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ON THE LAW OF THE ITERATED LOGARITHM
FOR INFINITE DIMENSIONAL
ORNSTEIN-UHLENBECK PROCESSES

QI-MAN SHAO

ABSTRACT  Let {X;(n), —00 <t < oo},f‘:’l be independent Ornstein-Uhlenbeck
processes and X(t,n) = Y1, X,(r) In this paper the law of iterated loganthm for
X(t,n)1s considered The results obtained improve those of Csorgd and Lin(1988) and
Schmuland(1987)

A real valued stationary Gaussian process {X(f), —0o < t < oo} will be called an
Ornstein-Uhlenbeck process with coefficients Y and A (Y > 0, A > 0) if EX(¢) = 0 and
EX()X(r) = (Y/A) exp(—At — s|). Let

{¥(1), —00 < t < 00} = {Xi(t), —00 < t < 00},

be a sequence of independent Ornstein-Uhlenbeck processes with coefficients 7y, and
Ax. The process Y(-) was first studied by Dawson(1972) as the stationary solution of the
infinite array of stochastic differential equations:

dX, (1) = —MXe(D) dt + (V) 2dWi(r), k=1,2,...,

where {W,(1), —oo <t < 0o}?, are independent Wiener processes. The properties of
Y(-) have been extensively studied in the literature. Since EXf(t) = Y/ Ak, it 18 clear
that for every fixed t, ¥(¢) is almost surely in £ if and only if ¥°, ¥x /A < 00. The
continuity properties of Y(-) were investigated by Dawson(1972), Schmuland(1987),
Iscoe and McDonald(1986), Fernique(1989), Cséki, Csorgé and Shao(1991). Csorgd
and Lin(1988) studied Y(-) in terms of the path behaviour of the two-time parameter
stochastic process {X(r,n), —0o < t < oo,n = 1,2,...}, where X(t,n) = Y}, X, (1),
X(t,0) = 0 for all + € R and established P. Lévy type moduli of continuity, large
increment rates for the latter process and the following law of the iterated logarithm:

THEOREM A. Let A} = maxi<,<y A, and oy = o(N) = X 7,/ \,. Assume that
(1) (log Ax*)/ loglogN — 0, as N — o0,
and that the non-decreasing sequence {Ty} satisfies
(2) log T/ loglogN — 0, as N — oo0.
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Suppose also that for every € > 0 there exist 1 < 8; < 0, such that

3) lim sup o)/ a(@) < 1+e
k—
and
4) limsupo(6%) /o(05*") <ee.
k—00

Then, with By = (2(2, ¥,/ A) loglog N) "2 e have

llmsup |X(Tn, N)|/ By = hm sup [max sup |X(t,n)| /By =1a.s.
N—

[f<Tw

Schmuland(1987), using Dirichlet form-techniques, proved that if v,/ = 1 and
¥, 7. /(2nloglogn) — 0 as n — oo, then

5) P{limsup X(t, n)/(2nloglogn)'/? = 1 forall t € R} = 1.

Itis not difficult to see that (3) and (4), in fact, imply that there exists positive constants
oy, oz, ¢y and ¢; such that

6) on/n" < 10y /m™
and
@) 04 /N > 200 m™

foreach1 <n <m.

Unfortunately, conditions (1) and (2) in Theorem A are too restrictive to be satisfied
even for \; = k%, or \; = log*(1 + k) (a > 0), or Ty = log N. The aim of this note is to
relax the conditions of Theorem A and that of Schmuland(1987) as well.

Let {Ty,n > 1} be a non-decreasing sequence of positive numbers. Put

N N
O'N=O'(N)=Z’yl/>\l, erz’yzs
=1 =1

1/2
ﬁN = (ZUN(log(FNTN/UN) + 10g IOg G'N)>

where and in the sequel, logx = ln(max(x, e)), In is the natural logarithm.
For 0 < € < 1, define 8,(¢) as the solution of the equation

