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Abstract. This paper proves the finite axiomatizability of transitive modal logics of finite
depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter
requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points
with different sets of proper successors. The result generalizes Rybakov’s result of the finite
axiomatizability of extensions of S4 of finite depth and finite width.

§1. Introduction. This paper presents a study of the finite axiomatizability of
transitive modal logics, or simply transitive logic, of finite depth and finite width
w.r.t. proper-successor-equivalence. A transitive logic is of finite depth if it contains
Bn (see Section 2) for some n � 1, is of finite width if it contains Widn below for
some n � 1, and is of finite width w.r.t. proper-successor-equivalence, or simply, of finite
suc-eq-width, if it contains Wid∗n below for some n � 1. For all i, j ∈ �, let us fix
�i,j = �(pi ∧�(�pi ∨ qj)), and for each n � 1, let

Widn =
∧

0�i�n�pi →
∨

0�i �=j�n�(pi ∧ (pj ∨�pj)),

Wid∗n =
∧

0�i�n�(pi ∧�qi) →
∨

0�i �=j�n(�(pi ∧ (pj ∨�pj)) ∨ (�i,j ∧ �j,i)).

It can be shown that Wid∗n ∈ K ⊕Widn for each n � 1, and hence each transitive logic
of finite depth and finite width is an extension of a transitive logic of finite depth and
finite suc-eq-width. The frame condition for Wid∗n resembles that for Widn. Within
rooted transitive frames, Widn corresponds to the condition that each antichain is of
cardinality at most n (see Proposition 2.5), whereas Wid∗n corresponds to the condition
that each antichain of points with different sets of proper successors is of cardinality
at most n (see Proposition 3.1).

It is well known (see [9, theorem 6.6]) that all transitive logics of finite depth have the
finite model property. Rybakov proved (see [8, theorem 1]) that if a superintuitionistic
logic L is tabular, then all extensions of �L are finitely axiomatizable, where �L is the
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least modal companion of L. A superintuitionistic logic is tabular iff it is of finite width
and finite depth (see, e.g., [2, corollary 12.2]). Therefore, all modal companions of
a superintuitionistic logic of finite width and depth are finitely axiomatizable, which
gives that all extensions of S4 containing axioms of finite depth and finite width
are finitely axiomatizable. In this paper, we generalize this result and prove the finite
axiomatizability of transitive logics of finite depth and finite suc-eq-width. Among
others, this result also implies the finite axiomatizability of transitive logics of finite
depth and finite width, the finite axiomatizability of transitive logics of depth at most 2,
the finite axiomatizability of weakly convergent transitive logics of depth at most 3, etc.

The rest of the paper is organized as follows. Section 2 provides preliminary notions
and facts. Section 3 gives the frame conditions of finite suc-eq-width axioms and a new
construction built upon the skeletons of transitive frames. Section 4 provides criteria
for all extensions of a modal logic to be finitely axiomatizable. Section 5 discusses well
quasi-orders on lists. Section 6 proves the main theorem, i.e., the finite axiomatizability
of all transitive logics of finite depth and suc-eq-width. Finally, we apply the main
theorem to obtain further results and offer some final remarks in Section 7.

§2. Preliminary notions. Modal formulas are built up from propositional letters
p0, p1, ... and the constant ⊥, using truth-functional operators →,∧,∨ and the
necessity operator�. We will simply call them formulas. As usual,¬φ is the abbreviation
for φ → ⊥ and �φ for ¬�¬φ. A normal modal logic is a set of modal formulas that
contains all truth-functional tautologies and �(p → q) → (�p → �q), and is closed
under modus ponens, substitution and necessitation. As usual, we use K (K4) for the
smallest normal modal logic (containing�p → ��p). For each normal modal logic L,
a normal extension of L is a normal modal logic L′ such that L ⊆ L′; we use NExtL
for the lattice of all normal extensions of L. Transitive logics are logics in NExtK4.
All logics we deal with in this paper are normal modal logics, and thus we will drop
“normal,”and simply speak of modal logics and their extensions. Let L be any modal
logic. For each set Δ of formulas, L ⊕ Δ is the smallest modal logic including L ∪ Δ; and
for each formula φ, L ⊕ φ = L ⊕ {φ}. A modal logic L′ is finitely axiomatizable over
L if L′ = L ⊕ Δ for a finite Δ, and is finitely axiomatizable if it is finitely axiomatizable
over K.

Let F = 〈W,R〉 be any frame with w ∈W , and let M be any model on F. For each
formula φ, we use M, w � φ for that M satisfies φ at w, M � φ for that φ is globally
or universally true in M (M is a model for φ), and F � φ for that φ is valid in F

(F is a frame for φ); for any set Δ of formulas, Δ is valid in F (F is a frame for Δ) if
each member of Δ is valid in F. Let C be a class of frames (models). C � φ if each
member of C is a frame (model) for φ; the logic of C is Log(C) = {φ : C � φ}, and
we write Log(F) instead of Log({F}); a modal logic L is characterized by the class C if
L = Log(C). A modal logic has the finite model property (f.m.p.) if it is characterized
by some class of finite models.

