
J. Fluid Mech. (2024), vol. 999, A35, doi:10.1017/jfm.2024.968

Side-heated Rayleigh–Bénard convection

Jinzi Mac Huang1,2,† and Jun Zhang1,2,3,†
1NYU-ECNU Institute of Physics and Institute of Mathematical Sciences, New York University Shanghai,
Shanghai 200124, China
2Applied Math Lab, Courant Institute, New York University, New York, NY 10012, USA
3Department of Physics, New York University, New York, NY 10003, USA

(Received 22 July 2024; revised 28 September 2024; accepted 1 October 2024)

Unlike in solids, heat transfer in fluids can be greatly enhanced due to the presence of
convection. Under gravity, an unevenly distributed temperature field results in differences
in buoyancy, driving fluid motion that is seen in Rayleigh–Bénard convection (RBC).
In RBC, the overall heat flux is found to have a power-law dependence on the imposed
temperature difference, with enhanced heat transfer much beyond thermal conduction. In a
bounded domain of fluid such as a cube, how RBC responds to thermal perturbations from
the vertical sidewall is not clear. Will sidewall heating or cooling modify flow circulation
and heat transfer? We address these questions experimentally by adding heat to one side
of the RBC. Through careful flow, temperature and heat flux measurements, the effects of
adding side heating to RBC are examined and analysed, where a further enhancement of
flow circulation and heat transfer is observed. Our results also point to a direct and simple
control of the classical RBC system, allowing further manipulation and control of thermal
convection through sidewall conditions.
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1. Introduction

Rayleigh–Bénard convection (RBC) has been studied extensively in the past few decades
(Tilgner, Belmonte & Libchaber 1993; Belmonte, Tilgner & Libchaber 1994; Niemela
et al. 2000; Funfschilling et al. 2005; Ahlers, Grossmann & Lohse 2009; Lohse & Xia
2010) for its vastly broad applications in geophysics (Zhong & Zhang 2005; Meakin
& Jamtveit 2010; Huang et al. 2018; Wang & Zhang 2023; Huang 2024), solar physics
(Nordlund 1985; Stein & Nordlund 1989; Dudok de Wit et al. 2020), atmospheric science
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(Emanuel 1994; Salmon 1998) and ocean dynamics (Jorgensen & LeMone 1989; Vallis
2006). In RBC, a domain of fluid is heated from below and cooled from above, so the
near-boundary fluid is either warmed up or cooled off, leading to thermal convection.
As the warm and cold fluids move between the top and bottom plates, they effectively
create an upward heat flux. At a fixed bottom-to-top temperature difference �T , this
convective heat transfer rate Qconv is much greater than that which would pass through
a quiescent fluid body, Qcond, which is the so-called conductive heat transfer rate.
Defined as the ratio between the convective and conductive heat transfer rates, the Nusselt
number Nu = Qconv/Qcond measures the heat-passing capability in RBC, which depends
on imposed control parameters such as the Rayleigh number Ra = αgL3�T/(κν) and
the Prandtl number Pr = ν/κ . Here, g, L, α, κ, ν are the acceleration due to gravity,
fluid depth, thermal expansion coefficient, thermal diffusivity and kinematic viscosity,
respectively.

Once a fluid and its containing geometry are given, the heat flux is uniquely determined
by the imposed temperature difference �T . In particular, the famous scaling relationship
Nu ∝ Raβ has been observed in the range from Ra = 106 to Ra = 1014 (Niemela
et al. 2000; Funfschilling et al. 2005), despite local deviations. Grossmann and Lohse
(Grossmann & Lohse 2000; Ahlers et al. 2009; Stevens et al. 2013) developed a theory
that incorporates the heat transfer contributed by both the thermal boundary layers and the
bulk, revealing a Nu–Ra relationship that has been found to be consistent with experiments
in a large range of parameters.

