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Three-dimensional flow field measurements in
the wake of a tethered sphere crossing the onset
of vortex induced vibrations
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The changing three-dimensional vortex shedding topology of a heavy, tethered sphere
exposed to uniform flow crossing the onset of vortex induced vibrations (VIV) is reported
together with simultaneously tracked sphere positions. Transient upstream flow conditions
were imposed by increasing the reduced velocity from U∗ = 2.2 to 4.5 (‘lock-in’,
mode I). Three-dimensional vortex shedding under these transient conditions strongly
resembled those at steady conditions at the same U∗. Changes in the wake accompanying
the onset of VIV indicated several well-defined stages associated with the changing
instantaneous location of the velocity deficit centroid and the wake’s symmetry plane’s
orientation. Before the onset of VIV, the appearance of induced vortices led to lock-in
of streamwise sphere oscillations prior to lock-in in the transverse direction. Shortly after
(U∗ ≈ 3.6), preferential vortex shedding (wake symmetry plane aligned with tether) was
lost. Upon reaching U∗ = 4.5, flow–structure interaction reorganised vortex shedding and
sphere motion, resulting in steady state conditions after some delay. At this stage, the
symmetry plane was aligned perpendicular to the tether and pairs of alternately shed,
single hairpins exerted transverse forcing on the sphere. At U∗ = 7.2 (mode II, steady
upstream flow), pairs of double hairpins were shed per oscillation period with maximum
instantaneous vortex force coefficients that were higher than at U∗ = 4.5. While the
present Reynolds numbers (Re) were chosen low, the different identified stages in the onset
of VIV are also expected to be relevant at a higher Re range.

Key words: flow-structure interactions, wakes, vortex shedding

1. Introduction

Vortex induced vibrations (VIV) are a common phenomenon when structures are
immersed in flowing media. Implications may be destructive for pipelines in ocean
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engineering applications or electricity power lines in the atmospheric boundary layer
(Blevins 1977; Naudascher & Rockwell 2012). Alternatively, VIV may be harnessed for
green energy applications (Bernitsas et al. 2008). In recent decades, VIV of bluff bodies
such as cylinders and spheres have been studied extensively. However, compared with
VIV of elastically mounted cylinders (Bearman 1984; Williamson & Govardhan 2004),
relatively little work has been done on tethered spheres. Moreover, most published research
has focused on sphere dynamics and relatively little is known about the details of the
three-dimensional (3-D) flow field. The latter information is essential to improve our
understanding of VIV which is characterised by intricate coupling between structural and
flow dynamics.

Since VIV are preceded by stationary structural conditions, it is of interest to first
review the wake flow behind stationary spheres immersed in uniform flow. In this case,
the governing non-dimensional parameter is the Reynolds number, Re = U∞D/ν, where
U∞ denotes the characteristic fluid velocity at the sphere position, D denotes the sphere
diameter and ν the kinematic fluid viscosity. The study of the flow in the wake of
spheres has a long history. In early days, most efforts were focused on measuring the
drag force exerted on a sphere exposed to a uniform flow at high Reynolds numbers
(e.g. Möller 1938; Achenbach 1974). However, due to the inherent three-dimensionality
of the flow and technological limitations, the exact details of vortex shedding in the
wake of the sphere remained a subject of discussion. Until approximately two decades
ago, the only instantaneous information on the 3-D flow structure in the wake of a
sphere was based on dye or smoke visualisations (e.g. Magarvey & Bishop 1961; Leweke
et al. 1999). The emerging picture from these studies was that, beyond the critical
Reynolds number for unsteady vortex shedding (Re ≈ 270), a train of interconnected,
one-sided hairpin vortices was shed. As Re was increased, these large-scale vortices
became increasingly fragmented and beyond Re ≈ 800, the vortex shedding frequency
bifurcated into two branches (Sakamoto & Haniu 1990); a low frequency branch associated
with the large-scale structures and a high frequency branch associated with the small-scale
structures that were the result of shear layer instabilities. The paradigm of a shed sequence
of one-sided hairpin vortices was questioned by the direct numerical simulations (DNS)
performed by Johnson & Patel (1999). Their simulations showed that, in contrast to the
visualisations, so-called ‘induced’ hairpin vortices were shed in addition to the train
of primary hairpin vortices observed in the visualisations. These induced vortices were
periodically generated with their ‘heads’ pointing in the opposite direction from those
of the shed primary hairpin vortices. The appearance of these induced vortices has only
recently been experimentally validated by Eshbal et al. (2019b), who showed that they
were the result of a rearrangement of generated vorticity by the action of the primary
vortices.

The first exploratory results that showed that, much like elastically mounted cylinders
(Bearman 1984; Sarpkaya 2004; Williamson & Govardhan 2004), tethered spheres also
undergo VIV, were published by Govardhan & Williamson (1997). In the case of a
tethered sphere undergoing VIV, besides Re, several other non-dimensional parameters
are important such as (i) the reduced velocity, U∗ = U∞/( fND), where fN denotes the
tethered sphere’s natural frequency; (ii) the mass ratio, m∗ ≡ m/mf , defined as the ratio
between the structural mass, m, and the displaced fluid mass, mf ; (iii) the normalised
tether length, L∗ ≡ L/D, defined as the ratio between the tether length, L, and the sphere
diameter; and (iv) the damping factor, ζ .

In this work, we are especially interested in the range of U∗(2 < U∗ < 7) around
which the onset of VIV of a tethered sphere occurs (U∗ ≈ 4). As the sphere starts to
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oscillate, different oscillation modes have been identified with increasing reduced velocity.
Of particular interest to this research are the periodic modes I and II at relatively low U∗
that are both associated with classic ‘lock-in’ of the sphere vortex shedding frequency with
fN (Jauvtis, Govardhan & Williamson 2001). Note that the transition between modes I and
II is associated with a changing vortex phase, φv , defined as the phase difference between
the vortex force and the transverse sphere displacement, and a jump in the total phase,
φt, defined as the phase difference between the total transverse force and the transverse
sphere displacement (Govardhan & Williamson 2005). These phase changes point at the
close coupling between sphere displacement and vortex shedding. The highest transverse
oscillation amplitudes (of the order of D) are obtained in mode II.

Planar particle image velocimetry (PIV) measurements by Govardhan & Williamson
(2005) showed that, in the ‘lock-in’ region (modes I and II), transverse fluid forcing
on the sphere was the result of a train of alternately shed hairpin vortices exhibiting
a symmetry plane perpendicular to gravity. These hairpin vortices expelled fluid in
alternating transverse directions and in accordance with Newton’s third law, the fluid
applied a reaction force (so-called vortex force) of equal but opposite sign on the
sphere, much like wing tip vortices behind airplanes (Govardhan & Williamson 2005).
More recent studies, using (high-speed) planar PIV and tomographic PIV (tomo-PIV)
have further confirmed this mechanism (van Hout, Krakovich & Gottlieb 2010; Eshbal,
Krakovich & van Hout 2012; van Hout, Katz & Greenblatt 2013b; Krakovich, Eshbal & van
Hout 2013; Sareen et al. 2018; Eshbal et al. 2019a). Depending on the system properties,
such as fN , D and U∞, Re can be relatively small and lie in the range 200 < Re < 800.
Therefore, prior to the onset of VIV (U∗ < 4), the tethered sphere’s wake is expected to
be characterised by periodically shed hairpins having the same orientation and a single
plane of symmetry as in the case of a stationary sphere (Johnson & Patel 1999; Eshbal
et al. 2019b). Since no net forces perpendicular to the plane of symmetry are exerted on
the sphere, it remains stationary, and the onset of VIV (at U∗ ≈ 4) must be the result
of symmetry breaking. Recently, there has been interest in symmetry breaking of wakes
behind bluff bodies. Chrust, Goujon-Durand & Wesfreid (2013) found that, for a fixed
sphere, the critical Re above which the flow loses planar symmetry was approximately
Re ≈ 375, in good agreement with numerical results by Mittal (1999). The loss of planar
symmetry at these low Re is accompanied by small-scale variations in the azimuthal angle
of vortex formation. Szaltys et al. (2011) experimentally studied the nonlinear evolution
of instabilities behind fixed spheres and disks through a modal decomposition of the
streamwise vorticity for Re up to 450 (sphere) and 500 (for the disk). They showed that,
for the sphere, axisymmetry was lost at Re = 212, and the onset of time dependence
occurred at Re = 268, i.e. close to the well-accepted value of Re ≈ 270. Grandemange,
Cadot & Gohlke (2012) reported on reflectional symmetry breaking of a laminar 3-D
wake which persisted even at large Re and led to a bistable turbulent wake. In a subsequent
study, Grandemange, Gohlke & Cadot (2014) showed that, even when the instantaneous
velocity deficit centroid of the turbulent sphere wake tended to be off the symmetry axis,
in the absence of azimuthal disturbances, statistically all possible azimuths were equally
explored. Upon introducing azimuthal disturbances, the wake ‘selected’ one or several
preferred orientations. In the case of a tethered sphere, symmetry breaking is expected to
lead to small fluctuating forces acting on the sphere that through mutual reinforcement
between sphere displacement and vortex shedding will lead to VIV.

