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On the sign changes of Dirichlet
coefficients of triple product L-functions
Jinzhi Feng

Abstract. Let f and g be two distinct normalized primitive holomorphic cusp forms of even inte-
gral weight k1 and k2 for the full modular group SL(2,Z), respectively. Suppose that λ f× f× f (n)
and λg×g×g(n) are the n-th Dirichlet coefficient of the triple product L-functions L(s, f × f × f )
and L(s, g × g × g). In this paper, we consider the sign changes of the sequence {λ f× f× f (n)}n≥1 and
{λ f× f× f (n)λg×g×g(n)}n≥1 in short intervals and establish quantitative results for the number of sign
changes for n ≤ x, which improve the previous results.

1 Introduction

Let Hk be the set of normalized primitive holomorphic cusp forms of even integral
weight k for the full modular group SL(2,Z), which are eigenfunctions of all the
Hecke operators Tn . Then f (z) ∈ Hk has a Fourier expansion at the cusp infinity

f (z) =
∞
∑
n=1

λ f (n)n
k−1

2 e(nz) (Iz > 0),(1.1)

where we normalize f (z) so that λ f (1) = 1. From the theory of Hecke operators, the
Fourier coefficient λ f (n) is real and satisfies the multiplicative property

λ f (m)λ f (n) = ∑
d ∣(m ,n)

λ f (
mn
d2 ) ,(1.2)

where m ≥ 1 and n ≥ 1 are any integers. In 1974, Deligne [1] proved the Ramanujan-
Petersson conjecture: for all integers n ≥ 1,

∣λ f (n)∣ ≤ d(n),(1.3)

where d(n) is the number of positive divisors of n.
The sign changes of Fourier coefficients attached to automorphic forms is an

important problem and has been studied extensively by several scholars. In [12],
Knopp, Kohnen and Pribitkin showed {λ f (n)}n≥1 has infinitely many sign changes.
After that, Ram Murty[20] first considered the sign changes of the sequence of Fourier
coefficients in short intervals. Later, Meher, Shankhadhar, and Viswanadham [19]
established lower bounds for the number of sign changes of the sequence {λ f (n j)}n≥1
with j = 2, 3, 4.
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However, the analogous questions of simultaneous sign changes of two cusp forms
have also been investigated by a number of mathematicians. Let f and g be two
different cusp forms. In [13], Kumari and Ram Murty considered the simultaneous
sign changes problem about {λ f (n)λg(n)}n≥1. Later, Gun, Kumar, and Paul [3]
studied this problem about {λ f (n)λg(n2)}n≥1. Recently, Lao and Luo [14] also
considered more general cases and obtained better results about{λ f (n i)λg(n j)}n≥1
for i ≥ 1, j ≥ 2. Further, Hua [5, 6] investigated the analogous problem over a certain
integral binary quadratic form.

The triple product L-function L(s, f × f × f ) satisfies analogous analytic proper-
ties such as those of the Hecke L-functions, and its coefficients also change signs. In
this paper, we investigate the sign change about the sequence {λ f× f× f (n)}n≥1 and
{λ f× f× f (n)λg×g×g(n)}n≥1 in short intervals and prove the following theorems.

Theorem 1.1 Let f ∈ Hk and λ f× f× f (n) be the n-th normalized Dirichlet coefficient
of the triple product L-function L(s, f × f × f ). Then for j ≥ 2 and any δ with

1 − 315
40
√

30 + 8442
= 0.963⋯ < δ < 1,

the sequence {λ f× f× f (n)}n≥1 has at least one sign change for n ∈ (x , x + xδ] for
sufficiently large x. Moreover, the number of sign changes of the above sequence for n ≤ x
is≫ x 1−δ .

Remark 1.2 By comparison, in Theorem 1.1, our results about the number of sign
changes for n ≤ x improve the results of Hua [7, Theorem 1.1].

Theorem 1.3 Let f ∈ Hk1 , g ∈ Hk2 be two different forms. Also let λ f× f× f (n) and
λg×g×g(n) be the n-th normalized Dirichlet coefficient of the triple product L-function
L(s, f × f × f ) and L(s, g × g × g), respectively. Then for any δ with

1 − 882
400
√

21 + 1771497
= 0.99950⋯ < δ < 1,

the sequence {λ f× f× f (n)λg×g×g(n)}n≥1 has at least one sign change for n ∈ (x , x + xδ]
for sufficiently large x. Moreover, the number of sign changes of the above sequence for
n ≤ x is≫ x 1−δ .

