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Abstract. We show that the mode-locking region of the family of quasi-periodically forced
Arnold circle maps with a topologically generic forcing function is dense. This gives a
rigorous verification of certain numerical observations in [M. Ding, C. Grebogi and E. Ott.
Evolution of attractors in quasiperiodically forced systems: from quasiperiodic to strange
nonchaotic to chaotic. Phys. Rev. A 39(5) (1989), 2593–2598] for such forcing functions.
More generally, under some general conditions on the base map, we show the density
of the mode-locking property among dynamically forced maps (defined in [Z. Zhang. On
topological genericity of the mode-locking phenomenon. Math. Ann. 376 (2020), 707–72])
equipped with a topology that is much stronger than the C0 topology, compatible with
smooth fiber maps. For quasi-periodic base maps, our result generalizes the main results
in [A. Avila, J. Bochi and D. Damanik. Cantor spectrum for Schrödinger operators with
potentials arising from generalized skew-shifts. Duke Math. J. 146 (2009), 253–280],
[J. Wang, Q. Zhou and T. Jäger. Genericity of mode-locking for quasiperiodically forced
circle maps. Adv. Math. 348 (2019), 353–377] and Zhang (2020).
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1. Introduction
Quasi-periodically forced maps (qpf-maps) are natural generalizations of Schrödinger
cocycles, which played an important role in the recent study of a Schrödinger operator on Z
with quasi-periodic potentials. The notion of uniform hyperbolicity naturally generalizes
to the so-called mode-locking property of qpf-maps. Thus, the topological genericity of
mode-locking among Schrödinger cocycles (for a given base map) would immediately
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imply that for topologically generic potential, the spectrum is a Cantor subset of R. We
refer the readers to surveys [7, 17, 20] on more results on Schrödinger operators. It is natu-
ral to ask whether mode-locking holds generically among the set of general qpf-maps. The
first result in this direction is provided by [21]. The authors showed that for a topologically
generic frequency ω, the set of mode-locked qpf-maps with frequency ω is residual (with
respect to the uniform topology). Their result is generalized in [22] to any fixed irrational
frequency. In [22], the following natural generalization of the notion qpf-map is introduced
(such consideration is not new, and has already appeared in [13, §5]).

Definition 1.1. (g-forced maps and rotation number) Let Diff 1(T), respectively Homeo(T),
denote the set of orientation preserving diffeomorphisms, respectively homeomorphisms,
of T, and let Diff1(R), respectively Homeo(R), denote the set of orientation preserving
diffeomorphisms, respectively homeomorphisms, of R. We denote by πR→T the canonical
projection from R to T � R/Z. We define Diff r (T), Diff r (R) for r ∈ Z>1 ∪ {∞} in a
similar way.

Given a uniquely ergodic homeomorphism g : X → X, we say that f : X × T →
X × T is a g-forced circle diffeomorphism, respectively g-forced circle homeomorphism,
if there is a homeomorphism F : X × R → X × R of form

F(x, w) = (g(x), Fx(w)) for all (x, w) ∈ X × R,

where Fx ∈ Diff1(R), respectively Homeo(R), for every x ∈ X, such that (Id × πR→T) ◦
F = f ◦ (Id × πR→T). In this case, we say that F is a lift of f.

For each lift F of a g-forced map f, the limit

ρ(F ) = lim
n→+∞

π2F
n(x, w)

n

exists, and is independent of (x, w) (here π2 is the canonical projection from X × R to R,
see [13, §5]). Moreover, the number ρ(f ) = ρ(F ) mod 1 is independent of the choice of
the lift F.

Definition 1.2. (Mode-locking for g-forced maps) Given a uniquely ergodic map
g : X → X, we say that a g-forced circle homeomorphism f is mode-locked if ρ(f ′) =
ρ(f ) for every g-forced circle homeomorphism f ′ that is sufficiently close to f in the
C0-topology. We denote the set of mode-locked g-forced circle homeomorphisms by ML.

The main result in [22] says that mode-locking is a topologically generic property
among the set of g-forced circle homeomorphisms under a mild condition on g. Such a
result generalizes the main results in [3, 21].

The current paper is a continuation of the above line of research.
It is natural to ask whether mode-locking could be generic among qpf-maps with higher

regularity, with respect to the smooth topology. By the main result in [16], mode-locking
can be rare in the measurable sense in many C1 families. We hereby ask whether
mode-locking could be generic in the topological sense.

Question 1.3. Is a C1 generic quasi-periodically forced circle diffeomorphism mode-
locked?
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One can also ask for Cr -genericity for any r ≥ 2. However, Question 1.3 already seems
to be far from easy to answer. We also mention that a related question on qpf-circle maps
has been asked in [11, Question 33], motivated by Eliasson’s theorem in [10]. Notice that
a reducible qpf-circle map in [11] is accumulated by mode-locked qpf-maps.

This paper is an attempt to study Question 1.3. Although we could not give a direct
answer to Question 1.3, we can show that mode-locking can be generic with respect to
topologies which are much stronger than the C0 topology. This is the content of our
main theorem, Theorem 1.7. Thus, we provide some evidence to a positive answer to
Question 1.3. It turns out that our theorem has implications for the quasi-periodically
forced Arnold circle maps (see Theorem 1.11), a class of maps that were previously studied
numerically by physicists (see [8]). We will elaborate on this point in §1.2.

1.1. Statements of the main results. Let X be a compact metric space. Let g : X → X

be a strictly ergodic (that is, uniquely ergodic and minimal) homeomorphism with a
non-periodic factor of finite-dimension, that is, there is a homeomorphism ḡ : Y → Y ,
where Y is an infinite compact subset of some Euclidean space Rd , and there is an onto
continuous map h : X → Y such that h · g = ḡ · h. We will show that for g satisfying
some general condition, mode-locking is generic in topologies that are much stronger than
the C0 topology.

To state the condition we need, we introduce the following notion.

Definition 1.4. Let g : X → X be given as above, and let ν be the unique g-invariant
measure. Let G ⊂ R be the subgroup of all t such that there exist continuous maps
φ : X → R and ψ : X → R/Z with t = ∫

φ dν and ψ(g(x)) − ψ(x) = φ(x) mod 1. We
call G(g) the range of the Schwartzman asymptotic cycle for g.

Clearly, the problem about the density of mode-locking depends on the topology we
choose to put on the space of maps. To treat the problem with respect to different topologies
in a uniform fashion, we introduce the following definition.

Given r ∈ Z≥1 and f , h ∈ Diff r (T), we set

dCr(T,T)(f , h) =
r∑

k=0

sup
w∈T

d(Dkf (w), Dkh(w)).

We define for any r ∈ Z≥1 that

dDiff r (T)(f , h) = dCr(T,T)(f , h) + dCr(T,T)(f
−1, h−1).

We define

dDiff ∞(T)(f , h) =
∞∑

k=1

2−k
dDiff k(T)(f , h)

dDiff k(T)(f , h) + 1
.

Definition 1.5. Given a complete metric space H endowed with a complete metric d, and a
continuous map ιH : H → Diff1(T), by a slight abuse of notation, we denote ιH : Hn →
Diff1(T) by ιH((hi)

n−1
i=0 ) = ιH(hn−1) ◦ · · · ◦ ιH(h0) for every integer n ≥ 1.
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In the rest of the paper, we will only consider two classes of tuples (H, dH, ιH) given
below.

Example 1. Let r ∈ Z≥1 ∪ {∞}. Let H = ˜Diff r (T) = {f ∈ Diff r (R) | f (y + 1) =
f (y) + 1 for all y ∈ R}. We may define a distance d

D̃iff r (T)
on ˜Diff r (T) analogously

to dDiff r (T). Let

dH = d
D̃iff r (T)

.

We define ιH : H → Diff 1(T) by

ιH(h)(y mod 1) = h(y) mod 1 for all y ∈ R.

Example 2. Let H = R. Let P ∈ Cω(T) be a non-constant real analytic function such that
‖P ′‖ < 1. We define ιH : H → Diff1(T) by

ιH(h)(w) = w + P(w) + h mod 1 for all w ∈ R/Z.

We let dH = dR, where dR denotes the Euclidean distance.

Remark 1.6. By definition, for (H, dH, ιH) in either Example 1 or 2, we know that there
exists some constant C > 0 such that for any h1, h2 ∈ H, we have

CdH(h1, h2) ≥ dDiff 1(T)(ιH(h1), ιH(h2)).

As usual, let us denote by C0(X, H) the collection of continuous maps from X to H.
We equip C0(X, H) with the norm

DH(H , H ′) = sup
x∈X

dH(H(x), H ′(x)).

Given any H ∈ C0(X, H) and any ε > 0, we denote

BH(H , ε) = {H ′ ∈ C0(X, H) | DH(H , H ′) < ε}.
We denote by Diff 0,1

g (X × T) the collection of g-forced circle diffeomorphisms of form

f : X × T → X × T,

(x, w) �→ (g(x), fx(w)),

where fx ∈ Diff 1(T) depends continuously on x ∈ X. We denote

‖f ‖C0,1 = sup
x∈X

(‖Dfx‖, ‖D(f −1
x )‖) < ∞,

DC0,1(f , f ′) = sup
x∈X

dDiff 1(T)(fx , (f ′)x) < ∞.

By Remark 1.6, there is a continuous map 
 : C0(X, H) → Diff 0,1
g (X × T) defined by


(H)(x, w) = (g(x), ιH(H(x))(w)).

The main theorem of this paper is the following.
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THEOREM 1.7. Let (H, dH, ιH) be given by Example 1 or 2. If G(g) is dense in R, then

ML(H, ιH) := {H ∈ C0(X, H) | 
(H) ∈ ML} (1.1)

is open and dense in C0(X, H).

When ιH is clear from the context, we will abbreviate ML(H, ιH) as ML(H).
Instead of Example 2, it is more convenient to consider the following.

Example 3. Let P and (H, dH, ιH) be as in Example 2. We assume in addition that P has
no smaller period, that is, there exists no constant ρ ∈ (0, 1) such that P(w + ρ) ≡ P(w).

We will actually give the proof for the following theorem, Theorem 1.8, since the
discussions for Examples 1 and 3 can be organized in a unified way. In §6, we will prove
Theorem 1.8 and deduce Theorem 1.7 as a corollary.

THEOREM 1.8. Let (H, dH, ιH) be given by Example 1 or 3. If G(g) is dense in R, then
ML(H) = ML(H, ιH) is open and dense in C0(X, H).

We note that G(g) is dense for many interesting maps g, such as:
(1) minimal translations of Td for any d ≥ 1;
(2) the skew-shift (x, y) �→ (x + α, y + x) on T2, where α is irrational;
(3) any strictly ergodic homeomorphism on a totally disconnected infinite compact

subset of Rd for any d ≥ 1.
The proof of Theorem 1.7 is based on a description about the complement of ML(H)

(see Theorem 1.10). Before stating the result, we introduce the following notions.
For a g-forced circle homeomorphism f with a lift F, for any integer n ≥ 1, we denote

as in [22]

(f n)x := fgn−1(x) ◦ · · · ◦ fx , (F n)x := Fgn−1(x) ◦ · · · ◦ Fx .

Definition 1.9. For any f ∈ Diff 0,1
g (X × T), the extremal fiberwise Lyapunov exponents

of f, denoted by L+(f ) and L−(f ), are given by formulas

L+(f ) := lim
n→∞

1
n

sup
(x,w)∈X×T

log D(f n)x(w),

L−(f ) := lim
n→∞

1
n

inf
(x,w)∈X×T

log D(f n)x(w).

Let (H, dH, ιH) be in Example 1 or 3. Then for any H ∈ C0(X, H), we denote

L+(H) = L+(
(H)), L−(H) = L−(
(H)).

THEOREM 1.10. Let (H, dH, ιH) be given by Example 1 or 3. Then either ML(H) is
dense in C0(X, H), or there exists a residual subset A of C0(X, H) \ ML(H) such that

(H) has zero extremal fiberwise Lyapunov exponents for any H ∈ A. Here, the notion
of a residual subset is defined with respect to the distance DH on C0(X, H).

Theorem 1.10 is similar to [3, Theorem 5], where the authors have shown that any
cocycle in C0(X, SL(2, R)) that is not uniformly hyperbolic can be approximated by
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cocycles that are conjugate to elements in C0(X, SO(2, R)). A similar approach is taken
in [22] to prove the density with respect to the C0 topology.

1.2. Application to quasi-periodically forced Arnold circle maps. A prominent example
of a qpf-map is the so called ‘quasi-periodically forced Arnold circle map’,

fα,β,τ ,q : T2 → T2, (θ , x) �→
(

θ + ω, x + τ + α

2π
sin(2πx) + βq(θ) mod 1

)
,

with parameters α ∈ [0, 1], τ , β ∈ R and a continuous forcing function q : T → R. It
can be traced back to [12], and was then studied in [6, 8, 19], etc., as a simple model
of an oscillator forced at two incommensurate frequencies. It has served as a source of
motivation for a series of articles on this subject, such as [4, 14–16, 18, 22], etc.

