Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:18:23.439Z Has data issue: false hasContentIssue false

First mitochondrial genome of a lugworm (Annelida: Arenicolidae) and its phylogenetic position

Published online by Cambridge University Press:  06 January 2023

Genki Kobayashi*
Affiliation:
Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki, Miyagi 986-8580, Japan
Hajime Itoh
Affiliation:
National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Nobuyoshi Nakajima
Affiliation:
National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
*
Author for correspondence: Genki Kobayashi, E-mail: genkikobayashi5884@gmail.com

Abstract

The annelid mitochondrial genomes (mitogenomes) have been well documented, and phylogenetic analyses based on the mitogenomes provide insightful implications for annelid evolution. However, the mitogenomes of some families remain unknown. Herein, we determined the complete mitogenome of the lugworm Abarenicola claparedi oceanica (15,524 bp), representing the first mitogenome from the family Arenicolidae. The gene order of this species is the same as the various lineages in Sedentaria. The maximum likelihood phylogenetic analyses were performed based on six different datasets, including 43 ingroups (oligochaetes, hirudineans, echiurans and closely related polychaetes) and two outgroups (Siboglinidae), namely, aligned and trimmed datasets consisting of the nucleotide sequences of protein-coding genes (PCGs) and rRNAs, and amino acid sequences of PCGs. Phylogenetic analyses based on the nucleotide sequences yielded trees with better support values than those based on the amino acid sequences. Arenicolidae is clustered with Maldanidae in all analyses. Analyses based on nucleotide sequences confirm the monophyly of Terebellidae, which was paraphyletic in recent mitogenomic phylogenetic studies. We also performed the phylogenetic analysis based on the RY-coding of the nucleotide sequences of PCGs only to yield phylogeny with generally low support values. Additional mitogenome sequences of related ingroup species would be needed to comprehensively understand the phylogenetic relationship, which was not present in this study.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, PR, Halanych, KM and Santos, CSG (2020) The phylogeny of Nereididae (Annelida) based on mitochondrial genomes. Zoologica Scripta 49, 366378.CrossRefGoogle Scholar
Bartolomaeus, T and Meyer, K (1997) Development and phylogenetic significance of hooked setae in Arenicolidae (Polychaeta, Annelida). Invertebrate Biology 116, 227.CrossRefGoogle Scholar
Blake, JA and Maciolek, NJ (2020) Travisiidae Hartmann-Schröder, 1971, new family status. In Purschke, G, Böggemann, M and Westheide, W (eds), Handbook of Zoology/Annelida: Basal Groups and Pleistoannelida, Sedentaria II. Berlin: De Gruyter, pp. 302311.CrossRefGoogle Scholar
Bleidorn, C, Podsiadlowski, L, Zhong, M, Eeckhaut, I, Hartmann, S, Halanych, KM and Tiedemann, R (2009) On the phylogenetic position of Myzostomida: can 77 genes get it wrong? BMC Evolutionary Biology 9, 111.CrossRefGoogle ScholarPubMed
Bleidorn, C, Vogt, L and Bartolomaeus, T (2005) Molecular phylogeny of lugworms (Annelida, Arenicolidae) inferred from three genes. Molecular Phylogenetics and Evolution 34, 673679.CrossRefGoogle ScholarPubMed
Bolbat, A, Matveenko, E, Dzyuba, E and Kaygorodova, I (2021) The first mitochondrial genome of Codonobdella sp. (Hirudinea, Piscicolidae), an endemic leech species from Lake Baikal, Russia and reassembly of the Piscicola geometra data from SRA. Mitochondrial DNA Part B 6, 31123113.CrossRefGoogle ScholarPubMed
Bolbat, A, Vasiliev, G and Kaygorodova, I (2020) The first mitochondrial genome of the relic Acanthobdella peledina (Annelida, Acanthobdellida). Mitochondrial DNA Part B: Resources 5, 33003301.CrossRefGoogle ScholarPubMed