In Section 2, we give some preliminary lemmas. In Section 3, we prove three
propositions which play an important part in proving Theorem 1.1 and Theorem 1.3.
In Section 4 and Section 5, we complete the proofs of Theorem 1.1 and Theorem 1.3,
respectively. And, throughout the paper, we denote by ε a sufficiently small positive
constant, whose value may not be necessarily the same in all occurrences.

2 Preliminary and some lemmas

In this section, we will establish and recall some preliminary results for the proofs
of Theorem 1.1 and Theorem 1.3. We first recall the definitions about some specific
L-functions.
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The Hecke L-function attached to f ∈ Hk is given by

L(s, f ) =
∞
∑
n=1

λ f (n)
ns =∏

p
(1 −

α f (p)
ps )

−1

(1 −
β f (p)

ps )
−1

,(2.1)

which converges absolutely for R(s) > 1. The local parameters α f (p) and β f (p)
satisfy

α f (p) + β f (p) = λ f (p) and ∣α f (p)∣ = ∣β f (p)∣ = 1.(2.2)

The j-th symmetric power L-function attached to f ∈ Hk is defined as

L(s, sym j f ) ∶= ∏
p

j

∏
m=0
(1 − α f (p) j−m β f (p)m p−s)−1

,(2.3)

for R(s) > 1. Then, L(s, sym j f ) can be expressed as the Dirichlet series

L(s, sym j f ) =
∞
∑
n=1

λsym j f (n)
ns =∏

p

⎛
⎝

1 +∑
k≥1

λsym j f (pk)
pks

⎞
⎠

,(2.4)

where λsym j f (n) is a real multiplicative function, and

L(s, sym0 f ) = ζ(s), L(s, sym1 f ) = L(s, f ).(2.5)

According to (2.1) and (2.3), we obtain

λsym j f (p) =
j

∑
m=0

α j−m(p)βm(p) = λ f (p j).(2.6)

Remark 2.1 The result of Newton-Thorne [21] implies that sym j f ( j ≥ 1) is an
automorphic cuspidal representation of GL( j + 1). This means that L(s, sym j f ) has
an analytic continuation as an entire function in the whole complex plane C and
satisfies a certain functional equation of Riemann zeta-type of degree j + 1.

The Rankin–Selberg L-function associated with symi f and sym j g is defined by

L(s, symi f × sym j g) =∏
p

i
∏
u=0

j

∏
v=0
(1 −

α f (p)i−u β f (p)u αg(p) j−v βg(p)v

ps )
−1

=
∞
∑
n=1

λsym i f×sym j g(n)
ns , R(s) > 1,(2.7)

where λsym i f×sym j g(n) is a real multiplicative function, and

λsym i f×sym j g(p) =
i
∑
u=0

j

∑
v=0

α f (p)i−2u αg(p) j−2v = λsym i f (p)λsym j g(p).(2.8)

In particular, we have

L(s, sym1 f × sym1 g) = L(s, f × g), L(s, sym2 × sym1 g) = L(s, sym2 f × g).(2.9)
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Remark 2.2 Due to the works of Jacquet and Shalika [10] [11], Shahidi [26] [27],
Rudnick and Sarnak [25], Lau and Wu [15] and Newton-Thorne [21], the Rankin-
Selberg function L (s, symi f × sym j g) ( f ∈ Hk1 , g ∈ Hk2 are two different forms) has
an analytic continuation as an entire function in the whole complex plane C and
satisfies a certain functional equation of Riemann zeta-type of degree (i + 1)( j + 1).

The triple product L-function associated with f is defined by

L(s, f × f × f ) =∏
p
(1 −

α f (p)3

ps )
−1

(1 −
α f (p)

ps )
−3

(1 −
β f (p)3

ps )
−1

(1 −
β f (p)

ps )
−3

∶=
∞
∑
n=1

λ f× f× f (n)
ns , R(s) > 1,(2.10)

where λ f× f× f is real and multiplicative.