Relatively few numerical simulations have been performed on VIV of spheres having
multiple degrees of freedom. Unlike experiments, an advantage of numerical simulations
is that Re and U∗ can be independently fixed. Numerical simulations at different, fixed Re
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were performed by Rajamuni, Thompson & Hourigan (2018, 2020). Increasing Re widened
the synchronisation (lock-in) region and increased the transverse response amplitude (up
to Re = 2000). However, the topology of the wake structure remained the same as that
measured at much higher Reynolds numbers (Govardhan & Williamson 2005). Behara,
Borazjani & Sotiropoulos (2011) and Behara & Sotiropoulos (2016) solved the unsteady,
incompressible Navier–Stokes equations for the flow coupled with the Lagrangian sphere
motion equations using an immersed boundary approach for an elastically mounted sphere
having three linear degrees of freedom (no rotation). Note that this allowed full 3-D
movement, unlike a tethered sphere whose motion is restricted to a 2-D spherical surface.
Behara et al. (2011) kept Re(= 300) fixed and showed that, for a heavy sphere (m∗ = 2),
two distinct transverse response modes, a hairpin and a spiral mode, were observed in
the range 4 < U∗ < 9. In the hairpin mode, the sphere moved along a linear transverse
path while in the spiral mode, it moved along a circular path. ‘Lock-in’ regimes extended
to larger U∗ ranges in the spiral mode (Behara & Sotiropoulos 2016). Wake modes and
associated sphere trajectories strongly depended on Re with spiral vortices being shed up
to Re ≈ 500 transitioning to hairpin vortex shedding in the range 500 < Re < 600. For
Re > 600, sphere oscillation became non-stationary.

Lee, Hourigan & Thompson (2013) and Rajamuni et al. (2020) performed numerical
simulations of VIV of a neutrally buoyant (m∗ = 1), and a light (m∗ = 0.8) tethered
sphere, respectively. Lee et al. (2013) covered a Re range of 50 ≤ Re ≤ 800, corresponding
to a narrow range of reduced velocities, 34 ≤ U∗ ≤ 44, while Rajamuni et al. (2020) fixed
Re(= 500, 1200 and 2000) while changing the reduced velocity (3 ≤ U∗ ≤ 32). Results
of Lee et al. (2013) indicated that axisymmetry of the sphere wake was lost at Re ≈ 210
and a two-threaded steady wake was observed in agreement with results for a stationary
sphere (Johnson & Patel 1999). They further showed that the sphere started to vibrate at
Re ≈ 270, i.e. at the same critical Re as for a stationary sphere, indicating that the ability of
the sphere to move did not affect the onset of unsteadiness. At Re ≈ 280, planar symmetry
was broken and vibration shifted to the azimuthal direction. In total, they defined seven
different regimes spanning a wide Re range, 50 ≤ Re ≤ 12 000, where the high Re regimes
were based on experimental sphere tracking experiments. Rajamuni et al. (2020) found that
increasing Re increased the transverse amplitude response, especially for mode II.

All of the above discussed studies have been performed under steady upstream flow
conditions, and an important question that has not been answered is ‘what is the chain
of events leading to VIV of a tethered sphere?’ In addition, except for the tomo-PIV
measurements by Eshbal et al. (2019a), no experimental information is available on the
instantaneous, 3-D flow field in the wake of a tethered sphere. The goal of the present
study is to simultaneously track the motion of a heavy, tethered sphere as well as the
sphere wake’s dynamic flow topology (i) before and after the onset of VIV under steady
upstream flow conditions, and (ii) under transient upstream flow conditions while crossing
the onset of VIV. These measurements provide much needed insight into the changes that
the wake undergoes as VIV are initiated as well as on the associated transverse forcing on
the sphere.

The transient flow conditions were imposed by stepwise changing U∗ from 2.2 to 4.5,
i.e. crossing the Hopf bifurcation. This allowed us to continuously follow any changes in
the wake flow as the sphere crossed the onset of VIV. This research is part of an ongoing
effort of our group to elucidate the 3-D vortex shedding in the wake of stationary spheres
as well as in the wakes of tethered spheres undergoing VIV. The experimental set-up and
data processing is succinctly described in § 2, results in § 3 and a summary and discussion
is presented in § 4.
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Figure 1. Schematic layout of set-up (not to scale). (a) Tomo-PIV (top view), (b) sphere tracking (side view).
Employed coordinate system and VOI are also indicated.

2. Experimental system and data processing

The present experiments were performed in a closed-loop water tunnel (cross-section 50 ×
50 mm2), described in detail by Eshbal et al. (2019a). A stainless steel sphere (D = 5.97 ±
0.05 mm, m∗ = 7.77 ± 0.05) was tethered to the top of the test section using a nylon
monofilament (diameter d = 70 μm, tether length L = 16.8 ± 0.1 mm, i.e. L∗ = L/D =
3.3 ± 0.1). The natural frequency of the tethered sphere including added mass (Govardhan
& Williamson 2005) was fN = (1/2π)

√
(g/L)((m∗ − 1)/(m∗ + CA)) = 3.21 ± 0.02 Hz,

where g is the gravitational acceleration, and CA = 0.5 is the added mass coefficient
for a sphere. The damping factor equalled ζ = 0.025 ± 0.003, based on free decay
measurements. Note that the present measurements were performed using a similar sphere
(material and size) as that used by van Hout et al. (2010) and Eshbal et al. (2019a).
However, in the present case, attachment of the tether to the upper tunnel wall was different
and, together with small changes in the sphere’s mass and tether length, resulted in a
slightly different fN and damping factor. In the experiments by van Hout et al. (2010) and
Eshbal et al. (2019a), the tether was attached to the upper part of the acrylic lid by passing
it through a hole and keeping it in place by a piece of adhesive tape. Furthermore, van
Hout et al. (2010) used a human hair as tether (d = 58 μm) while Eshbal et al. (2019a)
used a nylon filament (d = 70 μm). In the current study, the tether was tied to the eye
of a sewing needle that was tightly fit in the acrylic lid’s hole such that the tether’s
attachment point was flush with the bottom of the lid. The tether was attached to the
sphere by drilling a small hole into it, filling the hole with glue, and inserting the tether
after which the glue was made to harden. In this way, kinks in the tether near the attachment
point as well as glue protrusions from the sphere’s surface were avoided. In addition, the
tomo-PIV measurements reported by Eshbal et al. (2019a) focused on the ‘far wake’ of
the sphere and were acquired within a volume located 4D downstream of the sphere while
in the current measurements the start of the volume of interest (VOI) was located 0.8D
downstream of the sphere centroid (when at rest). A right-handed Cartesian coordinate
system with its origin at the sphere centre (when at rest) was adopted as shown in figure 1,
where xi(i = 1, 2, 3) denote the streamwise and both transverse directions, respectively;
Ui denote the corresponding instantaneous flow velocities. Vectors and tensors are printed
in bold typeface, and a prime, ‘..′’, denotes the root mean square (r.m.s.) value.

The flow field downstream of the tethered sphere was measured using a tomo-PIV
system (LaVision GmbH) consisting of four CCD cameras (Imager SX 4M, 2360 ×
1776 pixels, an Nd:YAG laser (Quantel 532 nm, max. 120 mJ at 15 Hz), laser volume
optics and a water prism to reduce image distortion due to refraction (see figure 1a).
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The illuminated VOI was 50 × 50 × 16 mm3 (length × height × width), positioned 0.8D
downstream of the sphere’s centroid position when at rest. The cameras were arranged in
a ‘line set-up’ (Adrian & Westerweel 2011) placed at angles of 40◦, 0◦, −20◦ and −40◦
(figure 1) relative to a line perpendicular to the flow direction. Cameras were equipped
with Scheimpflug adapters to ensure good focus across the field of view and lenses having
a focal length of 105 mm (Nikon, MicroNikkor). An f-number (defined as the ratio between
the focal length of the lens and the diameter of its clear aperture) of 22 was used to ensure
focus across the depth of the VOI.

Prior to the start of the measurements, calibration was performed across the whole
depth of the VOI in 9 planes spaced 2 mm apart, using a dual-plane calibration plate
(LaVision, Type 22). The sphere’s translational motion was tracked using a 5th CCD
camera (Imager Pro 4M, 2048 × 2048 pixels) that captured the sphere’s centre position
from the top (figure 1b), while ensuring synchronisation between sphere tracking and flow
field measurements.

In the current research, several sets of tomo-PIV measurements were performed for
steady upstream flow conditions at U∗ = 1.9, 3.2, 4.5 and 7.2 (±0.1 in all cases)
corresponding to Re = 230, 383, 532 and 850 (±2.5% in all cases), respectively. In
addition to steady upstream flow conditions, data were also acquired for transient upstream
flow conditions by stepwise changing U∗ from 2.2 to 4.5 corresponding to 263 < Re <

532. In total, five data sets were acquired at 15 Hz (four at steady and one at transient
upstream flow conditions). Note that, in experiments, unlike numerical studies (Behara
et al. 2011), Re and U∗ are coupled for a given fluid–tether–sphere combination. The
present range of Re was chosen to ensure that the vortex shedding in the wake of the sphere
was characterised by large-scale vortices without the break-up and fragmentation observed
at higher Re as a result of instabilities (Sakamoto & Haniu 1990). This enables the accurate
measurement (given the limited spatial and temporal measurement resolution) of the 3-D
vortex shedding topology. Since increasing Re does not strongly affect the large-scale
vortex shedding topology in the synchronisation regime (Rajamuni et al. 2018, 2020) and
the present tethered sphere’s amplitude response is similar as that obtained at higher Re
(e.g. Govardhan & Williamson 2005), we are confident that our results will also be relevant
at a higher Reynolds number range. For the transient case, measurements were initiated at
U∗ = 2.2 and every 3.3 s (50 frames), U∗ was stepwise increased by ΔU∗ = 0.15 until
U∗ = 4.5 was reached at t∗ = tU∞/D = 718, after which data acquisition continued until
t∗ = 1442. Note that we investigated the effect of changing the time duration between
steps (within a limited range) on the sphere’s amplitude response and did not detect great
sensitivity to it (not shown here). In all cases, the onset of VIV occurred after reaching the
final value of U∗ = 4.5. Small differences in the rate of increase of the sphere’s amplitude
response were attributed to random variability between experiments. Therefore, the chosen
time duration between steps was a trade-off between the observed insensitivity of the
response of the sphere to this, and the amount of data that could be processed.