At a given Rayleigh number, a controllable Nu is often desired; anomalies that deviate
from the usual scaling laws found in nature also demand explanations (Barry 1992). In
the past, there have been many attempts to modify the Nu–Ra dependency. For example,
surface roughness was added to the boundary, which modifies the boundary layer structure
and enhances the Nusselt number (Du & Tong 1998; Jiang et al. 2018). Adding rotation
to the entire fluid changes the bulk flow structure (Stevens et al. 2009; Zhong et al.
2009; Zhong & Ahlers 2010) and increases the Nusselt number at moderate rotation rate.
Stronger confinement on the convective fluid increases the flow structure coherence (Xia
& Lui 1997; Chong & Xia 2016; Huang & Xia 2016), and leads to a higher Nusselt number.
Bao et al. (2015) reported a strong Nu enhancement when vertical partition walls are
inserted in the bulk fluid. There, the convective fluid self-organizes and circulates around
these partitions, intruding into the thermal boundary layers and leading to increased heat
flux.

Inspired by the fact that large-scale circulation can be induced by an imposed horizontal
temperature gradient (Belmonte, Tilgner & Libchaber 1995), we have demonstrated that
the addition of horizontal flux can greatly enhance the large-scale circulation and heat
transfer in RBC. In that work (Huang & Zhang 2022), a pair of heating–cooling vertical
walls is added so a net horizontal flux can flow through the RBC cell. While such a
study is numerically feasible, it is difficult to add and remove the same amount of heat
experimentally. We thus focus only on the side-heating effect here, and demonstrate
experimentally how an added horizontal flux can change the dynamical and thermal
properties of RBC.

In this study, a classical RBC system in a cubical domain is perturbed by a heat
flux injected from one of its four vertical sides, as shown in figure 1(a). During each
experiment, the top cooling temperature Tt is fixed, while Ra and Nu are measured
as functions of the side and bottom heating powers Qs and Qb. To the best of our
knowledge, this unconventional configuration has not been studied in the past, despite
many experiments having explored configurations such as sidewall heating–cooling
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Figure 1. A cubical thermal convection cell with sidewall heating is filled with water as the working fluid.
(a) Schematic showing the convection cell and the side heater. Thermistors (red dots) are distributed to measure
local temperature at various locations. (b) Shadowgraph visualizing the density difference and thus the flow
structures, with bottom heating power Qb = 100 W, and side-heating power Qs = 40 W. Heat injected from the
bottom and the side exits the fluid through the top cooling plate, while the clockwise large-scale circulation is
enhanced and dictated by the side heating.

without bottom heating (Belmonte et al. 1995), horizontal convection (Miller 1968; Wang
& Huang 2005; Hughes & Griffiths 2008), and different sidewall boundary conditions
(Stevens, Lohse & Verzicco 2014).

In what follows, we will introduce the experimental set-up in § 2, and show the main
results regarding the flow patterns and heat transfer properties of the side-heated RBC in
§ 3. And finally, in § 4, we will summarize our results and outline future research plans.

2. Experimental set-up

As shown in figure 1(a), our experiments are carried out in a cubical cell of side length
L = 20 cm. The top and bottom plates are made of anodized aluminium that ensures high
thermal conductivity and uniform temperature distribution within each plate. In the top
plate, coolant water is circulated at a constant temperature 40 ◦C that is regulated by a
water circulator. An electrical film heater is embedded in the bottom plate, providing
bottom heating to the fluid. To ensure temperature uniformity, both the top and bottom
plates are 2.54 cm thick and made of aluminium. Another film heater covered by an
aluminium sheet, 2 mm in thickness and in contact with the fluid, is attached to one side
of the vertical walls. The covering aluminium sheet is intended to improve temperature
uniformity, whose top and bottom edges are cut away by 5 mm in order to prevent a ‘short
circuit’ of heat flowing from/to the boundary layers. During all experiments excluding the
flow visualization, insulating materials cover the RBC cell to minimize heat leak. Local
temperature is measured by thermistors distributed in the convection cell. As shown in
figure 1(a), two thermistors measuring the bottom temperature are embedded 0.5 mm
below the bottom surface. One thermistor is located at the centre of the side heater to
monitor the side temperature, and two thermistors are mounted on a support that can
traverse vertically to measure the temperature profile of the fluid.

We perform all temperature and flow measurements at each (Qb, Qs), while varying
them independently in the range 0–120 W. While the heat mainly transfers through
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the fluid, there are three possible heat leaks that may affect our measurements: (1) the
conduction beneath the bottom plate; (2) the vertical conduction of heat through the
sidewalls; (3) the horizontal heat leak from the sidewalls to the air.