Remark 2.3 Recalling that the triple product L-functions L(s, f × f × f ) are auto-
morphic L-functions has been showed by Garrett [2], Piatetski-Shapiro and Rallis
[24], etc. Furthermore, we learn that the L-function L( f × f × f , s) has an analytic
continuation as an entire function in the whole complex plane C and satisfies certain
Riemann zeta-type functional equations of degree 8.

Thus for i , j ≥ 1, L(s, sym j f ) and L (s, symi f × sym j g) are also general
L-functions in the sense of Perelli [23]. For general L-functions, we have the following
result.

Lemma 2.4 Suppose thatL(s) is a general L-function of degree m. Then, for any ε > 0,
we have

L(σ + it) ≪ (1 + ∣t∣)max{ m(1−σ)
2 ,0}+ε ,(2.11)

uniformly for 1/2 ≤ σ ≤ 1 + ε and ∣t∣ ≥ 1. And
T

∫
1

∣L(σ + it)∣ 2dt ≪ Tmax{m(1−σ),1}+ε ,(2.12)

uniformly for 1
2 ≤ σ ≤ 2 and T ≥ 1.

Proof See [23]. ∎

Lemma 2.5 Let k = 8
63
√

15 = 0.4918⋯. Then for any ε > 0, we have

ζ(σ + it) ≪ tk(1−σ)3/2+ε(2.13)

uniformly for ∣t∣ ≥ 1 and 1/2 ≤ σ ≤ 1.

Proof The bound is proved by Heath-Brown in [4, Theorem 5]. ∎

https://doi.org/10.4153/S0008439524000602 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000602


1096 J. Feng

Lemma 2.6 For any ε > 0, we have

L(σ + it, sym2 f ) ≪ (1 + ∣t∣)max{ 6
5 (1−σ),0}+ε ,(2.14)

uniformly for 1
2 ≤ σ ≤ 2 and ∣t∣ ≥ 1.

Proof See [16, Corollary 1.2]. ∎

Suppose that π is a unitary cuspidal automorphic representation of GLr(AQ) and
L(s, π) is the automorphic L-function related to π. For 1/2 < σ < 1, let m(σ) ≥ 2 be
the supremum of all numbers m such that

T

∫
1

∣L(s, π)∣mdt ≪ T 1+ε .(2.15)

Lemma 2.7 Let m(σ) be defined by (2.15). Then for each 1 − 1/r < σ < 1 with r ≥ 4,
we have

m(σ) ≥ 2
r(1 − σ) .(2.16)

Proof See [8, Theorem 1.1]. ∎

Newton and Thorne [21, 22] proved that sym j f corresponds to a cuspidal auto-
morphic representation of GLr(AQ) for all j ≥ 1 with f ∈ Hk . As a result, we obtain
the following lemma.

Lemma 2.8 For f ∈ Hk and any ε > 0, we have

T

∫
1

∣L(23/25 + it, sym4 f )∣ 5dt ≪ T 1+ε ,(2.17)

uniformly for T ≥ 1.

Proof According to Lemma 2.7, for r = 5, we take σ = 23/25 . ∎

Lemma 2.9 For f ∈ Hk , we have

L(s, f × f × f ) = L(s, f )2L(s, sym3 f ).(2.18)

Proof See [18, Lemma 2.1]. ∎

Lemma 2.10 For f ∈ Hk and R(s) > 1, let

L(s) =
∞
∑
n=1

λ2
f× f× f (n)

ns .(2.19)
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Then we have

L(s) = ζ5(s)L9(s, sym2 f )L5(s, sym4 f )L(s, sym6 f )U(s),(2.20)

where the function U(s) is a Dirichlet series absolutely convergent in R(s) > 1/2 and
U(s) ≠ 0 for R(s) = 1.

Proof See [17, Lemma 5]. ∎

Lemma 2.11 Let f ∈ Hk1 , g ∈ Hk2 be two different forms. For R(s) > 1, let

G(s) =
∞
∑
n=1

λ f× f× f (n)λg×g×g(n)
ns .(2.21)

Then we have

G(s) = L(s, sym3 f × sym3 g)L2(s, f × sym3 g)L2(s, sym3 f × g)L4(s, f × g)V(s),
(2.22)

where the function V(s) is a Dirichlet series absolutely convergent in R(s) > 1/2 and
V(s) ≠ 0 for R(s) = 1.

