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Abstract

We derive large-sample and other limiting distributions of components of the allele fre-
quency spectrum vector, Mn, joint with the number of alleles, Kn, from a sample of
n genes. Models analysed include those constructed from gamma and α-stable subor-
dinators by Kingman (thus including the Ewens model), the two-parameter extension
by Pitman and Yor, and a two-parameter version constructed by omitting large jumps
from an α-stable subordinator. In each case the limiting distribution of a finite number
of components of Mn is derived, joint with Kn. New results include that in the Poisson–
Dirichlet case, Mn and Kn are asymptotically independent after centering and norming
for Kn, and it is notable, especially for statistical applications, that in other cases the lim-
iting distribution of a finite number of components of Mn, after centering and an unusual
nα/2 norming, conditional on that of Kn, is normal.
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1. Introduction

In population genetics, the allele frequency spectrum (AFS) records the numbers of types
of alleles represented a designated number of times in a sample of genes. Its distribution
was derived under an infinite alleles model of mutation by Ewens [10]. An intimate connec-
tion of this distribution, now known as the Ewens sampling formula (ESF), with Kingman’s
Poisson–Dirichlet distribution [31], was subsequently exploited in a large range of important
applications. The AFS plays an important role for example in the formulation of Kingman’s
coalescent [32]; for background, see Berestycki et al. [4] and Basdevant and Goldschmidt [3].

Kingman [31] constructed the Poisson–Dirichlet distribution PD(θ ), for θ > 0, as a ran-
dom distribution on the infinite unit simplex ∇∞ := {xi ≥ 0, i= 1, 2, . . . ,

∑
i≥1 xi = 1}, by

ranking and renormalising the jumps of a driftless gamma subordinator up to a specified
time. Another of Kingman’s distributions arises when a driftless α-stable subordinator with
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2 R. A. MALLER AND S. SHEMEHSAVAR

parameter α ∈ (0, 1) is used instead of the gamma subordinator. Later again, an encompassing
two-parameter Poisson–Dirichlet distribution PD(α, θ ) was constructed by Pitman and Yor
[43]. This specialises to PD(θ ) when α ↓ 0 and to the second of Kingman’s examples, denoted
herein as PD(α, 0), when θ = 0.

These distributions and the methodologies associated with them have subsequently had
a huge impact in many applications areas, especially in population genetics, but also in the
excursion theory of stochastic processes, the theory of random partitions, random graphs and
networks, probabilistic number theory, machine learning, Bayesian statistics, and others. They
have also given rise to a number of generalisations and a large literature analysing the vari-
ous versions. Among these, generalising PD(α, 0), is the PD(r)

α class of Ipsen and Maller [23],
defined for α ∈ (0, 1) and r > 0.

In this paper we derive large-sample (n→∞) and other limiting distributions of the AFS,
joint with the number of alleles, for each of these classes. The AFS in a sample of size n ∈
N := {1, 2, . . .} is the vector Mn = (M1n, M2n, . . . , Mnn), where Mjn is the number of allele
types represented j times, and Kn =∑n

j=1 Mjn is the total number of alleles in the sample.
(Vectors and matrices are denoted in boldface, with a superscript ‘	’ for transpose.) Kn is a
deterministic function of Mn, but analysing Mn and Kn jointly, as we do, leads to important
new insights and useful practical results.

2. Notation, models analysed, and overview

Here we set out some notation to be used throughout. Recall that the sample size is n ∈N.
The sample AFS is the vector Mn with its dependence on parameters α, θ , or r specified as
required, with components (M1n, M2n, . . . , Mnn) indicated correspondingly. Each Mn takes
values in the set

Akn :=
{

m= (m1, . . . , mn) : mj ≥ 0,

n∑
j=1

jmj = n,

n∑
j=1

mj = k

}
, (1)

and each Kn takes values k ∈Nn := {1, 2, . . . , n}, n ∈N.
Specialising our general notation, when the model under consideration depends on parame-

ters α, θ , or r, these are distinguished in the particular Mn and Kn analysed; thus, for PD(α, θ )
we have (Mn(α, θ ), Kn(α, θ )) (with (Mn(α, 0), Kn(α, 0)) abbreviated to (Mn(α), Kn(α)), for
PD(θ ) we have (Mn(θ ), Kn(θ )), and similarly for PD(r)

α . Explicit formulae for the distributions
of (Mn, Kn) are available for each of these models, as we now set out in detail.

Distribution of (Mn(α, θ ), Kn(α, θ )) for PD(α, θ ). Pitman’s sampling formula ([40, Prop. 9],
[43, Sect. A.2, p. 896]) gives, for θ > 0, 0 < α < 1,

P(Mn(α, θ )=m, Kn(α, θ )= k)

= n!
α

�(θ/α + k)

�(θ/α+ 1)

�(θ + 1)

�(n+ θ )

(
α

�(1− α)

)k

×
n∏

j=1

1

mj!
(

�(j− α)

j!
)mj

. (2)

The corresponding formula for PD(α, 0) is given just by setting θ = 0:

P(Mn(α)=m, Kn(α)= k)= n(k− 1)!
α

(
α

�(1− α)

)k

×
n∏

j=1

1

mj!
(

�(j− α)

j!
)mj

. (3)
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Distribution of (Mn(θ ), Kn(θ )) for PD(θ ). The Ewens sampling formula ([10], [42, p. 46]),
for θ > 0, is

P(Mn(θ )=m, Kn(θ )= k)= n!�(θ )θk

�(n+ θ )

n∏
j=1

1

mj!
(

1

j

)mj

. (4)

Distribution of (Mn(α, r), Kn(α, r)) for PD(r)
α . Equation (2.1) of [26] gives the following

formula: for r > 0, 0 < α < 1,

P(Mn(α, r)=m, Kn(α, r)= k)= n
∫ ∞

0

�(r+ k)λαk

�(r)�(λ)r+k

n∏
j=1

1

mj! (Fj(λ))mj
dλ

λ
, (5)

where

�(λ)= 1+ α

∫ 1

0
(1− e−λz)z−α−1 dz (6)

and

Fj(λ)= α

j!
∫ λ

0
e−zzj−α−1 dz, j ∈Nn, λ > 0. (7)

In each of (2)–(5), k ∈Nn, n ∈N, and m takes values in the set Akn in (1).
The limiting distribution of Kn is already known for each case, and for components of Mn

separately for PD(α, 0) and PD(θ ), but the joint approach adds new information. For example,
the limiting distributions of Mn(θ ) and Kn(θ ) are known separately for PD(θ ) (the ESF), but we
show that they are asymptotically independent. For PD(α, θ ) and PD(r)

α we obtain the limiting
covariance matrix of a finite number of components of Mn after centering and normalising,
and show that the conditional limiting distribution of these, given Kn, is normal – a useful fact
for statistical applications.