To minimize the conductive heat leak, the bottom plate is placed on top of layers of
insulating foam, beneath which a compensating heater is installed so that the temperature
gradient in the foam can be monitored and minimized by a PID algorithm. The
sidewalls are made of 5 mm thick acrylic, whose thermal conductivity is approximately
0.2 W m−1 K−1. Considering that the typical temperature difference between top and
bottom is about 10 ◦C, the vertical conducting power through the sidewalls is estimated
as 0.04 W, much smaller than the convective power carried by the fluid.

The main contribution to heat leakage is in fact the heat transfer between the sidewalls
and the surrounding air. Typically, the convection cell operates at a bulk temperature
40 ◦C, and the surrounding air is at the room temperature 25 ◦C. The convection cell,
when operating, is covered by many layers of aluminium-coated bubble wrap whose
total thickness is of the order of 10 cm, and whose conductivity is approximately
0.02 W m−1 K−1. This allows us to estimate the total side leaking power as 0.5 W, which
is much smaller than the minimum bottom heating power (10 W) used in the study. Thus
the maximum error that we may have in measuring Nu is 5 %, and this error decays
inversely with Qb.

Whenever a control parameter is changed, the system runs for 4 hours to reach a
dynamical equilibrium, and each measurement takes another 4 hours to collect data. With
degassed water as the working fluid, the system works at a Rayleigh number in the range
3 × 108 to 5 × 109, and Prandtl number in the range 3.4 to 4.1. At this Ra, the convection
is turbulent and the large-scale circulation develops spontaneously.

As shown in figure 1(b), a shadowgraph of the convecting fluid reveals local density
differences and thus provides a visualization of the convective flows. A convex lens with
focal length 20 cm converts light from a point source to near-parallel light, which passes
through the convection cell and casts a shadow on a translucent screen. Bulk flow speed
U can be inferred by tracing the thermal plumes at a given region, which we choose to
be 1 cm from the centre of the heated sidewall. This flow speed U represents the strength
of the large-scale circulation. Typically, trajectories of 40 thermal plumes are timed and
metered during each experiment, so both the mean flow speed and its standard deviation
can be calculated.

3. Results

3.1. Enhanced large-scale circulation and the modified Nu–Ra relationship
We expect the addition of side heating to enhance the large-scale circulation, and perhaps
also to increase the vertical heat transfer rate. As shown in figure 1(b), the fluid near
the sidewall is heated and becomes lighter, thus forming an upwelling jet that feeds
a clockwise large-scale circulation. Therefore, the thermal energy provided by sidewall
heating is partly converted into the fluid kinetic energy that enhances the large-scale
circulation.

With a constant bottom heating power Qb = 100 W and side-heating power in the range
Qs = 10–100 W, the flow speed can be non-dimensionalized as the Reynolds number Re =
UL/ν shown in figure 2(a). In figure 2(a), the sidewall power is also non-dimensionalized
as the power Grashof number Grq = αgL2Qs/(λν

2), which is a measure of the relative
strength between buoyancy and viscous effects (Schlichting & Gersten 2003). Here, λ is
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Figure 2. Flow speed and heat transfer measured by Reynolds and Nusselt numbers. (a) Plume speed increases
with side-heating power. With bottom heating fixed at 100 W, the Reynolds number Re = UL/ν measured at
1 cm from the sidewall centre shows a monotonic dependence on the power Grashof number Grq, consistent
with the power-law scaling Re ∝ Gr1/5

q from the boundary layer theory (Schlichting & Gersten 2003).
The inset shows a logarithmic-scale plot of Reynolds number versus power Grashof number. (b) Nusselt
number Nu measured at various values of Ra and side-heating power Qs. The bottom heating power is
Qb = 10, 20, . . . , 120 W. Without side-heating, Nu shows a classical power-law dependence on Ra. Fixing
the bottom power, Nu is observed to decrease with increasing side power, while Nu ∝ Ra−1. Coloured solid
curves are the Nu–Ra curve at each fixed Qs predicted by a theory introduced in § 3.2.

the fluid thermal conductivity. In comparison with the Grashof number Gr = αgL3(Ts −
T∞)/ν2, the power Grashof number is defined directly through the input heating power Qs
instead of the sidewall temperature difference Ts − T∞. Far field temperature T∞ in our
case can be taken as the bulk temperature.