Proof Noting that λ f× f× f (n)λg×g×g(n) is multiplicative and satisfies the upper
bound O(nε) due to (1.3), we obtain for R(s) > 1,

G(s) =∏
p
(1 +

λ f× f× f (p)λg×g×g(p)
ps +

λ f× f× f (p2)λg×g×g(p2)
p2s +⋯) .(2.23)

From Lemma 2.9, we have

λ f× f× f (p) = λsym3 f (p) + 2λ f (p).(2.24)

Then,

λ f× f× f (p)λg×g×g(p) = (λsym3 f (p) + 2λ f (p)) (λsym3 g(p) + 2λg(p))
= λsym3 f (p)λsym3 g(p) + 2λ f (p)λsym3 g(p) + 2λsym3 f (p)λg(p) + 4λ f (p)λg(p)
∶= b(p).

(2.25)

Define

G1(s) = L(s, sym3 f × sym3 g)L2(s, f × sym3 g)L2(s, sym3 f × g)L4(s, f × g).
(2.26)

Then it can be written as

G1(s) =∏
p
(1 +∑

k≥1

b(pk)
pks ) .(2.27)
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As a result,

G(s) = G1(s) ×∏
p
(1 +

λ f× f× f (p2)λg×g×g(p2) − b(p2)
p2s +⋯)

∶= L(s, sym3 f × sym3 g)L2(s, f × sym3 g)L2(s, sym3 f × g)L4(s, f × g)V(s),
(2.28)

where V(s) converges absolutely and uniformly in the half-plane R(s) > 1/2. ∎

Lemma 2.12 Let f ∈ Hk1 , g ∈ Hk2 be two different forms. For R(s) > 1, let

H(s) =
∞
∑
n=1

λ2
f× f× f (n)λ2

g×g×g(n)
ns .(2.29)

Then we have

H(s) = H1(s)W(s),(2.30)

where

H1(s) =ζ25(s)L45(s, sym2 f )L45(s, sym2 g)L25(s, sym4 f )L25(s, sym4 g)L5(s, sym6 f )
L5(s, sym6 g)L(s, sym6 f × sym6 g)L5(s, sym6 f × sym4 g)L9(s, sym6 f × sym2 g)
L5(s, sym4 f × sym6 g)L25(s, sym4 f × sym4 g)L45(s, sym4 f × sym2 g)
L9(s, sym2 f × sym6 g)L45(s, sym2 f × sym4 g)L81(s, sym2 f × sym2 g),

and the function W(s) is a Dirichlet series absolutely convergent in R(s) > 1/2 and
W(s) ≠ 0 for R(s) = 1.

Proof From (2.6) and Lemma 2.9, we have

λ f× f× f (p) = λsym3 f (p) + 2λ f (p) and λsym j f (p) = λ f (p j).(2.31)

According to (1.2), we have

λ2
f× f× f (p) = (λ f (p3) + 2λ f (p))

2 = λ2
f (p3) + 4λ2

f (p) + 4λ f (p3)λ f (p)
= λ f (p6) + 5λ f (p4) + 9λ f (p2) + 5 = λsym6 f (p) + 5λsym4 f (p) + 9λsym2 f (p) + 5.

From (2.8),

λ2
f× f× f (p)λ2

g×g×g(p)
= λsym6 f×sym6 g(p) + 5λsym6 f×sym4 g(p) + 9λsym6 f×sym2 g(p) + 5λsym6 f (p)
+ 5λsym4 f×sym6 g(p) + 25λsym4 f×sym4 g(p) + 45λsym4 f×sym2 g(p) + 25λsym4 f (p)
+ 9λsym2 f×sym6 g(p) + 45λsym2 f×sym4 g(p) + 81λsym2 f×sym2 g(p) + 45λsym2 f (p)
+ 5λsym6 g(p) + 25λsym4 g(p) + 45λsym2 g(p) + 25.

Now the lemma follows by standard argument like Lemma 2.11, so we omit it here. ∎
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Lemma 2.13 For f ∈ Hk and any ε > 0, we have

∑
n≤x

λ f× f× f (n) ≪ x7/10+ε .(2.32)

Proof See [18, Theorem 1.1]. ∎

3 The main proposition

In this section, we shall establish asymptotic formula of the sum

∑
n≤x

λ2
f× f× f (n), ∑

n≤x
λ f× f× f (n)λg×g×g(n) and ∑

n≤x
λ2

f× f× f (n)λ2
g×g×g(n),(3.1)

respectively (see Propositions 3.1, 3.2, 3.3). These asymptotic formulas are the key to
prove Theorem 1.1 and Theorem 1.3.

