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In a semigroup S the set E of idempotents is partially ordered by the rule that e g / i f and
only if ef= e = / e . We say that S is an co-semigroup if E = {e,: / = 0, 1, 2, . . . } , where

Bisimple co-semigroups have been classified in [10]. From a group G and an endomorphism a
of G a bisimple co-semigroup S(G, a) can be constructed by a process described below in § 1:
moreover, any bisimple co-semigroup is isomorphic to one of this type.

The present paper is concerned with congruences on S = S(G, a) and with homomorphic
images of S. It is shown that a congruence p on S is either an idempotent-separating con-
gruence or a group congruence (that is, S/p is a group). The idempotent-separating con-
gruences are in a natural one-to-one correspondence with the a-admissible normal subgroups
of G and the maximal such congruence is just Green's equivalence, Jff. We determine the
nature of each of the quotient semigroups S\#F, S\(a nJt), S/a and S/(erv Jt), where a
denotes the minimum group congruence on S. The structure of SJG (the maximum group
homomorphic image of S) is described in terms of the direct a-limit of G.

Finally, a sufficient condition is given for the lattice of congruences on S to be modular.

1. Throughout this paper we shall adhere to the following convention: N will denote the
set of all non-negative integers, G will denote a group and a will denote an endomorphism of
G. We shall use the symbol 1 for the identity of G; from the context this will always be dis-
tinguishable from the integer 1.

The bicyclic semigroup [1, p. 43] will be denoted by B. It can be considered as the set
NxN endowed with the multiplication

(m, n)(p, q) = (m+p-r, n+q-r),

where r = min {«,/>}. This can be generalised as follows. Let S(G, a.) denote the set of all
ordered triples (m ; g; n), where m, n e Nand g e G. Define a multiplication on S(G, a) by
the rule that

(w; g; n)(p; h; q) = (m+p-r; ga"-r Zia""'; n+q-r), (1)

where r = min {n,p}. We interpret a0 as the identity automorphism of G. Then, as was shown
in [10], S(G, a) is a bisimple co-semigroup and any bisimple co-semigroup is isomorphic to a
semigroup of the type S(G, a). The bicyclic semigroup is obtained by taking G = {1}.

For each n in N, write

*„ = («; i ; «)•

The elements en are the idempotents of S(G, a) and we have that
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It is almost immediate that S(G, a) is an inverse semigroup [1, § 1.9] with identity e0 and that

(m; g ; n ) " 1 = (n; g ~ l ; m ) .

From (1) it is also easy to show that the equivalence 3^ [1, § 2.1] is given by

((m; g; n),(p; h; q))<= Jf <=• m=p and n = q;

this result will be used frequently. In particular, the group of units of S(G, a.) (the ^-class
containing e0) is the subset

£/={(0; g; 0):geG}.

Proofs that are of a straightforward computational nature (using, for example, the law of
multiplication (1)) will often be omitted.

Let p be an equivalence on a set S. We denote the p-class of S containing the element x
of S by xp. Now let S be a semigroup. Then p is a congruence if and only if

(x, y)ep=> (ax, ay) e p and {xa, ya) e p

for all a in S. The basic properties of congruences are described in [1, § 1.5]. In particular, if
p and T are congruences on S then the congruences p n x and p v x have an obvious set-theoretic
meaning within SxS and the set of all congruences on S forms a lattice with respect to inclusion
in SxS.

If p £ T then we can define a congruence x/p on S/p by the rule that

(xp,yp)exjp ~(x,y)ex;

furthermore, (S/p)/(t/p) s S/T. Conversely, if x* is any congruence on Sjp then there exists
a congruence T on S containing p and such that T* = xjp.

We call a congruence p on S a group congruence if S/p is a group. From the preceding
paragraph we see that if x is any congruence on S containing a group congruence then x is itself
a group congruence. The following result provides a characterisation of the minimum group
congruence a on an inverse semigroup [7, Theorem 1].

LEMMA 1.1. Let S be an inverse semigroup and let a relation a be defined on S by the rule
that (x, y)e a if and only if ex = ey for some idempotent e in S (or, equivalently, if and only if
xf= yffor some idempotent/). Then a is a group congruence on S. Furthermore, a congruence
p on S is a group congruence if and only if a £ p.