Mode-locking was observed numerically on open regions in the (τ , α)-parameter space,
known as the Arnold tongues. An immediate question is whether for any given function
βq, mode-locking property holds for an open and dense set of (τ , α)-parameters. There
are numerical evidences to support such a conjecture. In [8, V. Conclusions], the authors
wrote: ‘Various numerical experiments are performed to illustrate the different types of
attractors that can arise in typical quasiperiodically forced systems. The central result is
that in the two-dimensional parameter plane of K and V, the set of parameters, at which
the system equations (2) and (3) exhibits strange nonchaotic attractors, has a Cantor-like
structure, and is embedded between two critical curves.’ Notice that (K , V ) in [8] corre-
sponds to (τ , α) in our paper; and a parameter at which a strange non-chaotic attractor in
[8] appears is in the complement of the mode-locking region. The following theorem gives
a rigorous verification of the observation that the set of (τ , α) where strange non-chaotic
attractors appear contains no interior for a topologically generic forcing function.

THEOREM 1.11. For any ω ∈ (R \ Q)/Z and any non-zero β ∈ R, there is a residual
subset Uβ ⊂ C0(T) such that for every q ∈ Uβ , the set {(τ , α) | fα,β,τ ,q ∈ ML} is an open
and dense subset of R × (0, 1).

Remark 1.12. We can clearly see from the proof below that a similar result holds when
the function sin(2πx) is replaced by any non-constant real analytic function on T.

Proof. Fix some ω ∈ (R \ Q)/Z and define g : T → T by g(x) = x + ω. Fix some
τ ∈ R, α ∈ (0, 1), and β ∈ R \ {0}. We let Hα,β,τ = R and let dHα,β,τ be the Euclidean
metric. We take

ιHα,β,τ (h) =
(

x �→ x + τ + α

2π
sin(2πx) + βh mod 1

)
.

It is clear that (Hα,β,τ , dHα,β,τ , ιHα,β,τ ) belongs to Example 2. Thus, we can apply
Theorem 1.7 to deduce that: for every β ∈ R \ {0}, for every τ ∈ R, α ∈ (0, 1), the set
of q ∈ C0(T) such that fα,β,τ ,q is mode-locked, and is open and dense with respect to the
uniform topology on C0(T). Then we take a dense subset {(τn, αn)}n≥0 in R × (0, 1), and
for each n ≥ 0, we let Bn denote the set of q ∈ C0(T) such that fαn,β,τn,q is mode-locked.
Then, Bn is open and dense for each n ≥ 0. Consequently, the set Uβ = ⋂

n≥0 Bn is a
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residual subset of C0(T), and for every q ∈ Uβ , the open set {(τ , α) | fα,β,τ ,q ∈ ML} is
dense since it contains (τn, αn) for every n ≥ 0. This completes the proof.

1.3. Idea of the proof. The starting point for proving Theorem 1.7 is the following fact,
which is already used in previous works such as [2, 22]: for a map that is not mode-locking,
we can promote linear displacement for the orbit of a given point by arbitrarily small
perturbation. The precise statements, summarized in §2.1, are quite general.

Compared with previous works, the challenge in our case here is that the perturbations
of different points in a single fiber are strongly correlated; and moreover, we do not
have a similar notion of the stable/unstable points on a fiber as for SL(2, R)-cocycles.
We overcome these difficulties by controlling the extremal Lyapunov exponents. Our proof
consists of the two following main steps.
• We first show that any map that cannot be approximated by mode-locking maps, can

be perturbed to have zero extremal Lyapunov exponents. The precise statement is
Theorem 1.10. This theorem is proved in §4 assuming Lemma 4.8, the key technical
lemma of this paper.

The key lemma Lemma 4.8 states the following: starting with some map F that
is not mode-locking, either the extremal Lyapunov exponents both vanish or we can
decrease their difference by a definite proportion (depending only on F) by arbitrary
small perturbation. Although the general idea for proving Lemma 4.8 is originated
from [1, 2, 5], the execution in our case is more complicated: unlike the case of
SL(2, R)-cocycles where the matching of (temporary) stable and unstable directions
automatically reduces the growth of the derivative for every other point on that fiber,
our general g-forced circle diffeomorphisms have no such convenient feature. We
overcame this problem by carefully dividing a circle fiber into two parts so that for
one part, we prove certain cancellation in the future, and for the other, in the past. For
each part, the desired cancellation is also obtained for different reasons, under two
distinct possibilities. This is done in §7.

• After proving Theorem 1.10, we will use it as a starting point and perform a further
perturbation to obtain the genericity of mode-locking. Since we may start with a map
with vanishing extremal Lyapunov exponents, we may wish to perturb the map to
create a closed strip that is mapped into its interior. In §5, we will describe the required
perturbations made to a finite orbit. In §6, we will construct a global perturbation by
combining several local perturbations at different scales. This is organized through the
stratification introduced in [3], summarized in §3.1.

For the above strategy to work, we need to use some features of maps in
Examples 1 and 3 to ensure that H is sufficiently rich so that we can produce certain
parabolic-like and hyperbolic-like circle diffeomorphisms by making perturbations in
H (see Lemmata 4.3 and 7.3).

1.4. Notation. Given an integer k ≥ 1 and g1, . . . , gk ∈ Diff1(T) (or Diff1(R)), we
denote by �k

i=1gi the map gk ◦ · · · ◦ g1.
Throughout this paper, in all the lemmata and propositions, we will assume that all

the constants depend on some (H, dH, ιH) fixed throughout this paper. For the sake of
simplicity, we will not explicitly present such dependence.
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2. Preliminary
We fix some (H, dH, ιH) in Example 1 or 3 throughout this section. We let g : X → X be
a map given at the beginning of §1.1.

2.1. Basic properties of dynamically forced maps. Let us recall some basic properties of
g-forced circle homeomorphisms with a uniquely ergodic g, proved in [3, 22]. In particular,
all the results in this subsection apply to maps in Diff 0,1

g (X × T).
Let f be a g-forced circle homeomorphism with a lift F. Then for any g-forced circle

homeomorphism f ′ such that DC0,1(f ′, f ) < 1
2 , there exists a unique lift of f ′, denoted

by F ′, such that dDiff1(R)(F
′, F) < 1

2 . In the rest of this paper, we will say such F ′ is the
lift of f that is close to F.

We first notice the following alternative characterization of the mode-locking property
(see [22, Definition 3 and Lemma 2]).

LEMMA 2.1. A g-forced circle homeomorphism f is mode-locked if and only if there exists
ε > 0 such that we have

ρ(F−ε) = ρ(F ) = ρ(Fε),

where F is an arbitrary lift of f, and Ft(x, y) = F(x, y) + t for all (x, y) ∈ X × R and
t ∈ R.

Definition 2.2. For any f ∈ Diff 0,1
g (X × T), for any lift of f denoted by F, for any integer

n > 0, we set

M(F , n) = inf
(x,y)∈X×R

((F n)x(y) − y), M(F , n) = sup
(x,y)∈X×R

((F n)x(y) − y).

The following is [22, Lemma 3].

LEMMA 2.3. Given some f ∈ Diff 0,1
g (X × T) and a lift of f denoted by F, for

any κ0 > 0, there exists N0 = N0(f , κ0) > 0 such that for any n > N0, we have
[M(F , n), M(F , n)] ⊂ nρ(F ) + (−nκ0, nκ0).

The following is an immediate consequence of Lemma 2.3.

COROLLARY 2.4. Given some f ∈ Diff 0,1
g (X × T) and a lift of f denoted by F, if

for some ε > 0, we have ρ(F−ε) < ρ(F ), respectively ρ(F ) < ρ(Fε), then there exist
κ1 = κ1(f , ε) > 0 and an integer N1 = N1(f , ε) > 0 such that for any n > N1, we have

M(F−ε , n) < M(F , n) − nκ1, respectively M(F , n) + nκ1 < M(Fε , n).

Given a g-forced circle homeomorphism f and a lift of f denoted by F, for any integer
N > 0, any κ > 0, we define

�N(F , κ) = {(x, y, z) ∈ X × R2 | |z − (FN
x )(y)| < Nκ}. (2.1)

We recall the following result, which is analogous to [22, Lemma 8].

LEMMA 2.5. Given H ∈ C0(X, H), we let f = 
(H) and let F be a lift of f. For
any ε ∈ (0, 1/4), there exists ε0 = ε0(H , ε) ∈ (0, ε) such that if we have ρ(Fε0) >
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ρ(F ) > ρ(F−ε0), then by letting κ1 = κ1(f , ε0) > 0 and N1 = N1(f , ε0) > 0 be as in
Corollary 2.4, the following is true. For any Ȟ ∈ BH(H , ε0), for any integer N ≥ N1,
there exists a continuous map 
Ȟ

N : �N(F , κ1) → HN such that for any (x, y, z) ∈
�N(F , κ1), let 
Ȟ

N (x, y, z) = (p0, . . . , pN−1) and let F̌ be the unique lift of 
(Ȟ ) close
to F (the map F̌ is well defined since ε0 < ε < 1/2), then:
(1) dH(pi , Ȟ (gi(x))) < 2ε for every 0 ≤ i ≤ N − 1;
(2) let Pi be the unique lift of ιH(pi) close to F̌gi (x), then PN−1 · · · P0(y) = z;
(3) if z = (F̌ N )x(y), then pi = Ȟ (gi(x)) for every 0 ≤ i ≤ N − 1.

Proof. The proof is almost identical to that of [22, Lemma 8]. We recall the proof for the
convenience of the readers.

We notice that the following is clear for any (H, dH, ιH) in Example 1 or 3: there is a
continuous map ϕ : H × (−1, 1) → H such that ϕ(p, 0) = p, and for every t ∈ (−1, 1),
Pt is a lift of ιH(ϕ(p, t)) when P denotes a lift of ιH(p). Let us denote Ȟt (x) =
ϕ(Ȟ (x), t). We denote by F̌t the lift of Ȟt for each t ∈ (−1, 1). We assume that F̌t

depends continuously on t. Then for any x ∈ X and y ∈ R, the function ε′ �→ (F̌ N
ε′ )x(y)

is strictly increasing. By dC0(F̌ , F) ≤ dH(Ȟ , H) < ε0, we have (F̌2ε0)x(y) ≥ (Fε0)x(y)

for any x ∈ X and y ∈ R. Then by Lemma 2.4, we have (F̌ N
2ε0

)x(y) ≥ (FN
ε0

)x(y) >

(FN)x(y) + Nκ1. Similarly, we have (F̌ N
−2ε0

)θ (y) < (FN)θ (y) − Nκ1. Then, as in the
proof of [22, Lemma 8], we see that the hypothesis of [22, Lemma 5] is satisfied. We
can complete the proof by [22, Lemma 5] as in [22].

We have the following.

PROPOSITION 2.6. (Tietze’s extension theorem for H) Let H ∈ C0(X, H) and let Y be a
compact subset of X. Given a constant ε > 0 and a continuous map H0 : Y → H such that
for every x ∈ Y , we have dH(H(x), H0(x)) < ε, then there exists H1 ∈ BH(H , ε) such
that H1(x) = H0(x) for every x ∈ Y .

Proof. If (H, dH, ιH) is in Example 3, then this is the classical Tietze’s extension theorem.
Now we assume that (H, dH, ιH) is in Example 1. Notice that we can naturally identify
D̃iffr (T) with Vr = {ϕ ∈ Cr(T) | ϕ′(w) > −1 for all w ∈ T} since we can associate to
each ϕ ∈ Vr a mapping y �→ y + ϕ(y mod 1) in D̃iffr (T) and vice versa. Since Vr is a
convex open subset of Cr(T), which is a locally convex topological vector space, we can
apply the generalization of Tietze’s extension theorem for such spaces in [9] to conclude
the proof.

2.2. Lyapunov exponents. The following is an elementary yet useful observation.

LEMMA 2.7. For any f ∈ Diff 0,1
g (X × T), we have L+(f ) ≥ 0 ≥ L−(f ) and

L+(f ), −L−(f ) ≤ log ‖f ‖C0,1 .

Proof. Since for any n ≥ 1 and any x ∈ X, we have∫
T

D(f n)x(w) dw = 1, (2.2)
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we necessarily have that L−(f ) ≤ 0 ≤ L+(f ). By Definition 1.9 and the chain rule, we
clearly have max(L+(f ), −L−(f )) ≤ log ‖f ‖C0,1 .

Given an integer N > 0, we define for each h = (h0, . . . , hN−1) ∈ HN that

L+(h) = 1
N

sup
w∈T

log D(ιH(hN−1) · · · ιH(h0))(w),

L−(h) = 1
N

inf
w∈T log D(ιH(hN−1) · · · ιH(h0))(w).

Let H ∈ C0(X, H). By definition, we have

L±(H) = lim
n→∞ L±((H(gi(x)))n−1

i=0 ).

The following lemma, whose proof we omit, follows immediately from the subadditiv-
ity, e.g., log ‖D(f1f2)‖ ≤ log ‖Df1‖ + log ‖Df2‖.