3.1 Proof of Proposition 3.1

Proposition 3.1 For f ∈ Hk and any ε > 0, we have

∑
n≤x

λ2
f× f× f (n) = xP(log x) + O f ,ε(x 1− 315

40
√

30+8442
+ε),(3.2)

where P(t) is a polynomial of degree 4.

Proof Recalling Lemma 2.10 and applying Perron’s formula (see [9, Proposition
5.54]), we have

∑
n≤x

λ2
f× f× f (n) =

1
2πi

b+iT

∫
b−iT

L(s)x s

s
ds + O (x 1+ε

T
) ,(3.3)

where b = 1 + ε and 3 ≤ T ≤ x is a parameter to be chosen later.
Then, we move the line of integration to the parallel segment with Rs = 23/25. By

Cauchy’s residue theorem, we obtain

∑
n≤x

λ2
f× f× f (n) =Res

s=1
{L(s)x s

s
} + 1

2πi ∫
L

L(s)x s

s
ds + O (x 1+ε

T
) ,(3.4)

where L is the contour joining 1 + ε − iT , 23/25 − iT , 23/25 + iT , 1 + ε + iT with
straight lines. The residue at s = 1 is equal to xP(log x), P(t) is a polynomial of
degree 4. We also have U(s) ≪ 1 in that the absolutely convergence of U(s) for
R(s) ≥ 1/2 + ε. Consequently, formula (3.4) can be written as

∑
n≤x

λ2
f× f× f (n) = xP(log x) + O (Jh

1 + Jv
1 +

x 1+ε

T
) ,(3.5)

where

Jh
1 ∶=

1
T

1+ε

∫
23/25

∣L(σ + iT)∣xσ dσ ≪ sup
23/25≤σ≤1+ε

xσ T−1∣L(σ + iT)∣,(3.6)
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and

Jv
1 ∶= x23/25

T

∫
1

∣L(23/25 + it)∣dt
t
≪ x23/25+ε sup

3≤T1≤T
T−1

1

2T1

∫
T1

∣L(23/25 + it)∣dt.(3.7)

By Lemma 2.5, k = 8
63
√

15 = 0.4918⋯, for any ε > 0, we have

ζ(23/25 + it) ≪ t
√

2k
5 ×

2
25+ε .(3.8)

Following from the well-known Phragmen-Lindelof principle, we obtain

ζ(σ + it) ≪ tmax{
√

2k
5 (1−σ),0}+ε ,(3.9)

uniformly for 23/25 ≤ σ ≤ 2 and ∣t∣ ≥ 3. According to Lemma 2.4, Lemma 2.6, and
(3.9), we deduce that for 23/25 ≤ σ ≤ 1 + ε,

∣L(σ + iT)∣ ≪ T{5⋅
√

2k
5 +9⋅ 65 +5⋅ 52+

7
2 }(1−σ)+ε = T{

√
2k+ 134

5 }(1−σ)+ε .

Then it follows that

Jh
1 ≪ T

√
2k+ 129

5 +ε sup
23/25≤σ≤1+ε

( x
T
√

2k+ 134
5
)

σ

≪ x23/25+ε T
80
√

30+9009
7875 + x 1+ε

T
.(3.10)

For Jv
1 , we have

Jv
1 ≪ x23/25+ε sup

3≤T1≤T

I1,1(T1)
T1

2T1

∫
T1

∣L(23/25 + it, sym4 f )∣ 5dt,(3.11)

where

I1,1(T1) = max
T1≤t≤2T1

ζ5 (23/25 + it) L9(23/25 + it, sym2 f )L(23/25 + it, sym6 f ).