A congruence A on a semigroup S is said to be idempotent-separating if no two distinct
idempotents of S lie in the same A-class. Clearly, if S has more than one idempotent, then an
idempotent-separating congruence cannot also be a group congruence. Howie [3] has shown
that on an inverse semigroup S there exists a maximum idempotent-separating congruence p.;
thus a congruence X on S is idempotent-separating if and only if A £ \i. Moreover, p. can be
characterised as the largest congruence contained in Jf. (See also [6].) Hence if Jf itself is a
congruence then ^f = \x. This is the case for a bisimple co-semigroup, as we now show.

LEMMA 1.2. Let S = S(G, a). Then & is a congruence on S and Sj^f^ B.
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Proof. The mapping 9 of S onto B denned by (m; g; n)9 = (m, n) is a homomorphism.
Further, ((m; g; n), (/?; A; q)) e ^ if and only if (w, n) = (p, q); hence 0 o 9~l = Ĵ " and
the result follows.

Remark. More generally, if S is an inverse semigroup whose semilattice of idempotents
E is such that each principal ideal of E is well-ordered under the converse of the natural
ordering, then Sf is a congruence on S [8, Theorem 3.2].

We now establish a fundamental property of congruences on a bisimple co-semigroup.

THEOREM 1.3. A congruence on S(G, a) is either an idempotent-separating congruence or
a group congruence.

Proof. Let S = S(G, a) and let p be a congruence on S. Suppose that p is not idempotent-
separating. Then (em, em+k) e p for some m, k in N, with k > 0. We shall show that all the idem-
potents ofSarep-equivalent. First let x = (0; \\ m). Thenxemx~l = e0andxem+kx~l = ek.
Hence (e0, ek) e p. Since eaev = ej and e^e, = ek it follows that (e,, et) e p. Thus (e0, e j e p.
Now suppose that we have shown that (e0, en) e p for some positive integer n. Let y = (n; 1; 0).
Then .ye,^"1 = en and j e , ^ " 1 = en+1, from which we deduce that (en, en+1)e p. Hence
(e0, en+1) e p. Thus, by induction on n, all the idempotents of S lie in the same p-class,
/, say. LetaeS. Then Lap = (aa~1)p . ap 'Zap; also a~lp . ap^(a~la)p = I. Hence S/p
is a group. This completes the proof.

Let A denote the lattice of congruences on S(G, a). Then this theorem shows that A is
the disjoint union of the sublattices A7S = {X e A : X E $?} and Ac = {A e A : a £ X) consisting
of all idempotent-separating congruences and of all group congruences respectively.

2. For any congruence X on S = S(G, a) we define a subset Ax of G as follows:

Ax = {geG:((0; g; O),eo)eX}.

Note that Ax = Ax n ,*., since the .?f-class containing e0 is U = {(0; g; 0) e S : g e G}. It will
be convenient to express properties of congruences on S in terms of the sets Ax.

LEMMA 2.1. For any congruence X on S(G, a), Ax is an tx-admissible normal subgroup ofG.

Proof. Let Xo = A n (U x U). Then Ao is a congruence on U and so, since e0A0 is a normal
subgroup of U and is the image of Ax under the isomorphism g -»(0; g; 0) from C to [/, /4A is
a normal subgroup of G.

Now let j e 4 Write x = (0; #; 0) and z = (0; 1; 1). Then (x, eo)eX and so
(zxz"1, 2eoz~1)eA. But zxz'1 = (0; ga; 0) and zeoz~i = e0. Hence goce/^. Thus Ax

is a-admissible.
Let ker a* denote the kernel of the endomorphism a* for k = 1, 2, 3 , . . . .

LEMMA 2.2. „

4 n ^ = 4 = U ker a*.

Proof. Let g e ^ a . Then ((0; g; 0), e0) e a and so, by Lemma 1.1, em(0; g; 0) = eme0

for some m; that is, (w; gam; m) = em. Thus got!" = 1 and so

g e U ker a*.
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Conversely, let
00

g e U ker a*.

Then gam = 1 for some m and so em(0; g; 0) = eme0. Hence ((0; g; 0),eo)ea; that is,
g e Aa. Hence

Aa= U ker a*,

and, by an earlier remark, Aari3r = ^ o .
We now consider idempotent-separating congruences. These can be characterised as

follows.

LEMMA 2.3.

(i) Let X be an idempotent-separating congruence on S(G, a). Then

((m; g; n),(p; h; q))ek o m=p, n-q and gh~1sAx.