Data processing of the sphere tracking results (Camera V) and the tomo-PIV images
(Cameras I to IV) was different. Images containing the sphere were processed by
multi-step, iterative image processing similar as by van Hout et al. (2010) and described
in the following. An example, cropped raw image containing the sphere is depicted
in figure 2(a). The raw image was first converted to a binary image by thresholding
(figure 2b). Next, small objects were filtered based on size (figure 2c) and the boundary
of the sphere was detected as the first encountered ‘white’ pixel (encircled by a red
circle in figure 2d) after which the remaining boundary pixels were detected (shown as
the red curve in figure 2d). Based on the detected sphere boundary points, the sphere
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Figure 2. Overview of the different steps in the sphere centroid detection algorithm illustrated for an
instantaneous cropped image containing the sphere; (a) raw data, (b) thresholded, (c) after small ‘blob’ removal,
(d) detection of first point on the sphere boundary (indicated by red circle) and all points belonging to the
sphere’s edge (red curve), (e) first estimate of sphere centroid (perimeter indicated by green dash circle),
( f ) final result of the iterative least-squares fit procedure. The yellow × symbol in (e) and ( f ) denotes the
determined sphere centroid based on the estimated sphere radius.

radius as well as the sphere centroid position was estimated by a least-squares fitted circle
(sphere perimeter denoted by a green dash circle and its centroid by a yellow × symbol
in figure 2e). This procedure was iteratively repeated while discarding detected sphere
boundary points that exceed one standard deviation of the radius estimated in the previous
iteration (figure 2f ). The algorithm was repeated until the coordinates of the sphere’s
centroid position converged to within 0.01 pixel. By applying this method, sub-pixel
accuracy (±0.6 pixels) was achieved. Note that the accuracy of the applied procedure
was verified by applying the algorithm to an exact circle as well as several circles with
artificially added noise. Given the present imaging resolution of 94.1 pixels mm−1, the
measurement uncertainty was ±0.001D. This data processing procedure resulted in time
series of the sphere centroid position, xi,c(t∗), where the subscript ‘c’ denotes ‘centroid’. In
order to characterise the tethered sphere’s streamwise and transverse amplitude response,
normalised r.m.s. amplitudes based on the sphere centroid positions were determined by:
A∗

i = √
2x′

i,c/D, for i = 1, 3.
Data processing of the tomo-PIV images was similar to that employed by Eshbal

et al. (2019b). Three-dimensional vector maps were obtained by multi-pass, 3-D
cross-correlation (DaVis 8.4, LaVision GmbH) with a final interrogation volume size of
56 × 56 × 56 voxels with 75 % overlap, corresponding to a vector spacing of 0.22 mm
(0.037D). Between passes, universal outlier detection based on a median filter was
performed (Westerweel & Scarano 2005) while at the end of each pass, a 3 × 3 × 3
Gaussian smoothing filter was applied. The resulting vector maps were further spatially
smoothed using a quadratic regression over 15 points in each direction (Elsinga et al.
2010) corresponding to 0.5D. This is not expected to remove any relevant large-scale flow
structures in the sphere wake. Spatial velocity gradients were based on the locally fitted
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2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

U∗

Ai
∗

Figure 3. Normalised transverse amplitude as a function of the reduced velocity. Present data: m∗ =
7.77, (m∗ + CA)ζ = 0.207 : i = 3 (
 – red, and 1 (� – red); Literature data (i = 3): � – blue (Eshbal
et al. 2019a) m∗ = 7.77, (m∗ + CA)ζ = 0.428, ◦ (Krakovich et al. 2013) m∗ = 7.87, (m∗ + CA)ζ = 0.167, ×
(Govardhan & Williamson 2005) m∗ = 2.8, (m∗ + CA)ζ = 0.029. Vertical bars denote extreme values.

quadratic regression (Elsinga et al. 2010), and the data quality was assessed by evaluating
the residual of the continuity equation for an incompressible fluid, ∂Ui/∂xi = 0 (R2 values
exceeded 0.87, see also van Hout et al. 2018).

In the following, instantaneous vortices are visualised as iso-surfaces of the Q-criterion
(Hunt, Wray & Moin 1988) that defines vortices as regions where the magnitude of the
rate-of-rotation exceeds that of the rate-of-strain, Q = 1

2(‖Ω‖2 − ‖S‖2) > 0. Here, Sij =
1
2 (∂Ui/∂xj + ∂Uj/∂xi) defines the rate-of-strain tensor, and Ωij = 1

2 (∂Ui/∂xj − ∂Uj/∂xi)
defines the rate-of-rotation tensor; ‖..‖ denotes the norm of a tensor, e.g. ‖Ω‖ =
[tr(ΩΩT)]1/2, where tr denotes the trace of the tensor. The iso-surfaces are overlaid by the
components of the normalised vorticity, ω∗

i = ωiD/U∞, where ωi = ∂Uk/∂xj − ∂Uj/∂xk
(i, j, k are dummy indices).

3. Sphere and wake dynamics: steady conditions

The normalised streamwise and transverse r.m.s. amplitudes, A∗
i (i = 1, 3), of the tethered

sphere under steady upstream flow conditions are plotted in figure 3 in the range 0 < U∗ <

16, together with relevant literature data for heavy tethered spheres. Note that differences
in the transverse amplitude response reported in prior work of our group (van Hout et al.
2010; Krakovich et al. 2013; Eshbal et al. 2019a) for a stainless steel sphere with similar m∗
and L∗ are mainly due to different values of ζ that changed as a result of the way the tether
was attached to the upper channel wall (see § 2). As discussed by Govardhan & Williamson
(2005), increasing the mass-damping parameter, (m∗ + CA)ζ , beyond 0.02 narrows the
width of the lock-in region (modes I and II) and reduces the peak response value of A∗

3
below its saturation value of 0.9. For example, when (m∗ + CA)ζ = 0.428 (Eshbal et al.
2019a) the normalised transverse r.m.s. amplitude did not exceed A∗

3 = 0.35 (at U∗ = 5.5),
while for (m∗ + CA)ζ = 0.167 (Krakovich et al. 2013), A∗

3 reached 0.55 at U∗ ≈ 8 (mode
II). In the present measurements, ζ was slightly larger than in Krakovich et al. (2013),
which narrowed the synchronisation region (see figure 3). Note that the peak amplitude
response corresponds well to those in the Griffin plot (A∗

3 vs (m∗ + CA)ζ ) reported by
Govardhan & Williamson (2005).
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Figure 4. VIV response of the tethered sphere under steady upstream flow conditions at U∗ = 1.9 (a–e) and
U∗ = 3.2 (f –j). (a,d, f,i) Examples of normalised sphere centroid positions for 0 < t∗ < 15: (a, f ) x3,c/D and
(d,i) x1,c/D; (c,e,h,j) associated power spectra; (b,g) phase diagrams of sphere centroids in the x1–x3 plane for
U∗ = (b) 1.9 and (g) 3.2.

In addition to A∗
3, the normalised streamwise r.m.s. amplitude, A∗

1, is also plotted in
figure 3 for the present measurements. As expected for a heavy tethered sphere, values of
A∗

1 remain low and do not exceed A∗
1 = 0.06 (at U∗ = 4.5). Here, we are interested in the

changing vortex shedding as the sphere crosses the onset of VIV, and we will focus on
U∗ = 1.9, 3.2, 4.5 and 7.2 in §§ 3.1 and 3.2.

3.1. Prior to the onset of VIV: U∗ = 1.9 and 3.2
The tracked streamwise and transverse sphere centroid positions, associated power spectra
and phase diagrams depicting the sphere centroid positions in the x1–x3 plane, are shown
in figure 4. It is interesting to see that, in both cases (U∗ = 1.9 and 3.2), the sphere is
not completely stationary (figure 4a,d,f,i), and, although displacements are small (up to
|0.01D|), for U∗ = 3.2 (figure 4f–j) the power spectrum based on the time series of x1,c
(figure 4j) displays a small but distinct peak at fs/fN = 0.94, where fs denotes the sphere
oscillation frequency. This indicates that, at U∗ = 3.2(Re = 383), sphere oscillations in
the streamwise direction ‘lock-in’ to the natural frequency. Note that in the transverse
direction, the power spectrum (figure 4h) shows only a very small peak (pointed at by the
arrow in figure 4h) almost indistinct from the noise level. For U∗ = 1.9, the power spectra
(figure 4c,e) do not indicate any peaks that rise above the noise level.
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Figure 5. Sequence of snapshots (at one third of the actual temporal resolution, Δt∗ = 1.24) of the
instantaneous vortex structure visualised by iso-surfaces of the Q-criterion overlaid by ω∗

1 (a–d) and ω∗
3 (e, f ).

Here, U∗ = 1.9, Re = 230. Link to supplementary movie ‘Fig 5.mp4’ is available at https://doi.org/10.1017/
jfm.2022.428. Arrow next to g denotes direction of gravity.

