \varepsilon}(x^{1 - \frac{315}{40\sqrt{30} + 8442} + \varepsilon}) \gg x^{\delta}.
$$
\n(4.3)

From [\(4.2\)](#page-12-2) and [\(4.3\)](#page-12-3), we get the contradiction. As a result, the sequence ${ \lambda_{f \times f \times f}(n) }_{n \ge 1}$ has at least one sign change in the interval(*x*, *x* + *x*^{δ}) with 0.963… < δ < 1. Therefore, the sequence $\{\lambda_{f \times f \times f}(n)\}_{n \geq 1}$ has at least $\gg x^{1-\delta}$ sign change in the interval $(x, x + x^{\delta})$ for sufficiently large *x*.

5 Proof of Theorem 1.2

In this section, we prove Theorem [1.3](#page-1-2) by the argument of contradiction. Let

(5.1)
$$
1 - \frac{882}{400\sqrt{21} + 1771497} = 0.99950\dots < \delta < 1.
$$

Suppose that the sequence $\{\lambda_{f \times f \times f}(n)\lambda_{g \times g \times g}(n)\}_{n \geq 1}$ has the same sign in the interval(x , $x + x^{\delta}$]. Without loss of generality, let the sign is positive. Then by Proposition [3.2](#page-9-0) and Deligne's bound [\(1.3\)](#page-0-1), we obtain

(5.2)

$$
\sum_{x \leq n \leq x+x^{\delta}} \lambda_{f \times f \times f}^{2}(n) \lambda_{g \times g \times g}^{2}(n) \ll x^{\varepsilon} \sum_{x \leq n \leq x+x^{\delta}} \lambda_{f \times f \times f}(n) \lambda_{g \times g \times g}(n) \ll x^{31/32+\varepsilon}.
$$

According to Proposition [3.3,](#page-10-0) we have

$$
\sum_{x \le n \le x + x^{\delta}} \lambda_{f \times f \times f}^{2}(n) \lambda_{g \times g \times g}^{2}(n)
$$
\n
$$
= (x + x^{\delta}) P(\log(x + x^{\delta})) - x P(\log x) + O_{f,\varepsilon}(x^{1 - \frac{882}{400\sqrt{21} + 1771497}} + \varepsilon)
$$
\n
$$
\ge (x + x^{\delta}) P(\log x) - x P(\log x) + O_{f,\varepsilon}(x^{1 - \frac{882}{400\sqrt{21} + 1771497}} + \varepsilon)
$$
\n(5.3)\n
$$
= x^{\delta} P(\log x) + O_{f,\varepsilon}\left(x^{1 - \frac{882}{400\sqrt{21} + 1771497}} + \varepsilon\right) \gg x^{\delta}.
$$

From [\(5.2\)](#page-13-12), [\(5.3\)](#page-13-13), and $\frac{31}{32} = 0.96...$, we get the contradiction. As a result, the sequence $\{\lambda_{f \times f \times f}(n)\lambda_{g \times g \times g}(n)\}_{n \geq 1}$ has at least one sign change in the interval $(x, x + x^{\delta})$ with 0.99950… < δ < 1. Therefore, the sequence $\{\lambda_{f \times f \times f}(n)\lambda_{g \times g \times g}(n)\}_{n \geq 1}$ has at least $\gg x^{1-\delta}$ sign change in the interval(*x*, *x* + *x*^{δ}] for suffficiently large *x*.

