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Abstract

In this paper, we consider a risk model in which each main claim induces a delayed claim
called a by-claim. The time of delay for the occurrence of a by-claim is assumed to be
exponentially distributed. From martingale theory, an expression for the ultimate ruin
probability can be derived using the Lundberg exponent of the associated nondelayed
risk model. It can be shown that the Lundberg exponent of the proposed risk model
is the same as that of the nondelayed one. Brownian motion approximations for ruin
probabilities are also discussed.
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1. Introduction

In reality, insurance claims may be delayed due to various reasons. Risk models with this
special feature have been discussed in the literature for some years. Waters and Papatriandafylou
(1985) considered a discrete-time risk model allowing for delay in claims settlements and used
martingale techniques to derive upper bounds for ruin probabilities. Boogaert and Haezendonck
(1989) studied the mathematical properties of a liability process with settling delay within the
framework of an economics environment.

In this paper, we assume that each main claim induces another type of claim, called a by-
claim. The two types of claim have different distributions of severity. The time of occurrence
of a by-claim is later than that of its main claim, and the time of delay for a by-claim is random.
This kind of risk modeling may be of practical use. For instance, a serious motor accident
causes different kinds of claim, such as car damage, injury, and death; some can be dealt with
immediately while others need a random period of time to be settled.

The paper is organized as follows. In Section 2, we give a detailed description of the
model. In Section 3, we use the martingale method to derive an expression for the ultimate ruin
probability, which involves a nondelayed surplus process as well as its Lundberg exponent. In
Section 4, we show that the Lundberg exponent of the proposed model with delayed claims is the
same as that of the associated nondelayed risk model. Finally, in Section 5, we investigate the

Received 13 January 2004; revision received 13 July 2004.
∗ Postal address: Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong
Kong.
∗∗ Email address: kcyuen@hku.hk
∗∗∗ Postal address: School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China.

163

https://doi.org/10.1239/jap/1110381378 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381378


164 K. C. YUEN ET AL.

weak convergence of the aggregate claims process and derive Brownian motion approximations
for ruin probabilities.

2. The model

Yuen and Guo (2001) used the method of probability-generating functions to derive ruin
probabilities for the compound binomial model with discrete delay time for by-claims. In this
paper, we consider a similar problem in the continuous-time setting. Specifically, we study
various aspects of the compound Poisson model with delayed claims.

Let the aggregate main claims process be a compound Poisson process and let N(t) be the
corresponding Poisson claim number process, with intensity λ. Its jump times are denoted by
{Ti, i = 1, 2, . . .} with T0 = 0. The main claim amount random variables {Xi, i = 1, 2, . . .}
follow a common distribution F with mean µF and variance σ 2

F . In our model, if Xi occurs at
Ti , it will generate a by-claim, denoted by Yi , occurring at time Ti+Wi , whereWi is the random
time of delay for Yi . The by-claim amount random variables {Yi, i = 1, 2, . . .} have a common
distribution G with mean µG and variance σ 2

G, while the delay times {Wi, i = 1, 2, . . .}
are exponentially distributed with mean λ−1

1 . It is assumed that the Xi , Yi , Ti , and Wi are
independent. All the random variables and random processes considered in this paper are
defined on the probability space (�,F ,P).

In this setup, the surplus process takes on the form

S(t) = u+ ct −D(t), (2.1)

where u is the initial surplus, c is the rate of premium,

D(t) =
N(t)∑
i=1

Xi +
∞∑
i=1

Yi 1(Ti +Wi ≤ t),

and 1(·) is the indicator function of the event {·}. The associated by-claim number process is
given by

N̄(t) =
∞∑
i=1

1(Ti +Wi ≤ t).

It is obvious that the incorporation of the aggregate by-claims process complicates the analysis
of surplus process (2.1).