In order to investigate the generated vortices in the wake of the tethered sphere prior
to the onset of VIV, the 3-D vortex shedding measured at U∗ = 1.9(Re = 230) and
3.2(Re = 383) under steady upstream flow conditions is presented in figures 5 and 6
(see also associated supplementary movies ‘Fig 5.mp4’ and ‘Fig 6.mp4’). These figures
depict sequences of snapshots of the vortices in the wake of the tethered sphere as
visualised by iso-surfaces of the Q-criterion overlaid by the normalised streamwise and
transverse vorticity components. Focusing first on the vortices in the wake of the sphere at
U∗ = 1.9(Re = 230, figure 5), unsteady vortex shedding is observed. This was unexpected
at such a low Re and differs from that reported for a fixed sphere immersed in a steady
uniform flow (Johnson & Patel 1999; Szaltys et al. 2011) as well as for a neutrally buoyant
tethered sphere (DNS, Lee et al. 2013). For a fixed sphere, it has been reported that
wake axisymmetry is lost at Re ≈ 210 and a ‘double-threaded’ steady wake (Magarvey
& MacLatchy 1965; Johnson & Patel 1999; Ormières & Provansal 1999; Tomboulides
& Orszag 2000; Szaltys et al. 2011) appears up to Re ≈ 270, beyond which unsteady
vortex shedding in the form of hairpins occurs. We surmise that, for the present case, the
observed unsteadiness is due to the use of a tether that allows constraint sphere movement.
Even small disturbances in the upstream flow induce small sphere movements (see
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Figure 6. Sequence of snapshots (at half the actual temporal resolution, Δt∗ = 1.38) of the instantaneous
vortex structure visualised by iso-surfaces of the Q-criterion overlaid by ω∗

3 (a,b) and ω∗
1 (c–f ). Here, U∗ =

3.2, Re = 383. Link to supplementary movie ‘Fig 6.mp4’ available at https://doi.org/10.1017/jfm.2022.428.
Insets in (a) and (d) depict side views of the primary hairpins. Arrow next to g denotes direction of gravity.

figure 4a,d, f,i) that introduce azimuthal disturbances close to the point where the tether
is attached to the sphere and the boundary layer separates. As a result, we surmise that
the double-threaded wake becomes unstable and develops into unsteady vortex shedding
at a lower Re than for a fixed sphere. This mechanism also ensures that the generated
primary hairpin vortices are shed with their ‘heads’ pointing upwards in the direction of
the tether (see figure 5e). Note that time-resolved, planar PIV measurements performed
by David et al. (2020) on a fixed smooth sphere at Re = 226 in the same facility did
not exhibit unsteady vortex shedding, strengthening our point that the tethered sphere’s
ability to move is crucial. In the present measurements at U∗ = 1.9, the ratio between the
vortex shedding frequency, fv (determined directly from the sequence of snapshots), and fN
equalled fv/fN = 0.29. This value is far from lock-in, which explains the lack of a distinct
peak in the power spectra based on xi,c (figure 4c,e).

For both reduced velocities (U∗ = 1.9 and 3.2 in figures 5 and 6, respectively), ‘primary’
hairpin vortices are shed with their ‘heads’ rotating in the clockwise direction (ω∗

3 < 0,
figures 5e, f and 6a,b). The induced flow field due to the rotation of the hairpin legs causes
the hairpins to ‘lift up’. This is especially clear at U∗ = 3.2 (figure 6) where the primary
hairpin inclination angles measured from the horizontal, increase with increasing x1/D
from approximately 40◦ to 73◦ (see insets in figure 6a,d). Further downstream the hairpins
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Figure 7. Definition of the angles and distances in a transverse plane at x1/D = 2 associated with (a) the
centroid position of the velocity deficit and (b) the orientation of the shed vortices. The dashed circle denotes
the perimeter of the tethered sphere. The direction of the vector associated with Fv in (b) denotes the vortex
force exerted on the fluid in the x3-direction. Centroids are denoted by

⊕
.

are expected to develop into vortex rings (Eshbal et al. 2019a). Note that, for U∗ = 1.9
(figure 5), the arches spanning the transverse gap between the hairpin legs are weak and
are not always observed in the Q-criterion iso-surfaces. However, contour plots of ω3
in equatorial (x1–x2) planes (not shown) showed clear vorticity ‘blobs’ (ω∗

3 < 0) at the
location of the presumed hairpin heads at all stages of vortex shedding.

For U∗ = 3.2 (Re = 383, figure 6), ‘primary’ hairpin vortices were periodically shed
at fv/fN = 0.5, i.e. closer to ‘lock-in’ (see power spectra in figure 4h,j). In contrast to
U∗ = 1.9, as the primary hairpins move downstream, the legs of secondary (or ‘induced’)
vortices of opposite sign appear at x1/D ≈ 3 (see also Johnson & Patel 1999; Eshbal
et al. 2019b). Note that, within the current extent of the VOI, they do not become
fully developed hairpins. However, generation of the induced vortices doubles the vortex
shedding frequency such that fv/fN ≈ 1, in agreement with the frequency peak observed
in the power spectrum associated with x1,c(t) (figure 4j). Furthermore, as the symmetry
plane of the shed vortices is parallel to gravity, little forcing is expected to be imposed in
the x3-direction, explaining the lack of a distinct frequency peak in the power spectrum of
x3,c(t) (figure 4h).

To obtain more insight into the vortex shedding dynamics, the instantaneous centroid
position of the velocity deficit, xd

i,c(i = 2, 3), in a transverse plane downstream of the
sphere (figure 7a) was determined by (Grandemange et al. 2014)

xd
i,c/D =

∫∫
A

xi

D

(
1 − U1

U∞

)
dA

∫∫
A

(
1 − U1

U∞

)
dA

, (3.1)

for i = 2, 3, where the superscript ‘d’ denotes ‘associated with the velocity deficit’.
Here, A is the integration domain (limited to U1/U∞ < 0.5) in the x2–x3 plane. The
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Figure 8. Instantaneous centroid positions of the velocity deficit (a,b) and the orientations and separation
distances of the shed vortices (c,d) evaluated at a transverse plane located at x1/D = 2.0 (see figure 7). (a) θd ,
(b) ρd/D, (c) θv , (d) ρv/D. Here, U∗ = 1.9 (◦ – red), 3.2 (�).

centroid positions of the velocity deficit relative to the (non-oscillating) sphere centre were
characterised by their radial positions, ρd, and in-plane angles, θd (measured clockwise
from the horizontal), as illustrated in figure 7(a).

In addition to xd
i,c/D, changes in the orientation of the shed hairpins’ symmetry

plane are important to understand the onset of VIV (see also Chrust et al. 2013).
This was studied here by determining the instantaneous relative position of the
longitudinal, counter-rotating vortex ‘legs’ as they crossed the transverse plane at x1/D =
2. An example contour plot showing two ‘blobs’ of opposite sign ω∗

1 associated with the
longitudinal vortices, is depicted in figure 7(b). Their relative position was defined by the
angle, θv , and the distance between the centroids, ρv (see figure 7b), where the superscript
‘v’ denotes ‘associated with the vortex legs’. The uncertainty of ρv was estimated as
±0.04D, i.e. twice the uncertainty associated with the ‘blobs’ centroid positions. Note that
θv was measured from the negative vorticity blob to the positive one (figure 7b), and as a
result, θv = 0◦ corresponds to a symmetry plane parallel to gravity, whereas θv = ±90◦
corresponds to one perpendicular to gravity.

Results for (θd, ρd/D) and (θv , ρv/D) are plotted in figure 8 for U∗ = 1.9 and 3.2. For
both U∗, θd (figure 8a) and ρd/D (figure 8b) oscillate at the primary vortex shedding
frequency. Oscillation amplitudes increase with increasing U∗. The oscillations of θd

indicate that the instantaneous wake (as characterised by the velocity deficit) exhibits small
transverse deviations that increase with increasing U∗ just prior to the onset of VIV.

The orientation of the symmetry plane of the vortices crossing the transverse plane is
depicted in figure 8(c). For both U∗, θv mostly fluctuate around 0◦ since these represent
the dominant primary hairpins crossing the transverse plane at x1/D = 2.0. However, for
U∗ = 3.2, values of θv = ±180◦ represent induced vortices whose rotation direction is
flipped. Note that, although values of θv associated with U∗ = 3.2 are more scattered
around 0◦, the shed vortices’ symmetry planes are still predominantly in the direction
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Figure 9. VIV response of the tethered sphere under steady upstream flow conditions at U∗ = 4.5 (a–e) and
U∗ = 7.2 ( f –j). (a,d, f,i) Examples of normalised sphere centroid positions for 0 < t∗ < 15: (a, f ) x3,c/D, and
(d,i) x1,c/D; (c,e,h,j) associated power spectra; (b,g) phase diagrams of sphere centroids in the x1–x3 plane for
U∗ = (b) 4.5 and (g) 7.2.

of gravity. The distance between the legs of the shed vortices mostly fluctuates in the range
0.35 < ρv/D < 1.0 (figure 8d). Maximum values of ρv/D obtained just after the hairpin
head crosses the transverse plane, slightly precede those of ρd/D (figure 8b,d), more so
for U∗ = 1.9. As the hairpin vortex crosses the plane, ρv/D decreases (see for example
figure 6c). Further downstream, the legs unite and a vortex ring is formed (figure 6d).