LY oo
(8) > —e M = ey,
=1 )\1

THEOREM 1. Assume that
(9) TNFN/0N+0N—>OO, as N — oo.
Then, we have

(10) lim sup max  sup |X(t,n)| /By < la.s.
N—oo 1=n=Nyp<ry
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THEOREM 2. Assume that (9) is satisfied and that there exists a positive constant C

such that
an oy < Con— lforeveryN >1,
(12) ) + Celoglogoy,

forevery 0 < e <1 asN — oo. Then, we have

(13) limsup sup [X(t,N)|/Bn=1a.s.
N—oo 0<1<Ty
(14) limsup max sup |X(t,n)| /By =1 as.
N—oo 1SnsNi<r,

If, in addition, we also have

TNT,
(15) loglogaN=o(log N N), as N — oo.
Then
(16) lim sup |X(t,N)|/By=1a.s.
_'OOO<I<TN
a7n lim max sup |X(t,n)|/Bn=1a.s.

N—oo 1<”<Ni {<Ty

THEOREM 3. Assume that (11) is satisfied. Moreover, suppose that

(18) log(I'y /on) = o(loglog on) as N — 00,
and
(19) oy — 00 as N — oo.

Then, we have
(20) P{limsupX(t, N)/(2oyloglogoy)'/? = 1 forallt € R} = 1.
N—o00
Before stating our corollaries, we introduce the following notations:
Ay = r'nge}é(/\,, my(1l,¢€) = max{[ Y
¢
TS - . . .
my(2,¢€) = mm{ ¢ ; N 2 (1 e)a,,}, Ay(e) = max{mn(lrrycl)lgﬂl/\,, 15;2:&2,5)/\'}
A sequence {ay,} is called quasi-increasing if there exists a positive constant C such that

a;, < Ca, foreach k < n.
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COROLLARY 1. Assume that (9) and (11) are satisfied and that there exists a positive
constant C such that e
My < () " log% oy

for every 0 < € < 1. Then, (13) and (14) hold. If we also have (15), then (16) and (17)
are true.

COROLLARY 2. Assume that (11) is satisfied and that there is positive constants o
and C such that o(n) /n® is quasi-increasing and X5, < Cming<,<x A, for each k > 1.
Then, (13) and (14) hold. If we also have (15), then (16) and (17) are true.

COROLLARY 3. Assume that (11) is satisfied and that

NI
log AREL o(loglogoy) as N — oo.
Then, we have (13), (14) and
1) lim sup X(Ty, N)/ 2oy loglogon)'/? = 1 a.s.

N—oo

COROLLARY 4. Assume that (9) and (11) are satisfied and that \,0)~* and o*,l,/ « [ An
are quasi-increasing for some 0 < o < 1. Then, (13) and (14) hold. If we also have (15),
then (16) and (17) are true.

The proof of theorems is based on the following lemmas.

LEMMA 1 (FERNIQUE(1964)). Let G(t) be a Gaussian process on [0, 1] with
E(G1) - G(s))* < A(Jt — s

where A is continuous, non-decreasing and satisfies [° A(e’yz)dy < 00 and also
EG*(t) < T2. Then, for every x >0

P{ sup |G(1)| >x<F+4/lmA(e—y2)dy)} < d[xoo e 2 dy,

0<e<1
where d is an absolute constant.

LEMMA 2. Forevery 0 < € < 1, there exists a constant C = C(¢) such that

1T _
(22) P{sup [X(t,m)| > xa},/z} < C(l + —") exp(—(1 €)x2).
<t On 2
PROOF. Note that
(23) EX*(t,n) = 0,
and )
(24) E(X(t, n) — X(s, n))Z =2y %(1 — e My <ol — |
=1 "N
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for every ¢ and s. Put

- & 9_52&
TR0 -ol/2 T T,
Then
T
25 P X(t, > :,/2 <2{|=|+1})P X, > pol/?
(25) {;lg;l (t,n)| > x0,/°} < ([9} ) {Osggal (t,n)| > x0,'"}
T 1/2
= — > .
2([0] + 1>P{0s;1£] X1, m)| > x04/?)
By (23) and (24), we have
(26) f Z20Te ) 2 dy < 450l

Using the Fernique lemma, we find

@7 P{ sup |X(t6,n)| > x03/*}
0<<1

< P{ sup |X(18, n)| >

0<r<1

<d/ e qr

’/2+4/°Q(29r e )‘/2dy}

201+ 166)2)

Sdexp(—(—l——_—z—ezﬁ).

Now (22) follows from (27) and (25).