According to Lemma 2.4, Lemma 2.6, Lemma 2.8, and (3.8), we have

I1,1(T1) ≪ T5× 8
√

15
63 ×(

2
25 )

3/2+9× 6
5 ×

2
25+

7
2×

2
25+ε

1 = T
80
√

30+9009
7875 +ε

1 ,(3.12)

and
2T1

∫
T1

∣L(23/25 + it, sym4 f )∣ 5dt ≪ T 1+ε
1 .(3.13)

Consequently,

Jv
1 ≪ x23/25+ε T

80
√

30+9009
7875 .(3.14)

Inserting (3.10) and (3.14) into (3.5), and taking T = x
315

40
√

30+8442 , we obtain

∑
n≤x

λ2
f× f× f (n) = xP(log x) + O(x 1− 315

40
√

30+8442
+ε).(3.15) ∎
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3.2 Proof of Proposition 3.2

Proposition 3.2 Let f ∈ Hk1 , g ∈ Hk2 be two different forms. For any ε > 0, we have

∑
n≤x

λ f× f× f (n)λg×g×g(n) ≪ x31/32+ε .(3.16)

Proof According to Lemma 2.11 and applying Perron’s formula (see [9, Proposition
5.54]), we have

∑
n≤x

λ f× f× f (n)λg×g×g(n) =
1

2πi

b+iT

∫
b−iT

G(s)x s

s
ds + O (x 1+ε

T
) ,(3.17)

where b = 1 + ε and 3 ≤ T ≤ x is a parameter to be chosen later.
Then, we move the line of integration to the parallel segment with Rs = 1/2. By

Cauchy’s residue theorem, we deduce that

∑
n≤x

λ f× f× f (n)λg×g×g(n) =
1

2πi ∫
L

G(s)x s

s
ds + O (x 1+ε

T
) ,(3.18)

where L is the contour joining 1 + ε − iT , 1/2 − iT , 1/2 + iT , 1 + ε + iT with straight
lines. G(s) has no poles in the half-plane R(s) > 1/2 by using the analytic properties
of Rankin-Selberg L-functions. We also have V(s) ≪ 1 in that the absolutely conver-
gence of V(s) for R(s) ≥ 1/2 + ε. Consequently, formula (3.18) can be written as

∑
n≤x

λ f× f× f (n)λg×g×g(n) = O (Jh
1 + Jv

1 +
x 1+ε

T
) ,(3.19)

where

Jh
1 ∶=

1
T

1+ε

∫
1/2

∣G(σ + iT)∣xσ dσ ≪ sup
1/2≤σ≤1+ε

xσ T−1∣G(σ + iT)∣,(3.20)

and

Jv
1 ∶= x 1/2

T

∫
1

∣G(1/2 + it)∣dt
t
≪ x 1/2+ε sup

3≤T1≤T
T−1

1

2T1

∫
T1

∣G(1/2 + it)∣dt.(3.21)

According to Lemma 2.4, we obtain for 1/2 ≤ σ ≤ 1 + ε

∣G(σ + iT)∣ ≪ T
16+16+16+16

2 (1−σ)+ε = T32(1−σ)+ε .(3.22)

Therefore,

Jh
1 ≪T31+ε sup

1/2≤σ≤1+ε
( x

T32 )
σ
≪ x 1/2+ε T 15 + x 1+ε

T
.(3.23)
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For Jv
1 , we get

Jv
1 ≪ x 1/2+ε sup

1≤T1≤T

I2,1(T1)
T1

2T1

∫
T1

∣L(1/2 + it, f × sym3 g)∣2dt,(3.24)

where

I2,1(T1) = max
T1≤t≤2T1 ,
s0=1/2+i t

L (s0 , sym3 f × sym3 g) L2 (s0 , sym3 f × g) L4 (s0 , f × g) .(3.25)

By Lemma 2.4, we have

I2,1(T1) ≪ T 12+ε
1 and

2T1

∫
T1

∣L (1/2 + it, f × sym3 g)∣ 2dt ≪ T4+ε
1 .(3.26)

As a result,

Jv
1 ≪ x 1/2+ε T 15+ε .(3.27)

Inserting (3.23) and (3.27) into (3.19), and taking T = x 1/32, we obtain

∑
n≤x

λ f× f× f (n)λg×g×g(n) ≪ x31/32+ε .(3.28) ∎

3.3 Proof of Proposition 3.3

Proposition 3.3 Let f ∈ Hk1 , g ∈ Hk2 be two different forms. For any ε > 0, we have

∑
n≤x

λ2
f× f× f (n)λ2

g×g×g(n) = xQ(log x) + O (x 1− 882
400
√

21+1771497
+ε) ,(3.29)

where Q(t) is a polynomial of degree 24.