Let F = 〈W,R〉 be any frame. For all u, v ∈W , let �Ruv iff Ruv but not Rvu. For all
u, v ∈W , when Ruv, we say that u sees v, and call v a successor of u; and when �Ruv,
we call v a proper successor of u, and u a proper predecessor of v. For each X ⊆W ,
let X↑R = {v : Ruv for a u ∈ X}, X↓R = {v : Rvu for a u ∈ X}, X↑–

R = X↑R – X
and X↓–

R = X↓R – X . When R is clear from the context, we drop “R” and use “X↑”
and “X↓ ,” etc. For each w ∈W , let w↑ = {w}↑, w↓ = {w}↓, w↑– = {w}↑– and
w↓– = {w}↓–.
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We assume the reader’s familiarity with disjoint unions, subframes and submodels,
generated subframes and submodels, reductions (or p-morphisms), and with the
related theorems on preservation of validity or truth under these frame or model
constructions. For each family {Fi}i∈I of pairwise disjoint frames, we use

⊎
i∈I Fi for

the disjoint union of {Fi}i∈I . Let F = 〈W,R〉 and G = 〈U,S〉 be any frames. When F

and G are disjoint, let F⊕G = 〈V,Q〉 where V =W ∪U and Q = R ∪ S ∪ {〈u, v〉 :
u ∈W and v ∈ U}. For each nonempty X ⊆W , we use F � X for the restriction of
F to X. A function f from W onto U is a reduction (or p-morphism) from F to G if the
following conditions hold for all x, y ∈W :

(i) If Rxy, then Sf(x)f(y).
(ii) If Sf(x)f(y), then ∃z ∈ U (Rxz ∧ f(y) = f(z)).

A function f reduces F to G when f is a reduction from F to G, and that F is reducible
to G if there is a function reduces F to G.

Fact 2.1. Let F =
⊎
i∈I Fi and G =

⊎
i∈I Gi such that for each i ∈ I , fi reduces Fi

to Gi . Then
⋃
i∈I fi reduces F to G .

Let F = 〈W,R〉 be a transitive frame. Define on W an equivalence relation ∼ by
taking: for all x, y ∈W , x ∼ y iff either x = y, or Rxy and Ryx. A cluster in F is
an equivalence class modulo ∼. For each w ∈W , we use c(w) for the cluster in F to
which w belongs. Furthermore, for each cluster c in F, c is degenerate if it is a singleton
of an irreflexive point; c is nondegenerate if it is not degenerate; c is final if c↑– = ∅.
The skeleton of F is sk(F) = 〈sk(W ),�R〉, where sk(W ) is the set of clusters in F, and
for all c, d ∈ sk(W ), c �R d iff Rwu for some w ∈ c and u ∈ d (in fact, iff Rwu for all
w ∈ c and u ∈ d). We let c ≺R d iff c �R d but d �R c (not d �R c). When R is clear
from the context, we will drop “R,”and use � and ≺ respectively for �R and ≺R. Let
k � 1. A point u1 in F is of rank greater than k if there is an �R-chain {u1, ... , un} with
n > k, and is of rank k if there is an �R-chain {u1, ... , uk} and u1 is not of rank greater
than k. F is of rank k if it contains a point of rank k but no point of rank greater than
k, and F is of finite rank if it is of rank k for some k � 1, otherwise it is of infinite rank.

Fact 2.2. Let F = 〈W,R〉 be any transitive frame, and let c and d be any points in
sk(F). Then the following hold:

(i) sk(F) is a transitive frame, and is of the same rank as F is.
(ii) If F is of finite rank and c↑– = d↑–, then c and d are of the same rank.
(iii) If either c↓– = d↓– or c↑– = d↑–, then neither c ≺ d nor d ≺ c .
(iv) c ⊆ d↑– iff d ≺ c iff d ⊆ c↓–.

The following formulas are from [9, p. 133], where i � 1:

B1 = ��p1 → p1,

Bi+1 = �(�pi+1 ∧ ¬Bi) → pi+1.

A transitive logic is of depth n (n � 1) if it contains Bn but not Bk for any 1 � k < n,
and is of finite depth if it contains Bn for some n � 1. We recall Proposition 2.3 (see,
e.g., [2, proposition 3.44]) and Proposition 2.4 (see [9, theorem 6.6]):

Proposition 2.3. For each transitive frame F and each n � 1, F � Bn iff F is of rank
at most n.

Theorem 2.4. All transitive logics of finite depth have the f.m.p.
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An antichain in a frame F = 〈W,R〉 is a set A ⊆W such that for all u, v ∈ A,
uRv implies u = v. Whenever we speak of an antichain {u0, ... , un} in a frame, we
presuppose that u0, ... , un are distinct. A transitive frame is of width at most n (n � 1)
if |A| � n for each antichain A in the frame. A transitive logic is of width n (n � 1) if
it contains Widn but not Widk for any 1 � k < n, and is of finite width if it contains
Widn for a n � 1. We recall Proposition 2.5 (see [5, sec. 3, theorem 1]):

Proposition 2.5. For each rooted transitive frame F and each n � 1, F � Widn iff F

is of width at most n.

§3. Transitive frames of finite suc-eq-width. In this section, we discuss frame
conditions of Wid∗n , introduce a new construction built upon the skeletons of transitive
frames, which always results finite frames when applied to transitive frames of finite
rank and suc-eq-width, and prove some auxiliary results of it, which will be used in
our main theorem.

Let F = 〈W,R〉 be a transitive frame. Note that for all u, v ∈W , u and v have the
same set of proper successors iff c(u)↑– = c(v)↑–, and they have the same set of proper
predecessors iff c(u)↓– = c(v)↓–. For each k � 1, F is of suc-eq-width at most k if each
antichain in F contains at most k points with different sets of proper successors, i.e.,
for each antichain A in F, if |A| > k, at least two points in A have the same set of
proper successors. F is of finite suc-eq-width if for some k � 1, F is of suc-eq-width at
most k. It is clear that a transitive frame is of suc-eq-width at most k if it is of width at
most k. A transitive logic is of suc-eq-width n (n � 1) if it contains Wid∗n but not Wid∗k
for any 1 � k < n, and is of finite suc-eq-width if it contains Wid∗n for an n � 1. The
following proposition gives the frame conditions of suc-eq-width formulas Wid∗n (see
[11, proposition 3.3]).

Proposition 3.1. Let F = 〈W,R〉 be any transitive frame, and let w ∈W and n � 1.
Then F, w � Wid∗n iff for each antichain {u0, ... , un} ⊆ w↑, there are distinct i, j � n
such that c(ui )↑

– = c(uj )↑–. Hence, if F is rooted, then F � Wid∗n iff F is of suc-eq-width
at most n.