Here we list some additional notation and preliminaries. The multinomial distribution arises
in a natural way when considering the distribution of Mn. We use the following generic
notation for a multinomial vector with its length and associated occupancy probabilities
specified by context. If J ≥ 0 and n > J are integers, p= (pJ+1, . . . , pn) is a vector with pos-
itive entries such that pJ+1 + . . .+ pn = 1, and mJ+1, . . . , mn are non-negative integers with
mJ+1 + . . .+mn = b≤ n, we set

P(Mult(J, b, n, p)= (mJ+1, . . . , mn))= b!
n∏

j=J+1

p
mj
j

mj! . (8)

We recall a useful representation from [26, p. 374]. Denote the components of the multinomial
Mult(J, b, n, p) by (MJ+1, . . . , Mn). This vector has moment generating function (MGF)

E

(
exp

(
n∑

j=J+1

νjMj

))
=
(

n∑
j=J+1

pj eνj

)b

,

where νj > 0, J + 1≤ j≤ n. Choosing νj = νj, J + 1≤ j≤ n, where ν > 0, gives

E

(
exp

(
ν

n∑
j=J+1

jMj

))
=
(

n∑
j=J+1

pj eνj

)b

. (9)
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4 R. A. MALLER AND S. SHEMEHSAVAR

Introduce independent and identically distributed (i.i.d.) random variables Xi with P(Xi = j)=
pj, J + 1≤ j≤ n. Then the right-hand side of (9) is the MGF of

∑b
i=1 Xi.

A related covariance matrix that occurs in our analyses is the J × J matrix QJ with diagonal
elements qi(1− qi) and off-diagonal elements −qiqj, 1≤ i �= j≤ J, where

qj = α�(j− α)

j!�(1− α)
, j ∈NJ, J ∈N, J < n. (10)

We develop a systematic method of proof in which the novelty is to combine detailed
asymptotics of the combinatorial parts of (2)–(5) together with a local limit theorem arising
from the representation (9) applied to the distributions of (Mn, Kn) in the various cases. In two
instances key results concerning subordinators due to Covo [8] and Hensley [22] are also used.

The paper is organised as follows. We start in the next section with PD(r)
α by analysing the

distribution of (Mn(α, r), Kn(α, r)) as n→∞. This is the most difficult of the cases we deal
with, but having established the method, the analogous results for PD(α, θ ), PD(α, 0), and
PD(θ ) follow with only necessary changes in Sections 4 and 5. Section 6 gives other related
limiting results; for example, the limit as r ↓ 0 of PD(r)

α is PD(α, 0). Further discussion and
more references are in the concluding Section 7.

3. Limiting distribution of (Mn(α, r), Kn(α, r)) as n → ∞
In the PD(r)

α model, Mn(α, r) and Kn(α, r) depend on the parameters α ∈ (0, 1) and r > 0,
and the sample size n ∈N. In this section α and r are kept fixed for the large-sample analy-
sis (n→∞). The limiting distribution of Kn(α, r) was derived in [26]. Here we extend that
analysis to get the joint limiting distribution of a finite number of components of Mn(α, r),
self-normalised by Kn(α, r), together with Kn(α, r). A surprising and novel aspect is the nα/2

norming needed for the self-normalised frequency spectrum (after appropriate centering).
Introduce for each λ > 0 a subordinator (Yt(λ))t>0 having Lévy measure

�λ(dy) := αy−α−1 dy

�(1− α)
(1{0<y<λ≤1} + 1{0<y<1<λ}). (11)

As shown in [26], each Yt(λ), t > 0, λ > 0, has a continuous bounded density which we
denote by fYt(λ)(y), y > 0. Let J ≥ 1 be a fixed integer, and define qj and QJ as in (10). Let
a= (a1, a2, . . . , aJ) ∈RJ , c > 0, and recall that for the components of Mn(α, r) we write
(Mjn(α, r))1≤j≤n. Throughout, when m ∈ Akn, let m+ =∑J

j=1 mj and m++ =∑J
j=1 jmj. Then

we have the following.

Theorem 1. For the PD(r)
α model, we have

lim
n→∞ P

(
Mjn(α, r)

Kn(α, r)
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α, r)

nα
≤ c

)
= 1

�(r)�r(1− α)

∫
y∈RJ , y≤a

∫
0<x≤c

∫
λ>0

xr+J/2−1 e− x
2 y	Q−1

J y√
(2π )J det (QJ)

× e−x(λ−α∨1)/�(1−α)fYx(λ)(1)
dλ

λαr+1
dx dy. (12)
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Corollary 1. Let (M̃(α, r), K(α, r)) denote a vector having the distribution on the right-hand
side of (12). Then the distribution of M̃(α, r), conditional on K(α, r)= x > 0, is N(0, QJ/x),
that is, with density

xJ/2 e− x
2 y	Q−1

J y√
(2π )J det (QJ)

, y ∈RJ . (13)

Proof of Theorem 1. Take n, J ∈N, n > J, m= (m1, . . . , mn) ∈ Akn and k ∈Nn. From (5) we
can write

P(Mjn(α, r)=mj, 1≤ j≤ J, Kn(α, r)= k)

= n
∫ ∞

0

�(r+ k)λαk

�(r)�(λ)r+k

J∏
j=1

1

mj! (Fj(λ))mj ×
∑

m(J)∈A(J)
kn

n∏
j=J+1

1

mj! (Fj(λ))mj
dλ

λ
, (14)

with m(J) = (mJ+1, . . . , mn) and

A(J)
kn =

{
mj ≥ 0, J < j≤ n :

n∑
j=J+1

jmj = n−m++,

n∑
j=J+1

mj = k−m+

}
. (15)

(Recall m+ =∑J
j=1 mj and m++ =∑J

j=1 jmj.) For each λ > 0, let

p(J)
n (λ)= (p(J)

jn (λ)
)

J+1≤j≤n =
(

Fj(λ)∑n

=J+1 F
(λ)

)
J+1≤j≤n

.

In the notation of (8), let Mult
(
J, k−m+, n, p(J)

n (λ)
)

be a multinomial vector with

P
(
Mult

(
J, k−m+, n, p(J)

n (λ)
)= (mJ+1, . . . , mn)

)= (k−m+)!
n∏

j=J+1

(
p(J)

jn (λ)
)mj

mj! , (16)

where mj ≥ 0, J + 1≤ j≤ n, and
∑n

j=J+1 mj = k−m+. We can represent the summation over

m(J) ∈ A(J)
kn of the right-hand side of (16) using (9), the probability

P

(k−m+∑
i=1

X(J)
in (λ)= n−m++

)
, (17)

and a method detailed in [26, p. 375]. In (17),
(
X(J)

in (λ)
)

1≤i≤k−m+ are i.i.d. with

P
(
X(J)

1n (λ)= j
)= p(J)

jn (λ), J + 1≤ j≤ n.
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For brevity let k′ = k−m+ and n′ = n−m++, where convenient in what follows. Then

∑
m(J)∈A(J)

kn

n∏
j=J+1

1

mj! (Fj(λ))mj

= 1

k′!
∑

m(J)∈A(J)
kn

k′!
n∏

j=J+1

1

mj!
(
p(J)

jn (λ)
)mj

(
n∑


=J+1

F
(λ)

)mj

= 1

k′!

(
n∑


=J+1

F
(λ)

)k′

P

(
k′∑

i=1

X(J)
in (λ)= n′

)
.

So now we can represent (14) as

P(Mjn(α, r)=mj, 1≤ j≤ J, Kn(α, r)= k)

= n
∫ ∞

0

�(r+ k)λαk

�(r)�(λ)r+k

J∏
j=1

1

mj! (Fj(λ))mj

× 1

k′!

(
n∑


=J+1

F
(λ)

)k′

P

(
k′∑

i=1

X(J)
in (λ)= n′

)
dλ

λ
. (18)

In this we change variable from λ to λn, and let

qjn = Fj(λn)∑n

=1 F
(λn)

, 1≤ j≤ J, and q+n =
J∑

j=1

qjn. (19)

The qjn and q+n depend on λ, but this is omitted in the notation. From (19),

∑n

=J+1 F
(λn)∑n

=1 F
(λn)

= 1−
J∑

j=1

qjn = 1− q+n,

so we can rewrite (18) as

P(Mjn(α, r)=mj, 1≤ j≤ J, Kn(α, r)= k)

=
∫ ∞

0

�(r+ k)(1− q+n)k′

k′!∏J
j=1 mj!