The monotonic increase of Re with Grq shows that the bulk flow speed is indeed
accelerated by the side-heating power. From the boundary layer theory (Schlichting &
Gersten 2003), the buoyancy-driven flow speed near a vertical wall scales with the Grashof
number Gr as U ∝ Gr1/4. Using the relationship between the two Grashof numbers
(Schlichting & Gersten 2003), namely Gr ∝ Gr4/5

q , we have the scaling law Re ∝ Gr1/4 ∝
Gr1/5

q . This is found to be consistent with our experimental data, as shown in figure 2(a).
As Qs reduces to 0, flow velocity drops to the conventional RBC value, which corresponds
to Re ∼ 1000 in our range of Ra (Ahlers et al. 2009). Without side heating, the direction
of large-scale circulation becomes arbitrary but stays along one of the vertical diagonal
planes of the convection cell.

The Nusselt number in the classical cubical RBC is Nu = Qb/(λ�T L), and figure 2(b)
shows the Nusselt number measured at various values of Qs and Qb. With sidewall heating
added, the bulk circulation is enhanced as expected, but the bottom temperature Tb and
the resulting �T = Tb − Tt are also found to increase. By definition, Ra ∝ �T and Nu ∝
1/�T , so an increased �T due to side heating causes Ra to increase and Nu to decrease.
Moreover, with Qb fixed at a constant, the product Nu Ra is independent of �T . Thus the
dotted lines in figure 2(b) have a common slope −1 in the log-log scale.

As a reference, the Nu–Ra measurement without sidewall heating, Nu|Qs=0 = Nu0 in
figure 2(b), agrees well with previous experiments (Funfschilling et al. 2005; Ahlers
et al. 2009) and follows a power-law scaling Nu = 0.12 Ra0.304 that is consistent with the
Grossmann–Lohse theory. When Qs /= 0, the observed data deviate from the power-law
relation – a simple scaling relationship is absent, particularly at large Qs.
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Figure 3. Vertical temperature profiles measured at Qb = 100 W and various values of Qs, and along the
centre vertical line as shown in figure 1(a). (a) Temperature at different heights. The bulk and bottom
temperatures are found to increase with the heating power ratio S = Qs/Qb. Top, bottom and side temperatures
(Tt, Tb and Ts) are marked with ticks and triangles. (b) Zoom-in profiles of the bottom thermal boundary layer:
Tb increases with the bulk temperature, while the temperature gradient stays nearly constant. (c) Zoom-in
profiles of the top thermal boundary layer. With top temperature fixed, increased bulk temperature leads to a
higher temperature gradient within the boundary layer. (d) Thermal boundary layer (BL) thicknesses δ of the
top and bottom boundary layers. (e) With Qb fixed, the increase of bulk temperature �Tc = Tc|S − Tc|S=0 has
a 4/5 power-law scaling relationship to the side-heating power Qs. ( f ) Nusselt number as a function of power
ratio S, i.e. Nu0/Nu = 1 + 0.25S4/5. Plots (a–e) share the same colour scheme; ( f ) uses the colour scheme and
definition of Nu and Nu0 as in figure 2(b).

3.2. Temperature measurement explaining the Nu–Ra scaling
To investigate the modified Nu–Ra relationship due to sidewall heating, the vertical
temperature distribution is examined along the central vertical axis of the RBC cell shown
in figure 1(a). Figure 3(a) shows several temperature profiles measured at the same bottom
power Qb = 100 W but different side power Qs, where we have defined the heating power
ratio as S = Qs/Qb. On each curve, temperature changes linearly within thermal boundary
layers, through which heat transfers by conduction. In the bulk, strong turbulent mixing
makes the bulk temperature Tc nearly uniform (Belmonte et al. 1994; Ahlers et al. 2009),
which, together with the bottom temperature Tb, increases with S.