3.2. Beyond the onset of VIV: U∗ = 4.5 and 7.2
Transverse and streamwise sphere centroid positions as a function of t∗, associated power
spectra and phase diagrams are displayed in figure 9 for U∗ = 4.5 (mode I) and 7.2 (mode
II). Both fall within the synchronisation or ‘lock-in’ region (see figure 3) and |x3,c/D|
reach approximately 0.3 and 0.4 for U∗ = 4.5 and 7.2, respectively (figure 9a, f ). Note that
although the sampling frequency was sufficiently high to resolve periodicity (according to
the Nyquist criterion), extreme values of x3,c/D are undersampled and fluctuate somewhat.
Although streamwise oscillation amplitudes (figure 9d,i) have increased compared with
those for U∗ = 1.9 and 3.2 (figure 4d,i), they remain mostly below 0.04D, i.e. an order
of magnitude lower than in the transverse direction. Sphere trajectories in the x1–x3 plane
depicted in figures 9(b) and 9(g), follow more or less linear paths at slightly changing
orientation angles. For both U∗, the power spectra based on the time series of xi,c (i = 1,
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Figure 10. Sequence of snapshots (at actual temporal resolution, Δt∗ = 0.96) of the instantaneous vortex
structure in the wake of the tethered sphere undergoing VIV, U∗ = 4.5, Re = 532. The structures are visualised
by iso-surfaces of the Q-criterion and overlaid by ω∗

1 (a–d) and ω∗
2 (e, f ). Link to supplementary movie ‘Fig

10.mp4’ available at https://doi.org/10.1017/jfm.2022.428. Values within parentheses denote the instantaneous
sphere centroid positions, (x1,c/D, x2,c/D, x3,c/D). Arrow next to g denotes the direction of gravity.

3, figure 9c,e,h,j) indicate strong frequency peaks close to the natural frequency (a clear
sign of ‘lock-in’) with fs/fN = 0.95 and 0.99 for U∗ = 4.5 and 7.2, respectively.

Three-dimensional views of the vortex shedding sequence visualised by iso-surfaces of
the Q-criterion and overlaid by ω∗

1 and ω∗
2 are depicted in figures 10 and 12 for U∗ = 4.5

and 7.2, respectively. Associated top views are depicted in figures 11 and 13. Note that, due
to the limited transverse extent of the VOI, the present measurements only fully capture
one side of the vortex shedding sequence. However, since vortex shedding at U∗ = 4.5 and
7.2 is symmetric about the x1–x2 plane (x3/D = 0), the shedding sequence can be analysed
using one side only. In contrast to U∗ = 1.9 and 3.2 (figures 5 and 6), vortex shedding
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Figure 11. Top view of the same sequence of snapshots depicted in figure 10.

is now characterised by hairpin vortices exhibiting a symmetry plane perpendicular to
gravity. The chain of events accompanying the change in the orientation of the symmetry
plane as U∗ is increased and VIV is initiated, is analysed and discussed in detail in § 4.
The hairpin vortices provide the transverse forcing on the sphere in analogy with trailing
wing tip vortices as discussed by Govardhan & Williamson (2005) and Eshbal et al. (2012)
and further analysed in § 3.2.1.

We will first discuss the shedding and advection of the vortices in the wake of the
tethered sphere for U∗ = 4.5 (figures 10 and 11, see also the associated supplementary
movie ‘Fig 10.mp4’). Close to the sphere, a fully developed hairpin vortex (denoted by
‘HP1’ in figures 10 and 11) is observed as the sphere is close to its extreme transverse
position (x3,c/D = 0.37, figures 10a and 11a). In the next frame (figure 10b) as the
sphere changes direction and moves towards the origin (x3,c/D = 0.28 in figure 10b),
the next hairpin vortex (denoted by ‘HP2’ in figures 10b and 11b) is generated. As HP1
is advected downstream and transitions into a vortex ring, the angle it makes with the
transverse direction reduces from 37◦ ± 1◦ to 11◦ ± 1◦ as can be clearly observed in the
top views depicted in figure 11. This changing orientation is the result of the unequal
strength of the counter-rotating vortices comprising the vortex ring in the x1–x3 plane (at
x2/D = 0, not shown, see also Leweke, Le Dizes & Williamson 2016). In contrast, in the
immediate proximity of the sphere, the orientation angle of HP3 increases upon shedding
(figure 11e, f ) as the head of HP3 is stretched due to its exposure to the fast moving
incoming flow while its base is sheltered behind the sphere. The estimated advection
velocity based on the tip positions of HP1 equalled 0.84U∞ comparing well with the
values reported by Krakovich et al. (2013).

As previously shown in the bifurcation diagram (figure 3), A∗
3 was significantly higher

for U∗ = 7.2 than for U∗ = 4.5. The sequence of 3-D plots of the instantaneous wake
structure depicted in figures 12 and 13 shows how this is associated with a change in the
vortex shedding pattern (see also associated supplementary movie ‘Fig 12.mp4’). While
for U∗ = 4.5, two hairpin vortices were shed per oscillation cycle (figure 10), for U∗ = 7.2
four were shed per cycle (figure 12). The shedding sequence for U∗ = 7.2 is started as a
hairpin vortex (denoted by ‘HP4’ in figures 12a and 13a) is generated when the sphere
is moving in the negative x3-direction. As the sphere is close to its extreme position
(x3,c/D = −0.45 in figures 12b and 13b) and HP4 detaches from it, a small hairpin head
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Figure 12. Sequence of snapshots (at actual temporal resolution, Δt∗ = 1.54) of the instantaneous vortex
structure in the wake of the tethered sphere undergoing VIV, U∗ = 7.2, Re = 850. The structures are visualised
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1. Link to supplementary movie ‘Fig 12.mp4’ available
at https://doi.org/10.1017/jfm.2022.428. Values within parentheses denote the instantaneous sphere position,
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Figure 13. Top view of the same sequence of snapshots depicted in figure 12.
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(denoted by ‘HP5’ in figures 12b and 13b) appears and bridges between the ‘legs’ of HP4.
In subsequent snapshots (figures 12c–e and 13c–e), HP5 develops into a hairpin vortex
while HP4 starts to resemble a vortex ring. The top view of the sequence depicted in
figure 13 reveals that the symmetry plane for HP5 as it is advected downstream does not
lie in the x1–x3 plane in contrast to that of HP4. They appear to disconnect in figure 13(d)
after which HP4 develops into a vortex ring much like HP1 (U∗ = 4.5, figure 10). Note
that, in the supplementary movie file (‘Fig 12.mp4’), an additional third hairpin vortex
develops downstream of the sphere. This third vortex appears not to be associated with the
actual shedding from the sphere but is rather a result of the instability of the legs of the
second hairpin vortex as it develops into a vortex ring.

In the literature, few studies mention the shedding of four hairpins (or vortex rings) in
the wake of a sphere. Based on dye visualisations, Horowitz & Williamson (2010) reported
four vortex rings per oscillation cycle (so-called ‘4R’ mode) in the wake of a light, freely
rising sphere (zig-zag trajectory) that vibrates periodically. Interestingly, they showed that
the generation of the ‘4R’ mode only occurred when streamwise body vibrations were
present, similar to the case in the present measurements (see figure 9).

In addition, time-resolved PIV measurements by van Hout et al. (2010) also reported
the planar ‘signatures’ of four vortices shed per oscillation cycle for a tethered sphere at
similar U∗ and Re. However, they did not measure the 3-D vortex shedding structure which
remained obscure.

An interesting question is, why are the ‘double’ hairpins generated for U∗ = 7.2(Re =
850) and not for U∗ = 4.5(Re = 532)? The DNS study by Rajamuni et al. (2020) of a
tethered neutrally buoyant sphere provides an indication. While keeping U∗ constant, they
reported that multiple loops were shed per oscillation cycle when Re was increased from
500 to 1200. Therefore, the answer must be related to the time scales associated with
hairpin generation. Since in both cases, fN is the same, the convective flow time scale,
tf = D/U∞, must play an important role. The ratio between the sphere’s oscillation period,
Ts = 1/fs ≈ 1/fN (lock-in), and tf equals Ts/tf ≈ (U∞fN)/D ≈ U∗, i.e. Ts/tf increases
with U∗ (or Re when keeping U∗ constant as in Rajamuni et al. 2020). This indicates
that, during one transverse ‘sweep’ of the sphere, more fluid passes it with increasing
U∗. Therefore, as long as fs ≈ fN (i.e. in the lock-in region), one hairpin vortex will be
generated for every Δ(Ts/tf ) ≈ 3, and additional hairpins may be generated providing
Ts/tf is sufficiently large, i.e. a multiple of ∼3, and ‘lock-in’ (fs ≈ fN) occurs. We will
show in § 3.2.1 that the hairpins shed at U∗ = 7.2 provide more transverse forcing on the
sphere resulting in a larger transverse amplitude response.

Similar to the cases of U∗ = 1.9 and 3.2 (see § 3.1, figures 7 and 8), the instantaneous
wake characteristics were analysed in transverse planes located at x1/D = 1.0 and 3.0.
Results depicting (θd, ρd/D) and (θv, ρv/D) are presented in the left and right columns
of figure 14, respectively. In agreement with the alternately shedding of hairpin vortices
having a symmetry plane perpendicular to gravity, values of θd mainly switch between 0◦
and 180◦ (figure 14a) indicating that xd

i,c/D (3.1) is located on the equatorial x1–x3 plane.
The distance from the origin, ρd/D (figure 14b), fluctuates in the range 0.05 < ρd/D <

0.8 and 0.05 < ρd/D < 0.5 for U∗ = 4.5 and 7.2, respectively. This shows that despite the
increased transverse sphere oscillation amplitude at U∗ = 7.2, maximum values of ρd/D
at x1/D = 1.0 are less than those for U∗ = 4.5 at the same transverse plane as a result of
the increased advection velocity of the hairpins for U∗ = 7.2.