J∏
j=1

q
mj
jn ×

(λn)αk

�(λn)k

(
n∑


=1

F
(λn)

)k

× 1

�(r)�(λn)r
× nP

(
k′∑

i=1

X(J)
in (λn)= n′

)
dλ

λ
. (20)
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Introducing continuous variables z > 0 and uj ≥ 0, 1≤ j≤ J, we can write

P
(

Mjn(α, r)

Kn(α, r)
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α, r)

nα
≤ c

)
=

∑
1≤j≤J, 1≤k≤cnα

1
{
mj ≤

(
qj + aj/nα/2)k}

× P(Mjn(α, r)=mj, Kn(α, r)= k)

=
∫

P(Mjn(α, r)= �uj�, Kn(α, r)= �z�)
J∏

j=1

duj dz, (21)

where the integration is over the range{
uj ≤

(
qj + aj/nα/2)z, 1≤ j≤ J, 0 < z≤ cnα

}
.

In this integral make the change of variables z= nαx, uj =
(
qj + yj/nα/2

)
z, so dz= nα dx, duj =

dyjxnα/2, to write (21) as

P
(

Mjn(α, r)

Kn(α, r)
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α, r)

nα
≤ c

)
= nα(1+J/2)

×
∫

y≤a, 0<x≤c
xJP

(
Mjn(α, r)= ⌊(qj + yj/nα/2)xnα

⌋
, 1≤ j≤ J, Kn(α, r)= �xnα�) dy dx.

(22)

Substitute from (20) to write the last expression as∫
λ>0

∫
y≤a, 0<x≤c

fn(y, x, λ) dy dx dλ =:
∫

λ>0
In(a, c, λ) dλ, (23)

where

In(a, c, λ)=
∫

y≤a, 0<x≤c
fn(y, x, λ) dy dx

and fn(y, x, λ) denotes the probability in (22), together with a factor nα(1+J/2)xJ , and with mj

replaced by (qj + yj/nα/2)k and k replaced by �xnα� in (20). The limiting behaviours of the
four factors in (20) which contribute to fn(y, x, λ) are set out in the next lemma, whose proof
is given in the supplementary material to this paper. The matrix QJ is defined using (10), its
determinant is det(QJ) and a tilde means the ratio of the connected quantities tends to 1.

Lemma 1. With the substitutions k= �xnα�, mj = �qj + yj/nα/2�k, k′ = k−m+, we have the
following limiting behaviours as n→∞:

�(r+ k)(1− q+n)k′

k′!∏J
j=1 mj!

J∏
j=1

q
mj
jn ∼

(xnα)r−J/2−1 e− x
2 y	Q−1

J y√
(2π )J det (QJ)

, (24)

lim
n→∞

(λn)αk

�(λn)k

(
n∑


=1

F
(λn)

)k

= e−x(λ−α∨1)/�(1−α), (25)
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8 R. A. MALLER AND S. SHEMEHSAVAR

1

�(r)�(λn)r
∼ 1

�(r)(λn)rα�r(1− α)
, (26)

lim
n→∞ nP

(k−m+∑
i=1

X(J)
in (λn)= n−m++

)
= fYx(λ)(1). (27)

Multiplying together the right-hand sides of (24)–(27), and keeping in mind the factor of
nα(1+J/2) from (22), which exactly matches the factors of n in the right-hand side of (24) and
(26), then substituting in (20), shows the existence of the limit

lim
n→∞ fn(y, x, λ) =: f (y, x, λ)

= 1

�(r)�r(1− α)

xr+J/2−1 e− x
2 y	Q−1

J y√
(2π )J det (QJ)

e−x(λ−α∨1)/�(1−α) fYx(λ)(1)

λ
. (28)

This is the integrand in (12). Let

I(λ) :=
∫

y∈RJ , x>0
f (y, x, λ) dy dx.

Then
∫
λ>0 I(λ) dλ is the integral in (12) taken over (y, x) ∈RJ × (0,∞). The integral over y of

the right-hand side of (28) equals

xr−1

�(r)�r(1− α)
e−x(λ−α∨1)/�(1−α) fYx(λ)(1)

λαr+1
,

and when integrated over λ > 0 this equals the limiting density of Kn(α, r) in equation (2.8) of
[26]. Thus

∫
λ>0 I(λ) dλ= 1.

Now argue as follows. Let En denote the event in the probability on the left-hand side of
(22). Then, by (23), P(En)= ∫

λ>0 In(a, c, λ) dλ, and Fatou’s lemma gives

lim inf
n→∞ P(En)= lim inf

n→∞

∫
λ>0

In(a, c, λ) dλ≥
∫

λ>0
I(a, c, λ) dλ, (29)

where

I(a, c, λ)= lim inf
n→∞ In(a, c, λ)≥

∫
y≤a, 0<x≤c

f (y, x, λ) dy dx,

again by Fatou’s lemma. Let Ec
n denote the complement of En and set Ic(a, c, λ)= I(λ)−

I(a, c, λ) and Ic
n(a, c, λ)= I(λ)− In(a, c, λ). Then

lim inf
n→∞ P(Ec

n)= lim inf
n→∞ (1− P(En))

= lim inf
n→∞

∫
λ>0

(I(λ)− In(a, c, λ)) dλ

= lim inf
n→∞

∫
λ>0

Ic
n(a, c, λ) dλ

≥
∫

λ>0
lim inf
n→∞ Ic

n(a, c, λ) dλ.
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Now

lim inf
n→∞ Ic

n(a, c, λ)= lim inf
n→∞

∫
{y≤a, 0<x≤c}c

fn(y, x, λ) dy dx

≥
∫
{y≤a, 0<x≤c}c

f (y, x, λ) dy dx

=
(∫
{y∈RJ , x>0}

−
∫

y≤a, 0<x≤c

)
f (y, x, λ) dy dx

≥ I(λ)− I(a, c, λ),

and hence∫
λ>0

lim inf
n→∞ Ic

n(a, c, λ) dλ≥
∫

λ>0
(I(λ)− I(a, c, λ)) dλ= 1−

∫
λ>0

I(a, c, λ) dλ.

It follows that

lim sup
n→∞

P(En)= 1− lim inf
n→∞ P(Ec

n)≤
∫

λ>0
I(a, c, λ) dλ, (30)

and together with (29) this proves

lim
n→∞ P(En)=

∫
λ>0

I(a, c, λ) dλ,

i.e. (12). �
Proof of Corollary 1. (M̃(α, r), K(α, r)) has density equal to∫

λ>0
f (y, x, λ) dλ,

where f (y, x, λ) is defined in (28). Integrating out y from this integral gives

fK(α,r)(x) := xr−1

�(r)�r(1− α)

∫
λ>0

e−x(λ−α∨1)/�(1−α)fYx(λ)(1)
dλ

λαr+1
, x > 0,

for the density of K(α, r) at x > 0, agreeing with equation (2.8) of [26]. Then dividing∫
λ>0

f (y, x, λ) dλ

by fK(α,r)(x) gives (13). �

4. The Pitman sampling formula

The next theorem deals with Pitman’s formula for the AFS from PD(α, θ ). Again we see an
nα/2 norming for the frequency spectrum, as also occurred in Theorem 1. The marginal lim-
iting distribution obtained for Kn(α, θ )/nα in Theorem 2 agrees with that in equation (3.27)
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10 R. A. MALLER AND S. SHEMEHSAVAR

of [42, p. 68]. Let c≥ 0, J ∈N, a= (a1, a2, . . . , aJ) ∈RJ , define QJ as in (10) and write
(Mjn(α, θ ))1≤j≤n for the components of Mn(α, θ ).