Proof Recalling Lemma 2.12, we obtain

H1(s) ∶=ζ25(s)L45(s, sym2 f )L45(s, sym2 g)L5(s, sym4 f × sym6 g)H2(s),(3.30)

where

H2(s) = L25(s, sym4 f )L25(s, sym4 g)L5(s, sym6 f )L5(s, sym6 g)L(s, sym6 f × sym6 g)
L5(s, sym6 f × sym4 g)L9(s, sym6 f × sym2 g)L25(s, sym4 f × sym4 g)
L45(s, sym4 f × sym2 g)L9(s, sym2 f × sym6 g)L45(s, sym2 f × sym4 g)
L81(s, sym2 f × sym2 g)

is a general L-function of degree 3626.
Applying Perron’s formula (see [9, Proposition 5.54]), we have

∑
n≤x

λ2
f× f× f (n)λ2

g×g×g(n) =
1

2πi

b+iT

∫
b−iT

H(s)x s

s
ds + O (x 1+ε

T
) ,(3.31)

where b = 1 + ε and 3 ≤ T ≤ x is a parameter to be chosen later.
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Then, we move the line of integration to the parallel segment with Rs = 34/35. By
Cauchy’s residue theorem, we obtain

∑
n≤x

λ2
f× f× f (n)λ2

g×g×g(n) =Res
s=1
{H(s)x s

s
} + 1

2πi ∫
L

H(s)x s

s
ds + O (x 1+ε

T
) ,(3.32)

where L is the contour joining 1 + ε − iT , 34/35 − iT , 34/35 + iT , 1 + ε + iT with
straight lines. The residue at s = 1 is equal to xQ(log x), Q(t) is a polynomial of
degree 24. We also have W(s) ≪ 1 in that the absolutely convergence of W(s) for
R(s) ≥ 1/2 + ε. Consequently, formula (3.32) can be written as

∑
n≤x

λ2
f× f× f (n)λ2

g×g×g(n) = xQ(log x) + O (Jh
3 + Jv

3 +
x 1+ε

T
) ,(3.33)

where

Jh
3 ∶=

1
T

1+ε

∫
34/35

∣H(σ + iT)∣xσ dσ ≪ sup
34/35≤σ≤1+ε

xσ T−1∣H(σ + iT)∣,(3.34)

and

Jv
3 ∶= x34/35

T

∫
1

∣H(34/35 + it)∣dt
t
≪ x34/35+ε sup

3≤T1≤T
T−1

1

2T1

∫
T1

∣H(34/35 + it)∣dt.

(3.35)

By Lemma 2.5, k = 8
63
√

15 = 0.4918⋯, for any ε > 0, we have

ζ(34/35 + it) ≪ t
k√
35
× 1

35+ε .(3.36)

Following from the well-known Phragmen-Lindelof principle, we obtain

ζ(σ + it) ≪ tmax{ k√
35
(1−σ),0}+ε ,(3.37)

uniformly for 34/35 ≤ σ ≤ 2 and ∣t∣ ≥ 3. According to Lemma 2.4, Lemma 2.6, and
(3.37), we obtain for 34/35 ≤ σ ≤ 1 + ε

∣H(σ + iT)∣ ≪ T{25⋅ k√
35
+45⋅ 65 +45⋅ 65 +5⋅ 35

2 +
3626

2 }(1−σ)+ε = T{
25k√

35
+ 4017

2 }(1−σ)+ε .

Therefore,

Jh
3 ≪ T

25k√
35
+ 4015

2 +ε sup
34/35≤σ≤1+ε

( x

T
25k√

35
+ 4017

2
)

σ

≪ x34/35+ε T{
25k√

35
+ 3947

2 }⋅
1

35 + x 1+ε

T
.(3.38)

According to (3.30), we deduce that

Jv
3 ≪ x34/35+ε sup

3≤T1≤T

I3,1(T1)
T1

2T1

∫
T1

∣L(34/35 + it, sym4 f × sym6 g)∣2dt,(3.39)
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where

I3,1(T1)
= max

T1≤t≤2T1 ,
s0=34/35+iT1

ζ25(s0)L45(s0 , sym2 f )L45(s0 , sym2 g)L3(s0 , sym4 f × sym6 g)H2(s0).