Write the distribution of Ti as HTi . The expectation of the aggregate by-claims at time t is
given by

E

[ ∞∑
i=1

Yi 1(Ti +Wi ≤ t)

]
=

∞∑
i=1

µG P(Ti +Wi ≤ t)

= µG

∫ t

0

∞∑
i=1

HTi (t − x)λ1e−λ1x dx

= µG

∫ t

0
λ(t − x)λ1e−λ1x dx

= λµG

(
t − 1

λ1
+ 1

λ1
e−λ1t

)
. (2.2)
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Hence, to satisfy the positive safety loading condition, we may simply assume that c > λ(µF +
µG). Let T = inf{t : S(t) < 0} be the time of ruin for surplus process (2.1). Then, the ultimate
ruin probability for (2.1) is given by ψ(u) = P(T < ∞).

3. A martingale approach for the ultimate ruin probability

In this section, we use martingale techniques to derive an expression for the ultimate ruin
probability for S(t). Specifically, the ruin probability can be expressed in terms of a slightly
modified surplus process and its Lundberg exponent.

Define a modification of S(t) by

S∗(t) = u+ ct −D∗(t), (3.1)

whereD∗(t) = ∑N(t)
i=1 (Xi +Yi). Note that (3.1) is a compound Poisson process (a nondelayed

risk model) withXi+Yi being the claim amount for the ith claim. Let Ft = σ {S(u), u ≤ t} and
F ∗
t = σ {S∗(u), u ≤ t} be the natural filtrations of S(t) and S∗(t), respectively. The Lundberg

exponent R∗ for S∗(t) is defined to be the positive solution of E[er(X+Y )] = 1 + λ−1cr . From
classical ruin theory, we know that

M∗(t) = e−R∗S∗(t)

is a martingale relative to the filtration F ∗
t . Now, consider two other filtrations given by

G∗
t = F ∗X

t ∨ F ∗Y
t and Gt = G∗

t ∨ σ {W1,W2, . . .},

where F ∗X
t is the natural filtration of

∑N(t)
i=1 Xi and F ∗Y

t is the natural filtration of
∑N(t)
i=1 Yi . It

is obvious that G∗
t ⊂ Gt and that M∗(t) is a G∗

t martingale. Moreover, we make the following
proposition.

Proposition 3.1. For the time of ruin T and the filtrations Ft , F ∗
t , Gt , G∗

t , and M∗(t), the
following statements hold.

(a) (i) F ∗
t ⊂ G∗

t and (ii) Ft ⊂ Gt .

(b) M∗(t) is a martingale relative to filtration Gt .

(c) T is a stopping time relative to Ft and Gt .

Proof. Since D∗(t) = ∑N(t)
i=1 Xi + ∑N(t)

i=1 Yi , part (a)(i) follows immediately. Write

W
(k)
i =

∞∑
j=0

j + 1

k
1
(
j

k
< Wi ≤ j + 1

k

)

and

D
(k)
Y (t) =

N(t)∑
i=1

Yi 1(Ti +W
(k)
i ≤ t).

Then, we have

lim
k→∞W

(k)
i = Wi and lim

k→∞D
(k)
Y (t) =

N(t)∑
i=1

Yi 1(Ti +Wi ≤ t).
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Thus, to prove part (a)(ii) it suffices to show that D(k)Y (t) is Gt measurable. It can easily be
shown that

1(N(t) = n)D
(k)
Y (t)

=
∑(

1(N(t) = n)

( n∏
i=1

1
(
ji

k
< Wi ≤ ji + 1

k

)) n∑
i=1

Yi 1
(
Ti ≤ t − ji + 1

k

))
,

(3.2)

where the first summation on the right-hand side is over all ji = 0, 1, . . . for i = 1, . . . , n.
Notice that

1(N(t) = n)

( n∏
i=1

1
(
ji

k
< Wi ≤ ji + 1

k

)) n∑
i=1

Yi 1
(
Ti ≤ t − ji + 1

k

)

= 1(N(t) = n)

( n∏
i=1

1
(
ji

k
< Wi ≤ ji + 1

k

)) n∑
i=1

Yi 1
(
N

(
t − ji + 1

k

)
≥ i

)
. (3.3)

Equalities (3.2) and (3.3) imply that 1(N(t) = n)D
(k)
Y (t) is Gt measurable, because the product

term on both sides of (3.3) is σ {W1,W2, . . .} measurable.
For part (b), we must prove that E[M∗(t) | Gs] = M∗(s) almost surely for t ≥ s, i.e. that, for

each G ∈ Gs ,
∫
G
M∗(t) d P = ∫

G
M∗(s) d P. Because of the structure of Gs , this is equivalent

to proving that G = K1 ∩ K2, where K1 ∈ G∗
t and K2 ∈ σ {W1,W2, . . . ,Wn}. Since K1 and

K2 are independent, K2 is independent of M∗(t). Therefore,
∫
K1∩K2

M∗(t) d P = P(K2)

∫
K1

M∗(t) d P = P(K2)

∫
K1

M∗(s) d P =
∫
K1∩K2

M∗(s) d P,

because M∗(t) is a G∗
t martingale.