Theorem 2. For the PD(α, θ ) model we have the asymptotic property

lim
n→∞ P

(
Mjn(α, θ )

Kn(α, θ )
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α, θ )

nα
≤ c

)
= �(θ + 1)

�(θ/α + 1)

∫
y∈RJ , y≤a

∫
0<x≤c

xJ/2+θ/α−1 e− x
2 y	Q−1

J y

α
√

(2π )J det (QJ)
fYx(1)(1) dx dy. (31)

Integrating out y gives, for the limiting density of Kn(α, θ )/nα ,

�(θ + 1)

α�(θ/α + 1)
xθ/α−1 e−x/�(1−α)fYx(1)(1), x > 0.

When θ = 0 this can alternatively be written as a Mittag–Leffler density, fLα (x), x > 0.

Proof of Theorem 2. Start from Pitman’s sampling formula (2) and proceed as in (14) to get,
with 1≤ J < n,

P(Mjn(α, θ )=mj, 1≤ j≤ J, Kn(α, θ )= k)

= n!
α

�(θ/α + k)

�(θ/α + 1)

�(θ + 1)

�(n+ θ )

(
α

�(1− α)

)k J∏
j=1

1

mj!
(

�(j− α)

j!
)mj

×
∑

m(J)∈A(J)
kn

n∏
j=J+1

1

mj!
(

�(j− α)

j!
)mj

, (32)

where m(J) and A(J)
kn are as in (15). Let

p(J)
n =

(
p(J)

jn

)
J+1≤j≤n =

(
�(j− α)/j!∑n


=J+1 �(
− α)/
!
)

J+1≤j≤n
,

and in the notation of (8) let Mult
(
J, k−m+, n, p(J)

n (λ)
)

be a multinomial with

P
(
Mult

(
J, k−m+, n, p(J)

n

)= (mJ+1, . . . , mn)
)= (k−m+)!

n∏
j=J+1

(
p(J)

jn

)mj

mj! , (33)

where mj ≥ 0, J + 1≤ j≤ n,
∑n

j=J+1 mj = k−m+, and recall that

m+ =
J∑

j=1

mj and m++ =
J∑

j=1

jmj.

As in the previous proof we can represent the summation over m(J) of the left-hand side of (33)
using (9) and the probability

P

(k−m+∑
i=1

X(J)
in = n−m++

)
, (34)
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where
(
X(J)

in

)
1≤i≤k−m+ are i.i.d. with

P
(
X(J)

1n = j
)= p(J)

jn , J + 1≤ j≤ n.

Again let k′ = k−m+ and n′ = n−m++ where convenient. Then we obtain

∑
m(J)∈A(J)

kn

n∏
j=J+1

1

mj!
(

�(j− α)

j!
)mj

= 1

k′!
∑

m(J)∈A(J)
kn

k′!
n∏

j=J+1

(
p(J)

jn

)mj

mj!

(
n∑


=J+1

�(
− α)


!

)mj

= 1

k′!

(
n∑


=J+1

�(
− α)


!

)k′

P

(
k′∑

i=1

X(J)
in = n′

)
. (35)

To economise on notation we let

qjn = �(j− α)/j!∑n

=1 �(
− α)/
! , 1≤ j≤ J, so that

∑n

=J+1 �(
− α)/
!∑n

=1 �(
− α)/
! = 1− q+n, (36)

still with q+n =∑J
j=1 qjn. The qjn in (36) play an exactly analogous role to those in (19). We

can write, with the same change of variables as in (22),

P
(

Mjn(α, θ )

Kn(α, θ )
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α, θ )

nα
≤ c

)
= nα(1+J/2)

×
∫

y∈RJ , y≤a

∫
0<x≤c

xJP
(
Mjn(α, θ )= ⌊(qj + yj/nα/2)xnα

⌋
, 1≤ j≤ J, Kn(α, θ )

= �xnα�) dy dx,

where 1≤ J < n, and then, using (32), (34), and (35), we get

P(Mjn(α, θ )=mj, 1≤ j≤ J, Kn(α, θ )= k)

=
(

α

�(1− α)

n∑

=1

�(
− α)


!

)k

× �(n)�(θ/α + k)�(θ + 1)

αk′!�(θ/α+ 1)�(n+ θ )

× (1− q+n
)k′ J∏

j=1

q
mj
jn

mj! × nP

(
k′∑

i=1

X(J)
in = n′

)
. (37)

The following counterpart of Lemma 1 is proved in the supplementary material.
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12 R. A. MALLER AND S. SHEMEHSAVAR

Lemma 2. With the substitutions k= �xnα�, mj = �qj + yj/nα/2�k, k′ = k−m+, we have the
following limiting behaviours as n→∞:

(k− 1)!(1− q+n)k′

k′!∏J
j=1 mj!

J∏
j=1

q
mj
jn ∼

(xnα)−J/2−1 e− x
2 y	Q−1

J y√
(2π )J det (QJ)

,

lim
n→∞

(
α

�(1− α)

n∑

=1

�(
− α)


!

)�xnα�
= e−x/�(1−α),

�(n)�(θ/α+ k)�(θ + 1)

αk′!�(θ/α + 1)�(n+ θ )
∼ xθ/α(k− 1)!�(θ + 1)

αk′!�(θ/α + 1)
,

lim
n→∞ nP

(
k′∑

i=1

X(J)
in = n′

)
= fYx(1)(1).

Substituting these estimates in (37), we arrive at (31). �

The PD(α, θ ) model reduces exactly to the PD(α, 0) model when θ is set equal to 0, and
the same is true of the asymptotic result for it. There is an interesting connection between the
probability density of a Stable(α) subordinator and that of a Mittag–Leffler random variable,
which we exploit. Write the probability density function (PDF) of a Stable(α) subordinator
(Sx(α))x≥0 (using variable x≥ 0 for the time parameter) having Laplace transform e−xτα

and
Lévy density αz−α−11{z>0}/�(1− α), as

fSx(α)(s)= 1

π

∞∑
k=0

(−1)k+1

k!
�(αk+ 1)

sαk+1
xk sin (παk), (38)

and the PDF of a Mittag–Leffler random variable Lα with parameter α as

fLα (s)= 1

πα

∞∑
k=0

(−1)k+1

k! �(αk+ 1)sk−1 sin (παk) (39)

(Pitman [42, pp. 10, 11]). Then observe the useful relation

1

αx
fSx(α)(1)= fLα (x), x > 0. (40)

Let a= (a1, a2, . . . , aJ) ∈RJ , c > 0, and write (Mjn(α))1≤j≤n for the components of Mn(α).
We prove the following theorem as a corollary to Theorem 2.

Theorem 3. For the PD(α, 0) model, we have

lim
n→∞ P

(
Mjn(α)

Kn(α)
≤ qj + aj

nα/2
, 1≤ j≤ J,

Kn(α)

nα
≤ c

)
=
∫

y∈RJ , y≤a

∫
0<x≤c

xJ/2−1 e− x
2 y	Q−1

J y

α
√

(2π )J det (QJ)
e−x/�(1−α)fYx(1)(1) dx dy. (41)
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Integrating out y gives, for the limiting density of Kn(α)/nα ,

1

αx
e−x/�(1−α)fYx(1)(1), x > 0.