LEMMA 2.8. Given H ∈ C0(X, H), for any κ0 > 0, there exists N ′
0 = N ′

0(H , κ0) > 0
such that for any n > N ′

0 and any x ∈ X, we have

[L−((H(gi(x)))n−1
i=0 ), L+((H(gi(x)))n−1

i=0 )] ⊂ (L−(H) − κ0, L+(H) + κ0).

3. A criterion from stratification
This section follows closely [3].

Let g : X → X be given at the beginning of §1.1. That is, X is a compact metric space
and g is strictly ergodic with a non-periodic factor of finite dimension.

3.1. Dynamical stratification. As in [3], for any integers n, N , d > 0, a compact subset
K ⊂ X is said to be:
(1) n-good if gk(K) for 0 ≤ k ≤ n − 1 are disjoint subsets;
(2) N-spanning if the union of gk(K) for 0 ≤ k ≤ N − 1 covers X;
(3) d-mild if for any x ∈ X, {gk(x) | k ∈ Z} enters ∂K at most d times.

The following is an immediate consequence of [3, Lemmata 5.2–5.4].

LEMMA 3.1. There exists an integer d > 0 such that for every integer n > 0, for every
open set U ⊂ X, there exist an integer D > 0 and a compact subset K ⊂ U that is n-good,
D-spanning, and d-mild.

Let K ⊂ X be an n-good, M-spanning, and d-mild compact subset. For each x ∈ X,
we set

l+(x) = min{j > 0 | gj (x) ∈ int(K)}, l−(x) = min{j ≥ 0 | g−j (x) ∈ int(K)},
l(x) = min{j > 0 | gj (x) ∈ K},

T (x) = {j ∈ Z | −l−(x) < j < l+(x)}, TB(x) = {j ∈ T (x) | gj (x) ∈ ∂K},
N(x) = #TB(x), Ki = {x ∈ K | N(x) ≥ d − i} for all − 1 ≤ i ≤ d .

Let Zi = Ki \ Ki−1 = {x ∈ K | N(x) = d − i} for each 0 ≤ i ≤ d .
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Lemma 3.1 and the notation introduced above are minor modifications of those in the
proof of [3, Lemma 4.1]. We also have the following (see [3] and also [22, Lemma 7]).

LEMMA 3.2. We have:
(1) for any x ∈ K , l(x) ≤ l+(x) and n ≤ l(x) ≤ D;
(2) T and TB are upper-semicontinuous;
(3) T and TB , and hence also l, are locally constant on Zi;
(4) Ki is closed for all −1 ≤ i ≤ d and ∅ = K−1 ⊂ K0 ⊂ · · · ⊂ Kd = K;
(5) for any x ∈ Ki , any 0 ≤ m < l+(x) such that gm(x) ∈ K , we have gm(x) ∈ Ki .

3.2. A criterion for mode-locking. Given a g-forced circle homeomorphism f, a lift of f
denoted by F, and a compact subset K ⊂ X that is M-spanning for some M > 0, let

fK(x, w) = f l(x)(x, w) for all (x, w) ∈ K × T,

FK(x, y) = F l(x)(x, y) for all (x, y) ∈ K × R.

We have the following sufficient condition for mode-locking.

LEMMA 3.3. If there exists an open set R ⊂ K × T (with respect to the induced topology
on K × T) such that for each x ∈ K , we have R ∩ ({x} × T) = {x} × Ix for some
non-empty open interval Ix � T and fK(R) ⊂ R, then f ∈ ML.

Proof. Since K is M-spanning and fK(R) ⊂ R, there exists δ = δ(f , M , R) > 0 such
that for any ε ∈ (−δ, δ), we have (fε)K(R) ⊂ R. We inductively define a sequence of
functions as follows:

ln(x) =
{

l(x), n = 0,

l(g
�n−1

j=0 lj (x)
(x)), n > 0.

Then it is direct to show, by an induction on n, that for any x ∈ K , y ∈ R so that
(x, ymod 1) ∈ R, we have

1 > |π2((Fε)K)n(x, y) − π2(FK)n(x, y)|
= |(F�n−1

i=0 li (x)
ε )x(y)) − (F�n−1

i=0 li (x))x(y)| for all n ≥ 0,

where π2 : X × R → R is the canonical projection. This implies ρ(Fε) = ρ(F ) for all
ε ∈ (−δ, δ) and thus concludes the proof.

4. Density of zero Lyapunov exponent
The goal of this section is to prove Theorem 1.10. Throughout this section, we assume that
(H, dH, ιH) is in Example 1 or 3.

We first introduce the following notion.

Definition 4.1. We say that H ∈ C0(X, H) is contractible if:
(1) either (H, dH, ιH) is in Example 1;
(2) or (H, dH, ιH) is in Example 3, and there exists an integer k > 1 such that for any

x ∈ X and any w ∈ T, there exists 0 ≤ i ≤ k − 2 such that P ′′((f i+1)x(w)) �= 0,
where f = 
(H).
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LEMMA 4.2. The set of contractible H ∈ C0(X, H) is open and dense in C0(X, H) with
respect to the metric DH.

Proof. The openness is clear from the definition. To show the density, we will show that
given any H ∈ C0(X, H) and an arbitrary ε > 0, we can construct some H ′ ∈ C0(X, H)

such that H ′ is contractible and DH(H , H ′) < ε.
If (H, dH, ιH) is in Example 1, then it suffices to take H ′ = H .
Now assume that (H, dH, ιH) is in Example 3. Denote A = {w ∈ T | P ′′(w) = 0}.

Since P is a non-constant analytic function, A is a finite set. For any ε > 0, there exists
Ȟ ∈ BH(H , ε) such that, by denoting f̌ = 
(Ȟ ), we have f̌x0(A) ∩ A = ∅ for some
x0 ∈ X. By continuity, for every x sufficiently close to x0, we have f̌x(A) ∩ A = ∅. We
can then easily deduce that Ȟ is contractible by the minimality of g.

The following lemma gives the key property of a contractible element that we will use.
We will only need this lemma in §5, and the readers can skip it during the first reading and
come back here later.

LEMMA 4.3. If H ∈ C0(X, H) is contractible, then the following hold: there exist some
ε > 0, an integer k > 0, and a continuous map E : [0, 1] × T × X × BH(H , ε) → Hk

such that if we denote E(σ , w, x, Ȟ ) = (h
σ ,w
i )k−1

i=0 , then we have:

(1) h
0,w
i = Ȟ (gi(x)) for every w ∈ T and every 0 ≤ i ≤ k − 1;

(2) ιH((h
σ ,w
i )k−1

i=0 )(w) = ιH((Ȟ (gi(x)))k−1
i=0 )(w);

(3) for every σ0 ∈ (0, 1), there exist r0, ε2 > 0 such that

D(ιH((h
σ0,w
i )k−1

i=0 ))(y) < e−ε2D(ιH((Ȟ (gi(x)))k−1
i=0 ))(w), y ∈ (w − r0, w + r0),

ιH((h
σ ′,w
i )k−1

i=0 )([w − r , w + r]) � ιH((h
σ ,w
i )k−1

i=0 )((w − r , w + r)),

0 ≤ σ < σ ′ ≤ σ0, 0 < r < r0.

Proof. This lemma is clear if (H, dH, ιH) is in Example 1, since we can make perturba-
tions using the projective action on the circle by SL(2, R).

Now we assume that (H, dH, ιH) is in Example 3. Let us denote f = 
(H), and let k
be as in Definition 4.1.

Fix an arbitrary x ∈ X. We define a function c : X × T × R → R by

c(x, w, t) = P(w) + H(x) + t + P(w + P(w) + H(x) + t) + H(g(x)).

It is clear that c is continuous. By definition, we have

(fg(x))−c(x,w,t) ◦ (fx)t (w) = w. (4.1)

By straightforward computation, given any w0 ∈ T, we have

∂t∂w{(fg(x))−c(x,w0,t) ◦ (fx)t (w)}|t=0,w=w0 = P ′′(fx(w0))(1 + P ′(w0)) �= 0 (4.2)

as long as P ′′(fx(w0)) �= 0. In this case, the above term has the same sign as P ′′(fx(w0)).
By compactness and our hypothesis that H is contractible, there exists a finite open

covering {Sα × Tα}α∈I of X × T, such that for each α ∈ I , there exists an integer
0 ≤ mα ≤ k − 2 such that P ′′((f mα+1)x(w)) �= 0 for every (x, w) ∈ Sα × Tα . Since X
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is locally compact and Hausdorff, there exists a partition of unity {ρα}α∈I subordinated to
{Sα × Tα}α∈I . Moreover, again by compactness and by equation (4.2), there exists some
δ > 0 such that

inf
t∈(0,δ]

inf
α∈I

inf
(x,w0)∈Sα×Tα

t−1|∂w{(fg(x))−c(x,w0,t) ◦ (fx)t (w)}|w=(f mα )x(w0)|
≥ inf

α∈I
inf

(x,w0)∈Sα×Tα

|P ′′((f mα+1)x(w0))(1 + P ′((f mα )x(w0))) + o(1)| > 0. (4.3)

For any 0 ≤ i ≤ k − 1, we denote

ek,i = (δ0,i , δ1,i , . . . , δk−1,i ) ∈ Rk .

We define a map Q : X × T × [0, 1] → Rk by

Q(x, w, t) =
∑
α∈I

ρα(x, w) sgn(P ′′((f mα+1)x(w)))(δtek,mα − c(x, w, δt)ek,mα+1).

We may define

E(σ , w, x, Ȟ ) = (Ȟ (gi(x)))k−1
i=0 − Q(x, w, σ).

We clearly have item (1). We can deduce item (2) from equation (4.1). We can deduce item
(3) for Ȟ = H by a straightforward computation using equations (4.2) and (4.3). Then we
can verify item (3) for a general Ȟ ∈ BH(H , ε) by continuity.

From the above proof, we also have the following result, which will be used in the proof
of Lemma 7.3.

LEMMA 4.4. Given an arbitrary H ∈ C0(X, H), we denote f = 
(H). Then, for any
x ∈ X, w0, w1 ∈ T with w0 �= w1, for any ε > 0, there exists (p0, p1) ∈ B(H(x), ε) ×
B(H(g(x)), ε) such that ιH(p1)ιH(p0)(w0) = (f 2)x(w0) and ιH(p1)ιH(p0)(w1) �=
(f 2)x(w1).

Proof. The statement is clear if (H, dH, ιH) is in Example 1.
Now we assume that (H, dH, ιH) is in Example 3. Let t be a constant close to 0 to be

determined. We set

p0 = H(x) + t , p1 = H(g(x)) − c(x, w0, t).

Following the computations in Lemma 4.3, we see that

ιH(p1)ιH(p0)(w) = w + P(w) + P(w + P(w) + H(x) + t)

− P(w0) − P(w0 + P(w0) + H(x) + t).

Then it is clear that ιH(p1)ιH(p0)(w0) = w0. Since w0 �= w1, we have w1 + P(w1) +
H(x) �= w0 + P(w0) + H(x). Then since P has no smaller period, ιH(p1)ιH(p0)(w1) is
a non-constant real analytic function of t. Hence, there exists t arbitrarily close to 0 such
that ιH(p1)ιH(p0)(w1) �= w1. This concludes the proof.

We first reduce Theorem 1.10 to the following proposition by a standard argument.
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PROPOSITION 4.5. For any contractible H ∈ C0(X, H) \ ML(H) and any ε > 0,
there exists a contractible H ′ ∈ C0(X, H) \ ML(H) such that DH(H , H ′) < ε and
|L+(H ′)|, |L−(H ′)| < ε.

Remark 4.6. If C0(X, H) = ML(H), then the condition of Proposition 4.5 is void. In this
case, the conclusion of Theorem 1.10 is already satisfied.

We can easily deduce Theorem 1.10 from Proposition 4.5.

Proof of Theorem 1.10. Let us assume that C0(X, H) �= ML(H). For any ε > 0, we
denote

Uε := {H ∈ C0(X, H) \ ML(H) | |L+(H)|, |L−(H)| < ε}.
Given an arbitrary ε > 0, by the upper-, respectively lower-, semicontinuity of L+,
respectively L−, we see that Uε is open. By Proposition 4.5 and Lemma 4.2, Uε is dense.
Then the set U0 := ⋂

n≥1 U1/n is a residual subset of C0(X, H) \ ML(H). By definition,
every H ∈ U0 satisfies L+(H) = L−(H) = 0.

We will deduce Proposition 4.5 from the following slightly more technical proposition.

PROPOSITION 4.7. For any contractible H ∈ C0(X, H) \ ML(H) such that L+(H) >

L−(H), for any ε > 0, there exists a contractible H ′ ∈ C0(X, H) \ ML(H) such that
DH(H , H ′) < ε and

max(−L−(H ′), L+(H ′)) < max(−L−(H), L+(H))

(
1 − 10−6

(
L+(H) − L−(H)

log ‖
(H)‖C0,1 + 3

)2)
.