We now give infinitely many transitive logics of finite depth and of suc-eq-width 1 but
not of finite width. For each n > 0, letDn = A◦ ⊕B⊕ Cn, whereA◦ = 〈{a}, {〈a, a〉}〉,
B = 〈{bi : i ∈ �},∅〉 and Cn = 〈{ci : 0 � i < n}, {〈ci , cj〉 : i < j}〉. It is clear that
although b0, b1, b2, ... have the same set of proper successors, they form an infinite
antichain in Dn for each n > 0; so all Dn are frames for Wid∗1 but not frames for any
Widn. It is also easy to see that all Dn are transitive frames of finite rank. Therefore,
all Log(Dn) are transitive logics of finite depth and of suc-eq-width 1 but not of finite
width. For each k > 0, let

Zk = ��–�k⊥ ∧ ¬GL → ��–�k+1⊥,

where �–φ = �φ ∧ ¬φ and GL = �(�p → p) → �p.1 Note that for each model
M = 〈Dn, V 〉 and eachw inM,M, w � ¬GL iffw = a andV (p) = {bi : i ∈ �} ∪ {ci :
0 � i < n}. To see that these Log(Dn) are distinct, note that Dn � Zk iff k �= n for
all n, k > 0, and hence Zm ∈ Log(Dn) – Log(Dm) and Zn ∈ Log(Dm) – Log(Dn) for

1 The modal formula GL is often called the Gödel–Löb formula; it is also named “G” by many
authors and “W” in [9] and other places.
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all distinct m, n > 0. This shows that {Log(Dn) : n > 0} forms an infinite antichain
in NExtK4. Nevertheless, our main theorem will imply that all of them and their
extensions are finitely axiomatizable.

LetF be a transitive frame of finite rank. We know that sk(F) is finite wheneverF is of
finite width. However, sk(F) may still be infinite if F is only of finite suc-eq-width. For
example, sk(Dn) is of the same cardinality as Dn for all Dn above. In what follows, we
introduce a new construction built upon the skeletons of transitive frames, which gives
finite frames when applied to transitive frames of finite rank and finite suc-eq-width.

Let F = 〈W,R〉 be any transitive frame. For all c, d ∈ sk(W ), let c ∼=s d iff c↑– = d↑–,
let c ∼=p d iff c↓– = d↓–, and let c ∼= d iff c↑– = d↑– and c↓– = d↓–. It is clear that∼=s,∼=p

and∼= are equivalence relations on sk(W ). For each c ∈ sk(W ), we use [c]s, [c]p and [c]∼=
respectively for the equivalence classes modulo ∼=s,∼=p and ∼= to which c belongs, and
use eqs(W ), eqp(W ) and eq(W ) respectively for the sets of equivalence classes modulo
∼=s,∼=p and ∼=. Let eq(F) = 〈eq(W ), eq(R)〉 where for allA,B ∈ eq(W ), 〈A,B〉 ∈ eq(R)
iff c ≺R d for some c ∈ A and d ∈ B. The following is easily verifiable by definition and
Fact 2.2.

Fact 3.2. Let F = 〈W,R〉 be any transitive frame. Then the following hold:

(i) eq(F) is a transitive frame, and is of the same rank as F is.
(ii) eq(F) is rooted if F is, and each member of eq(W ) is an antichain in sk(F).
(iii) For all A,B ∈ eq(W ), 〈A,B〉 ∈ eq(R) iff c ≺R d for all c ∈ A and d ∈ B.

Lemma 3.3. Let F = 〈W,R〉 be any transitive frame. Then |eqp(W )| � 2|eqs(W )|.

Proof. Let c ∈ sk(W ) and A ∈ eqs(W ). Assume that (
⋃

A) ∩ c↓– �= ∅. Then for
some d ∈ A, d ∩ c↓– �= ∅, which implies that d ⊆ c↓–, and thus c ⊆ d↑– by Fact 2.2
(iv); and then for each e ∈ A, c ⊆ e↑– because d↑– = e↑–, which implies by Fact 2.2
(iv) that e ⊆ c↓–, and hence

⋃
A ⊆ c↓–. It then follows that for each c ∈ sk(W ), c↓– =⋃ ⋃

{[c(w)]s ∈ eqs(W ) : w ∈ c↓–}, which implies that c↓– =
⋃ ⋃

Z for aZ ⊆ eqs(W ),
and hence |eqp(W )| � 2|eqs(W )|.

Proposition 3.4. Let k, n � 1, and let F = 〈W,R〉 be a transitive frame of rank at
most n and of suc-eq-width at most k. Then ‖eq(W )‖ � n × k × 2n×k .

Proof. For each i such that 1 � i � n, let A(i) be the set of all clusters in sk(F)
of rank i, and let Bi = {[c]s : c ∈ A(i)}. By hypothesis, |Bi | � k for each i with 1 �
i � n. Let B =

⋃
1�i�n Bi . It follows that for each C ∈ eqs(W ), B contains C, and

then |eqs(W )| � |B| � n × k, and hence |eqp(W )| � 2n×k by Lemma 3.3. Because
[c]∼= = [c]s ∩ [c]p for each c ∈ sk(W ), it then follows that |eq(W )| � n × k × 2n×k .

Note that for all clusters c, d in a transitive frameF, c � d if either c ≺ d or c �s d, and
thus both the rank and suc-eq-width of F are at most n if sk(F) contains n equivalence
classes modulo ∼=. Hence we have the following by Proposition 3.4.