References

- [1] P. Deligne, *La conjecture de Weil. I*. Inst. Hautes Études Sci. Publ. Math. **43**(1974), no. 43, 273–307. MR 340258
- [2] P. B. Garrett, *Decomposition of Eisenstein series: Rankin triple products*. Ann. of Math. (2) **125**(1987), no. 2, 209–235. MR 881269
- [3] S. Gun, B. Kumar and B. Paul, *The first simultaneous sign change and non-vanishing of Hecke eigenvalues of newforms*. J. Number Theory **200**(2019), 161–184. MR 3944435
- [4] D. R. Heath-Brown, *A new kth derivative estimate for a trigonometric sum via Vinogradov's integral*. Tr. Mat. Inst. Steklova **296**(2017), 95–110, English version published in Proc. Steklov Inst. Math. **296**(2017), no. 1, 88–103.
- [5] G. Hua, *On the simultaneous sign changes of Hecke eigenvalues over an integral binary quadratic form*. Acta Math. Hungar. **167**(2022), no. 2, 476–491. MR 4487620
- [6] G. Hua, On the simultaneous sign changes of coefficients of *Rankin-Selberg* L-functions over a certain integral binary quadratic form. Math. Pannon. (2023), no. **2**, 244–257.
- [7] G. Hua, *On the sign changes of the coefficients attached to triple product L-functions*. Int. J. Number Theory **20**(2024), no. 08, 2069–2081.
- [8] J. Huang, *Higher moments of automorphic L-functions of GL*(*r*) *and its applications*. Acta Math. Hungar. **169**(2023), no. 2, 489–502. MR 4594312
- [9] H. Iwaniec and E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, Vol. 53, American Mathematical Society, Providence, RI, 2004.
- [10] H. Jacquet and J. A. Shalika, *On Euler products and the classification of automorphic representations. I*. Amer. J. Math. **103**(1981), no. 3, 499–558. MR 618323
- [11] H. Jacquet and J. A. Shalika, *On Euler products and the classification of automorphic representations. I*. Amer. J. Math. **103**(1981), no. 3, 499–558. MR 618323

- [12] M. Knopp, W. Kohnen and W. Pribitkin, *On the signs of fourier coefficients of cusp forms*. Ramanujan J. **7**(2003), no. 1, 269–277.
- [13] M. Kumari and M. Ram Murty, *Simultaneous non-vanishing and sign changes of Fourier coefficients of modular forms*. Int. J. Number Theory **14**(2018), no. 8, 2291–2301. MR 3846406
- [14] H. Lao and S. Luo, *Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms*. Rocky Mountain J. Math. **51**(2021), no. 5, 1701–1714. MR 4382993
- [15] Y.-K. Lau and J. Wu, *A density theorem on automorphic L-functions and some applications*. Trans. Amer. Math. Soc. **358**(2006), no. 1, 441–472. MR 2171241
- [16] Y. Lin, R. Nunes and Z. Qi, *Strong subconvexity for self-dual GL*(3) *L-functions*. Int. Math. Res. Not. IMRN **2023**(2023), no. 13, 11453–11470.
- [17] H. Liu, *The second moment of the Fourier coefficients of triple product L-functions*. Proc. Indian Acad. Sci. Math. Sci. **133**(2023), no. 1, Paper No. 8, 12. MR 4572184
- [18] G. Lü and A. Sankaranarayanan, *On the coefficients of triple product L-functions*. Rocky Mountain J. Math. **47**(2017), no. 2, 553–570. MR 3635374
- [19] J. Meher, K. D. Shankhadhar and G. K. Viswanadham, *A short note on sign changes*. Proc. Indian Acad. Sci. Math. Sci. **123**(2013), no. 3, 315–320. MR 3102375
- [20] M. Ram Murty, *Oscillations of Fourier coefficients of modular forms*. Math. Ann. **262**(1983), no. 4, 431–446. MR 696516
- [21] J. Newton and J. A. Thorne, *Symmetric power functoriality for holomorphic modular forms*. Publ. Math. Inst. Hautes Études Sci. **134**(2021), 1–116. MR 4349240
- [22] J. Newton and J. A. Thorne, *Symmetric power functoriality for holomorphic modular forms, II*. Publ. Math. Inst. Hautes Études Sci. **134**(2021), 117–152. MR 4349241
- [23] A. Perelli, *General L-functions*. Ann. Mat. Pura Appl. **130**(1982), 287–306.
- [24] I. Piatetski-Shapiro and S. Rallis, *Rankin triple L functions*. Compos. Math. **64**(1987), no. 1, 31–115.
- [25] Z. Rudnick and P. Sarnak, *Zeros of principal L-functions and random matrix theory*. Duke Math. J. **81**(1996), no. 2, 269–322 (English).
- [26] F. Shahidi, *On certain L-functions*. Amer. J. Math. **103**(1981), no. 2, 297–355. MR 610479
- [27] F. Shahidi, *Third symmetric power L-functions for GL(2)*. Compos. Math. **70**(1989), no. 3, 245–273. MR 1002045

School of Mathematics, Shandong University, Jinan 250100, China e-mail: fengjinzhi@mail.sdu.edu.cn