LEMMA 3. Let 0 < e < %, 0.(¢) be the solution of the equation (8).Then, there is a
positive C(¢) such that

l/ T/8n(e)
(28) P{Os<lpr|X(t n)| < x0,/ "} < (1 - C(e)exP<‘2(—1?2—C_)))
for each x > 0.

PROOE. Let {W,(1),0 < t < 00} be independent standard Wiener processes.
Noting that

n At
{X(t,n),OStST}and{Z(%)]/ W) <t§T}

: e)\ t Y —
1=

have the same distribution, we have

@9) P sup [X(t,n)| <xon'*} <P{ sup |X(j6p )| <xon'?)
0<t<T

0</<IZ]
Y\ L2 Wi(e9On 1/2}
= P{ max ( ) ——| < x0,
{ <l 1=1 A e -t
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where 6, = 8,(¢c). Set
n Y\ 12 W (eXM0n) LT 1/2 W,(€20—DAbn)
__) POV V)= Z(X) B Y
It is easy to see that
v, — v, ~N(o, 3 ;ﬁ(l — e Phy).

=1 1

Whence
(30 U, =V, ~ N(0,(1 — €)an)
by the definition of 6,.Thus, by (30), we obtain
(3D
P{ max |U)| < x0,/*)
0o<y<(L =]

=P max |U| <x0,/,|Uiz) = Viz + Viz)| <300/’
0<y<[7] o

=/_ P{IU[ 1) — +y| < xay/? }dP{Vr <y, max ]U,l <xol/2}
_ w(q)( xoi/z—y )—(p( —xoy/> —y ))dP
- L. (1 =)o)/ (1 —e)op)!/?

{V[ ]<y, max |U|<xal/2}

/(((1—6)‘/2) ((T——:CT/?>)"P{VI£1<Y»OQQX£]IU,|Sxoz/z}

=(1 'F/zdt)P{ max [U|<xal/2}
.e, 0<<I L)
< (1-Ce)e = zo)P{ max_|U| < xay?},

0<<[1
here we have used the following facts on the Wiener Process:
i) Uz —Viz and{V[ U, 0<j< [9 1} are independent,
ii) <I)(x -y — CD(~x yS < ®(x) — P(—x) foreveryy € Rand x > 0,
iii) for each 6 > 0, there is a C(6) > 0 such that

x2(1+6)
2

/°° e 7124t > C(6) ex (— ) f >0
> p orevery x > 0.

By recurrence, we conclude from (29) and (31) that (28) holds true.
From (28) it is easy to see that

LEMMA 4, Let 0 < e < %, 0,(€) be the solution of the equation (8). Then, there is a
positive C(€) such that

T x?
(32) { sup |X(z, n)| > xon V2 } > C(é)(l + 0_,,) CXP(—_2(1 — 26“))
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1/2
foreach x > (2(1 — 2¢)log Z) .
LEMMA 5. Foreach 0 <e < % there is a constant C = C(¢€) such that
(33) P{ max. sup |X(t, )| > xo V< C(1 + Eﬁ)exp(—ﬂ)
nSN <t N oN 2
PROOE. (33) will follow from Lemma 2 and
1/2
>
(34) P{ltg?glvsllg |X(t,n)| > xoy }
1T,
<4(1+=—2)P( sup |Xt,N)| = x(1 — 0%}
ON lf|<on/Tn

for every x sufficiently large. Let

B=on/Ty, E1 = {sup]X(t )| > xoy 2,

t|<

E = {max sup |X(z,7)| <xaN < sup |X(1, z)|} i=2,...,N.
J<t <8 <B

Noting that

N
{ max_sup [X(t,n)| > x0/*} = UE: € {sup [X(t. M| > x(1 — o0y}

I<n<N <p 1|<B

U U (Ex ) {sup [X(t, N)| < x(1 — €)0 1/2}>

<8

C {sup [X(t, N)| > x(1 — )0/ *)
H<B

U U (Ex 1 {sup [X(t, N) — X(t,m)| > exo)/*})

|f|<B
and that {X(z, N) — X(t, n), |{| < B} and E, are independent, we have

P{ max_sup|X(t,n)| > xo)/ /2 }

1<"<NIII<B

< P{sup |X(t,N)| > x(1 — )0/}

<a

N—1
+ Y P{sup |X(t, N) — X(t, )| > exo))*} P(E,)

n=1 lf|<B

P{sup [X(t, N)| > x(1 — e)a)/*}
[|<B
BZ_[.'. Y. ) ( 2X‘ZUN )
dl1 =lin ———|P(E,

+Zl ( +E{!1+rz ’/)\ P 4z:NHn,y/Al ( )
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2 N-1