Corollary 3.5. For each transitive frame F, the following are equivalent:

(i) F is of finite rank and finite suc-eq-width;
(ii) sk(F) has only finitely many equivalence classes modulo ∼=;
(iii) F has only finitely many equivalence classes modulo the relation of having the

same set of proper successors and the same set of proper predecessors.
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Theorem 3.6. A transitive logic L is of finite depth and finite suc-eq-width iff for some
m � 1, L is characterized by a class C of finite rooted transitive frames such that
|eq(F)| � m for each F ∈C.

Proof. Let L be a transitive logic. If L is of finite depth and finite suc-eq-width, then
Bn,Wid∗k ∈ L for some n, k � 1, and by Theorem 2.3, L is characterized by a class C
of finite rooted transitive frames for L. It then follows from Propositions 2.3 and 3.1
that for each F ∈C, F is of rank at most n and of suc-eq-width at most k, which implies
by Proposition 3.4 that |eq(F)| � n × k × 2n×k for each F ∈C. Letm = n × k × 2n×k .
Hence, L is characterized by a class C of finite rooted transitive frames such that
|eq(F)| � m for each F ∈C.

If for some m � 1, L is characterized by a class C of finite rooted transitive frames
such that |eq(F)| � m for each F ∈C, then L is characterized by a class of finite rooted
transitive frames whose rank and suc-eq-width are both at most m, and hence by
Propositions 2.3 and 3.1, Bm,Wid∗m ∈ L, which gives that L is of finite depth and finite
suc-eq-width.

§4. Criteria of finite axiomatizability. In the section, we present some necessary and
sufficient conditions for all extensions of a modal logic L to be finitely axiomatizable
over L. For each family {Li}i∈I of modal logics, we use

⊕
i∈I Li for the smallest modal

logic including
⋃
i∈I Li . The following is a well-known theorem from Tarski (see, e.g.,

[2, theorem 4.12]):

Theorem 4.1. Let L and L′ be any modal logics such that L ⊆ L′. Then L′ is finitely
axiomatizable over L iff there is no infinite ascending ⊂-chain L0 ⊂ L1 ⊂ L2 ⊂ ··· of
extensions of L such that L′ =

⊕
i∈�Li .

Let {Fi}i∈� be any infinite sequence of frames. {Fi}i∈� is sub-distinguishable if for
each i ∈ �, there is a formula φ such that Fi � φ, and Fj � φ for all j ∈ � with i < j.

The following theorem provides a sufficient and necessary condition of finite
axiomatizability in terms of sub-distinguishable sequences, and is proved by applying
Theorem 4.1.

Theorem 4.2. Let L be a modal logic, and let C be a class of frames for L such that each
extension of L is characterized by a subclass of C. Then all extensions of L are finitely
axiomatizable over L iff there is no sub-distinguishable sequence of members of C.

Proof. Suppose that L′ extends L but is not finitely axiomatizable over L. By
Theorem 4.1, there is an infinite ascending ⊂-chain L0 ⊂ L1 ⊂ ··· of extensions
of L, and then for each i ∈ �, there is a φi ∈ Li+1 – Li , and hence because Li is
by hypothesis characterized by a subclass of C, Fi � φi for a member Fi of C such
that Fi � Li . Consider the sequence {Fi}i∈� . We have that for each i, j ∈ � with
i < j, Fi � φi ∈ Li+1 ⊆ Lj and Fj � Lj , and hence Fj � φi . Therefore, {Fi}i∈� is a
sub-distinguishable sequence of members of C.

Suppose that {Fi}i∈� is a sub-distinguishable sequence of members of C. For each
k ∈ �, let Lk =

⋂
k�i∈�Log(Fi). Consider any i ∈ �. By definition, L ⊆ Li ⊆ Li+1,

and there is a φ such that Fi � φ and Fj � φ for all j > i , and then φ /∈ Li and
φi ∈ Li+1, and consequently Li ⊂ Li+1. Hence {Li}i∈� is an infinite ascending ⊂-
chain. Let L′ =

⊕
i∈�Li . We know that L′ extends L, and hence by Theorem 4.1 that

L′ is not finitely axiomatizable over L.
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Corollary 4.3. Let L be any modal logic whose extensions all have the f.m.p. Then
all extensions of L are finitely axiomatizable over L iff there is no sub-distinguishable
sequence of finite rooted frames for L.

Proof. Let C be the class of finite rooted frames for L. It follows from hypothesis
that each extension of L is characterized by a subclass of C. Hence the conclusion
follows from Theorem 4.2.

Let {Fi}i∈� be any infinite sequence of frames. {Fi}i∈� is backward irreducible if for
all i, j ∈ I with i < j, no point-generated subframe of Fj is reducible to Fi . We show
in the following that {Fi}i∈� is sub-distinguishable iff {Fi}i∈� is backward irreducible
under the supposition that all Fi are finite rooted transitive frames. Let F = 〈W,R〉
be a finite rooted transitive frame, where W = {w0, ... , wn} with w0 to be a root of
F, and w0, ... , wn to be all distinct. We call 〈w0, ... , wn〉 an ordering of points in F. Let
p0, ... , pn be distinct propositional letters, and let us call a conjunction of the following
formulas a frame formula for F w.r.t. 〈w0, ... , wn〉:

• p0,
• �(p0 ∨ ··· ∨ pn),
•

∧
{(pi → ¬pj) ∧�(pi → ¬pj) : i, j � n and i �= j},

•
∧
{(pi → �pj) ∧�(pi → �pj) : i, j � n and Rwiwj},

•
∧
{(pi → ¬�pj) ∧�(pi → ¬�pj) : i, j � n and not Rwiwj}.

A frame formula2 for F is a frame formula for F w.r.t. an ordering 〈u0, ... , un〉 of
points in F, where u0 is a root.

Lemma 4.4. Let F = 〈W,R〉 be a finite rooted transitive frame, for which φ is a frame
formula w.r.t. an ordering 〈w0, ... , wn〉 of points in F. Then φ is satisfiable in F at its
root w0.