Boore, JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27, 17671780.CrossRefGoogle ScholarPubMed
Capa, M and Hutchings, P (2021) Annelid diversity: historical overview and future perspectives. Diversity 13, 129.CrossRefGoogle Scholar
Darbyshire, T (2017) A re-evaluation of the Abarenicola assimilis group with a new species from the Falkland Islands and key to species. Journal of the Marine Biological Association of the United Kingdom 97, 897910.CrossRefGoogle Scholar
Darbyshire, T (2020) Arenicolidae Johnston, 1835. Handbook of Zoology/ Annelida: Pleistoannelida, Sedentaria III and Errantia I. Berlin: De Gruyter, pp. 163185.Google Scholar
Erséus, C, Williams, BW, Horn, KM, Halanych, KM, Santos, SR, James, SW, Creuzé, M and Anderson, FE (2020) Phylogenomic analyses reveal a Palaeozoic radiation and support a freshwater origin for clitellate annelids. Zoologica Scripta 49, 614640.CrossRefGoogle Scholar
Goto, R, Monnington, J, Sciberras, M, Hirabayashi, I and Rouse, GW (2020) Phylogeny of Echiura updated, with a revised taxonomy to reflect their placement in Annelida as sister group to Capitellidae. Invertebrate Systematics 34, 101111.CrossRefGoogle Scholar
Helm, C, Beckers, P, Bartolomaeus, T, Drukewitz, SH, Kourtesis, I, Weigert, A, Purschke, G, Worsaae, K, Struck, TH and Bleidorn, C (2018) Convergent evolution of the ladder-like ventral nerve cord in Annelida. Frontiers in Zoology 15, 36.CrossRefGoogle ScholarPubMed
Hirase, S, Takeshima, H, Nishida, M and Iwasaki, W (2016) Parallel mitogenome sequencing alleviates random rooting effect in phylogeography. Genome Biology and Evolution 8, 12671278.CrossRefGoogle ScholarPubMed
James, SW (2012) Re-erection of Rhinodrilidae Benham, 1890, a senior synonym of Pontoscolecidae James, 2012 (Annelida: Clitellata). Zootaxa 68, 6768.CrossRefGoogle Scholar
Jennings, RM and Halanych, KM (2005) Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): evidence for conserved gene order in Annelida. Molecular Biology and Evolution 22, 210222.CrossRefGoogle ScholarPubMed
Jin, JJ, Yu, WB, Yang, JB, Song, Y, dePamphilis, CW, Yi, TS and Li, DZ (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241.CrossRefGoogle ScholarPubMed
Jumars, PA, Dorgan, KM and Lindsay, SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Annual Review of Marine Science 7, 497520.CrossRefGoogle ScholarPubMed
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A and Jermiin, LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587589.CrossRefGoogle ScholarPubMed
Katoh, K and Standley, DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780.CrossRefGoogle ScholarPubMed
Kobayashi, G, Abe, H, Itoh, H, Tomioka, S and Kojima, S (2018 a) New records of two arenicolid species (Annelida: Arenicolidae) from Rishiri Island, northern Japan with a brief review of previous records of Japanese arenicolids. Rishiri Studies 37, 95100. [In Japanese with English abstract.]Google Scholar
Kobayashi, G, Goto, R, Takano, T and Kojima, S (2018 b) Molecular phylogeny of Maldanidae (Annelida): multiple losses of tube-capping plates and evolutionary shifts in habitat depth. Molecular Phylogenetics and Evolution 127, 332344.CrossRefGoogle ScholarPubMed
Kobayashi, G, Itoh, H, Fukuda, H and Kojima, S (2021) The complete mitochondrial genome of the sand bubbler crab Scopimera globosa and its phylogenetic position. Genomics 113, 831839.CrossRefGoogle ScholarPubMed
Kobayashi, G, Itoh, H and Kojima, S (2022 a) Mitogenome of a stink worm (Annelida: Travisiidae) includes degenerate group II intron that is also found in five congeneric species. Scientific Reports 12, 4449.CrossRefGoogle ScholarPubMed