P{ sup |X(t, N)| > x(1 — e)a,lv/z} +2dexp(—6—§—2) > P(Ey)
f1<B 4/

I
P{sup |X(t, )| > x(1 — ©)oy >} + 5 P{ max_sup [X(t,n)| > xo/*}
< N

provided x > 4(log(8d)) /€. In the last but second inequality we have used the fact that
f(y) = ye~® is decreasing on [1/a, 0o) for each a > 0 fixed, and d is an absolute constant
as in Lemma 2. The above inequality yields

P{ max_sup |X(z,n)| > xa)/*} < 2P sup X, N)| > x(1 - )o)/*)

l<n<N‘t|<B |1|<B

for x > 4(log(84)) /€, as desired.

PROOF OF THEOREM 1. It suffices to show that for each 0 < e < 1/8

(35) lim sup max sup |X(2,n)| /By < 1+ 8e as.

N—oo =MEN<Ty

For k > 0, put

Ho={N:(1+o<By <(1+e"'},
M, = max{N : N € H;}.

Clearly, (9) implies that 3y — 00 as N — 00. So, we have
(36) lim sup jmax - sup |X(t,n)|/Bn

N—oo 1=nsNy<r,

< limsupmax max sup |X(¢,n N
k_AOOpNEHkl NH<? ‘ ( )|//3

<(1+e)limsup max sup |X(z,n)|/(1+e)f".
k—00 IE"SMW[STW

From the definition of M, , we find that

(1+e)* (1+¢€)**D

<opm < .
2(log(TMkFMk/aMk) +loglog aMk) ¢ 2(log(TMkFMk/aMk) +loglog aMk)

Whence, for each k > 1

IYAYY 1
> k K~ My > - k .
(37) oM, = (1+¢) or( o +e) > exp(4(l +¢€) )
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Using Lemma 5, we deduce

(38) P{ max sup |X(, m| > 1+ (1+e)}

Isns "1’1<TM

<P{ m sup 1X(t,n)| > Bu, (1 +€)}

I<n<Mk lf<T;

< C(e )(1+TUAI;M*) ( (1+e)(log Al; +10g10g0Mk))

k

<C(e)(1+ FM*) (log o)™+

k

< Cler™ 19

by (37). Now (35) follows from (36), (38) and the Borel-Cantelli lemma. This completes
the proof of Theorem 1.

PROOF OF THEOREM 2. Noting that oy is non-decreasing, we have
oy —cgas N — oo,

where 0 < 0 < 00. If 0 < ¢ < 00, then (9) implies TNFN/UN — 00 and hence (15) is
satisfied. So we only need to consider two cases: one is o = 00, the other is (15) being
satisfied. We formulate the proof below in two steps, which together with (10) will imply
our statements.

STEP 1. Suppose o = 00, then, for each 0 < e < 1/(4C?)

(39) limsup sup |[X(t,N)|/Bn > >1—¢as.

N—oo 0<t<Ty
Let

Ni=1, Newy =min{n:0n > (i—?)k} k=1,2,....

From condition (11), we get

(SC2 8C2) '

(40) 6—2) <ow, < C( =

Clearly, o = oo implies Ny T oo as kK — oco. Then

(41) limsup sup |X(t, N)I/5N>llmsup sup | X(t, Nl / B,

N—oo 0<1<Ty k—oo  0<1<Ty,

> limsup sup |X(t,Ny) — X(t, Ne—1)| / Bw,

k—o0 0<t< Ty,

—limsup sup |X(t, Ni—1)|/Bn,-

k—oo 0<1< Ty,
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Using Lemma 5 again, we have

P{ sup |X(2, Ne—1)|/Bw, >

0<I<Ty,

!