Values of θv concentrate in bands around ±90◦ (figure 14c), indicating that hairpin
symmetry planes are perpendicular to gravity, in contrast to U∗ = 1.9 and 3.2, where
values of θv concentrate around 0◦ (figure 8c). The distance between the shed hairpin legs
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Figure 14. Instantaneous centroid positions of the velocity deficit (a,b) and the orientations and separation
distances of the shed vortices (c,d) evaluated at a transverse plane located at x1/D = 1.0 (a,b) and 3.0 (c,d);
(a) θd , (b) ρd/D, (c) θv , (d) ρv/D. Here, U∗ = 4.5 (◦ – red), 7.2 (�).

fluctuates approximately in the range 0.4 < ρv/D < 0.8 (figure 14d) for both U∗ and will
be used in the next section to determine the vortex force acting on the sphere. In § 4, we
will further use this analysis to elucidate the chain of wake events accompanying the onset
of VIV of a tethered sphere.

3.2.1. Vortex force acting on the sphere
For U∗ = 4.5 and 7.2, the tethered sphere’s amplitude response is within the ‘lock-in’
region and the shed vortices (Wu, Lu & Zhuang 2007) provide the transverse forcing
that causes large amplitude, transverse oscillations. The force that causes the perturbation
and pushes the sphere out of equilibrium is the so-called ‘vortex force’ (Lighthill 1986;
Govardhan & Williamson 2005; Krakovich et al. 2013) which can be determined from the
measured flow field in analogy with wing tip vortices. For example, the legs of hairpins
HP1 and HP3 (U∗ = 4.5, figure 10), expel fluid in the negative x3-direction and, according
to Newton’s third law, a reaction force (the vortex force) acts on the sphere in the positive
x3-direction. Upon shedding HP1 (figure 10a), fluid forcing in the positive x3-direction
stops and gravity reverses the direction of the sphere’s motion. This leads to the generation
of HP2 (figure 10b) and fluid forcing on the sphere in the negative x3-direction as this cycle
repeats itself periodically.

The expression for the vortex force coefficient is given by Govardhan & Williamson
(2005) and Krakovich et al. (2013) as

Cv = Fv

1
2ρf U2∞As

= −UvΓρv

1
2 U2∞As

, (3.2)

where ρf is the fluid density, As denotes the cross-sectional area of the sphere, Uv denotes
the hairpin’s advection velocity and Γ is the circulation associated with the vortex legs.
The normalised circulation was determined as the hairpin crossed the transverse plane at
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Figure 15. Analysis of the instantaneous vortex force coefficient as a function of t∗ evaluated at a transverse
plane located at x1/D = 2.0, U∗ = 4.5; (a) x3,c/D, (b) Γ ∗, (c) ρv/D and (d) Cv .

x1/D = 2.0 (figure 7) by summing ω1 over the area, Av , associated with the vortex cores
of the hairpin legs (see figure 7b)

Γ ∗ = 1
U∞D

∑
Av

ω1 dAv. (3.3)

Instantaneous values of x3,c/D, Γ ∗, ρv/D and Cv as a function of t∗ are plotted
in figures 15 and 16 for U∗ = 4.5 and 7.2, respectively. The time series of x3,c/D in
figures 15(a) and 16(a) show the periodic oscillations of the sphere for both U∗ (see
also figure 9). Values of ρv/D (figures 15c and 16c) do not drop below 0.5 and maxima
reach ρv/D ≈ 1 for U∗ = 4.5 and are slightly lower for U∗ = 7.2. Although the data
are somewhat scattered as a result of the relatively low sampling frequency as well as
difficulties in detecting clear vortex cores (especially for U∗ = 7.2), the periodic nature of
the determined Cv can be clearly observed in figures 15(d) and 16(d). Peak values of Cv

are approximately 0.2 for U∗ = 4.5 and reach about 0.3 for U∗ = 7.2, in agreement with
the increased transverse amplitude response at this U∗. Note that these values correspond
well to those reported by Govardhan & Williamson (2005) and Krakovich et al. (2013).
Further note that peak values of |Cv| are asymmetric about zero as a result of the limited
transverse extent of the VOI (see figures 11 and 13). A comparison between x3,c/D(t∗)
(figures 15a and 16a) and Cv(t∗) (figures 15d and 16d) reveals that the vortex phase, φv ,
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shifts from 0◦ for U∗ = 4.5 to 180◦ for U∗ = 7.2, i.e. in agreement with the transition
from mode I to mode II for these U∗ (Govardhan & Williamson 2005).

4. Sphere and wake dynamics: transient conditions

Up to this point, the vortex shedding in the wake of a tethered, heavy sphere has been
characterised under steady, uniform upstream flow conditions and the results clearly
indicated that crossing the Hopf bifurcation (onset of VIV) led to a 90◦ change in the
orientation of the symmetry plane of the shed hairpin vortices. In order to elucidate the
changes in the flow field accompanying the onset of VIV, the tethered sphere was exposed
to a time-dependent uniform upstream velocity, U∞(t), by stepwise increasing U∗ from 2.2
(t∗ = 0) to 4.5 (t∗ = 725) (see figure 17a). Simultaneously, the sphere’s centroid position
was tracked and its transverse and streamwise positions (relative to the sphere at rest)
are depicted in figures 17(b) and 17(c), respectively. The vertical dash lines in figure 17
indicate the time (t∗ = 718) at which U∗ = 4.5 was reached and kept constant. Due to the
drag force, the sphere is increasingly displaced in the streamwise direction (figure 17c)
as U∗ is increased to 4.5. For t∗ > 1100(U∗ = 4.5), fluctuations of x1,c/D about its
mean value compare well with those obtained under steady upstream flow conditions (see
figure 9d). In the transverse direction, the sphere only started to oscillate shortly after
reaching U∗ = 4.5 at t∗ ≈ 800 (figure 17b). Its maximum transverse centroid position,
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Figure 17. Transient upstream flow conditions: (a) stepwise increase in U∗ (and Re) as a function of t∗, and the
simultaneously measured sphere centroid positions in the (b) transverse and (c) streamwise directions. Dashed
line indicates the time (t∗ = 718) at which U∗ = 4.5 is reached.

(x3,c/D)max, increased at first slowly up to t∗ ≈ 900, and subsequently at an increasing
rate between 900 < t∗ < 1100. Beyond t∗ ≈ 1100, (x3/D)max ≈ 0.3, i.e. comparable to
that attained for the steady state case at the same U∗ (figure 3). Note that the observed
fluctuations of (x3,c/D)max are the result of the limited sampling frequency. Further note
that the power spectrum based on x3,c/D(t∗) for t∗ > 1100 (not shown here), was similar as
the one obtained under steady upstream flow conditions (see figure 9c) with fs/fN = 0.94.

Four snapshots of the vortex structure in the wake of the tethered sphere at U∗ =
2.8(t∗ = 134.2), 3.9 (t∗ = 465.9), 4.2 (t∗ = 592.0) and 4.5 (t∗ = 1419.7) are depicted
in figure 18. The snapshots at the two lowest U∗ (figure 18a,b) clearly show that the
vortex structure resembles the one observed under steady upstream flow conditions at
similar U∗. For example, the pair of counter-rotating longitudinal vortices in figure 18(a)
strongly resembles those observed in figure 5(c), and the uplifted hairpin vortex and
the legs of the induced vortices depicted in figure 18(b) are almost identical to those in
figure 6(d). At U∗ = 4.2 (figure 18c), the symmetry plane of the shed hairpins becomes
unstable, as illustrated by the appearance of ‘twisted’ hairpins shed at this instant. For
t∗ = 1419.7(U∗ = 4.5), alternately shed, single hairpin vortices with their symmetry
planes perpendicular to gravity are observed (figure 18d) similar to those depicted in
figure 10 under steady upstream flow conditions. However, the hairpins observed at this
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stage were never as pronounced as those observed under steady upstream flow conditions
(figure 10), and in most cases only the counter-rotating legs were observed.

In order to gain more insight into the wake dynamics accompanying the onset of VIV of
the tethered sphere, the transient data set was analysed using the two approaches presented
in §§ 3.1 and 3.2 (see figures 8 and 14). The centroid positions of the velocity deficit and
the relative positions of the hairpin legs were analysed in transverse planes located at
x1/D = 1.0 (velocity deficit), and x1/D = 3.0 (hairpin legs). Instantaneous values of θd

and ρd/D are depicted in figures 19(a) and 19(b), respectively, as a function of both U∗ and
t∗, superimposed on the transverse response ‘envelope’ of the sphere (depicted as a light
blue, semi-transparent surface). As expected for an uplifted wake with a symmetry plane
aligned with gravity, up to U∗ ≈ 4(Re < 470, t∗ < 600), θd remains nearly constant at 90◦
(figure 19a), while ρd/D slightly decreases from ρd/D ≈ 0.3 to 0.26 between t∗ = 0 and
600, respectively.