Kobayashi, G, Itoh, H and Nakajima, N (2022 b) First mitochondrial genomes of Capitellidae and Opheliidae (Annelida) and their phylogenetic placement. Mitochondrial DNA Part B 7, 577579.CrossRefGoogle ScholarPubMed
Laslett, D and Canback, B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research 32, 1116.CrossRefGoogle ScholarPubMed
Law, CJ, Dorgan, KM and Rouse, GW (2014) Relating divergence in polychaete musculature to different burrowing behaviors: a study using Opheliidae (Annelida). Journal of Morphology 275, 548571.Google ScholarPubMed
Manca, M, Ruggiu, D, Panzani, P, Asioli, A, Mura, G and Nocentini, AM (1998) Report on a collection of aquatic organisms from high mountain lakes in Khumbu Valley (Nepalese Himalayas). Memorie Dell'Istituto Italiano Di Idrobiologia 57, 7798.Google Scholar
Martin, P (2001) On the origin of the Hirudinea and the demise of the Oligochaeta. Proceedings of the Royal Society B: Biological Sciences 268, 10891098.CrossRefGoogle ScholarPubMed
Martín-Durán, JM, Vellutini, BC, Marlétaz, F, Cetrangolo, V, Cvetesic, N, Thiel, D, Henriet, S, Grau-Bové, X, Carrillo-Baltodano, AM, Gu, W, Kerbl, A, Marquez, Y, Bekkouche, N, Chourrout, D, Gómez-Skarmeta, JL, Irimia, M, Lenhard, B, Worsaae, K and Hejnol, A (2021) Conservative route to genome compaction in a miniature annelid. Nature Ecology and Evolution 5, 231242.CrossRefGoogle Scholar
Mower, JP (2020) Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion 53, 203213.CrossRefGoogle ScholarPubMed
Nam, S-E, Park, HS, Kim, SA, Kim, B-M and Rhee, J-S (2021) The complete mitochondrial genome of the terebellid polychaete Thelepus plagiostoma (Terebellida; Terebellidae). Mitochondrial DNA Part B 6, 31143116.CrossRefGoogle ScholarPubMed
Nguyen, L-T, Schmidt, HA, von Haeseler, A and Minh, BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268274.CrossRefGoogle ScholarPubMed
Oceguera-Figueroa, A, Manzano-Marín, A, Kvist, S, Moya, A, Siddall, ME and Latorre, A (2016) Comparative mitogenomics of leeches (Annelida: Clitellata): genome conservation and placobdella-specific trnD gene duplication. PLoS ONE 11, e0155441.CrossRefGoogle ScholarPubMed
Ogoh, K, Futahashi, R and Ohmiya, Y (2021) Intraspecific nucleotide polymorphisms in seven complete sequences of mitochondrial DNA of the luminous ostracod, Vargula hilgendorfii (Crustacea, Ostracoda). Gene Reports 23, 101074.CrossRefGoogle Scholar
Palumbi, SR (1996) Nucleic acids II: the polymerase chain reaction. In Hillis, DM, Mortiz, C and Mable, BK (eds), Molecular Systematics. Sunderland, MA: Sinauer & Associates, pp. 205247.Google Scholar
Paterson, GLJ, Glover, AG, Barrio Froján, CRS, Whitaker, A, Budaeva, N, Chimonides, J and Doner, S (2009) A census of abyssal polychaetes. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 17391746.CrossRefGoogle Scholar
Paul, C, Halanych, KM, Tiedemann, R and Bleidorn, C (2010) Molecules reject an opheliid affinity for Travisia (Annelida). Systematics and Biodiversity 8, 507512.CrossRefGoogle Scholar
Persson, J and Pleijel, F (2005) On the phylogenetic relationships of Axiokebuita, Travisia and Scalibregmatidae (Polychaeta). Zootaxa 14, 114.CrossRefGoogle Scholar
Phillips, AJ, Dornburg, A, Zapfe, KL, Anderson, FE, James, SW, Erséus, C, Moriarty Lemmon, E, Lemmon, AR and Williams, BW (2019) Phylogenomic analysis of a putative missing link sparks reinterpretation of leech evolution. Genome Biology and Evolution 11, 30823093.CrossRefGoogle ScholarPubMed
Rouse, GW, Pleijel, F and Tilic, E (2022) Annelida. Oxford: Oxford University Press.CrossRefGoogle Scholar
Rousset, V, Plaisance, L, Erséus, C, Siddall, ME and Rouse, GW (2008) Evolution of habitat preference in Clitellata (Annelida). Biological Journal of the Linnean Society 95, 447464.CrossRefGoogle Scholar