This can alternatively be written as a Mittag–Leffler density, fLα (x), x > 0.
Let (M̃(α), K(α)) have the distribution on the right-hand side of (41). The distribution of

M̃(α), conditional on K(α)= x > 0, is N(0, QJ/x), as in (13).

Remarks. (i) Pitman [42, Thm 3.8, p. 68] gives the almost sure convergence of Kn(α)/nα

to a Mittag–Leffler random variable and the corresponding almost sure convergence of each
Mjn/nα . Equation (41) also shows that the Mjn are of order nα , but we express (41) as we do
because Kn(α) is a natural normaliser of Mn(α), producing a vector whose components add to
1. Similarly in Theorems 1 and 2.

(ii) Following the fidi convergence proved in Theorems 1, 2, and 3, it is natural to ask for
functional versions. We leave consideration of this to another time.

Proof of Theorem 3. Equation (31) reduces to (41) when θ = 0, so we need only show how
the density fYx(1)(1) in (41) is related to the density of the Mittag–Leffler distribution. Here a
result of Covo [8], which relates the Lévy density of a subordinator to that of a subordinator
with the same but truncated Lévy measure, plays a key role.

The Lévy density of Yx(1) is obtained from (11) with λ= 1, and is the same as that of Sx(α)
truncated at 1. Using Corollary 2.1 of Covo [8] (in his formula set x= 1, s= λ, t= x, and take
�(λ)= λ−α/�(1− α)), we have

fYx(λ)(1)= exλ−α/�(1−α)

(
fSx(α)(1)+

�1/λ�−1∑
κ=1

(−x)κA(1)
λ:κ (1, x)

)
(42)

(with
∑0

1 ≡ 0), where the A(1)
λ:κ are certain functions defined by Covo. When λ= 1 these

functions disappear from the formula, and we simply have

fYx(1)(1)= ex/�(1−α)fSx(α)(1).

Using this together with (40) to replace fYx(1)(1) in (41), we obtain a representation of the
limiting density of Kn(α)/nα in terms of a Mittag–Leffler density, in agreement with Theorem
3.8 of [42].

The conditional distribution of M̃(α) given K(α) follows easily. �

5. The Ewens sampling formula

In the next theorem, dealing with PD(θ ), the limiting behaviours of Mn(θ ) and Kn(θ ) as
(independent) Poissons and normal are well known separately ([2, p. 96], [42, pp. 68, 69]), but
the asymptotic independence of Mn(θ ) and Kn(θ ) seems not to have been previously noted,
and the way the joint limit arises from the methodology of the previous sections is also inter-
esting. A result of Hensley [22] plays a key role. Let m= (m1, . . . , mn) ∈ Akn, c ∈R, and write
(Mjn(θ ))1≤j≤n for the components of Mn(θ ).
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Theorem 4. For the PD(θ ) model we have

lim
n→∞ P

(
Mjn(θ )=mj, 1≤ j≤ J,

Kn(θ )− θ log n√
θ log n

≤ c

)
=

J∏
j=1

1

mj!
(

θ

j

)mj

e−θ/j × 1√
2π

∫
x≤c

e−
1
2 x2

dx. (43)

Proof of Theorem 4. Starting from Ewens’ sampling formula (4), with n, J ∈N, n > J, k ∈
Nn, and m+ =∑J

j=1 mj, we get

P(Mjn(θ )=mj, 1≤ j≤ J, Kn(θ )= k)

= n!�(θ )θk−m+

�(n+ θ )

J∏
j=1

1

mj!
(

θ

j

)mj ∑
m(J)∈A(J)

kn

n∏
j=J+1

1

mj!
(

1

j

)mj

, (44)

where m(J) and A(J)
kn are as in (15). Let vector p(J)

n have components

pjn = 1

j

/ n∑

=J+1

1



, J + 1≤ j≤ n, (45)

and let Mult
(
J, k−m+, n, p(J)

n
)

be multinomial with distribution

P
(
Mult

(
J, k−m+, n, p(J)

n

)= (mJ+1, . . . , mn)
)= (k−m+)!

n∏
j=J+1

(pjn)mj

mj! ,

for mj ≥ 0, with
∑n

j=J+1 mj = k−m+. Thus, arguing as in (35), we find

∑
m(J)∈A(J)

kn

n∏
j=J+1

1

mj!
(

1

j

)mj

= 1

k′!

(
n∑


=J+1

1




)k′

P

(
k′∑

i=1

X(J)
in = n′

)
,

where k′ = k−m+, n′ = n−m++ and
(
X(J)

in

)
1≤i≤k′ are i.i.d. with

P
(
X(J)

1n = j
)= pjn, J + 1≤ j≤ n. (46)

So we can write, from (44),

P(Mjn(θ )=mj, 1≤ j≤ J, Kn(θ )= k)

= �(n)�(θ )θk′

�(n+ θ )k′!

(
n∑


=J+1

1




)k′ J∏
j=1

1

mj!
(

θ

j

)mj

nP

(
k′∑

i=1

X(J)
in = n′

)
. (47)

Then, for c ∈R,

P
(

Mjn(θ )=mj, 1≤ j≤ J,
Kn(θ )− θ log n√

θ log n
≤ c

)
=
∫

z≤θ log n+c
√

θ log n
P(Mjn(θ )=mj, 1≤ j≤ J, Kn(θ )= �z�) dz

=√θ log n
∫

x≤c
P
(
Mjn(θ )=mj, 1≤ j≤ J, Kn(θ )= �θ log n+ x

√
θ log n�) dx. (48)
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Let kn(x)= �θ log n+ x
√

θ log n� and calculate√
θ log nP(Mjn(θ )=mj, 1≤ j≤ J, Kn(θ )= kn(x))

=√θ log n× right-hand side of (47) with k= kn(x).

We let n→∞ in this. Consider the various factors. First,

�(n)�(θ )

�(n+ θ )
∼ �(θ )

nθ
. (49)

Next, using a standard asymptotic for the harmonic series,

(
n∑


=J+1

1




)k−m+
=
(

n∑

=1

1



−

J∑
j=1

1

j

)k−m+

=
(

log n+ γ −
J∑

j=1

1

j
+O(1/n)

)k−m+

= ( log n)k−m+

(
1+ γ −∑J

j=1 1/j+O(1/n)

log n

)k−m+

∼ ( log n)k−m+ eθγ−θ
∑J

j=1 1/j
, as k= kn(x)→∞. (50)

Here γ = 0.577 . . . is Euler’s constant and we recall kn(x)= �θ log n+ x
√

θ log n�.
Substitute (49) and (50) in (47), remembering the factor of

√
θ log n from (48), to get (47)

asymptotic to

√
θ log n

nθ

(θ log n)k′

k′! × eθγ �(θ )×
J∏

j=1

1

mj!
(

θ

j

)mj

e−θ/j × nP

(
k′∑

i=1

X(J)
in = n′

)
. (51)

Using Stirling’s formula and the relations k′ = k−m+ = k−∑J
j=1 mj and k= kn(x)=

�θ log n+ x
√

θ log n�, we find that

√
θ log n

nθ

(θ log n)k′

k′! ∼
√

θ log n

nθ

(θ log n)k′
√

2πk′ (k′)k′ e−k′

∼ ek′
√

2πnθ

(
θ log n

k′

)k′

= ek′
√

2πnθ

(
1− k′ − θ log n

k′

)k′

= ek′
√

2πnθ
exp

(
k′ log

(
1− k′ − θ log n

k′

))
. (52)
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Note that

k′ − θ log n

k′
= �θ log n+ x

√
θ log n� −m+ − θ log n

k′
= x
√

θ log n+O(1)

k′

is O(1/
√

log n)→ 0 as n→∞, so we can use the expansion log (1− z)=−z− z2/2− . . . for
small z to get, for the right-hand side of (52),

ek′
√

2πnθ
exp

(
k′
(
−k′ − θ log n

k′
− 1

2

(
k′ − θ log n

k′

)2))
+O

(
1

log n

)3/2

= 1√
2π

exp

(
−1

2

(
x
√

θ log n+O(1)
)2

θ log n+ x
√

θ log n

)
+O

(
1

log n

)1/2

→ 1√
2π

e−x2/2.