Proof of Proposition 4.5 assuming Proposition 4.7. By Lemma 2.7, L−(H)≤0≤L+(H).
Without loss of generality, we can assume L+(H) − L−(H) ≥ ε, for otherwise, we can
let H ′ = H . Without loss of generality, let us assume that

BH(H , 2ε) ⊂ C0(X, H) \ ML(H).

Denote

L = log(‖
(H)‖C0,1 + 1) + 3.

Define H0 = H . Assume that for some integer n ≥ 0, we have constructed some
contractible Hn ∈ C0(X, H) \ ML(H) so that DH(Hn, H) ≤ (2−1 − 2−n−1)ε and
L+(Hn) − L−(Hn) ≥ ε. Without loss of generality, we may assume that ε is sufficiently
small so that we have by Remark 1.6 that

‖
(Hn)‖C0,1 ≤ ‖
(H)‖C0,1 + CDH(Hn, H) ≤ ‖
(H)‖C0,1 + 1.

Then, by Proposition 4.7, we can find a contractible Hn+1 ∈ C0(X, H) \ ML(H) so that
DH(Hn+1, Hn) ≤ 2−n−2ε and

max(−L−(Hn+1), L+(Hn+1)) < max(−L−(Hn), L+(Hn))

(
1 − 10−6

(
ε

L

)2)
.
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Notice that we have DH(Hn+1, H)≤ (2−1 −2−n−1)ε +2−n−2ε ≤ (2−1 −2−n−2)ε. Then
for some integer m > 0, we would have DH(Hm, H) < ε and L+(Hm) − L−(Hm) < ε.
We let H ′ = Hm and this concludes the proof.

The rest of this section is dedicated to the proof of Proposition 4.7.
We have the following important lemma.

LEMMA 4.8. For any contractible H ∈ C0(X, H) \ ML(H) such that L+(H) > L−(H),
for any ε > 0, there exists N4 = N4(H , ε) > 0 such that the following is true. For any
x ∈ X, any integer N ≥ N4, there exists (p0, . . . , pN−1) ∈ HN such that:
(1) dH(pi , H(gi(x))) < ε for every 0 ≤ i ≤ N − 1;
(2) we have

max(−L−, L+)((pi)
N−1
i=0 ) < (1 − λ0) max(−L−(H), L+(H)),

where

λ0 = 10−5
(

L+(H) − L−(H)

log ‖
(H)‖C0,1 + 3

)2

. (4.4)

The proof of Lemma 4.8 is technical and will be deferred to §7.
We are now ready to state the proof of Proposition 4.7.

Proof of Proposition 4.7. Let us fix some contractible H ∈ C0(X, H) \ ML(H) such that
L+(H) > L−(H).

By Lemma 2.8, we set

N ′
0 = N ′

0(H , 1),

then for any x ∈ X, for any n > N ′
0, we have that

L+((H(gi(x)))n−1
i=0 ) ≤ L+(H) + 1, L−((H(gi(x)))n−1

i=0 ) ≥ L−(H) − 1.

We set

N4 = N4
(
H , 1

4ε
)
,

where the function N4 is given by Lemma 4.8. We fix an arbitrary integer

N > N4 + N ′
0. (4.5)

Denote by ν the unique g-invariant measure. Under the hypothesis of g, we can choose a
subset B ⊂ X by [1, Lemma 6] such that the return time from B to itself via g equals to
either N or N + 1, and ν(∂B) = 0. We fix such B from now on.

By reducing the size of ε if necessary, we may assume that for any H ′ ∈ BH(H , ε), we
have, for n ∈ {N , N + 1}, that

L+((H ′(gi(x)))n−1
i=0 ) ≤ L+(H) + 2, L−((H ′(gi(x)))n−1

i=0 ) ≥ L−(H) − 2. (4.6)

Let δ > 0 be a small constant such that

sup
x∈X

sup
x′∈B(x,δ),0≤i≤N

dH(H(gi(x′)), H(gi(x))) < 1
2ε.
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Cover the closure of B by open sets W1, . . . , Wk1 with diameters less than δ/2.
By [1, Lemma 3], we can choose Wi so that ν(∂Wi) = 0 for all 1 ≤ i ≤ k1. Let
Ui = Wi \ ⋃

j<i Wj . After discarding those Uk which are disjoint from B, and rearranging
the indexes, we can assume that for some integer k0 > 0, for each 1 ≤ k ≤ k0, B ∩ Uk �= ∅;
and the union of Uk over 1 ≤ k ≤ k0 covers B.

By our choice, we have B = BN ∪ BN+1, where Bl denotes the set of points in B whose
first return time to B equals to l. Let

V0 =
N+1⋃
l=N

l−1⋃
i=0

∂(Bl ∩ Ui).

Then ν(V0) = 0.
Denote by � the set of (k, l) such that 1 ≤ k ≤ k0, l ∈ {N , N + 1} and Bl ∩ Uk �= ∅.

For each (k, l) ∈ �, we choose a point wk,l ∈ Bl ∩ Uk \ V0.
Fix an arbitrary (k, l) ∈ �. Note that l ≥ N > N4. By Lemma 4.8 for (ε/2, H , wk,l , l)

in place of (ε, H , x, N), we obtain p = (p
k,l
0 , . . . , p

k,l
l−1) ∈ Hl such that:

(1) we have dH(p
k,l
i , H(gi(wk,l))) < 1

2ε for any 0 ≤ i ≤ l − 1;
(2) we have

max(−L−(p), L+(p)) < (1 − λ0) max(−L−(H), L+(H)). (4.7)

Now let η > 0 be a sufficiently small constant to be determined later. By the unique
ergodicity of g, there exist an open set V ⊃ V0 and an integer n0 > 0 such that

1
n
|{j | 0 ≤ j ≤ n − 1, gj (x) ∈ V }| <

η

N + 1
for all x ∈ X for all n ≥ n0. (4.8)

Moreover, we can assume that wk,l �∈ V for any (k, l) ∈ �.
We define a map H ′ ∈ C0(X, H) by using Proposition 2.6 so that DH(H , H ′) < ε, and

for any (k, l) ∈ �, any 0 ≤ i ≤ l − 1, we have H ′(gi(x)) = p
k,l
i for all x ∈ Bl ∩ Uk \ V .

By letting η > 0 be sufficiently small depending only on H , ε (this can be realized by
choosing V of sufficiently small measure, and by letting n0 be sufficiently big), we can
ensure by equations (4.6), (4.7), and (4.8) that

L+(H ′) ≤ max(−L−(H), L+(H))(1 − λ0)

(
1 − η

N + 1
N

)

+ (L+(H) + 2)η
N + 1

N

≤ max(−L−(H), L+(H))
(
1 − 1

2λ0
)
.

By a similar argument, we obtain an analogous bound for −L−(H ′). Consequently, we
have

max(−L−(H ′), L+(H ′)) < max(−L−(H), L+(H))
(
1 − 1

2λ0
)
.

We see that H ′ satisfies the conclusion of Proposition 4.7.
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5. Negative Lyapunov exponent
In this section, we will show that starting from a contractible H ∈ C0(X, H) \ ML(H)

with vanishing extremal Lyapunov exponents, we can perform an arbitrarily small
perturbation to create an interval on any prescribed fiber to be mapped arbitrarily small
by an iterate of 
(H). Moreover, such perturbation can be arranged to have continuous
parameter dependence.

Recall that for a lift F of a g-forced circle homeomorphism f, for every integer N > 0
and every κ > 0, we have defined �N(F , κ) in equation (2.1).

Given a contractible H ∈ C0(X, H), we let ε > 0 be a sufficiently small constant, and
we let the integer k > 0 and the continuous map E : [0, 1] × T × X × BH(H , ε) → Hk

be given by Lemma 4.3.

PROPOSITION 5.1. Given a contractible H ∈ C0(X, H) \ ML(H) such that L+(H) =
L−(H) = 0, and letting F be a lift of 
(H), for any ε > 0, there exist κ3 =
κ3(H , ε) ∈ (0, 1

2 ), N5 = N5(H , ε) > 0 such that for any integer N ≥ N5, there exists
r3 = r3(H , N , ε) > 0 such that for any Ȟ ∈ BH(H , κ3), for any r̄ ∈ (0, r3), there exists
a continuous function �N : �N(F , κ3) → HN such that the following is true. For any
(x, y, z) ∈ �N(F , κ3), let �N(x, y, z) = (p0, . . . , pN−1), and let Pi be the unique lift of
ιH(pi) that is close to Fgi(x), then we have:

(1) dH(pi , Ȟ (gi(x))) < 2ε for every 0 ≤ i ≤ N − 1;
(2) PN−1 ◦ · · · ◦ P0([y − r̄ , y + r̄]) ⊂ [z − (1/10)r̄ , z + (1/10)r̄];
(3) if (F̌ N−1)x(y) = z and (F̌ N−1)x([y − r̄ , y + r̄]) ⊂ [z − (1/10)r̄ , z + (1/10)r̄],

where F̌ is the unique lift of 
(Ȟ ) that is close to F, then pi = Ȟ (gi(x)) for
every 0 ≤ i ≤ N − 1.

Proof. Let us denote for simplicity f = 
(H) and then F is a lift of f. Without loss of
generality, we assume ε ∈ (0, 1) is sufficiently small to apply Lemma 4.3.

We fix a small constant σ0 = σ0(f , ε) > 0 such that for every Ȟ ∈ BH(H , ε), x ∈ X,
and w ∈ T, we have

E(σ0, w, x, Ȟ ) ∈
k−1∏
i=0

BH(Ȟ (gi(x)), ε), (5.1)

where the map E is given by Lemma 4.3. We let r0, ε2 be given by Lemma 4.3(3) for σ0.
Since L+(f ) = L−(f ) = 0, there exists N ′ = N ′(H , ε) > 0 such that

sup
x∈X,w∈T

|log D(f n)x(w)| <
nε2

4k
for all n > N ′.

Then we choose κ ′ = κ ′(H , ε) > 0 to be sufficiently small so that for any H ′ ∈
BH(H , κ ′), by denoting f ′ = 
(H ′), we have

sup
x∈X,w∈T

|log D(f ′)nx(w)| <
nε2

2k
for all n > N ′. (5.2)

We let ε0 = ε0(H , ε) ∈ (0, ε) be given by Lemma 2.5. We let κ ′′ = κ1(H , ε0) be given
by Corollary 2.4. By Lemma 2.3, there exists some N ′′ = N ′′(H , ε) > 0 such that for any
n > N ′′, we have
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sup
x∈X,y∈R

|(F n)x(y) − y − nρ(F )| <
(1/60)ε2

k(log(‖f ‖C0,1 + 1) + 1)
nκ ′′. (5.3)

We choose κ ′′′ > 0 to be sufficiently small, depending only on H , κ ′′ and ε2, so that for
any H ′ ∈ BH(H , κ ′′′), for any n > N ′′, we have

sup
x∈X,y∈R

|(F ′)nx(y) − (F n)x(y)| <
(1/20)ε2

k(log(‖f ‖C0,1 + 1) + 1)
nκ ′′, (5.4)

where F ′ denotes the lift of f ′ = 
(H ′) that is close to F.
We define

κ3 = 1
2

min
(

ε0, κ ′, κ ′′′, (1/100)ε2

k(log(‖f ‖C0,1 + 1) + 1)
κ ′′

)
, (5.5)

N5 = 2N ′ + 2N ′′ + 100
k

ε2
(log(‖f ‖C0,1 + 1) + 1)N1(H , ε0) + 100

k

ε2
. (5.6)

Let N > N5 and (x, y, z) ∈ �N(F , κ3). We define

N̄ =
⌈

1
k

(
1 − ε2

10k(log(‖f ‖C0,1 + 1))

)
N

⌉
, (5.7)

r3 = (‖f ‖C0,1 + 1)−Nr0. (5.8)

Let Ȟ be as in the proposition and let F̌ be the unique lift of f̌ = 
(Ȟ ) that is close to F.
For any σ ∈ [0, σ0], we define

(vσ
ik+j )

k−1
j=0 = E(σ , (f̌ ik)x(y mod 1), gik(x), Ȟ ) for all 0 ≤ i ≤ N̄ − 1.

By Lemma 4.3(2), (3), and equation (5.1), for every σ ∈ [0, σ0], we have that

dH(vσ
l , Ȟ (gl(x))) < ε for all 0 ≤ l ≤ N̄k − 1 (5.9)

and

V σ
ik−1 · · · V σ

0 (y) = (F̌ ik)x(y) for all 1 ≤ i ≤ N̄ , (5.10)

where V σ
j is the unique lift of ιH(vσ

j ) that is close to F̌gj (x).
We have the following.

CLAIM 5.2. For any 0 ≤ i ≤ N̄ − 1, we have

D(V
σ0
(i+1)k−1 · · · V

σ0
ik )(y′) < e−ε2D((F̌ k)x)((F̌

ik)x(y))

for all y′ ∈ ((F̌ ik)x(y) − r0, (F̌ ik)x(y) + r0),

and for any r ′′ ∈ (0, r0) and any 0 ≤ σ1 < σ2 ≤ σ0, we have

V
σ2
(i+1)k−1 · · · V

σ2
ik ((F̌ ik)x(y) + [−r ′′, r ′′]) � V

σ1
(i+1)k−1 · · · V

σ1
ik ((F̌ ik)x(y) + (−r ′′, r ′′)).