Zooming in near the bottom, figure 3(b) shows that the bottom temperature Tb increases
with Qs, while the temperature gradient ∂T/∂y stays approximately constant within the
boundary layer. This is due to the fact that ∂T/∂y = −Qb/(λL2) and the bottom power Qb
is fixed at a constant. The bottom thermal boundary layer thickness δb = 1.4 ± 0.1 mm
(or δb/L = (0.70 ± 0.05)%) is roughly constant for varying S, as shown in figure 3(d).
This, together with a constant ∂T/∂y ∼ �Tb/δb, indicates that the temperature difference
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between the bottom and the bulk �Tb = Tb − Tc is not changing with S either, as shown
in figure 3(b). Figure 3(c) shows the zoom-in temperature profiles near the top plate. The
addition of side heating Qs, which has to leave the system through the top plate, leads to
a higher temperature gradient ∂T/∂y = −(Qb + Qs)/(λL2) in the top thermal boundary
layer. In our experiment, the top thermal boundary layer thickness is δt = 1.1 ± 0.1 mm
(or δt/L = (0.55 ± 0.05)%), as shown in figure 3(d).

Interestingly, the top thermal boundary layer is thinner than the bottom in figure 3(d),
even when S = 0. This is the opposite of the classic RBC, where the non-Boussinesq
effect of working fluid makes the bulk warmer and the bottom thermal boundary layer
thinner (Zhang, Childress & Libchaber 1997). We have confirmed that this anomaly is a
consequence of adding the aluminium side heater, which both conducts heat and modifies
the flow structure even when the heating is off. For S /= 0, the boundary layer thickness
also varies in space, so the temperature distribution shown in figure 3 only reflects a local
profile covered by the range of moving thermistors. To better understand the temperature
and flow distributions in the side-heated RBC, we are currently working on a numerical
study that may provide further insight.

As the only variable in Nu = Qb/(λ�T L) is �T when holding Qb constant,
understanding how �T depends on S can directly explain how Nu depends on S. From
the data shown in figure 3(b), the bottom to bulk temperature difference stays unchanged
while the bulk temperature increases with S. Therefore, the increase of bulk temperature
�Tc(S) = Tc|S − Tc|S=0 directly contributes to an increased bottom–top temperature
difference �T . As shown in figure 3(e), the bulk temperature change has a scaling
�Tc ∝ S4/5, which is a direct consequence of the scaling Gr ∝ Gr4/5

q discussed earlier,
in § 3.1.

We therefore estimate �T = (1 + γ S4/5)�T|S=0, where γ is a positive constant.
Substituting this into the definition of the Nusselt number, we have Nu0/Nu(S) =
�T/�T|S=0 = 1 + γ S4/5. Plotting Nu0/Nu − 1 against S4/5, all the data points in
figure 2(b) land on a straight line, as shown in figure 3( f ), whose slope is γ ≈ 0.25. We
can also apply this relation to S = Qs/Qb with fixed Qs and varying Qb, which is shown
as the Ra–Nu curve for each Qs in figure 2(b).

The above analysis provides a relationship between Nu and S, thus suggesting that
the heat transfer in RBC can be controlled by simply changing S. However, an obvious
question remains: why does a stronger large-scale circulation shown in figure 2(a) lead to
a reduced Nu for side-heated RBC? In the next subsection, we will measure the true heat
flux by redefining the Nusselt number, and show how large-scale circulation enhances the
heat transfer of side-heated RBC.

3.3. Redefined Nusselt number and its enhancement
In this subsection, we redefine the Nusselt number by counting all heat inputs to the RBC
system as the total convective heat Q∗

conv , and compare it with the overall conductive heat
Q∗

cond associated with the wall temperature distribution. The resulting analysis will show
that the newly defined Nusselt number Nu∗ = Q∗

conv/Q∗
cond indeed increases with S.

As we have argued above, the sum of the side and bottom heat has to flow out through
the top plate. In terms of power, the total convective power through the cell is Q∗

conv =
Qt = Qb + Qs, where Qt, Qb and Qs represent the magnitudes of power passing through
the top, bottom and side, respectively. The side heating also leads to a side temperature
Ts > Tc > Tt, and it contributes to the total conductive heat flowing through the top plate.
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Figure 4. Redefined Nusselt number Nu∗ as the ratio of total convective heat to total conductive heat. (a)
With redefinition, data shown in figure 2(b) are now above the Ra–Nu0 curve when Qs > 0, showing an
enhancement of heat transfer. (b) The ratio Nu∗/Nu0 increases monotonically with the heating power ratio
S = Qs/Qb, reaching the highest enhancement 66 % at S = 9 in the experiment. Plots (a,b) share the same
colour scheme as in figure 2(b).