Thus (51) is asymptotic to

J∏
j=1

1

mj!
(

θ

j

)mj

e−θ/j × 1√
2π

e−x2/2 × eθγ �(θ )× nP

(
k′∑

i=1

X(J)
in = n′

)
. (53)

It remains to deal with the X(J)
in term in (53). We need a version of a local limit theorem for

a sum of i.i.d. random variables; this kind of usage has arisen before in various analyses of
Poisson–Dirichlet processes [2, 42]. Use the Fourier inversion formula for the mass function
of a discrete random variable (Gnedenko and Kolmogorov [15, p. 233]) to write

nP

(
k′∑

i=1

X(J)
in = n′

)
= n

2π

∫ π

−π

e−n′iν(φn(ν))k′ dν

= n

2πn′

∫ n′π

−n′π
e−iν(E(eiνX1n/n′))k′ dν, (54)

where φn(ν)=E
(
eiνX(J)

1n
)
, ν ∈R. By (45) and (46),

E
(
eiνX(J)

1n /n′)= n∑
j=J+1

eiνj/n′

j

/ n∑

=J+1

1



= 1+

n∑
j=J+1

1

j

(
eiνj/n′ − 1

)/ n∑

=J+1

1



,

in which ∑n
j=J+1

(
eiνj/n′ − 1

)
/j∑n


=J+1 /

=
(∑n

j=1 −
∑J

j=1

)(
eiνj/n′ − 1

)
/j(∑n


=1 −
∑J


=1

)
1/


=
∑n

j=1

(
eiνj/n′ − 1

)
/j

log n+O(1)
+O

(
1

n log n

)
.
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The numerator here is

n∑
j=1

1

j

(
eiνj/n′ − 1

)= n∑
j=1

iν

n′

∫ 1

0
eiνzj/n′ dz

= iν

n′

∫ 1

0

n∑
j=0

eiνzj/n′ dz− iν

n′

= iν

n′

∫ 1

0

eiνz(n+1)/n′ − 1

eiνz/n′ − 1
dz+O

(
1

n

)
= iν

∫ 1

0

eiνz(n+1)/n′ − 1

iνz+O(1/n)
dz+O

(
1

n

)
=
∫ 1

0

(
eiνz − 1

)dz

z
+O

(
1

n

)
,

and consequently (
1+

n∑
j=J+1

1

j

(
eiνj/n′ − 1

)/ n∑

=J+1

1




)kn(x)−m+

=
(

1+
∫ 1

0

(
eiνz − 1

)
dz/z

log n+O(1)

)�θ log n+x
√

θ log n−m+�
.

The last expression has limit exp (θ
∫ 1

0 (eiνz − 1) dz/z) so it follows that

lim
n→∞

(
E eiνX(J)

1n /n′)k′ = eθ
∫ 1

0 (eiνz−1) dz/z = ŵθ (ν),

in the notation of Hensley [22] (his equations (2.6) and (2.12) with α= θ and K(α)= 1).
Hensley’s function ŵθ (ν) is the characteristic function of a density wθ (u), so taking the limit
in (54) gives

1

2π

∫ ∞
−∞

e−iνŵθ (ν) dν =wθ (1).

(Justification for taking the limit through the integral in (54) can be given by using the kind of
arguments in (29)–(30).) By [22, eq. (2.1)], wθ (1)= e−θγ /�(θ ). We conclude that

lim
n→∞ nP

(
k′∑

i=1

X(J)
in = n′

)
= e−θγ /�(θ ).

Substituting this in (53) gives (43); in fact we get density convergence in (43), which is
stronger. �

6. Other limits

In this section we derive other limits of the processes studied above. Section 6.1 analyses
PD(r)

α as r ↓ 0 or r→∞. Section 6.2 summarises the results in a convergence diagram for
Mn(α, r), showing that the convergences n→∞ and r ↓ 0 commute.
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6.1. Limiting behaviour of PD(r)
α as r ↓ 0 or r → ∞

Kingman’s PD(α, 0) distribution arises by taking the ordered jumps, (�S(i)
1 )i≥1, up to

time 1, of a driftless α-stable subordinator S= (St)t>0, normalised by their sum S1, as a ran-
dom distribution on the infinite simplex ∇∞. A natural generalisation is to delete the r largest
jumps (r≥ 1 an integer) up to time 1 of S, and consider the vector whose components are the
remaining jumps (�S(i)

1 )i≥r+1 normalised by their sum. Again we obtain a random distribution
on ∇∞, now with an extra parameter, r. This is the PD(r)

α distribution of Ipsen and Maller [23].
Some limiting and other properties of it were studied in [24], where it was extended to all r > 0,
not just integer r, and in Chegini and Zarepour [6]. Zhang and Dassios [46] also consider an
α-stable subordinator with largest jumps removed for simulating functionals of a Pitman–Yor
process.

By its construction, PD(r)
α reduces to PD(α, 0) when r is set equal to 0, but Theorem 5

shows a kind of continuity property: as r ↓ 0 the distribution of (Mn(α, r), Kn(α, r)) from PD(r)
α

converges to the corresponding quantity from PD(α, 0); a useful result for statistical analysis,
where we might fit the PD(r)

α model with general α and r to data, and test H0 : r= 0, i.e. whether
r is needed in the model to describe the data. The parameter r models ‘over-dispersion’ in the
data [6].

In this subsection we keep n and α fixed and let r ↓ 0 or r→∞. Part (i) of the next theorem
is an analogue of the Pitman and Yor result [43, p. 880] that, for each θ > 0, the limit of
PD(α, θ ) as α ↓ 0 is PD(θ ).

Theorem 5. We have the following limiting behaviour for PD(r)
α .

(i) As r ↓ 0, the limit of P(Mn(α, r)=m, Kn(α, r)= k) is the probability in (3), i.e. the
distribution of (Mn(α), Kn(α)).

(ii) In the limit as r→∞, a sample from PD(r)
α is of n alleles each with 1 representative, i.e.

the singleton distribution with mass 1(m,k)=((n,0,...,0n),n).