In particular, for any r̄ ∈ (0, r3), we have

V
σ2
N̄k−1

· · · V
σ2
0 ([y − r̄ , y + r̄]) � V

σ1
N̄k−1

· · · V
σ1
0 ([y − r̄ , y + r̄]).

Proof. The inequality and the first inclusion follow immediately from Lemma 4.3(3). The
last statement follows from equation (5.8) by repeatedly applying the first statement.
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By equation (5.4), (x, y, z) ∈ �N(F , κ3), and equation (5.5), we have

|(F̌ N )x(y) − z| ≤ |(FN)x(y) − z| + |(F̌ N )x(y) − (FN)x(y)|
≤ N

(
κ3 + (1/20)ε2

k(log(‖f ‖C0,1 + 1) + 1)
κ ′′

)
< (N − N̄k)κ ′′.

Hence, we have (gN̄k(x), (F̌ N̄k)x(y), z) ∈ �N−N̄k(F , κ ′′). Moreover, by equation (5.6)
and N > N5, we have N − N̄k > N1(f , ε0). Then we can apply Lemma 2.5 to define

(uN̄k , . . . , uN−1) = 
Ȟ

N−N̄k
(gN̄k(x), (F̌ N̄k)x(y), z).

We have

dH(ui , Ȟ (gi(x))) < 2ε for all N̄k ≤ i ≤ N − 1. (5.11)

For every N̄k ≤ i ≤ N − 1, let us denote by Ui the unique lift of ιH(ui) that is close to
F̌gi (x).

CLAIM 5.3. For any r̄ ∈ (0, r3], we have

UN−1 · · · UN̄kV
σ0
N̄k−1

· · · V
σ0
0 ([y − r̄ , y + r̄]) ⊂ [z − 1

10 r̄ , z + 1
10 r̄].

Proof. By equation (5.2) and κ3 < κ ′, we see that

sup
x∈X,y∈R

|log D(F̌ n)x(y)| <
nε2

2k
for all n > N ′. (5.12)

By equation (5.8), r̄ ≤ r3, equation (5.12), and by repeatedly applying Claim 5.2, we obtain

D(V
σ0
N̄k−1

· · · V
σ0
0 )(y′) < e−N̄ε2/2 for all y′ ∈ (y − r̄ , y + r̄).

Thus,

V
σ0
N̄k−1

· · · V
σ0
0 ((y − r̄ , y + r̄)) ⊂ V

σ0
N̄k−1

· · · V
σ0
0 (y) + e−N̄ε2/2(−r̄ , r̄). (5.13)

By equations (5.6), (5.7), (5.11), and (5.13), we have

UN−1 · · · UN̄kV
σ0
N̄k−1

· · · V
σ0
0 ([y − r̄ , y + r̄]) (5.14)

⊂ z + (‖f ‖C0,1 + 1)N−N̄ke−N̄ε2/2[−r̄ , r̄] ⊂ [z − 1
10 r̄ , z + 1

10 r̄],

since we have

(N − N̄k) log(‖f ‖C0,1 + 1) − N̄ε2/2 ≤ −N̄ε2/4 ≤ − log 10.

Let r̄ ∈ (0, r3) be given by the proposition. We define

σ1=inf{σ∈[0, σ0] | UN−1 · · · UN̄kV
σ

N̄k−1 · · · V σ
0 ([y − r̄ , y + r̄])⊂[z − 1

10 r̄ , z + 1
10 r̄]}.

By Claim 5.3, we see that σ1 is well defined. By the last inclusion in Claim 5.2, σ1 depends
continuously on (x, y, z). Let us define

pi =
{

v
σ1
i , 0 ≤ i ≤ N̄k − 1,

ui , N̄k ≤ i ≤ N − 1.

Conclusions (1)–(3) then follow from the construction.
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6. Density of mode-locking
In this section, we will first give the proof of Theorem 1.8, and then deduce Theorem 1.7
as a corollary.

Proof of Theorem 1.8. Given an arbitrary H ∈ C0(X, H), we will show that H can be
approximated by elements in ML(H).

Without loss of generality, we may assume that every element in a neighborhood of H
in C0(X, H) is contractible, since by Lemma 4.2, every element of C0(X, H) is a limit of
elements with this property.

By Theorem 1.10, either H is already in ML(H), in which case there is nothing left to
prove, or, up to replacing H by an arbitrarily close element, we may assume without loss
of generality that H is contractible and L+(H) = L−(H) = 0. It remains to show that for
any ε > 0, there exists H ′ ∈ ML(H) such that DH(H , H ′) < ε. To simplify the notation,
let us denote f = 
(H) and let F denote a lift of f.

Let integer d > 0 be given by Lemma 3.1. Let κ3 be given by Proposition 5.1. Without
loss of generality, we may assume that κ3(f , δ) is monotonically increasing in δ. We
inductively define positive constants 0 < ε−1 < ε0 < · · · < εd by the following formula:

εd = ε

4(d + 1)
, εd−k = min

(
1
2
εd−k+1,

1
2(d + 1)

κ3(f , εd−k+1)

)
for all 1 ≤ k ≤ d +1.

Then we have

2(ε0 + · · · + εd) < ε, 2(ε0 + · · · + εk) < κ3(f , εk+1) for all 0 ≤ k ≤ d − 1. (6.1)

We set κ ′ = inf1≤i≤d κ3(f , εi). Recall that by our hypothesis, g is uniquely ergodic.
Let us denote by ν the unique g-invariant measure on X. By our hypothesis that G(g) (see
Definition 1.4) is dense in R, we can choose a constant

ρ′ ∈ (ρ(F ) − 1
4κ ′, ρ(F ) + 1

4κ ′) ∩ G(g). (6.2)

By Definition 1.4, there exist continuous maps φ : X → R and ψ : X → R/Z so that
ρ′ = ∫

φ dν and ψ(g(x)) − ψ(x) = φ(x) mod 1.
Since g is uniquely ergodic, we can choose n0 = n0(f , ε) > 0 to be a large integer so

that

n0 > N5(H , εi) for all − 1 ≤ i ≤ d (see Proposition 5.1 for N5) (6.3)

and for any integer n > n0, we have

sup
x∈X

|�n−1
i=0 φ(gi(x)) − nρ′| < 1

4nκ ′, sup
x∈X,y∈R

|(F n)x(y) − y − nρ(F )| < 1
4nκ ′. (6.4)

We choose an open set U ⊂ X such that φ|U admits a continuous lift ψ̂ : U → R.
Namely, ψ̂ is continuous and ψ(x) = ψ̂(x) mod 1 for any x ∈ U .

By Lemma 3.1 and by enlarging n0 if necessary, we can choose a compact set K ⊂ U

that is d-mild, n0-good, and M-spanning for some M > 0.
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We choose an arbitrary r̄ ∈ (0, 1
4 ) such that

r̄ < r3(H , l, ε) for all n0 < l ≤ M , (6.5)

where r3 is given by Proposition 5.1.
Let {Ki}di=−1, {Zi}di=0 and l : X → Z+ be defined as in §3, associated to K. We will

define a sequence of H(i) ∈ C0(X, H), 1 ≤ i ≤ d by induction.
We define H(−1) = H , f (−1) = f = 
(H(−1)), and F (−1) = F . Assume that we have

defined H(k) for some −1 ≤ k ≤ d − 1 such that, let F (k) be the lift of f (k) = 
(H(k))

that is close to F (k−1) if k ≥ 0, then:
(f1) DH(H (k), H) ≤ 2(ε0 + · · · + εk);
(f2) for any x ∈ Kk , we have ((F (k))l(x))x(ψ̂(x)) = ψ̂(gl(x)(x)) + �

l(x)−1
j=0 φ(gj (x));

(f3) for any x ∈ Kk , we have ((F (k))l(x))x(ψ̂(x) + [−r̄ , r̄]) ⊂ ψ̂(gl(x)(x)) +
�

l(x)−1
j=0 φ(gj (x)) + [−(1/10)r̄ , (1/10)r̄].

Note that the above properties are true for k = −1 simply because K−1 = ∅ by
Lemma 3.2(4).

For each −1 ≤ j ≤ d , we let

Wj =
⋃

x∈Kj

⋃
0≤i<l(x)

{gi(x)}.

Since Kd = K is M-spanning, we have Wd = X. Recall that we have the following lemma.

LEMMA 6.1. [22, Lemma 10] Given an integer 0 ≤ j ≤ d , let {xn}n≥0 be a sequence
of points in Kj converging to x′, and let {ln ∈ [0, l(xn)}n≥0 be a sequence of integers
converging to l′. Then, after passing to a subsequence, we have exactly one of the following
possibilities:
either (1) x′ ∈ Zj and 0 ≤ l′ < l(x′);

or (2) x′ ∈ Kj−1, and there exist a unique x′′ ∈ Kj−1 and a unique 0 ≤ l′′ < l(x′′)
such that gl′(x′) = gl′′(x′′) ∈ Wj−1.

In particular, Wj is closed.

By equation (6.1) and item (f 1), we have DH(H (k), H) < κ3(f , εk+1). By
equations (6.3) and (6.5), we can apply Proposition 5.1 to (εk+1, l, H , H(k), r̄) in place of
(ε, N , H , Ȟ , r̄) to define �l for all n0 < l ≤ M .

We define a continuous map H̃ : Wk+1 → H such that H̃ (x) = H(k)(x) for every
x ∈ Wk in the following way. Let

H̃ (x) = H(k)(x) for all x ∈ Wk . (6.6)

For any x ∈ Zk+1, we have n0 < l(x) ≤ M . By equations (6.2) and (6.4), we have

|ψ̂(x) +
l(x)−1∑
i=0

φ(gi(x)) − (F l(x))x(ψ̂(x))|

≤
∣∣∣∣
l(x)−1∑
i=0

φ(gi(x)) − l(x)ρ(F )

∣∣∣∣ + |(F l(x))x(ψ̂(x)) − ψ̂(x) − l(x)ρ(F )|

< 3 × 1
4
l(x)κ ′ < l(x)κ3(f , εk+1).
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Then we can define

(H̃ (x), . . . , H̃ (gl(x)−1(x))) = �l(x)(x, ψ̂(x), ψ̂(x) +
l(x)−1∑
i=0

φ(gi(x))). (6.7)

By Proposition 5.1(1), we have

dH(H̃ (gi(x)), H(k)(gi(x))) < 2εk+1 for all x ∈ Zk+1, 0 ≤ i < l(x). (6.8)

For x ∈ Kk+1, for each 0 ≤ i < l(x), we let F̃i be the lift of ιH(H̃ (gi(x))) that is close
to F

(k)

gi (x)
. By items (f 2), (f 3) for k, and by Proposition 5.1(2), for any x ∈ Kk+1 = Kk ∪

Zk+1, we have

F̃l(x)−1 · · · F̃0(ψ̂(x)) = ψ̂(x) +
l(x)−1∑
i=0

φ(gi(x)),

F̃l(x)−1 · · · F̃0([ψ̂(x) − r̄ , ψ̂(x) + r̄]) ⊂ ψ̂(x) +
l(x)−1∑
i=0

φ(gi(x)) +
[

− 1
10

r̄ ,
1
10

r̄

]
.

We have the following.

LEMMA 6.2. The map H̃ is continuous.

Proof. It is enough to show that for any {xn}, {ln}, x′, l′ in Lemma 6.1 with j = k + 1, we
have

H̃ (gln(xn)) → H̃ (gl′(x′)), n → ∞. (6.9)

We first assume that conclusion (1) in Lemma 6.1 is true, namely, x′ ∈ Zk+1. Then
equation (6.9) follows immediately from Lemma 3.2(3) and the continuity of �l(x′).

Now assume that conclusion (2) in Lemma 6.1 is true, namely, x′ ∈ Kk . It is enough
to prove equation (6.9) in the following two cases: (1) xn ∈ Kk for all n; (2) xn ∈ Zk+1

for all n. In the first case, we have gln(xn) ∈ Wk for all n. By Lemma 6.1, we have
gl′(x′) ∈ Wk . Then equation (6.9) follows from equation (6.6) and the fact that F (k) is
continuous.

Assume that the second case is true, namely, xn ∈ Zk+1 for all n. Moreover, after
passing to a subsequence, we can assume that there exists l0 such that l(xn) = l0 for all n.
By equation (6.7), we have

H̃ (gl′(xn)) = the l′th coordinate of �l0(xn).

Then by the continuity of �l0 and the fact that xn → x′, ln → l′ as n tends to infinity, we
have that

H̃ (gln(xn)) → the l′th coordinate of �l0(x
′), n → ∞.

It is then enough to show that the l′th coordinate of �l0(x
′) equals F

(k)

gl′ (x′). By
Proposition 5.1(3), it is enough to verify that
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((F (k))l0)x′(ψ̂(x′)) = ψ̂(x′) +
l0−1∑
i=0

φ(gi(x′)), (6.10)

((F̃ (k))l0)x′(ψ̂(x′) + [−r̄ , r̄]) ⊂ ψ̂(x′) +
l0−1∑
i=0

φ(gi(x′)) +
[

− 1
10

r̄ ,
1
10

r̄

]
. (6.11)

These follow from items (f 2), (f 3), and Lemma 3.2(5).