Part (c) follows from part (a)(ii) and the definition of T .

We now present the main result of this section, which states that S∗(t) and its Lundberg
exponent R∗ play an important role in studying the ruin probability for S(t).

Theorem 3.1. The ultimate ruin probability for S(t) can be expressed as

ψ(u) = e−R∗u

E[e−R∗S∗(T ) | T < ∞] ,

where T is the time of ruin for S(t).

Proof. Since M∗(t) is a martingale and T is a stopping time, it follows from the optional
stopping theorem that

e−R∗u = M∗(0) = E[M∗(t ∧ T )]
= E[M∗(t ∧ T ) | T ≤ t] P(T ≤ t)+ E[M∗(t ∧ T ) | T > t] P(T > t).

Hence, the theorem is proved if

E[M∗(t ∧ T ) | T > t] P(T > t) → 0 as t → ∞. (3.4)
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The following two expectations will be used to prove (3.4):

Z1(R
∗) = E[S(t)eR∗(D∗(t)−ct)] and Z2(R

∗) = E[S(t)2eR
∗(D∗(t)−ct)].

We first consider Z1(R
∗). Let

Z1(R
∗) = u+ ct − Z11(R

∗)− Z12(R
∗), (3.5)

where

Z11(R
∗) = E

[N(t)∑
i=1

Xie
R∗(D∗(t)−ct)

]
,

Z12(R
∗) = E

[ ∞∑
i=1

Yi 1(Ti +Wi ≤ t)eR
∗(D∗(t)−ct)

]
,

and define hX(r) = E[erX] − 1, hY (r) = E[erY ] − 1, and h(r) = E[er(X+Y )] − 1. Then,

Z11(r) = e−rct
∞∑
n=1

(
(λt)ne−λt

n!
n∑
i=1

E

[
Xie

rXi exp

{
r

∑
j≤n,j �=i

Xj

}
exp

{
r

n∑
i=1

Yi

}])

= e−rct
∞∑
n=1

(
(λt)ne−λt

n! (hY (r)+ 1)n(hX(r)+ 1)n−1
n∑
i=1

E[XierXi ]
)
.

Since E[XierXi ] = h′
X(r), h(r)+ 1 = (hX(r)+ 1)(hY (r)+ 1), and λh(R∗)− cR∗ = 0, where

a prime denotes differentiation, Z11(R
∗) becomes

Z11(R
∗) = (hY (R

∗)+ 1)h′
X(R

∗)λt. (3.6)

We also have

Z12(r) = e−rct
∞∑
n=1

E[Yn 1(Tn +Wn ≤ t)erD
∗(t)]

= e−rct
∞∑
n=1

∫ ∞

0
E[Yn 1(Tn +Wn ≤ t)erD

∗(t) | Wn = s] P(Wn = s) ds

= e−rct
∞∑
n=1

∫ t

0
λ1e−λ1s E[Yn 1(Tn ≤ t − s)erD

∗(t)] ds

= e−rct
∫ t

0
λ1e−λ1s E

[
erD

∗(t)
∞∑
n=1

Yn 1(Tn ≤ t − s)

]
ds

= e−rct
∫ t

0
λ1e−λ1s E

[
erD

∗(t)
N(t−s)∑
n=1

Yn

]
ds

= e−rct
∫ t

0
λ1e−λ1s E

[
erD

∗(t−s) exp{r(D∗(t)−D∗(t − s))}
N(t−s)∑
n=1

Yn

]
ds

=
∫ t

0
λ1e−λ1s E

[
exp{r(D∗(t − s)− c(t − s))}

N(t−s)∑
n=1

Yn

]
E[er(D∗(s)−cs)] ds.
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From (3.6) and the fact that E[eR∗(D∗(s)−cs)] = 1 for all s, Z12(R
∗) can be written as

Z12(R
∗) =

∫ t

0
λ1e−λ1s(hX(R

∗)+ 1)h′
Y (R

∗)λ(t − s) ds

= (hX(R
∗)+ 1)h′

Y (R
∗)

(
λt − λ

λ1
(1 − e−λ1t )

)
.