Proof of Theorem 5. For this proof it is convenient to work from a formula for PD(r)
α derived

from equations (2.1) and (3.7) of [26]. For m ∈ Akn (see (1)) and k ∈Nn,

P(Mn(α, r)=m, Kn(α, r)= k)

= n
∫ ∞

0

n(λ)kP(Mult(0, k, n, pn(λ))=m)P

(
Negbin

(
r,

1

�(λ)

)
= k

)
dλ

λ
, (55)

where the multinomial notation is as in (8) with

pn(λ)= (pjn(λ))j∈Nn =
(

Fj(λ)∑n

=1 F
(λ)

)
j∈Nn

, (56)

and Fj(λ) is as in (7). The function 
n(λ) is defined in [26, eq. (3.6)] as


n(λ) := �n(λ)− 1

�(λ)− 1
=
∫ λ

0

∑n
j=1 (zj/j!)z−α−1 e−z dz∫ λ

0 z−α−1(1− e−z) dz
≤ 1, (57)

where �(λ) is as in (6). Finally, in (55), Negbin(r, 1/�(λ)) is a negative binomial random
variable with parameter r > 0 and success probability 1/�(λ), thus

P
(

Negbin

(
r,

1

�(λ)

)
= k

)
= �(r+ k)

�(r)k!
(

1− 1

�(λ)

)k( 1

�(λ)

)r

, k ∈Nn. (58)
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(i) Observe, by (6), for all λ > 0,

1∨ λα

∫ λ

0
e−zz−α dz≤�(λ)= 1+ αλα

∫ λ

0
(1− e−z)z−α−1 dz≤ 1+ λα�(1− α), (59)

so (recalling that �(λ) > 1)

P
(

Negbin

(
r,

1

�(λ)

)
= k

)
= �(r+ k)

�(r)k!
(�(λ)− 1)k

�(λ)k+r
≤ �(r+ k)�k(1− α)

�(r)k! λkα . (60)

Fix A > 0. Using (60) and 
n(λ)≤ 1, the component of the integral over (0, A) in (55) does
not exceed

n
∫ A

0

�(r+ k)�k(1− α)

�(r)k! λkα−1 dλ= n�(r+ k)�k(1− α)

�(r)k! × Akα

kα
,

and this tends to 0 as r ↓ 0 since then �(r)→∞.
For the component of the integral over (A,∞) in (55), change variable to λ= λ/r and write

it as

n
∫ ∞

Ar

n(λ/r)kP(Mult(0, k, n, pn(λ/r))=m)P

(
Negbin

(
r,

1

�(λ/r)

)
= k

)
dλ

λ
. (61)

From (7), (56), and (57),

lim
λ→∞ 
n(λ) =: 
∞n =

α

�(1− α)

n∑
j=1

�(j− α)

j!

and

lim
λ→∞ pj(λ) =: pj(∞)=

(
Fj(∞)∑n


=1 F
(∞)

)
= �(j− α)

j!
/ n∑


=1

�(
− α)


! ,

so that, as λ→∞,

(
n(λ))kP(Mult(0, k, n, pn(λ))=m)→ k!
(

α

�(1− α)

)k n∏
j=1

1

mj!
(

�(j− α)

j!
)mj

. (62)

Given ε > 0, choose A= A(ε) large enough for the left-hand side of (62) to be within ε of the
right-hand side when λ > A. Note that, by (59), when λ/r > A,

�(λ/r)≥ (λ/r)α
∫ λ/r

0
e−zz−α dz≥ (λ/r)α

∫ A

0
e−zz−α dz =: cα,A(λ/r)α .

So, using (58), an upper bound for the integral in (61) is, for r < 1,

n

cr
α,A

∫ ∞
Ar

(
k!
(

α

�(1− α)

)k n∏
j=1

1

mj!
(

�(j− α)

j!
)mj

+ ε

)
�(r+ k)

�(r)k!
rαr dλ

λαr+1

= n

cr
α,A

(
k!
(

α

�(1− α)

)k n∏
j=1

1

mj!
(

�(j− α)

j!
)mj

+ ε

)
�(r+ k)

αr�(r)k!A
−αr. (63)
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Let r ↓ 0 and note that cr
α,A→ 1, A−αr→ 1, r�(r)= �(r+ 1)→ 1 and �(r+ k)→ �(k)=

(k− 1)!. Then, letting ε ↓ 0, we obtain an upper bound for the limit of the integral in (55)
equal to the distribution in (3).

For a lower bound, we can discard the component of the integral over (0, A) in
(55), then change variables as in (61). For λ/r≥ A, �(λ/r)≤ 1+ (λ/r)α�(1− α)= (1+
o(1))(λ/r)α�(1− α) as r ↓ 0. So, from (58) and (59),

P
(

Negbin

(
r,

1

�(λ/r)

)
= k

)
≥ �(r+ k)

�(r)k!
(

1− 1

�(λ/r)

)k( 1

(1+ o(1))(λ/r)α�(1− α)

)r

.

We also have the limit in (62). Substituting these in (61), we get a lower bound of the same
form as in the left-hand side of (63). Fatou’s lemma can then be used on the integral to get a
lower bound equal to the upper bound derived earlier. Thus we prove part (i).

(ii) In the integral in (55), change variable to

ρ =
(

1− 1

�(λ)

)
r

1/�(λ)
= r(�(λ)− 1),

so that
dλ

λ
= dρ

rλ� ′(λ)
, �(λ)= ρ

r
+ 1 and λ=�←

(
ρ

r
+ 1

)
,

where �← is the inverse function to �. Then r→∞ implies �(λ)→ 1 thus λ→ 0. From (7),
(56), (57), and L’Hôpital’s rule we see that

lim
λ→0


n(λ)= 1 and lim
λ→0

pjn(λ)= pjn(0)= lim
λ→0

1

j!∑n

=1 λ
−j/
! = 1j=1.

After changing variable in (55), we get

P(Mn(α, r)=m, Kn(α, r)= k)

= n
∫ ∞

0

n

(
�←

(
ρ

r
+ 1

))k

P
(

Mult(0, k, n, pn

(
�←

(
ρ

r
+ 1

))
=m

)
× P

(
Negbin

(
r,

r

r+ ρ

)
= k

)
dρ

rλ� ′(λ)
. (64)

In this, by (6),
�(λ)− 1∼ αλ/(1− α) as λ→ 0,

so rλ∼ (1− α)ρ/α, and

� ′(λ)= α

∫ 1

0
e−λzz−α dz→ α/(1− α) as λ→ 0.

We have 
n( · )≤ 1, and by (60) the negative binomial probability is bounded above by a con-
stant multiple of rkλk � ρk for large r, and as r→∞ we have convergence of the negative
binomial to the Poisson. So by dominated convergence the right-hand side of (64) converges
to

n
∫ ∞

0
P(Mult(0, k, n, pn(0))= (1, 0, . . . , 0))

e−ρρk

k!
dρ

ρ

= n

k
P(Mult(0, k, n, pn(0))= (1, 0, . . . , 0)).
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Here Mult(0, k, n, pn(0)) is multinomial with pn(0)= (pjn(0))1≤j≤n, and so the probability
equals 1(m,k)=((n,0,...,0n),n) as required. �

Theorem 6. For the PD(r)
α model we have the property

lim
r↓0

(right-hand side of (12))= right-hand side of (41).