(ii) For any a-admissible normal subgroup A of G there exists an idempotent-separating
congruence X on S(G, a) such that A = Ax.

The proof is omitted.

Remark. From Lemmas 2.2 and 2.3 we see that a n #P is the identical congruence on
S = S(G, a) if and only if

U ker a* = {1},

that is, if and only if a is one-to-one. It can be shown that this holds in turn if and only if the
set E of idempotents of S is unitary in S. This result should be compared with [4, Theorem
3.9].

Let A be an a-admissible normal subgroup of G. We define a mapping a/A of GjA into
itself by the rule that (Ag) (a/A) = A (got.) for all g in G. That this is well-defined is a consequence
of the oc-admissibility of A. It is immediate that ajA is an endomorphism; moreover, if we
define of/A on G\A in a similar way, then {ctjA)k = ak/A for any positive integer k.

THEOREM 2.4. Let X be an idempotent-separating congruence on S = S(G, a). Then
S/X s S(GIAX, al

Proof. Consider the mapping 9 of S onto S(G/AX, <x/Aa) defined by

(m; g; n)6 = (m; Axg; n).
Since

Ax(gar. hof) = (Axg)(alAx)
r. (Axh)(alAxY

(g,heG; r,seN), it follows that 0 is a homomorphism. Also, (m; g; n)6 = (p; h; q)0
if and only if m = p, n = q and Axg = Axh. By Lemma 2.3 (i) these equalities hold if and only
if ((/M; g; n),(p; h; q)) e X. Hence 6 o 0'1 = X, which gives the required result.

https://doi.org/10.1017/S2040618500035413 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035413


188 W. D. MUNN AND N. R. REILLY

COROLLARY 2.5. Let S = S(G, a) and let

K= Ukera\
k=i

Then Sl(a c\tf) S S(G\K, a.\K).
This follows from Lemma 2.2.
A result related to that of Theorem 2.4 can be obtained by a straightforward generalisation

of [10, Theorem 4.1], making use of Theorem 1.3. Let a' be an endomorphism of a group G'.
Then there exists a homomorphism of S(G, a) onto S(C, a') if and only if there exists a
homomorphism 0 of G onto G' and an element z of G' such that

a.8 = 0«Vz.

where i/̂  denotes the inner automorphism x -»zxz"1 of C We omit the proof.

3. We now turn our attention to group congruences. The main aim of this section is to
find the structure of the maximum group homomorphic image of S(G, a); this is achieved in
Theorem 3.4.

Let us first define a relation p on G x N by the rule that

((fl,i),(b,;))ep - az'-^bz'-i

for some r ̂  /, j (and therefore for all sufficiently large r).

LEMMA 3.1. p is an equivalence on GxN. Further, the rule

(a, i)p . (b,j)p = (aam-'/>am-;, m)p,

where m = max {i,j}, defines a binary operation on (G x N)/p with respect to which this set is a
group.

The proof is omitted. We shall denote the group (G x N)jp so formed by Ga and call it the
direct a-limit of G. For a discussion of direct limits of groups, see [5, § 7].

Clearly
(a,i)p = (aun,i+n)p (2)

for all n in N.
Next we define d : G3 -> Gx by (a, i)pd = (act, i)p. The following result was suggested to us

by A. H. Clifford.

LEMMA 3.2. d is an automorphism of Ga. For all p, q in N we have that

Proof. By virtue of (2) we see that the mapping d has a two-sided inverse d~' defined by
(a, i)pd~1 = (a, i+ \)p. To complete the proof that it is an automorphism we note that

[(a, i)pd.][(b,j)pd] = ((aa)am-'(fca)am";
) m)p, where m = max {i,j},

= (aam~''. b(f~J, m)p<x

= [{a,i)p{b,j)p~\&.
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By induction on p we have that (a, i)pa.p = (actp, i)p for all p in N. Similarly, (a, i)pd~q =
(a, i+q)p for all q in N and, combining these, we have that

(a, i)p±"-q = (a<xp, i + q)p

for allp, q in N. (Note that in the casep =q this reduces to (2).)
For the remainder of this section the group of all integers under addition will be denoted

byZ.