Then, substituting the derived forms of Z11(R
∗) and Z12(R

∗) into (3.5), we obtain

Z1(R
∗) = u+ ct − λth′(R∗)+ λ

λ1
(1 − e−λ1t )(hX(R

∗)+ 1)h′
Y (R

∗). (3.7)

We next look for an upper bound for Z2(R
∗). First, write

Z2(r) = (u+ ct)2 − 2(u+ ct)Z21(r)+ Z22(r)+ Z23(r)+ 2Z24(r), (3.8)

where

Z21(r) = E

[(N(t)∑
i=1

Xi +
∞∑
i=1

Yi 1(Ti +Wi ≤ t)

)
er(D

∗(t)−ct)
]
,

Z22(r) = E

[(N(t)∑
i=1

Xi

)2

er(D
∗(t)−ct)

]
,

Z23(r) = E

[( ∞∑
i=1

Yi 1(Ti +Wi ≤ t)

)2

er(D
∗(t)−ct)

]
,

Z24(r) = E

[(N(t)∑
i=1

Xi

)( ∞∑
i=1

Yi 1(Ti +Wi ≤ t)

)
er(D

∗(t)−ct)
]
.

Note that Z21(R
∗) = Z11(R

∗)+ Z12(R
∗), i.e.

Z21(R
∗) = λth′(R∗)− λ

λ1
(1 − e−λ1t )h′

Y (R
∗)(hX(R∗)+ 1).

To evaluate Z22(r), we need

H(r) = E

[( n∑
i=1

Xi

)2

exp

{
r

n∑
i=1

Xi

}]

= [(hX(r)+ 1)n]′′
= n(hX(r)+ 1)n−2((n− 1)(h′

X(r))
2 + (hX(r)+ 1)h′′

X(r)),

which implies that

Z22(r) =
∞∑
n=0

(λt)ne−λt

n! E

[( n∑
i=1

Xi

)2

er(D
∗(t)−ct)

]

= e−rct
∞∑
n=1

(λt)ne−λt

n! (hY (r)+ 1)nH(r).
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After some algebraic manipulation, we obtain

Z22(R
∗) = exp{t (λh(R∗)− cR∗)}λt (hY (R∗)+ 1)(λt (hY (R

∗)+ 1)(h′
X(R

∗))2 + h′′
X(R

∗))
= λt (hY (R

∗)+ 1)(λt (hY (R
∗)+ 1)(h′

X(R
∗))2 + h′′

X(R
∗)).

Similarly, it can be shown that

Z23(R
∗) ≤ E

[(N(t)∑
i=1

Yi

)2

eR
∗(D∗(t)−ct)

]

= λt (hX(R
∗)+ 1)(λt (hX(R

∗)+ 1)(h′
Y (R

∗))2 + h′′
Y (R

∗)).

For the last term on the right-hand side of (3.8), we obtain

Z24(R
∗) ≤ E

[(N(t)∑
i=1

Xi

)(N(t)∑
i=1

Yi

)
eR

∗(D∗(t)−ct)
]

= e−R∗ct−λt
∞∑
n=0

(λt)n

n! E

[ n∑
i=1

Xi exp

{
R∗

n∑
i=1

Xi

} n∑
i=1

Yi exp

{
R∗

n∑
i=1

Yi

}]

= e−R∗ct−λt
∞∑
n=0

(λt)n

n! [(hX(r)+ 1)n]′r=R∗ [(hY (r)+ 1)n]′r=R∗

= e−R∗ct−λth′
X(R

∗)h′
Y (R

∗)
∞∑
n=1

(λt)n

(n− 1)!n(h(R
∗)+ 1)n−1

= e−R∗ct−λth′
X(R

∗)h′
Y (R

∗)λteλt (h(R∗)+1)(1 + λt (h(R∗)+ 1))

= h′
X(R

∗)h′
Y (R

∗)λt (1 + λt (h(R∗)+ 1)).