Hence Q∗
cond has to be determined by solving a steady-state heat equation with Tb, Tt and

Ts satisfying Dirichlet boundary conditions for the bottom, top, and one of the sidewalls,
and ∂nT = 0 for the other three sidewalls. To prevent short-circuiting, the heating sidewall
is separated into three regions: one central region with constant temperature Ts, and two
stripes on its top and bottom with adiabatic boundary conditions, whose size matches the
experimental configuration 5 : 190 : 5 mm. The steady-state heat equation ∂2

x T + ∂2
y T = 0,

together with these mixed boundary conditions, can be solved numerically. Here, we use
a finite elements package COMSOL Multiphysics with MATLAB Livelink, and compute
the conductive heat in two dimensions, as we assume no significant structural change in the
third direction. The overall conductive heat transfer rate, computed along the top boundary,
is thus determined as Q∗

cond = −λL ∫ L
0 (∂T/∂y)(x, L) dx.

As shown in figure 4(a), the redefined Nu∗ = Q∗
conv/Q∗

cond for each Ra and S > 0 lies
above the unperturbed Ra–Nu0 curve (dashed line in figure 4a), indicating that side heating
indeed results in a higher heat transfer rate. At large Ra (small S), the contribution from the
bottom heating Qb dominates the overall heat transfer, so the classical Nu0–Ra relationship
becomes the asymptotic limit. At small Ra (large S), however, the redefined Nu∗ deviates
from the conventional power-law scaling. The degree of this enhancement, measured as
Nu∗/Nu0 in figure 4(b), increases monotonically with S and reaches enhancement 66 %
at S = 9 – the highest S reached in our experiments. We attribute this Nu∗ boost to the
strengthening of large-scale circulation due to side heating, which enhances the bulk
mixing and perhaps thins the boundary layers (figure 3d).

4. Discussion

Through laboratory experiments, we have investigated the effects of adding side heating
to the classical RBC system. In particular, we have found an empirical law Nu(S) =
Nu0(1 + γ S4/5)−1, which deviates from the classical Nu–Ra scaling. We further show
that a redefinition of Nu is required to capture the unconventional boundary conditions
in our study, and the redefined Nu∗ increases monotonically with the side-heating power,
thus allowing for a direct control to the RBC.
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Such controllability was also demonstrated in Huang & Zhang (2022), where adjusting
the horizontal heat flux leads to a response of Nu similar to figure 4(a). In that work,
Nu also increases monotonically with S, with the highest relative enhancement achieved
near the critical Rayleigh number. In the limit S → 0, the horizontal flux becomes
negligible compared to the vertical one, so Nu → Nu0 and the RBC converges to the
classic configuration asymptotically. On the other hand, taking S 	 1 would bring the
system closer to the configuration of Belmonte et al. (1995), which is an RBC that is
turned 90◦ to the side.

Thus both the present experiment and the previous numerical simulation (Huang &
Zhang 2022) provide a simple means of controlling the RBC – adjust the horizontal heat
flux, and the vertical flux responds accordingly. In electronics, current is a direct analogy to
the heat flux in thermal dynamics. Therefore, our side-heated RBC functions much like an
electronic NPN transistor, where the current flowing between the collector and the emitter
can be controlled by adding a current to the base (Scherz & Monk 2013).

But unlike the electronic transistors, the response of our ‘thermal transistor’ is slow,
usually taking hours to reach dynamical equilibrium after adjusting the side-heating power.
In Huang & Zhang (2022), we have experimented with a time-dependent perturbation
and identified a relaxation time for the system to reach dynamical equilibrium. How does
the side-heated RBC respond to a change of side-heating power? Our observation is that
bulk quantities such as Re and Nu relax to their equilibrium values exponentially, with a
relaxation time scale of hours.

With water as the working fluid, the Ra range for the present study is limited. We plan
to conduct numerical studies and also work with other fluids to extend this range of Ra. At
very high Ra, the RBC will transition into its ultimate regime (Lohse & Shishkina 2023),
and a noticeable perturbation from the side heating would require a significantly higher
power in that case. However, at very low Ra, the fluid may stay in place if Ra is below
its critical value – side heating could thereby bring motion to an otherwise motionless
fluid. A more detailed perturbation study is currently underway, and we hope to better
understand the dynamical interplay between the boundary conditions and the bulk fluid
through such fluid–structure interaction investigations.
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