Ty, T 2 Ty,T
SC(e)(l-q-J';—ﬂ“—'-) exp( © N, (log }g M +loglogoNk))

[\ R

Ni—y —9UNI<»] Ny
Ty T Tn TN\ 2
< C(e)(l + Mk-_') (1 + __u) log 2o,
ONey ON;
< Cle)k ™2
by (40). This implies that
42) limsup sup |X(t, Neon)| /B, < % as.

k—00 OStSTNk

To estimate |X(t, Ny) — X(t, Ni—1)| / On,, we let 8 () be the solution of the equation

Ny . Sy
L —NB(e) 1
—e Yy =€ —
l=l§k,| Al l=l+zN:k,1 )\l
and let
/ N oy, . Ny,
5k=(2( > /\—)(log(TNk/Bk(e))+loglog > 3\—))
1=14Ny—y M =14N;_, "Mt

Then, in terms of (32), we obtain

P{ sup |X(t, No—X(t,Ne_p)|/ B, > (1 —20)'/?)

0<1<Ty,
Ty, ,
> C(e)( 1 ‘ —(3,)*/2
> co1+ 9;(6))exp( B0?/2)
Ny '7:
> C(e)log™! -
& <l=l+ZNk_1 )‘l>
> C(e)k™!
by (40) again. Therefore, we have
(43) limsup sup |X(t, Ny) — X(t, N, )| /B > (1 —26)!/? as.,

k=00 0<I<Ty,

since {SUPOSrSTNk |X(¢, Ni) — X(¢, Ny_1)|, k > 1} are independent random variables.
On the other hand, it follows from the definitions of Oy,(¢ /2) and 6} that

1 TSP
— — (%)
—€0N, = —e NG
N = 2,
Ny
> 3 Jb 2000, (5)
=1+Ny >‘l
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and
1 €
F60N = '2'(01\& — 0N, +ON_,)
€ €
< E(UNk —oN )+ 70N

From the latter, we find that oy, < 4(on, — ow,_,)- Hence
N N
5 Do < 5 D,
=1+N;_ )‘l =14N;_ )‘l
which is equivalent to say that Oy,(5) > 0;(e). Combining the above results with the

assumption (12), we finally conclude that

. (1—2¢)
44 limsup sup |X(z, Ny) — X(t, Np— > ————as.
(44) kA—»oopOStSIT)"Nk |X(t, Ny) — X(t, Ne—1)| / Bw, 17 CoP

This proves (39) by (41), (42) and (44).
Step 2. If, in addition, (15) is satisfied, then for each 0 < ¢ < %
(45) liminf sup |X(#,N)|/on>1—4eas.,

N—00 <1<ty
where ay = 20y log —T%EN)I/Z.
Let 1 <0< 1+¢. Define
Ay ={N:bo) <oy <680y}, k=0,1,...,

T,
BJ={N:9’§ ””+1<6v+1}, j=0,1,...,
oN
Ly, =min{N : N € A,B}, L;, = max{N : N € A;B,},
LZ,/ L/:,/ Y,
Ty= 2 Mow= 20 1
=141y, =14l N

Clearly, (15) implies that TyI'y / oy — oo and that AyB, = @ if k > 69, when j is
sufficiently large. Thus, we have
(46) liminf sup |X(t,N)|/on

N—oo <<ty

> liminf inf sup |X(t,N)|/ow

J—oo  NEB, 0<<Ty
> liminf inf inf sup |X(t,N)|/an
T Oﬁksb‘ﬂN@AkogngNl I

X(t
> liminf inf inf _ Xeml
700 0<k<09 NeBAco<i<T;, 20+ log 1)1 /2

X, L
> liminf inf  sup —'T(——Q)J—IE
o0 0kt o<i<r,, (204! log +1) /

—limsup sup sup  sup Xt M) — Xt Ly, )|
oo Okt Ly, <N<Ly 0<i<Ty, (2051 log @+)!/2
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Similarly to (33), we can obtain that

|X(r, N) — X(¢, Ly )|
P{ sup  sup e
Ly, SN<L; 0<i<Ty, (201 log @+1)1/

< C(e)(l + TL;J—Fk") exp(———ezek;;jf o )

kyj

Since xe™* is decreasing on [1, 0o) and oy ; = oL =0, < (68— 1)8*, the above inequality
is bounded by