Beyond U∗ ≈ 4(t∗ ≈ 600), values of θd and ρd/D drastically change. Between U∗ = 4
and 4.5 while the sphere remains almost stationary (figure 17b,c), ρd/D quickly reduces
to almost zero (figure 19b). At the same time, θd shows a preference for angles smaller
than 90◦. The strong reduction of ρd/D is due to the loss of the preferred orientation
of the symmetry plane of the shed vortices as illustrated in figure 18(c). Consequently,
the repeating self-induced upward inclination of the shed hairpins is lost, and xd

i,c/D
becomes centred at the origin. Between t∗ = 718(U∗ = 4.5) and the onset of transverse
sphere motion (t∗ ≈ 800, see figure 17a), ρd/D remains close to zero (figure 19b) while
θd ‘samples’ all possible angles (figure 19a). This indicates that, due to system inertia,
it takes time before a preferred orientation and lock-in is attained. As the sphere starts
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to move and transitions to its maximum transverse response (800 < t∗ < 900), ρd/D
remains close to zero while θd remains scattered. However, in the range 900 < t∗ < 1100,
as the transverse sphere response quickly grows (figure 17b), values of θd converge to two
branches having mean values of θd ≈ 0◦ and 180◦, while values of ρd/D fluctuate between
0 < ρd/D < 0.4. Beyond t∗ = 1100, as the shed vortices in the wake of the tethered sphere
(figure 18d) increasingly resemble those observed under steady upstream flow conditions
(figure 10), the two θd branches become highly pronounced and correspond to the wake
‘flipping’ sides as the hairpin vortices are periodically shed from alternating sides (see
figures 10 and 12).

In conclusion, our results show that, prior to the onset of VIV between 4 < U∗ < 4.5,
the pending transition manifests itself in the wake by (i) a strong decrease of ρd/D to
zero and by (ii) initially small deviations from θd = 90◦ (symmetry breaking). After
reaching U∗ = 4.5, the wake is initially disorganised without any preferred orientation
of the shed vortices, i.e. θd samples all possible values while ρd/D remains close to zero.
As transverse sphere movement starts, the wake is reorganised and values of θd converge
in two branches, θd = 180◦ and 0◦, in agreement with alternately shed hairpin vortices
having a horizontal plane of symmetry (figures 10 and 12).

The structure and organisation of the shed vortices is further analysed by the
instantaneous values of θv and ρv/D that are depicted in figures 20(a) and 20(b),
respectively. As expected, up to U∗ = 3, θv ≈ 0◦ (figure 20a), while ρv/D ≈ 0.5 up to
U∗ ≈ 2.8 (figure 20b). In the range 3 ≤ U∗ ≤ 3.6, two additional branches appear at
θv = ±180◦ (figure 20a). These are linked to the induced vortices (figure 6d–f ) whose
counter-rotating longitudinal legs are of opposite sign compared with those of the primary
hairpin vortices (see figure 18b). Therefore, as a result of measuring θv in the direction
from negative to positive vorticity, θv flips from 0◦ to ±180◦ when their symmetry plane
is almost perpendicular to gravity. While induced vortices have been identified numerically
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(Johnson & Patel 1999) as well as experimentally (Eshbal et al. 2019b) for fixed spheres,
these results show that they first appear at Re ≈ 360(U∗ ≈ 3) for a tethered sphere. Note
that, at the same time, ρv/D fluctuates between 0.3 < ρv/D < 0.9 (figure 20c).

Beyond U∗ = 3.6(t∗ ≈ 343, Re ≈ 430), values of θv become scattered and are in the
range −180◦ ≤ θv < 180◦ (figure 20b), while those of ρv/D remain scattered with a
slightly larger likelihood of being close to 0.5. This region extends to t∗ ≈ 800 and can
be considered the region in which the symmetry plane orientation becomes unstable while
transverse sphere oscillations are absent (figure 17b). The Reynolds number, Re ≈ 430
(at t∗ = 343, U∗ = 3.6), for the onset of planar symmetry loss is somewhat higher than
Re = 375 reported by Chrust et al. (2013), but similar to that reported by Sakamoto &
Haniu (1990) (Re = 420) for a fixed sphere. Just after reaching U∗ = 4.5, the sphere
starts to oscillate in the transverse direction (t∗ ≈ 800, figure 17b) and the transition to
a symmetry plane perpendicular to gravity (figure 10) is manifested by the convergence
of the values of θv into two branches, θv = ±90◦ for U∗ > 4.5, t∗ > 800 (trends are
highlighted by dash red lines in figure 20a). Note that this is similar to what was obtained
under steady conditions at U∗ = 4.5 (figure 14c).

5. Summary and discussion

We have presented a detailed analysis of the changes in the vortex shedding patterns
accompanying the onset of VIV for a heavy, tethered sphere. The analysis was based on
the results of simultaneous 3-D flow field measurements (tomo-PIV) and sphere position
tracking. The 3-D flow field in the wake of the tethered sphere was measured under both
steady and transient upstream flow conditions. The former were performed at U∗ = 1.9,
3.2, 4.5 and 7.2 corresponding to Re = 230, 383, 532 and 850, respectively, while transient
upstream flow conditions were imposed by stepwise increasing U∗ within the range,
2.2 < U∗ < 4.5(263 < Re < 532). Note that U∗ and Re are not independent, and while
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both are proportional to U∞, Re and U∗ are proportional and inversely proportional to D,
respectively. Therefore, increasing Re while keeping U∗ in the ‘lock-in’ regime would
require to increase the sphere diameter (for given fluid kinematic viscosity and tether
length). The present range of Re was chosen such that distinct, well-organised large-scale
vortex shedding was obtained that could be well resolved (both spatially and temporally)
by the employed tomo-PIV method.

The combination of measurements under steady and transient upstream flow conditions
allowed for (i) a detailed comparison between the observed vortex shedding patterns,
and (ii) us to elucidate the chain of wake events accompanying the onset of VIV. The
latter was quantified by the instantaneous centroid positions of the velocity deficit and
the instantaneous symmetry plane orientations of the shed longitudinal vortices in the
near wake of the sphere. Our results showed that sphere VIV are initiated through a
complex chain of events first manifested by ‘lock-in’ of streamwise sphere oscillations
due to the appearance of induced vortices at U∗ ≈ 3(Re ≈ 360). As the shed hairpins
become unstable with increasing U∗, their small transverse perturbations are transferred
to the tethered sphere, which leads to amplification of its transverse oscillation and greater
instability of the shed hairpins. With the tether constraining the sphere’s motion, this
process mutually reinforces transverse oscillation and reorganises the flow field such that
the shed hairpins’ symmetry planes are flipped by 90◦ and their forcing sustains VIV.

Several stages were identified in the onset of VIV. First, at low U∗(< 3), shed
primary hairpin orientations were stable exhibiting a symmetry plane oriented in the
streamwise direction parallel with the tether. The wake was consistently lifted upwards
due to self-induced motion (ρd/D ≈ 0.3, θd ≈ 90◦). In the second stage (3 < U∗ < 4.2),
induced vortices appeared that led to lock-in of the sphere’s streamwise oscillations,
prior to lock-in in the transverse direction. In the third stage, for transient upstream flow
conditions in the range 4.2 < U∗ < 4.5, impending sphere oscillations were manifested by
a rapid decrease of ρd/D to almost zero due to loss of the hairpin’s preferred orientation.
At this stage, the wake’s velocity deficit became centred in the downstream direction
(along x2 = x3 = 0). After reaching U∗ = 4.5 (fourth stage, transient conditions),
transverse sphere oscillations only started after a delay (Δt∗ ≈ 100) due to system inertia.
During this stage, vortex shedding was unorganised, lacking any preferred orientation.
However, the interaction between the shed vortices and the tethered sphere’s constrained
ability to move, led to concurrent amplification of the sphere’s transverse oscillation
amplitude and simultaneous reorganisation of the shed hairpin orientations into two
branches (θv = ±90◦) reaching the same state as for U∗ = 4.5 under steady upstream
flow conditions.

After crossing the onset of VIV, the tethered sphere exhibited streamwise and transverse
periodic oscillations at a frequency close to fN within the lock-in region at U∗ = 4.5
(mode I) and 7.2 (mode II). Shedding was characterised by a sequence of alternately shed
hairpin vortices having a symmetry plane perpendicular to gravity with the transverse
r.m.s. oscillation amplitude for U∗ = 7.2 exceeding that for U∗ = 4.5. The elevated
transverse r.m.s. oscillation amplitude at U∗ = 7.2 was accompanied by shedding of pairs
of double hairpin vortices per oscillation cycle. In contrast, at U∗ = 4.5 only pairs of
single hairpins were shed per oscillation cycle. Calculation of the instantaneous vortex
force exerted on the sphere by the fluid showed that maximum magnitudes of the vortex
force exerted on the sphere at U∗ = 7.2 exceeded those at U∗ = 4.5 in accordance with
the increased transverse oscillation amplitude. We associated the generation of multiple
single-sided hairpin vortices per oscillation cycle with the ratio Tf /ts ≈ U∗ (as long as
fs ≈ fN), i.e. multiple single-sided hairpins may be generated during one transverse sweep
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of the sphere providing U∗ is large enough (multiple of approximately 3) and within the
lock-in region. Note that, for a light sphere (m∗ < 1), the lock-in region widens (Govardhan
& Williamson 2005) and, according to the suggested mechanism, multiple (three or more)
single-sided hairpins may be shed during one oscillation cycle with increasing U∗.

It should be noted that the basic mechanism for the onset of VIV lies in boundary layer
and shear layer instabilities that develop close to the sphere’s surface (van Hout, Katz
& Greenblatt 2013a; van Hout et al. 2013b), and are difficult to resolve experimentally
even at the relatively low Reynolds number range that was chosen. However, the present
results show that the signature of these boundary layer instabilities can be detected in
transverse planes, downstream of the sphere. A higher Reynolds number range can be
explored by choosing a larger sphere (while keeping m∗ the same). Although we expect
that similar physical mechanisms also act at higher Reynolds numbers (based on similar
vortex shedding topology and transverse sphere response, see Govardhan & Williamson
2005, Rajamuni et al. 2018, 2020), vortex shedding patterns may become less organised
and more fragmented, possibly affecting some of the present findings regarding the change
of the velocity deficit centroid positions and the relative position of shed longitudinal
vortices. This is outside the scope of the present investigation and will be investigated in
future studies.