Schmelz, RM, Erséus, C, Martin, P, Van Haaren, T and Timm, T (2021) A proposed order-level classification in Oligochaeta (Annelida, Clitellata). Zootaxa 5040, 589597.CrossRefGoogle ScholarPubMed
Shen, W, Le, S, Li, Y and Hu, F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962.CrossRefGoogle ScholarPubMed
Sosa-Jiménez, VM, Torres-Carrera, G, Manzano-Marín, A, Kvist, S and Oceguera-Figueroa, A (2020) Mitogenome of the blood feeding leech Haementeria acuecueyetzin (Hirudinida: Glossiphoniidae) from Tabasco, Mexico. Mitochondrial DNA Part B: Resources 5, 33283330.CrossRefGoogle ScholarPubMed
Stiller, J, Tilic, E, Rousset, V, Pleijel, F and Rouse, GW (2020) Spaghetti to a tree: a robust phylogeny for Terebelliformia (Annelida) based on transcriptomes, molecular and morphological data. Biology 9, 73.CrossRefGoogle Scholar
Stothard, P and Wishart, DS (2004) Circular genome visualization and exploration using CGView. Bioinformatics (Oxford, England) 21, 537539.CrossRefGoogle ScholarPubMed
Struck, TH (2019) Phylogeny. In Purschke, G, Böggemann, M and Westheide, W (eds), Handbook of Zoology/Annelida: Basal Groups and Pleistoannelida, Sedentaria I. Berlin: De Gruyter, pp. 3768.CrossRefGoogle Scholar
Struck, TH, Golombek, A, Weigert, A, Franke, FA, Westheide, W, Purschke, G, Bleidorn, C and Halanych, KM (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology 25, 19931999.CrossRefGoogle Scholar
Struck, TH, Schult, N, Kusen, T, Hickman, E, Bleidorn, C, McHugh, D and Halanych, KM (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology 7, 57.CrossRefGoogle ScholarPubMed
Sun, Y, Daffe, G, Zhang, Y, Pons, J, Qiu, J-W and Kupriyanova, EK (2021) Another blow to the conserved gene order in Annelida: evidence from mitochondrial genomes of the calcareous tubeworm genus Hydroides. Molecular Phylogenetics and Evolution 160, 107124.CrossRefGoogle Scholar
Taghon, GL (1988) The benefits and costs of deposit feeding in the polychaete Abarenicola pacifica. Limnology and Oceanography 33, 11661175.CrossRefGoogle Scholar
Tan, MH, Gan, HM, Lee, YP, Bracken-Grissom, H, Chan, TY, Miller, AD and Austin, CM (2019) Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Scientific Reports 9, 116.CrossRefGoogle ScholarPubMed
Tessler, M, de Carle, D, Voiklis, ML, Gresham, OA, Neumann, JS, Cios, S and Siddall, ME (2018) Worms that suck: phylogenetic analysis of Hirudinea solidifies the position of Acanthobdellida and necessitates the dissolution of Rhynchobdellida. Molecular Phylogenetics and Evolution 127, 129134.CrossRefGoogle ScholarPubMed
Wang, Y, Huang, M, Wang, R and Fu, L (2018) Complete mitochondrial genome of the fish leech Zeylanicobdella arugamensis. Mitochondrial DNA Part B: Resources 3, 659660.CrossRefGoogle ScholarPubMed
Wu, Z, Shen, X, Sun, M, Ren, J, Wang, Y, Huang, Y and Liu, B (2009) Phylogenetic analyses of complete mitochondrial genome of Urechis unicinctus (Echiura) support that echiurans are derived annelids. Molecular Phylogenetics and Evolution 52, 558562.CrossRefGoogle ScholarPubMed
Ye, F, Liu, T, Zhu, W and You, P (2015) Complete mitochondrial genome of Whitmania laevis (Annelida, Hirudinea) and comparative analyses within Whitmania mitochondrial genomes. Belgian Journal of Zoology 145, 114128.Google Scholar
Zhang, Y, Sun, J, Rouse, GW, Wiklund, H, Pleijel, F and Watanabe, HK (2018) Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). Molecular Phylogenetics and Evolution 125, 220231.CrossRefGoogle ScholarPubMed
Zhong, M, Hansen, B, Nesnidal, M, Golombek, A, Halanych, KM and Struck, TH (2011) Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evolutionary Biology 11, 369.CrossRefGoogle Scholar
Supplementary material: PDF

Kobayashi et al. supplementary material

Figures S1-S5

Download Kobayashi et al. supplementary material(PDF)
PDF 189.1 KB