By equation (6.8) and Proposition 2.6, we can choose H(k+1) ∈ C0(X, H) so that
DH(H (k+1), H(k)) < 2εk+1 and satisfies that H(k+1)(x) = H̃ (x) for all x ∈ Wk+1. It is
straightforward to verify items (f 1)–(f 3) for k + 1. This completes the induction.

We let H ′ = H(d), f ′ = 
(H ′), and let R = ⋃
x∈K{x} × (ψ(x) − r̄ , ψ(x) + r̄). By

item (f 3), we can see that f ′
K(R) ⊂ R. By Lemma 3.3, f ′ is mode-locked, and hence

H ′ ∈ ML(H). This concludes the proof.

Proof of Theorem 1.7. By Theorem 1.8, it remains to consider the case where (H, dH, ιH)

is given by Example 2. In this case, H = R and dH = dR. Moreover, we may assume
that the function P for defining (H, dH, ιH) (see Example 3) has a smaller period,
for otherwise, (H, dH, ιH) is given by Example 3, and we could already conclude by
Theorem 1.8.

Now let R−1 ∈ (0, 1) be the smallest positive period of P, where R ∈ Z>0 (such R
exists since P is non-constant). Then there exists a non-constant real analytic function
P ∈ Cω(T) with no smaller period such that P̃ (Rw) = RP(w) for every w ∈ T. Notice
that we have ‖P̃ ′‖ = ‖P ′‖ < 1. For each h ∈ R, we define

ι̃H(h)(w) = w + P̃ (w) + h.

Then we have

RιH(h)(w) = ι̃H(Rh)(Rw).

We define a continuous map 
̃ : C0(X, H) → Diff 0,1
g (X × T) by


̃(H)(x, w) = (g(x), ι̃H(H(x))(w)).

By definition, it is straightforward to deduce the equation

ρ(
̃(R · H)) = Rρ(
(H)) ∈ R/Z,

where R · H denotes the function x �→ RH(x) in C0(X, H). By Lemma 2.1, we see that

̃(R · H) ∈ ML if and only if 
(H) ∈ ML. By definition, (H, dH, ι̃H) is given by
Example 3. By Theorem 1.8, the set ML(H , ι̃H) is dense. Hence, ML(H , ιH) is also
dense. This concludes the proof.

7. Proof of Lemma 4.8
Throughout this section, we always assume that (H, dH, ιH) is given by either Example 1
or 3.

Without loss of generality, we may assume that

C0(X, H) \ ML(H) �= ∅,
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for otherwise, there is nothing to prove. We fix some contractible H ∈ C0(X, H) \
ML(H) such that L+(H) > L−(H) and an arbitrary ε > 0. Recall that we will need
to show that there exists N4 > 0 such that for any x ∈ X, any integer N ≥ N4, there exists
(p0, . . . , pN−1) ∈ HN such that: (1) dH(pi , H(gi(x))) < ε for every 0 ≤ i ≤ N − 1;
and (2) we have

max(−L−, L+)((pi)
N−1
i=0 ) < (1 − λ0) max(−L−(H), L+(H)),

where λ0 is given in equation (4.4).
We denote f = 
(H) and denote by F a lift of f.
We have the following result, making use of only the fact that H ∈ C0(X, H) \

ML(H).

LEMMA 7.1. There exist a constant κ = κ(H) > 0 and functions �, K : R+ → R+ such
that the following is true. For any ε > 0, n > K(ε), H̃ ∈ BH(H , κ), and x ∈ X, we have

inf
y∈R[(F n

ε )x(y) − (F n)x(y)] > n�(ε),

where F is an arbitrary lift of 
(H) (clearly the left-hand side above is independent of the
choice of the lift).

Proof. Take a constant κ > 0 such that BH(H , 2κ) ⊂ C0(X, H) \ ML(H).
Assume in contrast that the lemma is false. Then there exist some ε > 0, an increasing

sequence {nk}k≥1, a sequence {Hk ∈ BH(H , κ)}k≥1, a sequence {xk ∈ X}k≥1, and a
sequence {yk ∈ [0, 1)}k≥1 such that

((F (k)
ε )nk )xk

(yk) − ((F (k))nk )xk
(yk) ≤ nk/k, (7.1)

where F (k) is a lift of 
(Hk). We may assume without loss of generality that the set
{F (k)}k≥1 is bounded in C0(R, R); and Hk converges to some Ȟ . Then, after passing to a
subsequence, we may assume that F (k) converges to a lift F̌ of 
(Ȟ ).

Fix an arbitrary integer m > 0. By equation (7.1), for all sufficiently large integer k > 0,
there exists some 0 ≤ lk ≤ nk − m such that, for uk = glk (xk) and some zk ∈ [0, 1), we
have

((F (k)
ε )m)uk

(zk) − ((F (k))m)uk
(zk) ≤ 2m/k.

By extracting a subsequence, we may assume that uk converges to some u ∈ X, and zk

converges to some z ∈ [0, 1]. Then we have

(F̌m
ε )u(z) − (F̌m)u(z) = 0. (7.2)

By our choice of κ , it is clear that Ȟ ∈ C0(X, H) \ ML(H). Thus, equation (7.2) contra-
dicts Corollary 2.4 if m is sufficiently large. Consequently, the lemma must be true.

We have the following corollary.

COROLLARY 7.2. Let �, K be given as in Lemma 7.1. Then there exists a constant κ > 0
such that the following is true. For any ε > 0, n > K(ε), x ∈ X, and any (Hi)

n−1
i=0 ∈ Hn

such that dH(Hi , H(gi(x))) < κ , we have
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inf
y∈R[(Fn−1)ε ◦ · · · ◦ (F0)ε(y) − Fn−1 ◦ · · · ◦ F0(y)] > n�(ε),

where Fi is an arbitrary lift of ιH(Hi) for each 0 ≤ i ≤ n − 1.

Proof. Given x ∈ X and n > K(ε), we have by Proposition 2.6 that there exists some
H̃ ∈ BH(H , κ) and H̃ (gi(x)) = Hi for every 0 ≤ i ≤ n − 1. Then we can immediately
deduce the corollary by Lemma 7.1.

In the following lemma, we will construct perturbations that resemble the parabolic
elements in SL(2, R). They are given by certain circle diffeomorphisms having a unique
fixed point with multiplier 1. For this purpose, we will use the fact that (H, dH, ιH) is
given by either Example 1 or 3.

LEMMA 7.3. For every ε > 0, there exist an integer M = M(H , ε) > 0 and a function
δε,M : R+ → R+ such that for any x ∈ X and y ∈ R, there exists (p

(j)
i )M−1

i=0 ∈ HM ,
j ∈ {0, 1} such that dH(p

(j)
i , H(gi(x))) < ε for j ∈ {0, 1} and 0 ≤ i ≤ M − 1, and the

following is true. Denote by P
(0)
i and P

(1)
i lifts of ιH(p

(0)
i ) and ιH(p

(1)
i ), respectively,

which are close to each other. Then we have:
(1) P

(1)
M−1 ◦ · · · ◦ P

(1)
0 (y) = P

(0)
M−1 ◦ · · · ◦ P

(0)
0 (y);

(2) P
(1)
M−1 ◦ · · · ◦ P

(1)
0 (z) > P

(0)
M−1 ◦ · · · ◦ P

(0)
0 (z) + δε,M(σ) for every z /∈ y + (−σ , σ)

+ Z and for every σ > 0.

Proof. This lemma is obvious if (H, dH, ιH) is in Example 1, as we can use the projective
action given by the parabolic elements in SL(2, R) to make perturbations.

Now we assume that (H, dH, ιH) is in Example 3.
Fix an arbitrary x ∈ X. We define a real analytic function cx : T × R2 → R by

cx(y mod 1, s, t) = Fg2(x) ◦ (Fs+t )g(x) ◦ (Ft )x(y) − Fg2(x) ◦ Fg(x) ◦ Fx(y).

By straightforward computation, we see that

(f−cx(w,s,t))g2(x) ◦ (fs+t )g(x) ◦ (ft )x(w) = fg2(x) ◦ fg(x) ◦ fx(w). (7.3)

By continuity, we have

lim
s→0

sup
x∈X

sup
w∈T

|cx(w, s, 0)| = 0. (7.4)

Moreover, given any w0 ∈ R, we have

∂t {(f−cx(w0,s,t))g2(x) ◦ (fs+t )g(x) ◦ (ft )x(w)}|t=0

= −∂t cx(w0, s, t)|t=0 + ∂t {fg2(x) ◦ (fs+t )g(x) ◦ (ft )x(w)}|t=0

= −∂t cx(w0, s, t)|t=0 + ∂t {cx(w, s, t)}|t=0.

Fix some s ∈ (0, ε/2) sufficiently close to 0 such that supx∈X supw∈T |cx(w, s, 0)| <

ε/2, and the function ∂t {cx(w, s, t)}|t=0, as a non-constant real analytic function of w,
reaches its minimum on a finite set Cx ⊂ T. Then

∂t {(f−cx(w,s,t))g2(x) ◦ (fs+t )g(x) ◦ (ft )x(w)}|t=0 ≥ 0,
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and the equality holds if and only if w ∈ Cx . By compactness, there exists an integer L > 0
such that |Cx | ≤ L for every x ∈ X.

Define M = 5L. We will inductively construct p(j)
i for j ∈ {0, 1} and i ∈ {0, . . . , M −1}

so that the conclusion of the lemma is satisfied.
Denote Cx = {w0, . . . , w�−1}, where � ≤ L. We set w0,i = wi for 0 ≤ i ≤ � − 1.
Given an integer 0 ≤ m ≤ � − 1, assume that we have already constructed pi for

i ∈ {0, . . . , 5m − 1}. We define

(p5m, p5m+1, p5m+2)

= (H(g5m(x)), H(g5m+1(x)), H(g5m+2(x))) + (0, s, −cg5m(x)((f
5m)x(w0), s, 0)).

(7.5)

By our choice of s, we have (p5m, p5m+1, p5m+2) ∈ BH(H(g5m(x)), ε) ×
BH(H(g5m+1(x)), ε) × BH(H(g5m+2(x)), ε). We define

zm,i = ιH((p5m+k)
2
k=0)(wm,i ) for all 0 ≤ i ≤ � − 1.

By Lemma 4.4, there exists (p5m+3, p5m+4) ∈BH(H(g5m+3(x)), ε)×BH(H(g5m+4(x)), ε)
such that

ιH((p5m+3, p5m+4))(zm,0) = ιH((H(g5m+3(x)), H(g5m+4(x))))(zm,0), (7.6)

ιH((p5m+3, p5m+4))(zm,m+1) �∈ Cg5m+5(x) if m < � − 1. (7.7)

We define

wm+1,i = ιH((p5m+3, p5m+4))(zm,i ) for all 0 ≤ i ≤ � − 1.

We set p
(0)
k = pk for every 0 ≤ k ≤ 5� − 1. Let t > 0 be a small constant to be

determined. For each 0 ≤ m ≤ � − 1, we define

(p
(1)
5m, p

(1)
5m+1, p

(1)
5m+2) = (H(g5m(x)), H(g5m+1(x)), H(g5m+2(x)))

+ (t , s + t , −cg5m(x)((f
5m)x(w0), s, t)), (p

(1)
5m+3, p

(1)
5m+4)

= (p5m+3, p5m+4).

We set p
(0)
k = p

(1)
k = H(gk(x)) for every 5� ≤ k ≤ M − 1. By letting t be sufficiently

close to 0, we have dH(p
(j)
k , H(gk(x))) < ε for j ∈ {0, 1} and 0 ≤ k ≤ M − 1.

Take an arbitrary y ∈ R such that y mod 1 = w0. It is then straightforward to verify
item (1) by equations (7.5) and (7.3). To verify item (2), we take an arbitrary u ∈ T
and denote uk = ιH((pi)

k−1
i=0 )(u) for each 0 ≤ k ≤ M − 1. Now we view p

(1)
k for each

0 ≤ k ≤ M − 1 as a function of t. Then we have

∂t {ιH((p
(1)
k )M−1

k=0 )(u)}|t=0

=
�−1∑
m=0

DιH((pk)
M−1
k=5m+3)(u5m+3)

· ∂t {(f−c
g5m(x)

((f 5m)x(w0),s,t))g5m+2(x) ◦ (fs+t )g5m+1(x) ◦ (ft )g5m(x)(u5m)}|t=0.
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By construction, we see that for any u �= w0, there exists some 0 ≤ m ≤ � − 1 such that
u5m /∈ Cg5m(x). Consequently, we have

∂t {ιH((p
(1)
k )M−1

k=0 )(u)}|t=0 ≥ 0

with equality if and only if u = w0. Then it is straightforward to deduce item (2) by
compactness.