Furthermore, while the present results have provided much insight into the sequence
of events leading to VIV of a tethered sphere, time scales associated with the changing
upstream flow field and associated response of the tethered sphere (dependence of m∗)
were outside the scope of the present investigation. However, they are clearly of interest in
practical applications and will be pursued in future research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.428.

Funding. This research was supported by the Israel Science Foundation under grant no. 1596/14.

Declaration of interest. The authors report no conflict of interest.

Author ORCIDs.
R. van Hout https://orcid.org/0000-0002-4042-7936.

REFERENCES

ACHENBACH, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62 (02), 209–221.
ADRIAN, R.J. & WESTERWEEL, J. 2011 Particle Image Velocimetry. Cambridge University Press.
BEARMAN, P.W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222.
BEHARA, S., BORAZJANI, I. & SOTIROPOULOS, F. 2011 Vortex-induced vibrations of an elastically mounted

sphere with three degrees of freedom at Re = 300: hysteresis and vortex shedding modes. J. Fluid Mech.
686, 426–450.

BEHARA, S. & SOTIROPOULOS, F. 2016 Vortex-induced vibrations of an elastically mounted sphere: the
effects of Reynolds number and reduced velocity. J. Fluids Struct. 66, 54–68.

BERNITSAS, M.M., RAGHAVAN, K., BEN-SIMON, Y. & GARCIA, E.M. 2008 Vivace (vortex induced
vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid
flow. Trans. ASME J. Offshore Mech. Arctic Engng 130 (4), 041101.

BLEVINS, R.D. 1977 Flow-Induced Vibration. Van Nostrand Reinhold Co.
CHRUST, M., GOUJON-DURAND, S. & WESFREID, J.E. 2013 Loss of a fixed plane of symmetry in the wake

of a sphere. J. Fluids Struct. 41, 51–56.
DAVID, T., ESHBAL, L., RINSKY, V. & VAN HOUT, R. 2020 Flow measurements in the near wake of a smooth

sphere and one mimicking a pine cone. Phys. Rev. Fluids 5 (7), 074301.
ELSINGA, G.E., ADRIAN, R.J., VAN OUDHEUSDEN, B.W. & SCARANO, F. 2010 Three-dimensional vortex

organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech. 644, 35–60.
ESHBAL, L., KOVALEV, D., RINSKY, V., GREENBLATT, D. & VAN HOUT, R. 2019a Tomo-piv measurements

in the wake of a tethered sphere undergoing VIV. J. Fluids Struct. 89, 132–141.

943 A37-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.428
https://orcid.org/0000-0002-4042-7936
https://orcid.org/0000-0002-4042-7936
https://doi.org/10.1017/jfm.2022.428


D. Kovalev, L. Eshbal and R. van Hout

ESHBAL, L., KRAKOVICH, A. & VAN HOUT, R. 2012 Time resolved measurements of vortex-induced
vibrations of a positively buoyant tethered sphere in uniform water flow. J. Fluids Struct. 35, 185–199.

ESHBAL, L., RINSKY, V., DAVID, T., GREENBLATT, D. & VAN HOUT, R. 2019b Measurement of vortex
shedding in the wake of a sphere at Re = 465. J. Fluid Mech. 870, 290–315.

GOVARDHAN, R.N. & WILLIAMSON, C.H.K. 1997 Vortex-induced motions of a tethered sphere. J. Wind
Engng Ind. Aerodyn. 69, 375–385.

GOVARDHAN, R.N. & WILLIAMSON, C.H.K. 2005 Vortex-induced vibrations of a sphere. J. Fluid Mech.
531, 11–47.

GRANDEMANGE, M., CADOT, O. & GOHLKE, M. 2012 Reflectional symmetry breaking of the separated
flow over three-dimensional bluff bodies. Phys. Rev. E 86 (3), 035302.

GRANDEMANGE, M., GOHLKE, M. & CADOT, O. 2014 Statistical axisymmetry of the turbulent sphere wake.
Exp. Fluids 55 (11), 1838.

HOROWITZ, M. & WILLIAMSON, C.H.K. 2010 The effect of Reynolds number on the dynamics and wakes
of freely rising and falling spheres. J. Fluid Mech. 651, 251–294.

VAN HOUT, R., EISMA, J., ELSINGA, G.E. & WESTERWEEL, J. 2018 Experimental study of the flow in the
wake of a stationary sphere immersed in a turbulent boundary layer. Phys. Rev. Fluids 3 (2), 024601.

VAN HOUT, R., KATZ, A. & GREENBLATT, D. 2013a Acoustic control of vortex-induced vibrations of a
tethered sphere. AIAA J. 51 (3), 754–757.

VAN HOUT, R., KATZ, A. & GREENBLATT, D. 2013b Time-resolved particle image velocimetry
measurements of vortex and shear layer dynamics in the near wake of a tethered sphere. Phys. Fluids
25 (7), 77–102.

VAN HOUT, R., KRAKOVICH, A. & GOTTLIEB, O. 2010 Time resolved measurements of vortex-induced
vibrations of a tethered sphere in uniform flow. Phys. Fluids 22 (8), 087101.

HUNT, J.C.R., WRAY, A.A. & MOIN, P. 1988 Eddies, streams, and convergence zones in turbulent flows.
In Proceedings of the 1988 Summer Program of the Center for Turbulence Research, pp. 193–208. NASA
Ames/Stanford University.

JAUVTIS, N., GOVARDHAN, R. & WILLIAMSON, C.H.K. 2001 Multiple modes of vortex-induced vibration
of a sphere. J. Fluids Struct. 15 (3–4), 555–563.

JOHNSON, T.A. & PATEL, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech.
378, 19–70.

KRAKOVICH, A., ESHBAL, L. & VAN HOUT, R. 2013 Vortex dynamics and associated fluid forcing in the
near wake of a light and heavy tethered sphere in uniform flow. Exp. Fluids 54 (11), 1615.

LEE, H., HOURIGAN, K. & THOMPSON, M.C. 2013 Vortex-induced vibration of a neutrally buoyant tethered
sphere. J. Fluid Mech. 719, 97–128.

LEWEKE, T., LE DIZES, S. & WILLIAMSON, C.H.K. 2016 Dynamics and instabilities of vortex pairs. Annu.
Rev. Fluid Mech. 48, 507–541.

LEWEKE, T., PROVANSAL, M., ORMIERES, D. & LEBESCOND, R. 1999 Vortex dynamics in the wake of a
sphere. Phys. Fluids 11 (9), S12.

LIGHTHILL, J. 1986 Fundamentals concerning wave loading on offshore structures. J. Fluid Mech.
173, 667–681.

MAGARVEY, R.H. & BISHOP, R.L. 1961 Wakes in liquid-liquid systems. Phys. Fluids 4 (7), 800–805.
MAGARVEY, R.H. & MACLATCHY, C.S. 1965 Vortices in sphere wakes. Can. J. Phys. 43 (9), 1649–1656.
MITTAL, R. 1999 Planar symmetry in the unsteady wake of a sphere. AIAA J. 37 (3), 388–390.
MÖLLER, W. 1938 Experimentelle Untersuchungen zur Hydrodynamik der Kugel. Phys. Z. 2, 57–80.
NAUDASCHER, E. & ROCKWELL, D. 2012 Flow-Induced Vibrations: An Engineering Guide. p. 767. Dover

Publications.
ORMIÈRES, D. & PROVANSAL, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett.

83 (1), 80–83.
RAJAMUNI, M.M., THOMPSON, M.C. & HOURIGAN, K. 2018 Transverse flow-induced vibrations of a

sphere. J. Fluid Mech. 837, 931–966.
RAJAMUNI, M.M., THOMPSON, M.C. & HOURIGAN, K. 2020 Vortex dynamics and vibration modes of a

tethered sphere. J. Fluid Mech. 885, A10.
SAKAMOTO, H. & HANIU, H. 1990 A study on vortex shedding from spheres in a uniform flow. J. Fluids

Engng 112, 386–392.
SAREEN, A., ZHAO, J., SHERIDAN, J., HOURIGAN, K. & THOMPSON, M.C. 2018 The effect of imposed

rotary oscillation on the flow-induced vibration of a sphere. J. Fluid Mech. 855, 703–735.
SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.

19 (4), 389–447.

943 A37-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.428


On the onset of tethered sphere VIV

SZALTYS, P., CHRUST, M., PRZADKA, A., GOUJON-DURAND, S., TUCKERMAN, L.S. & WESFREID, J.E.
2011 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 27 (5-6), 743–747.

TOMBOULIDES, A.G. & ORSZAG, S.A. 2000 Numerical investigation of transitional and weak turbulent flow
past a sphere. J. Fluid Mech. 416, 45–73.

WESTERWEEL, J. & SCARANO, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6),
1096–1100.

WILLIAMSON, C.H.K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech.
36, 413–455.

WU, J.-Z., LU, X.-Y. & ZHUANG, L.-X. 2007 Integral force acting on a body due to local flow structures.
J. Fluid Mech. 576, 265–286.

943 A37-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.428

	1 Introduction
	2 Experimental system and data processing
	3 Sphere and wake dynamics: steady conditions
	3.1 Prior to the onset of VIV: U* = 1.9 and 3.2
	3.2 Beyond the onset of VIV: U* = 4.5 and 7.2
	3.2.1 Vortex force acting on the sphere


	4 Sphere and wake dynamics: transient conditions
	5 Summary and discussion
	References