Substituting the derived forms of Z21(R
∗), Z22(R

∗), Z23(R
∗), and Z24(R

∗) into (3.8) gives

Z2(R
∗) ≤ (u+ ct)2 − 2(u+ ct)

(
λth′(R∗)− λ

λ1
(1 − e−λ1t )h′

Y (R
∗)(hX(R∗)+ 1)

)

+ λt (hY (R
∗)+ 1)(λt (hY (R

∗)+ 1)(h′
X(R

∗))2 + h′′
X(R

∗))

+ λt (hX(R
∗)+ 1)(λt (hX(R

∗)+ 1)(h′
Y (R

∗))2 + h′′
Y (R

∗))

+ 2h′
X(R

∗)h′
Y (R

∗)λt (1 + λt (h(R∗)+ 1)). (3.9)

The proof of (3.4) is as follows. Note that

E[M∗(t ∧ T ) | T > t] P(T > t) =
∫
T>t

M∗(t) d P .
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It is clear that if T > t then S(t) ≥ 0. Since c − λh′(R∗) < 0, it is easily seen from (3.7) that
Z1(R

∗) < 0 for large t . Therefore,∫
T>t

M∗(t) d P ≤
∫
S(t)≥0

M∗(t) d P

≤
∫
S(t)≥Z1(R∗)/2

M∗(t) d P

≤
∫

|S(t)−Z1(R∗)|≥−Z1(R∗)/2
M∗(t) d P

≤
∫

|S(t)−Z1(R∗)|≥−Z1(R∗)/2

4e−R∗S∗(t)(S(t)− Z1(R
∗)2)

Z1(R∗)2
d P

≤ 4e−R∗u(Z2(R
∗)− Z1(R

∗)2)
Z1(R∗)2

. (3.10)

Making use of (3.7) and (3.9), we find that

Z2(R
∗)− Z1(R

∗)2 ≤ 2λth′(R∗) λ
λ1
(1 − e−λ1t )h′

Y (R
∗)(hX(R∗)+ 1)

+ λth′′(R)−
(
λ

λ1
(1 − e−λ1t )h′

Y (R
∗)(hX(R∗)+ 1)

)2

.

Hence, the numerator on the right-hand side of (3.10) is of order t and Z1(R
∗)2 is of order t2.

We conclude that

E[M∗(t ∧ T ) | T > t] P(T > t) =
∫
T>t

M∗(t) d P → 0

as t → ∞.

4. Lundberg exponent

In this section, we show that R∗ is also the Lundberg exponent for model (2.1). Brémaud
(2000) also discussed such an issue for the Poisson shot noise delayed-claims model.

Since the ruin probability for model (2.1) is smaller than that for the nondelayed model,
we have ψ(u) ≤ e−R∗u. To verify that R∗ is the Lundberg exponent, we must calculate
E[erD(t)]. ForN(t) = k, it is well known that the random vector (T1, T2, . . . , Tk) has the same
distribution as the order statistics of k independent and identically distributed uniform [0, t]
random variables. Furthermore, N(t), Xi , Yi , and Wi are independent. Thus, we have

E[erD(t)] =
∞∑
k=0

e−λt (λt)k

k!
k!
tk

∫ t

0
ds1

∫ t

s1

ds2 · · ·
∫ t

sk−1

dsk

k∏
i=1

E[exp{r(Xi + Yi 1(si +Wi ≤ t))}]

= e−λt
∞∑
k=0

λk

k!
(∫ t

0
E[exp{r(X + Y 1(W ≤ s))}] ds

)k

= exp

{
−λt

(
1 − t−1

∫ t

0
E[exp{r(X + Y 1(W ≤ s))}] ds

)}
,

where (X, Y,W) is the generic random vector of (Xi, Yi,Wi).
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Now let g(r) = limt→∞ t−1 ln E[er(D(t)−ct)]. It can easily be shown that

g(r) = λE[er(X+Y ) − 1] − cr

= λr

∫ ∞

0
erx(1 − F ∗G(x)) dx − cr, (4.1)

where F ∗G represents the convolution of F andG. On the other hand, the results of Duffield
and O’Connell (1995) give

lim
u→∞

1

u
lnψ(u) = −R,

where R = sup{r : g(r) ≤ 0}. It follows from (4.1) that R is exactly the Lundberg exponent
of the nondelayed risk model (3.1). Therefore, R = R∗.