Proof of Theorem 6. From (12) it suffices to consider the integrand

xr+J/2−1

�(r)�r(1− α)

e− x
2 y	Q−1

J y√
(2π )J det (QJ)

∫ ∞
λ=0

e−x(λ−α∨1)/�(1−α)fYx(λ)(1)
dλ

λαr+1
, (65)

and for this we look at
∫ 1

0 and
∫∞

1 separately. Recall that fYx(λ)(y) is uniformly bounded
in λ by C, say. For the first part, make the transformation y= λ−α , so λ= y−1/α and dλ=
−y−1/α−1 dy/α. Then

∫ 1
0 is bounded by

Cxr+J/2−1

�(r)�r(1− α)

e− x
2 y	Q−1

J y√
(2π )J det (QJ)

∫ 1

λ=0
e−x(λ−α∨1)/�(1−α) dλ

λαr+1

= Cxr+J/2−1

α�(r)�r(1− α)

e− x
2 y	Q−1

J y√
(2π )J det (QJ)

∫ ∞
y=1

e−xy/�(1−α)yr−1 dy,

which tends to 0 as r ↓ 0. So we can neglect
∫ 1

0 . For
∫∞

1 the contribution is

xr+J/2−1

�(r)�r(1− α)

e− x
2 y	Q−1

J y√
(2π )J det (QJ)

∫ ∞
λ=1

e−x/�(1−α)fYx(1)(1)
dλ

λαr+1

= xr+J/2−1

αr�(r)�r(1− α)

e− x
2 y	Q−1

J y√
(2π )J det (QJ)

e−x/�(1−α)fYx(1)(1)

→ xJ/2−1 e− x
2 y	Q−1

J y

α
√

(2π )J det (QJ)
e−x/�(1−α)fYx(1)(1),

using limr↓0 r�(r)= limr↓0 �(r+ 1)= 1. This equals the integrand on the right-hand side of
(41). �

Remarks. (i) We can simplify the limit distribution in (12) somewhat by using Corollary 2.1
of [8] as we did in the proof of Theorem 3. Once again in the integral in (65) look at

∫ 1
0 and∫∞

1 separately. The component of the integral over (1,∞) can be explicitly evaluated as

1

�(r)�r(1− α)
xrfLα (x).

The component over (0,1) involves the functions A(1)
λ:κ defined by Covo (see (42)), which can

be calculated using a recursion formula he gives; for an alternative approach, see [38].
(ii) Theorem 3.1 of Maller and Shemehsavar [35] shows that a sampling model based on

the Dickman subordinator has the same limiting behaviour as the Ewens sampling formula.
The Dickman function is well known to be closely associated with PD(θ ) and some of its
generalisations; see e.g. Arratia and Baxendale [1], Arratia et al. [2, pp. 14, 76], Handa [20],
and [25], [26], and [35].
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FIGURE 1. Convergence diagram for PD(r)
α . Arrows denote convergence in distribution. Upper left to

upper right is proved in Theorem 1; (M̃(α, r), K(α, r)) has the distribution on the right-hand side of (12).
Upper left to lower left is proved in Theorem 5(i). For upper right to lower right, the convergence is
proved in Theorem 6. Lower left to lower right is proved in Theorem 3, with (M̃(α), K(α)) denoting a
random variable with the Normal-Mittag–Leffler mixture distribution on the right-hand side of (41). The
diagram is schematic only: the random variables have to be normed and centred in certain ways before

convergence takes place.

6.2. Convergence diagram for PD(r)
α

Using Theorems 1 and 3 we can give the convergence diagram shown in Figure 1. We
can also use Theorem 1 to complete the convergence diagram for Mn(α, r) in [35]; the miss-
ing upper right entry in their Figure 2 is M̃(α, r), K(α, r). Note that r→∞, α ↓ 0, such that
rα→ a > 0, in [35].

We also have the following useful results, which follow immediately from Theorems 1
and 3.

Corollary 2. We have
√

K(α, r)M̃(α, r)
D=N(0, QJ), independent of K(α, r), and similarly√

K(α)M̃(α)
D=N(0, QJ), independent of K(α).

7. Discussion

The methods developed in Sections 3–6 offer a unified approach with nice interpretations
to limit theorems of various sorts for Poisson–Dirichlet models, and we expect they can be
applied in other situations too. For example, Grote and Speed [19] analyse a ‘general selection
model’ based on the infinite alleles mutation scheme. Their formula (1.13) gives a version of
the distribution of (Mn, Kn) amenable to analysis by our methods. Ruggiero et al. [44, eqs (3.1),
(3.2)]) analyse a species sampling model based on normalised inverse-Gaussian diffusions
as a generalisation of PD(α, 0); an extra parameter β is introduced to the PD(α, 0) model,
somewhat analogous to our PD(r)

α . See also Lijoi et al. [34] and Favaro and Feng [11].
Formula (5) can be compared with an analogous formula, equation (4.14) of Pitman [42,

p. 81], in which the component
∏k

i=1 �(ni)(λ) can be replaced by
∏n

j=1 (�(j)(λ))mj using the

identity mj =∑k
i=1 1{j=ni}. See also Pitman [41] and the Gibbs partitions in [42, pp. 25–26,

eq. (1.52)]. Hansen [21] gave a general treatment of decomposable combinatorial structures
having a Poisson–Dirichlet limit.

There are many other limiting results in the literature. Joyce et al. [29] prove a variety of
Gaussian limit theorems as the mutation rate θ→∞ in the PD(θ ) model; see also Griffiths
[17] and Handa [20]. Feng [12, 13] gives large deviation results as θ→∞. James [28] gives
results like this related to PD(α, θ ) in a Bayesian set-up. Dolera and Favaro [9] investigate α-
diversity in PD(α, θ ). Berestycki et al. [3] prove laws of large numbers for the AFS when the
coalescent process is taken to be the Bolthausen–Sznitman coalescent. Möhle [37] introduces a
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Mittag–Leffler process and shows that the block counting process of the Bolthausen–Sznitman
n-coalescent, properly scaled, converges to it in the Skorokhod topology. See also Freund and
and Möhle [14]. Relevant to our Theorem 2, Koriyama, Matsuda, and Komaki [33] derive the
asymptotic distribution of the maximum likelihood estimator of (α, θ ) for the PD(α, θ ) model
and show that αn is nα/2 consistent for α.

When r→∞, size-biased samples from PD(r)
α tend to those of PD(1− α), i.e. to PD(θ )

with θ = 1− α; see [24]. Together with part (i) of Theorem 5, this suggests that PD(r)
α is inter-

mediate in a sense between PD(α, 0) and PD(θ ). Chegini and Zarepour [6] show that PD(r)
α

can alternatively be obtained as the ordered normalised jumps of a negative binomial process,
as defined in Gregoire [16]. When r→∞, α→ 0 such that rα→ a > 0, a limit involving the
Dickman subordinator is obtained; see [35].

The AFS is alternatively known as the site frequency spectrum (SFS). It summarises the
distribution of allele frequencies throughout the genome. According to Mas-Sandoval et al.
[36, p. 2]:

The SFS is arguably one of the most important summary statistics of population
genetic data . . . contain[ing] invaluable information on the demographic and adap-
tive processes that shaped the evolution of the population under investigation . . .

For instance, an SFS showing an overrepresentation of rare alleles is an indication
of an expanding population, while bottleneck events tend to deplete low-frequency
variants.

The appearance of the normal as the limiting distribution of Mn, after centering and norm-
ing, conditional on Kn, for PD(r)

α , PD(α, 0) and PD(α, θ ), is useful for statistical applications.
In Ipsen et al. [27] we used a least-squares method to fit PD(r)

α to a variety of data sets,
some quite small. Even so, we observed by simulations that the finite sample distributions
of the estimates of α and r were quite closely approximated by the normal. The asymptotic
normality derived in the present paper provides a rationale for using least-squares and helps
explain the approximate normality of the parameter estimates. Similar ideas may be useful for
PD(α, θ ). Cereda and Corradi [5] give a methodology for fitting that model to forensic data.
Keith et al. [30] give an example of testing differences between similar allelic distributions
using the AFS. Functionals of Mn such as

∑n
j=1 (Mjn − EMjn)2/EMjn are important in many

aspects of population genetics; see e.g. the measures of sample diversity given by Watterson
[45, Section 4].
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