From Lemma 2.4, Lemma 2.6, and (3.36), we have

I3,1(T1) ≪ T
{25⋅ k√

35
+45⋅ 65 +45⋅ 65 +3⋅ 35

2 +
3626

2 }/35+ε
1 = T{

25k√
35
+ 3947

2 }⋅
1

35+ε ,(3.40)

and
2T1

∫
T1

∣L(34/35 + it, sym4 f × sym6 g)∣2dt ≪ T 1+ε
1 .(3.41)

As a result,

Jv
3 ≪ x34/35+ε T{

25k√
35
+ 3947

2 }⋅
1

35 .(3.42)

Inserting (3.38) and (3.42) into (3.33), and taking T = x
882

400
√

21+1771497 , we obtain

∑
n≤x

λ2
f× f× f (n)λ2

g×g×g(n) = xQ(log x) + O (x 1− 882
400
√

21+1771497
+ε) .(3.43) ∎

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by the argument of contradiction. Let

1 − 315
40
√

30 + 8442
= 0.963⋯ < δ < 1.(4.1)

Suppose that the sequence {λ f× f× f (n)}n≥1 has the same sign in the interval(x , x +
xδ]. Without loss of generality, let the sign is positive. Then by Lemma 2.13 and
Deligne’s bound (1.3), we obtain

∑
x≤n≤x+x δ

λ2
f× f× f (n) ≪ x ε ∑

x≤n≤x+x δ
λ f× f× f (n) ≪ x7/10+ε .(4.2)

According to Proposition 3.1, we deduce that

∑
x≤n≤x+x δ

λ2
f× f× f (n) = (x + xδ)P(log(x + xδ)) − xP(log x) + O f ,ε(x 1− 315

40
√

30+8442
+ε)

≥ (x + xδ)P(log x) − xP(log x) + O f ,ε(x 1− 315
40
√

30+8442
+ε)

= xδ P(log x) + O f ,ε(x 1− 315
40
√

30+8442
+ε) ≫ xδ .(4.3)

From (4.2) and (4.3), we get the contradiction. As a result, the sequence
{λ f× f× f (n)}n≥1 has at least one sign change in the interval(x , x + xδ] with 0.963⋯ <
δ < 1. Therefore, the sequence {λ f× f× f (n)}n≥1 has at least≫ x 1−δ sign change in the
interval(x , x + xδ] for suffficiently large x.
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5 Proof of Theorem 1.2

In this section, we prove Theorem 1.3 by the argument of contradiction. Let

1 − 882
400
√

21 + 1771497
= 0.99950⋯ < δ < 1.(5.1)

Suppose that the sequence {λ f× f× f (n)λg×g×g(n)}n≥1 has the same sign in the
interval(x , x + xδ]. Without loss of generality, let the sign is positive. Then by Propo-
sition 3.2 and Deligne’s bound (1.3), we obtain

∑
x≤n≤x+x δ

λ2
f× f× f (n)λ2

g×g×g(n) ≪ x ε ∑
x≤n≤x+x δ

λ f× f× f (n)λg×g×g(n) ≪ x31/32+ε .
(5.2)

According to Proposition 3.3, we have

∑
x≤n≤x+x δ

λ2
f× f× f (n)λ2

g×g×g(n)

= (x + xδ)P(log(x + xδ)) − xP(log x) + O f ,ε(x 1− 882
400
√

21+1771497
+ε)

≥ (x + xδ)P(log x) − xP(log x) + O f ,ε(x 1− 882
400
√

21+1771497
+ε)

= xδ P(log x) + O f ,ε (x 1− 882
400
√

21+1771497
+ε) ≫ xδ .(5.3)

From (5.2), (5.3), and 31
32 = 0.96⋯, we get the contradiction. As a result, the

sequence {λ f× f× f (n)λg×g×g(n)}n≥1 has at least one sign change in the interval
(x , x + xδ]with 0.99950⋯ < δ < 1. Therefore, the sequence {λ f× f× f (n)λg×g×g(n)}n≥1
has at least≫ x 1−δ sign change in the interval(x , x + xδ] for suffficiently large x.
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