Tix Ty 2 j+1 ) . .
C(e)(l + M) exp(—ﬂ) < C(f exp(=3log ") < C(e)8Y
UL;J 2(9 - 1)

for every j sufficiently large. Therefore

X(t,N) — X(¢t, Ly .
P{ sup sup  sup X M) — Xt L) >e) < Cle)d™,

0<k<w L, <N<L; o<i<t, (204! log@+)1/2

which follows that

. IX(tvN)_X(tv Lk.j)‘
“7 limsup su su su - <eas.

j—00 P 0Sk£0<! Ly, SNEL;J OSrSFT)LkJ (204! log @+1)!/2
On the other hand, using (28), we have
|X(t, ij)} 1—2e¢ }
P{ su v <
{OgtSI;LkJ (29k+1 log 9;+1)1/2 - 2
X(t, Ly ;
gP{ sup |(—’”)|12 < 1—26}
0<I<Ty,) (20Lk‘1 log 0’+1) /
Tu, /01, (©)

< (1 - C@exp(—~(1 — 20 10g#™"))

< C(e)Ty,,
< exp (‘ 9(1—2e)j9LkJ (6))

< exp(—C(e)6Y)
by (12) and (15), for every sufficiently large j, and hence

, IX(r, L) 1—2e
P f : <
Osllrclgoq 05,‘_<IIT’LN (201 1og@+1)1/2 — 4

} < 69 exp(—C(e)07) < 077
provided that j is sufficiently large, which implies immediately

sminf i |X(t, L )| 1 —2e
48 liminf _inf N
“ ler;g 051’?59" 0<I<Ty, (201 log@*H)l/2 — ¢

a.s.

by the Borel-Cantelli lemma.
Now (45) follows from (46)—(48). This completes the proof of Theorem 2.
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PROOF OF THEOREM 3. It suffices to show that

Xt
(49) VA >0, limsupsup =Ml <y
n—oo |1<a (20, 10glogay) /

and

(50) Ve >0, VA >0, lim P{ U ﬁ{X(z, )< (1 -6, 1ogloga,)1/2}} =0

"0 M<A=n

hold true.
(49) follows from Theorem 1 and (18) immediately. We now prove (50). Let

1
0<6<Z, nk=max{n:0',,§ak}

where a > 1 is a constant which will be specified later. Then

k
a
T <on, < d.
Clearly, (50) is implied by
o
(51) lim P{ U N{X(t,n) < (1 - )20y, logloga,)'*}} =0.

k=00 L g sk
Noting that

{X(t,n,) < (1 — €)20, logloga,)'/?}
C {X(t,n,_1) < —%(20,,, logloga,)'/?}

U{X(t, n) — X(t,n_y) < (1 - %)(20,,, logloga,,,)l/Z},

we have

U N{X, ) < (1 — €)(20,, logloga,)'/?}
|| <A 1=k

c U ﬂ{X(t,n,)—X(t,n,ﬁl) < (1 - %)(2an,1oglogo,,,)‘/2}
lf|<A 1=k

Uu G{X(r, n_1) < ~%(20,,‘ logloggnl)l/2}'

lfj<a 1=k

From Theorem 1 and (18) it follows that

[ee]
P{ U UXa n-p < —%(20,,, loglogo,,,)l/z} —0ask— 00
=A==k

provided a > 8C/¢%.
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The rest we should do is to prove

(52) P{ U ﬁ{X<t,n,)—X<r7n,_1)< (1

€
— =) (20, logloga, )!/? }——»0
Jf| <A 1=k 2)( Joglogn) }

as k — 00. Let b := by = 1 /(Ak?). Then

(53) P{ U ﬁ{xa, n) — X(tny) < (1

€ 1/2 }
— =120, loglogo,
lf| <A =k 2)( onloglogan) }

2% ¢ '
< P{ U ﬂ{X(t, n) — X(t,n,-y) < (l - —)(20,,, loglogay,) }}
[ <A =k 2
< 4k2P{ U ﬁ{X(t n) = X(t,n1) < (1= 5 ) 2o, logl '/2}}
= sy s -1 Op, 108 Oan,)
0<r<b 1=k 2

2k

4k2P{ﬂ{X(b, n) —X(b,n,1) < (1 . %)(2011, loglogan,)‘/z]}
1=k

IA

2k X(t,n) — X(t,n—1) — X(b, ) + X(b, n,—y) €
+4k2P{ ) ) 9 i < = }
OgLszb ,L=Jk { (20, loglog oy, )!/? 6 }

= 1i(k) + (k).