Proof. Let M = 〈F, V 〉 where V (pi) = {wi} for each i � n. It is routine to check
that M, w0 � φ.

The following is Lemma 3.20 from [1], whose proof is left to the readers.

Lemma 4.5. Let F be a finite rooted transitive frame, for which φ is a frame formula,
and let G = 〈U,S〉 be any transitive frame with u ∈ U . Then φ is satisfiable in G at u iff
the subframe of G generated by u is reducible to F.

Proposition 4.6. Let {Fi}i∈� be an infinite sequence of finite rooted transitive frames.
Then {Fi}i∈� is sub-distinguishable iff {Fi}i∈� is backward irreducible.

Proof. Suppose that {Fi}i∈� is not backward irreducible. Then there are i, j ∈ �
such that i < j and a point-generated subframe of Fj is reducible to Fi . Hence, for any
formula φ, Fi � φ yields Fj � φ, which implies that {Fi}i∈� is not sub-distinguishable.

Suppose that {Fi}i∈� is backward irreducible. For each i ∈ �, let φi be a frame
formula for Fi . Then we have by Lemma 4.4 that φi is satisfiable in Fi , and thus
Fi � ¬φi . For each j ∈ � with i < j, we know from the supposition that no point-
generated subframe of Fj is reducible to Fi , and it then follows from Lemma 4.5 that φi
is not satisfiable in Fi , and so Fj � ¬φi . Therefore, {Fi}i∈� is sub-distinguishable.

2 A frame formula for F is also known as a Jankov–Fine formula for F (see [1, sec. 3.4]). The
term “frame formula” goes back to [2, sec. 2].

https://doi.org/10.1017/S1755020323000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000175


958 YAN ZHANG AND MING XU

The right to the left direction of the following theorem is often applied in studies
of finite axiomatizability of modal logics whose extensions have the f.m.p. (see, e.g.,
[3, 7, 10]).

Theorem 4.7. Let L be a transitive logic whose extensions all have the f.m.p. Then all
extensions of L are finitely axiomatizable over L iff there is no backward irreducible
sequence of finite rooted frames for L.

Proof. Since L is a transitive logic, so all frames for L are transitive. It then follows
from Corollary 4.3 that all extensions of L are finitely axiomatizable over L iff there is
no sub-distinguishable sequence of finite rooted frames for L, by Proposition 4.6, iff
there is no backward irreducible sequence of finite rooted frames for L.

§5. Well quasi-orders on lists. A binary relation is a quasi-order if it is reflexive and
transitive. A quasi-order � on a set A is a well quasi-order (or A is well quasi-ordered
by �) if for every infinite sequence (ai)i∈� of elements in A, there are indices i < j ∈ �
such that ai � aj . Let � be a binary relation on � defined by taking: m � n iff either
m = n = 0 or 0 < m � n.

Fact 5.1. Both � and � are well quasi-orders on �.

Let �1 and �2 be quasi-orders on sets A1 and A2 respectively, and let � be an order
on A1 × A2 defined by: 〈a1, a2〉 �

〈
a′1, a

′
2

〉
iff a1 �1 a

′
1 and a2 �2 a

′
2. It is clear that � is

a quasi-order. Furthermore, we have the following lemma (see, e.g., [6, lemma 2.6]).

Lemma 5.2. If �1 and �2 are well quasi-orders, then � is a well quasi-order.

Let A be any nonempty set. A list of members of A is a finite nonempty sequence
of members of A. We will use List(A) for the set of all lists of members of A, and
Listn(A) for the set of all lists in List(A) with length n (n � 1). For convenience, let
�+ = � – {0}.

Definition 5.3. Let s, t ∈ List(�+) where s = (ai)i�k and t = (bi)i�n. s � t iff there
are integers j0, ... , jk such that 0 � j0 < j1 < ··· < jk = n and ai � bji for each i � k.

The following proposition has been proved in [3, sec. 3, corollary], and we can also
prove it by Higman’s theorem (see, e.g., [6, theorem 3.2]).

Proposition 5.4. � is a well quasi-order on List(�+).

Let us fix the following sets of lists:

C = {(s, n) : s ∈ List(�+) ∪ {(0)} and n ∈ �}. (1)

Definition 5.5. Let u = (s,m) and v = (t, n) be any members of C. u �0 v iff m � n,
and either s = t = (0) or s � t with s, t ∈ List(�+). Let s = (ui)i∈k and t = (vi)i∈n be
any members of List(C). s �1 t iff k = n and ui �0 vi for each i � k.

It is easy to verify that �0 and �1 are quasi-orders on C and List(C) respectively.

Proposition 5.6. �0 is a well quasi-order on C; and for each n � 1, Listn(C) is well
quasi-ordered by �1.

Proof. By Fact 5.1 and Lemma 5.2, to show �0 is a well quasi-order, it suffices to
prove that � defined in (2) is a well quasi-order on List(�+) ∪ {(0)}:

s � t iff s = t = (0) or s � t with s, t ∈ List(�+). (2)
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It is routine to verify that � is a quasi-order. Let (si)i∈� be any infinite sequence of
elements inList(�+) ∪ {(0)}. Then (si )i∈� contains an infinite subsequence (si)i∈I such
that either si = (0) for each i ∈ I , or si ∈ List(�+) for each i ∈ I . If the former holds,
then si � sj for any i < j with i, j ∈ I ; if the latter holds, then by Proposition 5.4,
there are i, j ∈ I such that i < j and si � sj , and hence si � sj . Therefore, � is a well
quasi-order.

Since �0 is a well quasi-order, to obtain that Listn(C) is well quasi-ordered by �1,
simply apply Lemma 5.2 n times.

§6. Finite axiomatizability. In the section, we prove our main result, i.e., the finite
axiomatizability of transitive logics of finite depth and suc-eq-width (Theorem 6.5).