LEMMA 3.3. Let H be a group and ft an automorphism of H. Define a multiplication on the
set ZxH by the rule that

Then, with respect to this operation, ZxH is a group.
Again we omit the proof. We shall denote the group so formed by H | P- This is a semi-

direct product of H by Z [2, § 6.5].
The direct product of two semigroups P and Q will be denoted by P x Q. If P is an inner

automorphism of H then H t P =ZxH. To see this, let jS be the mapping x-*h~ixh de-
termined by the element h of H; then the mapping (/, a) -> (/, h'a) of H t P onto ZxH is an
isomorphism.

We now describe the maximum group homomorphic image of S(G, a).

THEOREM 3.4. Let S = S(G, a). Then S/a S Gx t a.

Proof. Define a mapping 9 : S -* Gx t a by the rule that

(w; g; ri)9 = (m-n,(g,n)p).

First we show that 6 is surjective. Let ieZand let(g, n)p be any element of Gx(g eG,ne N).
If i ;> 0, then (i, (g, n)p) = (/+«; g; n)9. On the other hand, if / < 0, then, by (2),

(». (o> n)p) = ('> (0« ~'.« - ' » = («; 0<* ~'; « - 00-

Now let (m; g; n) and (/>; A; (7) be any two elements of 5. Then

(m; gf; n)0(p; /1; q)9

= {m-n, {g, n)p){p-q, (h, q)p)

= (m-n + p-q, (g, n)piip~q(h, q)p)

= (m-n + p-q, (gap, n + q)p(h, q)p), by Lemma 3.2,

= (m-n + p-q, (g^ha.", n + q)p)

= (m-n + p-q,(gtx"~rhct."~r,n + q-r)p), by (2), where r = min {n, p},

= (m + p-r; g<xp~rh<x"~r; n + q-r)9

= [(m; g; n)(p; h; qj]9.
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Thus 6 is a homomorphism. Since SO is a group and a is the minimum group congruence on
S, it follows that a £ 0 O 0"1.

To complete the proof we shall show that 9 o 0'1 £ <x. Let (w; g; n)6 = (j>; h; q)9.
Then

(m-n, (g, n)p) = (p-q, (h, q)p).

Hence m-n = p-q and (g, ri)p = (A, #)p. From the latter equality we have thatga*"" = h<xk~q

for some k ^ n, q. Thus

(m; g; n)ek = (m + k-n; ^a*""; k) = (p + k-q; Aa*"'; k) = (p; h; q)ek

and so, by Lemma 1.1, ((m; g; n), (p; h; q)) e <r. Hence 8 O 0"1 S tr.
We have therefore shown that 6 O 0"1 = cr and so S/CT ^ S0 = Ga t a.
In certain cases Ga can be embedded in G and the structure of S/a assumes a simpler form.

We say that a is stable if, for some /c, a | Ga.k is an automorphism of Ga*. The smallest k for
which this condition holds will be called the index of stability of a. Evidently a is stable
if it is an automorphism of G. Also a is stable if it is nilpotent, that is, if a" =f (the zero
endomorphism of G, denned by g£ = 1 for all g in G) for some n. Note that, if G is finite,
then a is necessarily stable.

Let a be stable, with index of stability k. We prove that Ga s Ga*. Let /? = a | Ga* and
let <t>:Ga^ Ga* be denned by

First, for any g in G we have that (ga.', i)p4> = ga'+*/?~' = ga* and so </> is surjective. Also, if
ga.kP~' = ha.kfl~J, then ga.k+m~i = hak+m~J, where m = max {i,./}, and so (g, i)p = (h,j)p.
This shows that $ is one-to-one. Moreover, for any elements (g, i)p and (h, j)p in Gx we have
that

[(0, OPC»>))P]</» = (g<xm-'h<xm-J, m)p<j>, where m = max {/,;},

) = (0, i)p4>{h,j)p<t>.

It is easy to show that $/? = d</> and from this it follows that the mapping f : C , t «-> Ga* t /?
defined by

0", (9, i)P)4< = U, (9, OP4>) = (j, flfflt*/?"')

is an isomorphism. Thus we have

COROLLARY 3.5. Let S - S(G, a), where a is stable with index of stability k. Let
P = a | Ga*. Then

S/ff S Ga* f P-

A further specialisation gives the following two results.

COROLLARY 3.6. If a. is an automorphism, then Sja £ 6 f « . In particular, if a is an inner
automorphism, then 5/(7 ^ZxG.