Since {X(b, n,) — X(b, n,_1), k < i < 2k} are independent , we have

(54) Lk) < 4k2ﬁ(1 — (&) exp(—(1 — %)log log aN,))
1=k
< 4k2ﬁ(1 — Cle)i™ %)

1=k
2%k .
< 4k exp(— 3 C@)i'*F)
1=k
< 4k? exp(—C(OK/®) — 0, as k — oo.

On the other hand, for 0 < ¢ < b and k <i < 2k we have

E(X(t,n) — X(t,n—y) = X(b, n) + X(byn,—)” =2 50 Lig e

J=lny

<d4b-n 3

J=1+n,_,

4T,
L
- Aor,,,k on,
< 4k %g, (logoy,) /A
< 80,,(loga)/(Ak)

<ea,, /48
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provided that k is large enough.
Consequently, using the Fernique lemma again, we get

bl
< T —
Lk) < C(e)k® klggk(l + 5 )exp( 4loglogay,)

< C(e)k® exp(—4 loglog ay,)
< Clek' — 0 as k— oo.

This proves (52) by (53) and (54), as desired. The proof of Theorem 3 is completed.

PROOF OF COROLLARY 1. It is easy to see that

TNFN

ON

Yeo= SV a6
€op=y  —e

=1 1

< Aws

my(l,e)—1 ¥ n ¥
! 1 —2)0,(2¢)
< LA, Z e 1On
=1 )‘l 1=my(1,€) )‘t

n
Y o220

<eo,+
1=my(1,€) )‘l

n

§60n+< > l)exp(—Z min {)\,}0,,(26))

1=my(1,€) M mp(l,e)<i<n

< e€o,+ 0y, exp(~2 min {A,}H,,(2e)).

mu(l,e)<i<

The latter implies that

1
= i . 1/6).
8.00 = Zmin_ {M}/ log(l/€)

Similarly, we have

1
> : ‘
70 2 2 min, {h)/ log(1/e)

Consequently, we obtain
1

0n(2€)
This indicates that the condition (12) is satisfied. The corollary now follows from Theo-
rems 2 and 3.

> 2\ (e)/ log(1/€)

PROOF OF COROLLARY 2. Since 0,/n® is quasi-increasing, there exists a positive
constant C such that
(55) o,/ < Cop/n®

for each £ < n. From (55) we can find that for every 0 < ¢ < %

e\!l/a
oy <eo, foreach £ < (E‘> n

https://doi.org/10.4153/CJM-1993-009-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-009-2

174 QI-MAN SHAO

and hence y
€ o
(56) ma(l,€) > (E> n.

On the other hand, it is easy to find that from the assumption A}, < Cming<,<2 A, , for
each 0 <e < %, there exists a constant C(¢) such that

57 An < C(e) min A,.

en<i<

Thus, the assumption of Corollary 1 is satisfied by (56) and (57) and hence the corollary
holds.
The proof of Corollary 3 is trivial and so is omitted here.

PROOF OF COROLLARY 4. By the assumption of quasi-increasing, there is a positive
constant C such that foreach k <n

Mot % < Chpol @

and
U,l(/a//\k < Ca,l,/a//\n.
Then
Fn n ’yl
U—n = (; }\—l)\z)/gn
“ g, — 0, —
= (z(—n—-a—l)A"”}' a) fon
=1 U,
< CA\y/a,
and

T
deo, = o 2h0n(20)

|
M=
>

noo
_<_ €on + Z _1_8—2/\19,.(26)
1=my(1.€) )‘l

IA

noy, 200" 0,2
€O+ z—exp(~———%’—1#)
On

1=my,(l,e) ™M
", 20€/26,(2¢)
€0, + — exp(———-)
1=m§(:1.e) /\l C
2)\nel/"9n(2e))
c )

VAN

IA

€0, + 0, exp(—

Therefore, we have
L 2l
6,(2¢) — Clog(1/e)
This proves that condition (12) is also satisfied and hence the corollary follows from
Theorems 2 and 3.
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