Let F be any finite transitive frame, and let A be any antichain in sk(F). We use A+

for the set of nondegenerate clusters in F contained in A, and use A– for the set of
degenerate clusters in F contained in A. If A+ �= ∅, we assume that members of A+

are arranged as c0, ... , cn for an n ∈ � such that |cn| = min({|ci | : i � n}), i.e., cn is of
the smallest size among members of A+. Let sA+ be the following list:

sA+ =
{

(0), if A+ = ∅,
(|ci |)i�n, if A+ = {c0, ... , cn} �= ∅.

(3)

We call the following list a standard representation list of A (an s.r.l. of A for short),
where the subscript “ac” is a reminder of antichain (of clusters):

gac(A) = (sA+ , |A–|). (4)

It is easy to verify that gac(A) ∈ C (see (1)). Note that A+ is an antichain in sk(F), and
thus the natural order between members of sA+ is inessential, except for the position
of its last member.

Lemma 6.1. LetF andG be finite transitive frames, letA andB be nonempty antichains
in sk(F) and sk(G) respectively, and let gac(B) �0 gac(A). Then F � (

⋃
A) is reducible to

G � (
⋃
B).

Proof. Let gac(A) = (t, m) and gac(B) = (s, l), and let XA′ =
⋃
A′ and YB′ =

⋃
B′

for each A′ ⊆ A and each B′ ⊆ B. By hypothesis,

(s, l) �0 (t, m), and hence l � m. (5)

Case 1, s = (0). By (5) and Definition 5.5, t = (0), and then A+ = B+ = ∅. Because
A,B �= ∅,A–,B– �= ∅, and hence 0 < |B–| = l � m = |A–| by (5). Let f be a surjection
from XA– to YB– , which reduces F � XA to G � YB.

Case 2, s �= (0). By (5) and Definition 5.5, t �= (0), and then A+,B+ �= ∅ and
s, t ∈ List(�+). By (3), there are k, n ∈ � such that

s = sB+ = (|dj |)j�k and t = sA+ = (|cj |)j�n,

where B+ = {d0, ... , dk} with |dk | = min({|dj | : j � k}), and A+ = {c0, ... , cn} with
|cn| = min({|cj | : j � n}). Because s � t by (5), there is an injective order-preserving
function h from {0, ... , k} to {0, ... , n} such that h(k) = n and |dj | � |ch(j)| for each
j � k. For each j � k, because 0 < |dj | � |ch(j)|, there is a surjection gj from ch(j)
to dj . For each j � n such that j /∈ {h(j′) : j′ � k}, because |cj | � |cn| � |dk |, there
is a surjection gj from cj to dk . Let g =

⋃
j�n gj . It is easy to verify that g reduces
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F � XA+ to G � YB+. Now if l = 0, m = 0 by (5), and then A– = B– = ∅, and hence g
reduces F � XA to G � YB. Suppose that l > 0. Then B–,A– �= ∅ and 0 < l � m by (5),
and thus, similar to case 1, there is a reduction f of F � XA– to G � YB– . It is clear that
F � XA is the disjoint union of F � XA+ and F � XA– , while G � YB is the disjoint union
of G � YB+ and G � YB– . Hence f ∪ g reduces F � XA to G � YB by Fact 2.1.

Lemma 6.2. Let F = 〈W,R〉 and G be finite transitive frames and eq(W ) =
{A0, ... ,Ak}, let h be an isomorphism from eq(F) to eq(G), and let g(G) �1 g(F)
where g(F) =

(
gac(A0), ... , gac(Ak)) and g(G) =

(
gac(h(A0)), ... , gac(h(Ak))). Then F

is reducible to G.

Proof. For each i � k, gac(h(Ai)) �0 gac(Ai) because g(G) �1 g(F), and then by
Fact 3.2 (ii) and Lemma 6.1, there is a reduction fi of F � (

⋃
Ai) to G � (

⋃
h(Ai)).

Letting f =
⋃
i�k fi , we show below that f reduces F to G.

Assume that G = 〈U,S〉. We have that {
⋃

A0, ... ,
⋃

Ak} is a partition of W, and
{
⋃
h(A0), ... ,

⋃
h(Ak)} is a partition of U. Then f is a function from W to U. Because

each fi with i � k is a surjection, it follows that so is f.
Suppose that Rwu where w ∈

⋃
Ai and u ∈

⋃
Aj with i, j � k. If i = j, then

Sfi(w)fi(u) because fi reduces F � (
⋃

Ai) to G � (
⋃
h(Ai)), and thus Sf(w)f(u).

Assume that i �= j. Let c ∈ Ai and c′ ∈ Aj such that w ∈ c and u ∈ c′. Then c �= c′.
Because fi(w) ∈

⋃
h(Ai) and fj(u) ∈

⋃
h(Aj), it is clear that fi(w) ∈ d and

fj(u) ∈ d′ for a d ∈ h(Ai) and a d′ ∈ h(Aj). Since Rwu and c �= c′, c ≺R c′, and then
〈Ai ,Aj〉 ∈ eq(R) by definition. It then follows that 〈h(Ai), h(Aj)〉 ∈ eq(S), and thus
by Fact 3.2(iii), d ≺S d′, and then Sfi(w)fj(u), and hence Sf(w)f(u).

Suppose that Sf(w)f(u), where w ∈
⋃
Ai and u ∈

⋃
Aj with i, j � k. If i = j,

Sfi(w)fi(u), and then there is a v ∈
⋃

Ai such that Rwv and fi(v) = fi(u), and
thus f(v) = f(u). Assume that i �= j. Let c0 ∈ Ai and c1 ∈ Aj such that w ∈ c0

and u ∈ c1, and let d0 ∈ h(Ai) and d1 ∈ h(Aj) such that f(w) ∈ d0 and f(u) ∈ d1.
Since Ai �= Aj , h(Ai) �= h(Aj), and so d0 �= d1. It then follows from Sf(w)f(u) that
d0 ≺S d1, and thus 〈h(Ai), h(Aj)〉 ∈ eq(S), which implies that 〈Ai ,Aj〉 ∈ eq(R). We
then have by Fact 3.2 (iii) that c0 ≺R c1, and hence Rwu.