Now we state the main observation for the proof of Lemma 4.8.

LEMMA 7.4. For any ε > 0, there exists a constant N2 = N2(H , ε) > 0 such that
the following is true. For any (x, y) ∈ X × R, there exist integers M−, M+ satisfying
−N2 ≤ M− ≤ 0 ≤ M+ ≤ N2 such that for any z+, z− ∈ R with |z+ − (FM+)x(y)|,
|z− − (FM−)x(y)| < 2, there exist (pM− , . . . , pM+−1) ∈ HM+−M− and y′ ∈ (y, y + 1)

such that:
(1) dH(pi , H(gi(x))) < ε for any M− ≤ i ≤ M+ − 1;
(2) denote by Pi the unique lift of ιH(pi) close to Fgi(x). Then either we have

P0 ◦ · · · ◦ PM+−1[y, y′) ⊂ (z+ − ε, z+ + ε)

and (P−1 ◦ · · · ◦ PM−)−1[y′, y + 1) ⊂ (z− − ε, z− + ε),

or we have

P0 ◦ · · · ◦ PM+−1[y′, y + 1) ⊂ (z+ − ε, z+ + ε)

and (P−1 ◦ · · · ◦ PM−)−1[y, y′) ⊂ (z− − ε, z− + ε).

Proof. Without loss of generality, we assume that ε ∈ (0, min(κ(H), 1)/2), where κ(H)

is given by Lemma 7.1.
We let ε0 = ε0(H , ε/2) be given by Lemma 2.5. Let

m0 = �3κ1(f , ε0)
−1N1(f , ε0)� + 1, (7.8)

ε2 = (‖f ‖C0,1 + 1)−m0ε, (7.9)

where κ1 and N1 are given by Corollary 2.4.
Let M = M(H , ε) be given by Lemma 7.3. Given x ∈ X and y ∈ R, we apply

Lemma 7.3 to obtain (p
(j)
i )M−1

i=0 ∈ HM for j ∈ {0, 1} and 0 ≤ i ≤ M − 1. We denote
(p

(j)
i )M−1

i=0 as (p
(j)
x,y,i )

M−1
i=0 to indicate the dependence on x and y.

By Lemma 7.3, we define

ε1 = δε,M(ε2) > 0, (7.10)

ε′
1 = M−1(‖f ‖C0,1 + 1)−Mε1. (7.11)

We have for every x ∈ X, y ∈ R, and y′ �∈ Z + y + (−ε2, ε2) that

P
(1)
x,y,M−1 ◦ · · · ◦ P

(1)
x,y,0(y

′) − P
(0)
x,y,M−1 ◦ · · · ◦ P

(0)
x,y,0(y

′) > ε1. (7.12)

We let

m1 = 3��(ε′
1)

−1�K(ε′
1), (7.13)

where functions �, K are given by Lemma 7.1.
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We fix some x ∈ X and y ∈ R from now on. We define

p̂kM+i = p
(1)

gkM(x),(F kM)x(y),i ,

p̌kM+i = p
(0)

gkM(x),(F kM)x(y),i for all k ∈ Z, 0 ≤ i ≤ M − 1. (7.14)

By Lemma 7.3, we have dH(p̂i , H(gi(x))), dH(p̌i , H(gi(x))) < ε for all i ∈ Z. We
denote by P̂i , respectively P̌i , the unique lift of p̂i , respectively p̌i , close to Fgi(x). By
equation (7.14) and Lemma 7.3(1), it is direct to verify that for any i ≥ 0, P̂iM−1 · · ·
P̂0(y) = P̌iM−1 · · · P̌0(y) = (F iM)x(y); and for any i < 0, P̂ −1

iM · · · P̂ −1
−1 (y) = P̌ −1

iM , . . .

P̌ −1
−1 (y) = (F iM)x(y).

Define

N2 = m1M + m0.

We have the following claim.

CLAIM 7.5. For any z ∈ (y, y + 1), there exists 0 ≤ i ≤ m1 such that

P̂iM−1 · · · P̂0(z) ∈ (F iM)x(y) + (0, ε2) ∪ (1 − ε2, 1).

Similarly, for any z ∈ (y, y + 1), there exists 0 ≤ i ≤ m1 such that

P̂ −1
−iM · · · P̂ −1

−1 (z) ∈ (F−iM)x(y) + (0, ε2) ∪ (1 − ε2, 1).

Proof. We will only detail the first statement, since the second one follows from a similar
argument. If the first statement is false, let zi = P̂iM−1 · · · P̂0(z) for all 0 ≤ i ≤ m1, then
we would have

zi �∈ Z + (F iM)x(y) + (−ε2, ε2) for all 0 ≤ i ≤ m1.

Then by equation (7.12), we have

P̂(i+1)M−1 ◦ · · · ◦ P̂iM(zi) > P̌(i+1)M−1 ◦ · · · ◦ P̌iM(zi) + ε1

≥ (P̌(i+1)M−1)ε′
1
◦ · · · ◦ (P̌iM)ε′

1
(zi). (7.15)

By Corollary 7.2, and equations (7.13) and (7.15), we would have

P̂m1M−1 · · · P̂0(y + 1)

≥ P̂m1M−1 · · · P̂0(z) ≥ (P̌m1M−1)ε′
1
◦ · · · ◦ (P̌0)ε′

1
(y) > (Fm1M)x(y) + 2.

This is a contradiction.

Let

U− = {z ∈ (y, y + 1) | there exists 0 ≤ i ≤ m1 such that

P̂iM−1 · · · P̂0(z) ∈ (F iM)x(y) + (0, ε2)},
U+ = {z ∈ (y, y + 1) | there exists 0 ≤ i ≤ m1 such that

P̂iM−1 · · · P̂0(z) ∈ (F iM)x(y) + (1 − ε2, 1)}.
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Then by our claim, we have

U− ∪ U+ = (y, y + 1).

It is direct to see that U−, U+ are both non-empty connected open sets. Since (y, y + 1)

is connected, we conclude that U− ∩ U+ �= ∅. We take y′ to be an arbitrary element in
U− ∩ U+.

Again by Claim 7.5, there exists 0 ≤ n′− ≤ m1 such that for N ′− = Mn′−, we have

P̂ −1
−N ′−

· · · P̂ −1
−1 (y′) ∈ (F−N ′−)x(y) + (0, ε2) ∪ (1 − ε2, 1).

Without loss of generality, we may assume that

P̂ −1
−N ′−

· · · P̂ −1
−1 (y′) ∈ (F−N ′−)x(y) + (0, ε2),

as the other case can be dealt with by a similar argument. Then we have

P̂ −1
−N ′−

· · · P̂ −1
−1 [y, y′) ⊂ (F−N ′−)x(y) + [0, ε2).

By y′ ∈ U+, we see that there exists n′+ ∈ {0, . . . , m1} such that for N ′+ = Mn′+, we
have

P̂N ′+−1 · · · P̂0(y
′) ∈ (FN ′+)x(y) + (1 − ε2, 1).

Hence,

P̂N ′+−1 · · · P̂0[y′, y + 1) ⊂ (FN ′+)x(y) + (1 − ε2, 1). (7.16)

We set

M+ = N ′+ + m0 and pi = p̂i , Pi = P̂i for all 0 ≤ i ≤ N ′+ − 1.

By Lemma 2.5, equation (7.8), and the fact that

(Fm0)
g

N ′+ (x)
P̂N ′+−1 · · · P̂0(y + 1) = (FM+)x(y + 1) ∈ z+ + (−3, 3),

there exists (pN ′+ , . . . , pM+−1) ∈ Hm0 such that:

(1) dH(pN ′++i , H(gN ′++i (x))) < ε for any 0 ≤ i ≤ m0 − 1;

(2) PM+−1 · · · PN ′+((FN ′+)x(y) + 1) = z+,
where Pi is a lift of ιH(pi) close to Fgi(x) for each N ′+ ≤ i ≤ M+ − 1. Then by equations
(7.16) and (7.9), we have

PM+−1 · · · P0[y′, y + 1) ⊂ PM+−1 · · · PN ′+((FN ′+)x(y) + (1 − ε2, 1])

⊂ (z+ − ε, z+ + ε).

By a similar method, we may set

M− = −N ′− − m0,

and define (pM− , . . . , p−1) and a lift Pi of ιH(pi) for each M− ≤ i ≤ −1. It is then direct
to verify items (1) and (2).
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We also need the following two lemmata. In the following, we denote by yi a point in R,
and denote ȳi = yi mod Z ∈ T.

LEMMA 7.6. For any ε, η > 0, there exist ε3 = ε3(H , ε) > 0, r1 = r1(H , ε, η) > 0,
N3 = N3(H , ε) > 0 such that for any integer N ≥ N3, the following is true.

(Forward contraction) For any x ∈ X, there exist y1 ∈ R and (q0, . . . , qN−1) ∈ HN

such that:
(1) dH(qi , H(gi(x))) < ε for every 0 ≤ i ≤ N − 1;
(2) D(ιH((qj )

i−1
j=0))(ȳ1) < e−2ε3i for every N3 ≤ i ≤ N;

(3) (DιH((qj )
i−1
j=0)(ȳ

′)/DιH((qj )
i−1
j=0)(ȳ1)) ∈ (e− min(ε3,η)i , emin(ε3,η)i) for every 0 ≤

i ≤ N and every ȳ′ ∈ (ȳ1 − r1, ȳ1 + r1);
(4) ιH((qj )

N−1
j=0 )(ȳ1) = (f N)x(ȳ1).

(Backward contraction) For any x ∈ X, there exist y2 ∈ R and (q−N , . . . , q−1) ∈ HN

such that:
(1′) dH(q−i , H(g−i (x))) < ε for every 1 ≤ i ≤ N;
(2′) D(ιH((qj )

−1
j=−i )

−1)(ȳ2) < e−2ε3i for every N3 ≤ i ≤ N;

(3′) (D(ιH((qj )
−1
j=−i )

−1)(ȳ′)/D(ιH((qj )
−1
j=−i )

−1)(ȳ2)) ∈ (e− min(ε3,η)i , emin(ε3,η)i) for
every 0 ≤ i ≤ N and every ȳ′ ∈ (ȳ2 − r1, ȳ2 + r1);

(4′) ιH((qj )
N−1
j=0 )(ȳ2) = (f N)x(ȳ2).

Proof. We will detail the proof of the case (Forward contraction). The other case follows
from a similar argument.

We fix a small constant σ0 > 0 such that for every x ∈ X and w ∈ T, we have

E(σ0, w, x, H) ∈
k−1∏
i=0

BH(H(gi(x)), ε),

where the map E is given by Lemma 4.3. We let r0, ε2 be given by Lemma 4.3(3) for σ0.
Fix an arbitrary x ∈ X. For any integer n ≥ 1, we define

An,ε2 = {w ∈ T | D(f n)x(w) > 1000kε−1
2 enε2/(100k)}.

By the identity in equation (2.2) and Markov’s inequality, we have∣∣∣∣ ⋃
n≥1

An,ε2

∣∣∣∣ ≤
∑
n≥1

|An,ε2 | <
∑
n≥1

ε2

1000k
e−nε2/(100k) < 1.

We fix an arbitrary ȳ1 ∈ T \ (
⋃

n≥1 An,ε2).
We let N3 > 0 be a large integer to be determined depending only on H and ε, and let

ε3 = ε2/(100k). (7.17)

By the choice of ȳ1 and by letting N3 be sufficiently large, we have

D(f n)x(ȳ1) ≤ 1000kε−1
2 enε2/(100k) < enε2/(50k) = e2nε3 for all n ≥ N3. (7.18)
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For any N ≥ N3, we define

(qik+j )
k−1
j=0 = E(σ0, (f ik)x(ȳ1), gik(x), H) for all 0 ≤ i ≤ �(N − 1)/k� − 1 (7.19)

and define

qj = H(gj (x)) for all k�(N − 1)/k� ≤ j < N .

Then item (1) follows from our choice of σ0. It is direct to verify item (4) by Lemma 4.3(2).
We let r ′ > 0 be a small constant depending only on H , H, k, and ε such that

D(f k)x′(ȳ′′)
D(f k)x′(ȳ′)

< emin(ε3,η)/2 for all x′ ∈ X, |ȳ′ − ȳ′′| < 2r ′ (7.20)

and

DE(σ0, w, x′, H)(ȳ′′)
DE(σ0, w, x′, H)(ȳ′)

< emin(ε3,η)/2 for all x′ ∈ X, |ȳ′ − ȳ′′| < 2r ′. (7.21)

By equations (7.17), (7.18), (7.19), and Lemma 4.3(3), we have

D(ιH((qi)
n−1
i=0 ))(ȳ1) < e−nε2/2k = e−50nε3 for all N3 ≤ n ≤ N . (7.22)

This proves item (2). We choose r1 = r1(H , ε, η) ∈ (0, r ′) to be sufficiently small, so that
we have

ιH((qi)
n−1
i=0 )(ȳ1 − r1, ȳ1 + r1) ⊂ (f n)x(ȳ1) + (−r ′, r ′) for all 0 ≤ n ≤ N3.