5. Approximations for ruin probabilities

This section is devoted to deriving Brownian motion approximations for ruin probabilities
for model (2.1). This kind of approximation for the compound Poisson model can be found
in Grandell (1977), (1978) and Iglehart (1969). Although the by-claim number process N̄(t)
is neither Poisson nor renewal, we are still able to extend the classical results to the proposed
model.

Define κ2 = σ 2
F + σ 2

G + (µF + µG)
2. The mean and variance of D∗(t) are λt (µF + µG)

and λtκ2, respectively. The following theorem states that, asymptotically, D(t) has the same
mean and standard deviation, and that the delay time distribution does not come into play in
the limit.

Theorem 5.1. As t → ∞,

U(t) = D(t)− λt (µF + µG)

(λtκ2)1/2
d−→ N(0, 1),

where ‘
d−→’ stands for convergence in distribution and N(0, 1) is a standard normal random

variable. As a result, (λt)−1/2(N̄(t)− λt)
d−→ N(0, 1).

Proof. It is well known that

D∗(t)− λt (µF + µG)

(λtκ2)1/2
d−→ N(0, 1).

From (2.2), we find that

E

[
D∗(t)− λt (µF + µG)

(λtκ2)1/2
− U(t)

]
= E

[∑N(t)
i=1 Yi − ∑∞

i=1 Yi 1(Ti + Si ≤ t)

(λtκ2)1/2

]

= λµG(1 − e−λ1t )

λ1(λtκ2)1/2

→ 0

as t → ∞. Hence,
D∗(t)− λt (µF + µG)

(λtκ2)1/2
− U(t) → 0
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in probability. This implies the weak convergence of U(t). If we let Xi = 0 and Yi = 1, the
convergence of the by-claim number process is simply a special case of the convergence of
U(t).

Now define

Un(t) = D(nt)− λnt (µF + µG)

(λnκ2)1/2
.

To obtain the desired Brownian motion approximations, we must establish the weak convergence
of Un(t). The symbol ‘

w−→’ represents weak convergence for stochastic processes.

Theorem 5.2. For constant t , Un(t)
w−→ B(t) as n → ∞, where B(t) is a standard Brownian

motion.

Proof. To prove the theorem, we need to prove (i) the convergence of the finite-dimensional
distributions of Un(t) and (ii) the uniform tightness of Un(t), i.e. that, for every ε > 0,

lim
c→0

lim sup
n→∞

�P
J1
(c, Un(t), ε) = 0, (5.1)

where

�P
J1
(c, Un(t), ε) = sup

t1<t<t2

min(P(|Un(t)− Un(t1)| > ε),P(|Un(t2)− Un(t)| > ε)),

with t1 ≥ t − c and t2 ≤ t + c. Note that, according to Skorokhod (1957), (i) and (ii) imply
that the distribution of l(Un(t)) converges to the distribution of l(B(t)) for any J1-continuous
functional l.

By the definition of Un(t), we have

|Un(t1)− Un(t2)| ≤
∣∣∣∣
∑N(nt2)
i=N(nt1)+1(Xi + Yi)− λn(t2 − t1)(µF + µG)

(λnκ2)1/2

∣∣∣∣
+

∣∣∣∣
∑∞
i=1 Yi(1(nt1 < Ti ≤ nt2)− 1(nt1 < Ti + Si ≤ nt2))

(λnκ2)1/2

∣∣∣∣
=: L1 + L2,

with t2 > t1. By Chebyshev’s inequality,

P(L1 ≥ ε) ≤ t2 − t1

ε2 . (5.2)

Furthermore,

L2 ≤
∣∣∣∣
∑∞
i=1 Yi(1(nt1 < Ti ≤ nt2)− 1(nt1 < Ti ≤ nt2, nt1 < Ti + Si ≤ nt2))