Let S = {Fi}i∈I be an infinite sequence of finite transitive frames such that all frames
in {eq(Fi)}i∈I are isomorphic, and let Fi = 〈Wi,Ri〉 for each i ∈ I . Assume that i∗ is
the smallest in I and eq(Wi∗) = {A0, ... ,Am}. We then know that for each i ∈ I , there
is an isomorphism hi from eq(Fi∗) to eq(Fi). Now for each i ∈ I , assuming that each
gac(hi(Aj)) with j � m is an s.r.l. of hi(Aj), we let

gS(Fi) =
(
gac(hi(A0)), ... , gac(hi(Am))) ,

and call it a representation list of Fi w.r.t. S. It is easy to verify that each gS(Fi) above
with i ∈ I is a member of Listm+1(C) (see (1), (3) and (4)).

Fact 6.3. Let {Fi}i∈� be an infinite sequence of frames such that for an m � 1,
|Fi | � m for all i ∈ �. Then there is an infinite I ⊆ � such that all frames in {Fi}i∈I are
isomorphic.

Lemma 6.4. Let L be a transitive logic of finite depth and finite suc-eq-width, let A
be any nonempty set of finite rooted frames for L, and for any frames F and F′ in A, let
F � F

′ iff F′ is reducible to F. Then A is well quasi-ordered by �.

Proof. It is routine to verify that � is a quasi-order. To show that � is a well
quasi-order, let {Fi}i∈� be an infinite sequence of elements of A. Since Bn,Wid∗k ∈ L

https://doi.org/10.1017/S1755020323000175 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000175


FINITE AXIOMATIZABILITY OF TRANSITIVE MODAL LOGICS 961

for some n, k � 1, we have by Propositions 2.3 and 3.1 that Fi is of rank at most n
and of suc-eq-width at most k for each i ∈ �. It follows from Proposition 3.4 that
|eq(Fi)| � n × k × 2n×k for all i ∈ �, and then by Fact 6.3, there is an infinite J ⊆ �
such that all frames in {eq(Fi)}i∈J are isomorphic. Let S = {Fi}i∈J , and consider the
sequence (gS(Fi))i∈J of lists, where each gS(Fi) with i ∈ J is a representation list of
Fi w.r.t. S. As noted earlier, there is an m ∈ � such that each gS(Fi) with i ∈ J is
a member of Listm+1(C), and then by Proposition 5.6, there are i < j ∈ J such that
gS(Fi) �1 gS(Fj), and hence by Lemma 6.2, Fj is reducible to Fi , which gives that
Fi� Fj .

Theorem 6.5. For all k, n � 1, all extensions of K4 ⊕ {Bn,Wid∗k} are finitely axiomati-
zable, and are hence decidable.

Proof. Let L = K4 ⊕ {Bn,Wid∗k} with k, n � 1. By Theorem 2.4, all extensions of L
have the f.m.p. To show that all extensions of L are finitely axiomatizable, let {Fi}i∈�
be any infinite sequence of finite rooted frames for L. According to Lemma 6.4, Fj is
reducible to Fi for some i, j ∈ I with i < j, and hence {Fi}i∈� is not a backward
irreducible sequence. Therefore by Theorem 4.7, all extensions of L are finitely
axiomatizable.

From the above, we know that all extensions of L are finitely axiomatizable. By
Theorem 2.3, they all have the f.m.p., and hence are all decidable.

Some direct consequences of Theorem 6.5 are discussed in Section 7.

§7. Further results. We have proved the finite axiomatizability of all transitive logics
of finite depth and finite suc-eq-width. Applying this, let us go over a few classes of
finitely axiomatizable transitive logics of finite depth. Firstly, each logic Log(Dn) with
n > 0 from Section 3 is a transitive logic of finite depth and of suc-eq-width 1. Hence
we have the following by Theorem 6.5:

Corollary 7.1. For each n > 0, all extensions of Log(Dn) are finitely axiomatizable,
and are hence decidable.

Rybakov proved (see [8, theorem 3]) that all extensions of S4 ⊕ B2 are finitely
axiomatizable. By applying our main theorem, we can generalize the result easily to all
extensions of K4 ⊕ B2. Since each transitive logic L of depth at most 2 is characterized
by a class of rooted transitive frames of rank at most 2, we have Wid∗1 ∈ L as all these
frames are of suc-eq-width 1. Hence we obtain the following by Theorem 6.5:

Corollary 7.2. All transitive logics of depth at most 2 are finitely axiomatizable, and
are hence decidable.

It has been shown (see [4, sec. 4]) that for all n � 3, there is a continuum of extensions
of K4 ⊕ Bn, and hence there are non-finitely axiomatizable extensions of K4 ⊕ Bn.

A transitive logic is weakly convergent if it contains �(p ∨�p) → �(p ∨�p) (G1,
as named in [9]), which corresponds to piecewise weak convergence, i.e.,

∀x∀y∀z(Rxy ∧Rxz ∧ y �= z ∧ ¬Ryz ∧ ¬Rzy → ∃x′(Ryx′ ∧Rzx′)).

Rybakov proved (see [8, theorem 2]) that all extensions of S4 ⊕ {B3,G1} are finitely
axiomatizable. By applying our main theorem, we generalize it to the case of
K4 ⊕ {B3,G1}. Since each weakly convergent transitive logic L of depth at most 3 is
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characterized by a class of rooted transitive frames of rank at most 3 satisfying piecewise
weak convergence, we have Wid∗1 ∈ L as all these frames are of suc-eq-width 1. Hence
we obtain the following by Theorem 6.5:

Corollary 7.3. All weakly convergent transitive logics of depth at most 3 are finitely
axiomatizable, and are hence decidable.