By equations (7.21), (7.22) and a simple induction, we obtain item (3).

LEMMA 7.7. For any η > 0, there exists r2 = r2(H , η) > 0 such that for any integer
N ≥ 1, the following is true.

(Forward expansion) For any x ∈ X, there exists ȳ3 ∈ T such that D(f N)x(ȳ
′) > e−ηN

for any ȳ′ ∈ (ȳ3 − r2‖f ‖−N

C0,1 , ȳ3 + r2‖f ‖−N

C0,1).
(Backward expansion) For any x ∈ X, there exists ȳ4 ∈ T such that D(f −N)x(ȳ

′) >

e−ηN for any ȳ′ ∈ (ȳ4 − r2‖f ‖−N

C0,1 , ȳ4 + r2‖f ‖−N

C0,1).

Proof. By equation (2.2), we can choose ȳ3 ∈ R so that D(f N)x(ȳ3) = 1. Then by letting
r2 be sufficiently small, and by continuity, we can verify (Forward expansion). The proof
of (Backward expansion) is similar.

Proof of Lemma 4.8. As before, we denote f = 
(H). We set

D = ‖f ‖C0,1 + 3 (so that log D ≥ 1), η =
(

L+(f ) − L−(f )

100 log D

)2

> 0.

We denote n1 = N ′
0(H , η) > 0, where N ′

0 is given by Lemma 2.8. Then for any n ≥ n1,
we have

e(L−(f )−η)n < D(f n)x(w) < e(L+(f )+η)n for all (x, w) ∈ X × T. (7.23)
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By continuity and subadditivity, it is direct to see that there exists ε′ = ε′(H , η) > 0 such
that for any n ≥ n1, for any (h0, . . . , hn−1) ∈ Hn satisfying dH(hi , H(gi(x))) < ε′ for
all 0 ≤ i ≤ n − 1, we have

e(L−(f )−2η)n < D(ιH((hi)
n−1
i=0 ))(w) < e(L+(f )+2η)n for all (x, w) ∈ X × T.

Without loss of generality, we can assume that ε ∈ (0, ε′). We let ε3 = ε3(H , ε), r1 =
r1(H , ε, η), N3 = N3(H , ε) be given by Lemma 7.6. We let r2 = r2(H , η) > 0 be given
by Lemma 7.7. Denote

r0 = r0(H , ε) = min(r1, r2, ε)/2.

Let N2 = N2(H , r0) be given by Lemma 7.4. It is clear that, ultimately, N2 depends only
on H and ε.

We let ε0 = ε0(H , ε/2) be given by Lemma 2.5. Define

m2 = �2κ1(
(H), ε0)
−1N1(
(H), ε0)� + 1, (7.24)

where κ1, N1 are given Lemma 2.5.
We let N4 > 0 be a large integer to be determined depending only on H and ε. Taking

an arbitrary integer N > N4, we set

x0 = g�N/2�(x).

We apply Lemma 7.4 for (r0, x0, 0) in place of (ε, x, y) to obtain (M1, M2) in place of
(M+, M−). We have −N2 ≤ M2 ≤ 0 ≤ M1 ≤ N2.

By letting N4 be sufficiently large, we have N − �N/2� − M1 > N3. Then by
Lemma 7.6 (Forward contraction) for (gM1(x0), N − �N/2� − M1) in place of (x, N),
we obtain ȳ1 ∈ T and p̃0, . . . , p̃N−�N/2�−M1−1 ∈ H, such that:
(g1) dH(p̃i , H(gM1+i (x0))) < ε for all 0 ≤ i ≤ N − �N/2� − M1 − 1;
(g2) DιH((p̃j )

i−1
j=0)(ȳ1) < e−2ε3i for all N3 ≤ i ≤ N − �N/2� − M1 − 1;

(g3) (DιH((p̃j )
i−1
j=0)(ȳ

′)/DιH((p̃j )
i−1
j=0)(ȳ1)) ∈ (e− min(η,ε3)i , emin(η,ε3)i ) for any 0 ≤

i ≤ N − �N/2� − M1 − 1 and any ȳ′ ∈ (ȳ1 − r1, ȳ + r1);
(g4) ιH((p̃j )

N−�N/2�−M1−1
j=0 )(ȳ1) = (f N−�N/2�−M1)gM1 (x0)

(ȳ1).
Without loss of generality, we may assume that the lifts of ȳ1 and ȳ′

1, denoted by
y1, y′

1 ∈ R, respectively, satisfy that

|(FM1)x0(0) − y1|, |(FM2)x0(0) − y′
1| < 2.

We denote by P̃i the unique lift of ιH(p̃i) close to FgM1+i (x0)
for every 0 ≤ i ≤ N −

�N/2� − M1 − 1. Then by r0 < r1 and item (g3), for any 1 ≤ i ≤ N − �N/2� − M1, we
have

D(P̃i−1 · · · P̃0)(y
′)

D(P̃i−1 · · · P̃0)(y1)
∈ (e−i min(η,ε3), ei min(η,ε3)) for all y′ ∈ (y1 − r0, y1 + r0). (7.25)

By Lemma 7.4 for (r0, y1, y′
1) in place of (ε, z+, z−), we obtain y′

0 ∈ (0, 1) and
(p̂M2 , . . . , p̂M1−1) ∈ HM1−M2 such that dH(p̂i , H(gi(x0))) < r0 ≤ ε for all M2 ≤ i ≤
M1 − 1, and, denote by P̂i the lift of ιH(p̂i) close to Fgi(x0)

, we have:
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Case I. Either

p̂M1−1 · · · p̂0[0, y′
0) ⊂ (y1 − r0, y1 + r0), (7.26)

p̂−1
M2

· · · p̂−1
−1[y′

0, 1) ⊂ (y′
1 − r0, y′

1 + r0); (7.27)

Case II. Or

p̂M1−1 · · · p̂0[y′
0, 1) ⊂ (y1 − r0, y1 + r0), (7.28)

p̂−1
M2

· · · p̂−1
−1[0, y′

0) ⊂ (y′
1 − r0, y′

1 + r0). (7.29)

We will only detail the proof for Case I, as the other case follows from a similar argument.
We now define p�N/2�, . . . , pN−1. Take an arbitrary integer

m1 ∈
(

9 log D(N − �N/2�)
9 log D + L+(f ) − L−(f )

,
(9 log D + η)(N − �N/2�)
9 log D + L+(f ) − L−(f )

)
. (7.30)

Define

x1 = gM1(x0), x2 = gm1(x1),

x3 = gm2(x2), m3 = N −
⌈

N

2

⌉
− M1 − m1 − m2.

By direct computations and by letting N4 be sufficiently large, we see that

m3 ∈
(

(L+(f ) − L−(f ) − 2η)(N − �N/2�)
9 log D + L+(f ) − L−(f )

,
(L+(f ) − L−(f ) − η)(N − �N/2�)

9 log D + L+(f ) − L−(f )

)
.

(7.31)

Then we have

N2 + m2 = N − �N/2� − m1 − m3 ∈
(

0,
2η(N − �N/2�)

9 log D + L+(f ) − L−(f )

)
. (7.32)

We define

p�N/2�+i = p̂i for all 0 ≤ i ≤ M1 − 1, (7.33)

p�N/2�+M1+i = p̃i for all 0 ≤ i ≤ m1 − 1, (7.34)

p�N/2�+M1+m1+m2+i = H(gi(x3)) for all 0 ≤ i ≤ m3 − 1. (7.35)

By equation (7.30) and by letting N4 be sufficiently large, we have m1 > N3. Then by
item (g2) and equation (7.25), we have

P̃m1−1 · · · P̃0(y1 − r0, y1 + r0) ⊂(Fm1)x1(y1) + emin(η,ε3)m1D(P̃m1−1· · ·P̃0)(y1)(−r0, r0)

⊂(Fm1)x1(y1) + e−ε3m1(−r0, r0). (7.36)

By r0 ≤ r2 and Lemma 7.7(Forward expansion) for (x3, m3) in place of (x, N), there exists
y3 ∈ R, such that

D(Fm3)x3(y
′) > e−ηm3 for all y′ ∈ (y3 − D−m3r0, y3 + D−m3r0). (7.37)
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Without loss of generality, we can choose y3 so that |(Fm1+m2)x1(y1) − y3| < 2. By
equation (7.24), we have (x2, (Fm1)x1(y1), y3) ∈ �m2(F , κ1(
(H), ε0)). Then by Lemma
2.5 and m2 > N1(
(H), ε0), we can define (p�N/2�+M1+m1 , . . . , p�N/2�+M1+m1+m2−1)

so that:
(1) dH(p�N/2�+M1+m1+i , H(gi(x2))) < ε for all 0 ≤ i ≤ m2 − 1;
(2) we have

P�N/2�+M1+m1+m2−1 · · · P�N/2�+M1(y1) = y3. (7.38)

Here we denote by Pi the unique lift of ιH(pi) close to Fgi(x) for every �N/2� ≤ i ≤
N − 1. Notice that by item (1) above, we have

D−m2 < ‖DιH((p�N/2�+M1+m1+i )
m2−1
i=0 )‖ < Dm2 . (7.39)

We now estimate D(PN−1 · · · P�N/2�) over the interval [0, y′
0). Fix an arbitrary y′ ∈

[0, y′
0). By equations (7.26) and (7.33), we have

P�N/2�+M1−1 · · · P�N/2�(y′) ∈ (y1 − r0, y1 + r0). (7.40)

Then by equations (7.25), (7.39), and (7.38), we have

P�N/2�+M1+m1+m2−1 · · · P�N/2�(y′)
∈ y3 + Dm2eηm1D(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(y1)(−r0, r0). (7.41)

Upper bound. It is direct to see that

D(P�N/2�+M1−1 · · · P�N/2�)(y′) < DM1 . (7.42)

By equation (7.40), items (g2), (g3), and equation (7.34), we have

D(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(P�N/2�+M1−1 · · · P�N/2�(y′))
< em1ε3D(P�N/2�+M1+m1−1 · · · P�N2/2�+M1)(y1) < e−m1ε3 . (7.43)

By equation (7.31) and by letting N4 be sufficiently large, we have m3 > n1. Then by
equations (7.23), (7.42), (7.43), (7.39), (7.30), and (7.31), we have

D(PN−1 · · · P�N/2�)(y′) < e(L+(f )+η)m3e−m1ε3DM1+m2 ,

< e(1/3)(L+(f )−L−(f ))(N−�N/2�).

Lower bound. We have

D(P�N/2�+M1−1 · · · P�N/2�)(y′) > D−M1 . (7.44)

By equation (7.43), it is useful to divide the estimate into the following two cases.
• If D(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(y1) > e−(L+(f )−L−(f )/4)m1 , then by equations

(7.25), (7.40), and (7.34), we have

D(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(P�N/2�+M1−1 · · · P�N/2�(y′))
> e−m1ηD(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(y1) > e(−(L+(f )−L(f )/4)−η)m1 .
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Then by equation (7.23) and m3 > n1, we have

D(PN1 · · · P�N/2�)(y′) > e(L−(f )−η)m3e(−(L+(f )−L−(f )/4)−η)m1D−M1−m2 . (7.45)

• If (P�N/2�+M1+m1−1 · · · P�N/2�+M1)(y1) ≤ e−(L+(f )−L−(f )/4)m1 , then by equations
(7.38), (7.30), and (7.31), we have

right-hand side of equation (7.41) ⊂ y3 + Dm2e(η−(L+(f )−L−(f )/4))m1 (−r0, r0) ⊂ y3 + D−m3 (−r0, r0).

The last inclusion follows from equations (7.30) and (7.31). Then by equation (7.37), we
have

D(PN−1 · · · P�N/2�+M1+m1+m2)(P�N/2�+M1+m1+m2−1 · · · P�N/2�(y′)) > e−m3η.

Moreover, by dH(p̃i , H(gM1+i (x0))) < ε < ε′ for all 0 ≤ i ≤ m1 − 1, by m1 > n1, and
by the choice of ε′, we have

D(P�N/2�+M1+m1−1 · · · P�N/2�+M1)(y
′′) > e(L−(f )−2η)m1 for all y′′ ∈ R.

By combining the above inequalities with equations (7.35), (7.39), and (7.44), we obtain

D(PN−1 · · · P�N/2�)(y′) > e−ηm3e(L−(f )−2η)m1D−M1−m2 . (7.46)

By equations (7.30), (7.31), and (7.32), we can deduce from both equations (7.45) and
(7.46) that

D(PN−1 · · · P�N/2�)(y′) > e−(1−η) max(L+(f ),−L−(f ))(N−�N/2�).

Now, continue to assume that we are under Case I, then we can define p0, . . . , p�N/2�−1

in a similar way so that for any y′ ∈ [y′
0, 1), we have

|log |D(ιH((pi)
�N/2�−1
i=0 ))−1(y′)|| ≤ (1 − η) max(L+(f ), −L−(f ))

⌈
N

2

⌉
.

It is then straightforward to verify items (1) and (2) of Lemma 4.8 for Case I. The proof
for Case II follows from a similar argument.
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