(λnκ2)1/2

∣∣∣∣
+

∑∞
i=1 Yi 1(Ti ≤ nt1, nt1 < Ti + Si ≤ nt2)

(λnκ2)1/2

=
∑∞
i=1 Yi 1(nt1 < Ti ≤ nt2, Ti + Si > nt2)

(λnκ2)1/2

+
∑∞
i=1 Yi 1(Ti ≤ nt1, nt1 < Ti + Si ≤ nt2)

(λnκ2)1/2
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and, hence,

E[L2] ≤ µG
∑∞
i=1 P(nt1 < Ti ≤ nt2, Ti + Si > nt2)

(λnκ2)1/2

+ µG
∑∞
i=1 P(Ti ≤ nt1, nt1 < Ti + Si ≤ nt2)

(λnκ2)1/2

≤ µG
∑∞
i=1(P(Ti ≤ nt2 < Ti + Si)+ P(Ti ≤ nt1 < Ti + Si))

(λnκ2)1/2
. (5.3)

Note that

P(Ti ≤ nt2 < Ti + Si)+ P(Ti ≤ nt1 < Ti + Si)

=
∫ ∞

0
λ1e−λ1s(P(Ti ≤ nt2 < Ti + s)+ P(Ti ≤ nt1 < Ti + s)) ds

=
∫ nt2

0
λ1e−λ1s P(Ti ≤ nt2 < Ti + s) ds +

∫ ∞

nt2

λ1e−λ1s P(Ti ≤ nt2) ds

+
∫ nt1

0
λ1e−λ1s P(Ti ≤ nt1 < Ti + s) ds +

∫ ∞

nt1

λ1e−λ1s P(Ti ≤ nt1) ds, (5.4)

and that

P(Ti ≤ ntk < Ti + s) =
∫ ntk

ntk−s
λi+1xi

i! e−λx dx

=
∫ s

0

λi+1(ntk − x)i

i! e−λ(ntk−x) dx

for k = 1, 2. Let

ηn(tk) =
∫ ntk

0
λ1e−λ1s

∫ s

0
λ

∞∑
i=1

λi(ntk − x)i

i! e−λ(ntk−x) dx ds

+
∫ ∞

ntk

λ1e−λ1s
∞∑
i=1

P(Ti ≤ ntk) ds

=
∫ ntk

0
λ1e−λ1s

∫ s

0
λ(1 − e−λ(ntk−x)) dx ds + λntke

−λ1ntk

=
∫ ntk

0
λ1e−λ1s(λs + e−λntk − e−λ(ntk−s)) ds + λntke

−λ1ntk

= λ

(
1

λ1
+

(
λ1

λ(λ1 − λ)
− 1

λ1

)
e−λ1ntk − 1

λ1 − λ
e−λntk − 1

λ
e−(λ+λ1)ntk

)
. (5.5)

From (5.3), (5.4), and (5.5), we obtain

E[L2] ≤ µG
∑2
k=1 ηn(tk)

(λnκ2)1/2

and, hence,

P(L2 ≥ ε) ≤ µG
∑2
k=1 ηn(tk)

ε(λnκ2)1/2
. (5.6)

It follows from (5.2) and (5.6) that (5.1) holds.
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Now define
Vn(t) = ρnλ(µF + µG)n

1/2t − (λκ2)1/2Un(t).

Based on the weak convergence of Un(t), we obtain our final result.

Theorem 5.3. Suppose that n1/2ρn tends to a positive constant γ as n tends to ∞. Then
Vn(t)

w−→ V (t), where
V (t) = γ λ(µF + µG)t − (λκ2)1/2B(t).

Furthermore, for any positive constants u and δ,

lim
n→∞ψ(n

−1/2δ, n1/2u) = e−2δu, (5.7)

where ψ(n−1/2δ, n1/2u) is the ultimate ruin probability for model (2.1) with initial surplus
n1/2u and security loading n−1/2δ.

Proof. The weak convergence of Vn(t) is simply due to Theorem 5.1 and the limit theorem
of Skorokhod (1957). Result (5.7) follows from Grandell (1978).
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