Let a, b0, b1, ... , c0, c1, ... be all distinct. For each n ∈ �, let Bn = {bk : k � n + 1}
and Cn = {ck : k � n + 1}, and let Gn = 〈Un, Sn〉 where

Un = {a} ∪ Bn ∪ Cn,
Sn = {〈a, u〉 : u ∈ Bn ∪ Cn} ∪ {〈bk, cm〉 : k,m � n + 1 and k �= m}.

Intuitively speaking, each Gn with n ∈ � is a finite rooted strict partial order of rank 3
in which a is the root, and each bk (ck) with k � n + 1 is of rank 2 (rank 1) and sees all
points of rank 1 except ck . Let A = 〈{d},∅〉, where d is a new point not in anyUn, and
for each n ∈ �, let Bn = Gn ⊕ A. Each Bn is a weakly convergent frame of rank 4. It
can be shown that {Bn}n∈� is backward irreducible, and hence by Theorem 4.7, there
are non-finitely axiomatizable extensions of K4 ⊕ {Bn,G1} for all n � 4.

Consider the following formulas, where k � 1:

Wid�k =
∧

0�i�k�(pi ∧�pi) →
∨

0�i �=j�k�(pi ∧ pj).
Recall that a cluster c is final if c↑– = ∅, that is, it has no proper successors. A transitive
frame F = 〈W,R〉 is bounded if each maximal R-chain includes an element of some
final cluster in F.

Fact 7.4. Let F be any rooted transitive frame and k � 1. Then F � Wid�k iff
|A| � k for each antichain A in F such that x↑ ∩ y↑ = ∅ for all distinct x, y ∈ A;
and consequently, if F is bounded, then F � Wid�k iff the number of final clusters in F is
at most k.

By Fact 7.4, each rooted transitive frame of rank 3 for Wid�k is of suc-eq-width at
most 2k ; furthermore, each extension of K4 ⊕ {B3,Wid�k } is characterized by a class
of these frames. Hence all extensions of K4 ⊕ {B3,Wid�k } are of suc-eq-width at most
2k , which implies by Theorem 6.5 the following generalization of Corollary 7.3:

Corollary 7.5. For each k � 1, all extensions of K4 ⊕ {B3,Wid�k } are finitely
axiomatizable, and are hence decidable.

For each k � 1, let Ak = 〈{d0, ... , dk–1},∅〉, where d0, d1, ... are all distinct new
points, and let Bn,k = Gn ⊕ Ak for each n ∈ �. Each Bn,k is a frame of rank 4 and
has k final clusters. It can be proved that {Bn,k}n∈� is backward irreducible for each
k � 1, and hence by Theorem 4.7, there are non-finitely axiomatizable extensions of
K4 ⊕ {Bn,Wid�k } for all n � 4 and k � 1.

Since transitive logics of finite width are of finite suc-eq-width, we have the
following corollary by Theorem 6.5, which generalizes Rybakov’s result of the finite
axiomatizability of all extensions of S4 ⊕ {Bn,Widk}with n, k � 1 (see [8, theorem 1]).

Corollary 7.6. All transitive logics of finite depth and of finite width are finitely
axiomatizable, and are hence decidable.

Consider the following formulas, where k � 1:

Wid1
k =

∧
0�i�k�(pi ∧��qi ∧ ¬qi) →

∨
0�i �=j�k�(pi ∧ (pj ∨�pj)).
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Fact 7.7. Let F be any rooted transitive frame, and k � 1. Then F � Wid1
k iff each

antichain in F contains at most k points of rank greater than 1.

By Fact 7.7, each rooted transitive frame of finite rank for Wid1
k is of suc-eq-width

at most k + 1; furthermore, each extension of K4 ⊕ {Bn,Wid1
k} is characterized by a

class of these frames. Hence all extensions of K4 ⊕ {Bn,Wid1
k} are of suc-eq-width at

most k + 1, which gives the following generalization of Corollary 7.6 by Theorem 6.5:

Corollary 7.8. For each n � 1 and each k � 1, all extensions of K4 ⊕ {Bn,Wid1k}
are finitely axiomatizable, and are hence decidable.

Although our Theorem 6.5 is general enough to imply the results above, it does
not include all transitive logics of finite depth whose extensions are all finitely
axiomatizable. Consider the following formulas from [12], where n � 1:

Wid+
n = q ∧�(¬�q ∧

∧
0�i�n�pi) →

∨
0�i �=j�n�(pi ∧ (pj ∨�pj)).

It has been proved (see [12, proposition 10]) that for any transitive frame F = 〈W,R〉
and any n � 1, F � Wid+

n iff for eachw, u ∈W with �Rwu, the subframe of F generated
by u is of width at most n. Let a, b0, b1, ... , c0, c1, ... be all distinct, for each n ∈ �, let
Bn = {bk : k � n + 1} and Cn = {ck : k � n + 1}, and let G

′
n = 〈Un, S ′

n〉 where

Un ={a} ∪ Bn ∪ Cn,
S ′
n ={〈u, u〉 : u ∈ Un} ∪ {〈a, u〉 : u ∈ Bn ∪ Cn}

∪ {〈bk, cm〉 : k,m � n + 1 and k = m}.

Intuitively speaking, each G′
n with n ∈ � is a finite rooted partial order of rank 3 in

which a is the root, and each bk (ck) with k � n + 1 is of rank 2 (rank 1) and sees only
point ck of rank 1. It should be clear that all G′

n are frames for S4 ⊕ {Bk,Wid+
1 } with

k � 3, and the suc-eq-width of these G′
n are unbounded. Hence, S4 ⊕ {Bk,Wid+

1 } is
not a logic of finite suc-eq-width, although it has been shown (see [12, corollary 2])
that all extensions of it are finitely axiomatizable.
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