It should be noted that, if a is an inner automorphism, then S= BxG [10, Corollary 4.2].
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COROLLARY 3.7. If <x*+1 = a* for some k, then Slo = Zx.Ga.k. In particular, if a is
nilpotent, then S/a = Z.

We return now to the case in which no restrictions are placed on a. Since the group
homomorphic images of S = S(G, a) are just the homomorphic images of Ga t a, it follows
that Z is one such image. The next theorem shows that this is determined by the congruence
ov 3f.

LEMMA 3.8. Let S = S(G, a). Then

((m; g; n),(p; h; q))eav tf o m-n=p-q.

Proof. Letx = (m; g; n) and y = (p; h; q). First suppose that (x, y) e a v 3^. Then,
since t r v ^ f = (7O 1 ?foa[3 , Theorem 3.9], there exist elements a, b in S such that (x, a) e a,
(a, b)e JP and (b, y) e a. Let a = (m'; g'; «') and b = (p'; h'\ q'). Since (x, a) s CT, there
exists an idempotent et such that ekx = eka (Lemma 1.1) and we can assume, without loss of
generality, that k*zm, rri'. Hence we have k + n — m = k+n' — m' and so m—n = m' — ri.
Similarly, since (b, y) e a, we have p—q = p' — q'. But m' =/?' and n' = q', since (a, b) e 3*?.
Hence m — n = p—q.

Conversely, let x and y be such that m-n= p—q. We assume that m g p . Then
epx = (/?; 0ap~m; p + n-m) = (/?; gap~m; ?) and so (epx, y) e ^ . But (x, epx) e a, since ep

is an idempotent. Hence (x, y) e a o J f s a v JP. This establishes the lemma.

THEOREM 3.9. Let S = S(G, a). Then Sl(o v 3^)^Z.

Proof. Consider the mapping 6 of S onto Z denned by (m; g; n)0 = m — n. It is
immediate from (1) that 6 is a homomorphism. From Lemma 3.8 we have that

0O0"1 = avJ(f

and the required result follows.

4. We conclude with some further remarks on the lattice of congruences A on S = 5(C, a).
Let A,s and AG be defined as at the end of § 1; then A/ s u Ac =A and A/ s n Ac =0 .

Now Ac is modular, since it is isomorphic to the lattice of all congruences on the group
5/(7. Also, A/ s is modular by [6, Theorem 3.2]. This can be proved directly as follows. Let
J4 denote the set of all a-admissible normal subgroups of G. Since AA' and An A' lie in id
for all A, A' in *s&, it follows that ^ / is a sublattice of the lattice of all normal subgroups of G.
Hence d / is modular. But from Lemma 2.3 (i) we have that

X^X'oAx ^Ak. (A,A'eA/s)

and so the mapping <f>: A/ s -> <d given by 1$ = Ax—which is surjective, by Lemma 2.3 (ii)—
is a lattice isomorphism.

It is natural to ask whether A itself is modular. A full discussion of this question is given
in [9]; we shall confine ourselves here to obtaining a sufficient condition for modularity.

In general a and 3V are incomparable. It can happen, however, that <#" is contained in a.
We now give a necessary and sufficient condition for this to hold.
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LEMMA 4.1. Let S = S(G, a). Then

Jf c a o 0 ker a* = G.

Proof. Write

K = U ker a*.

First let ^ c a and let geG. Then since ((0; g; 0), e0) e / w e have that g e A,. But
Aa = A, by Lemma 2.2. Hence G ^ K and so G = /f.

Conversely, let G = K. Consider the «?f-equivalent elements x = (m; g; «) and
_V = (m; h; ri). Since g/i"1 e K by hypothesis, there exists k such that (gh~i)ak = 1. Thus
ga* = Aa*. Then

and so (x, ^) 6 a, by Lemma 1.1. Thus #F <=, a; moreover, equality is impossible.
In particular, 34? <=• a if a is nilpotent.
We note, in passing, that if

U kera* = G,

then a = a v 3V and, combining this with Theorem 3.9, we have another proof of the fact that
if a is nilpotent, then Sja s Z. (See Corollary 3.7.)

Finally, we have

THEOREM 4.2. The lattice of congruences on S(G, a) is modular if

U ker a* = G.

In particular, this holds if a is nilpotent.
The result follows from Lemma 4.1 and the fact that A,s and Ac are both modular.
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