
Canad. J. Math. Vol. 45 (1) 1993, pp. 159-175. 

ON THE LAW OF THE ITERATED LOGARITHM 
FOR INFINITE DIMENSIONAL 

ORNSTEIN-UHLENBECK PROCESSES 

QI-MAN SHAO 

ABSTRACT. Let {Xk(t), —oo < t < oo}<gj be independent Ornstein-Uhlenbeck 
processes and X{t, n) = Y11=i */(*)• In this paper the law of iterated logarithm for 
X(t, n) is considered. The results obtained improve those of Csorgô and Lin(1988) and 
Schmuland(1987). 

A real valued stationary Gaussian process {X(f), —oo < t < oo} will be called an 
Ornstein-Uhlenbeck process with coefficients 7 and À (7 > 0, A > 0) if EX(0 = 0 and 
EX(s)X(t) = (7/A) exp(-A|f - s\). Let 

{F(0, -oo < t < oo} = {Xk(t), -oo < t < o o } ^ 

be a sequence of independent Ornstein-Uhlenbeck processes with coefficients lk and 
A*. The process Y(-) was first studied by Dawson(1972) as the stationary solution of the 
infinite array of stochastic differential equations: 

dXk(t) = -\kXk(t)dt+ (2lk)
l/2dWk(t), it = 1, 2 , . . . , 

where (Wfc(f), —oo < t < oo}gj are independent Wiener processes. The properties of 
Y(-) have been extensively studied in the literature. Since EX|(0 = lk/Xk, it is clear 
that for every fixed t, Y(t) is almost surely in t1 if and only if Y%L\ Ik/^k < oo. The 
continuity properties of F(-) were investigated by Dawson(1972), Schmuland(1987), 
Iscoe and McDonald(1986), Fernique(1989), Csâki, Csorgô and Shao(1991). Csorgô 
and Lin(1988) studied F(-) in terms of the path behaviour of the two-time parameter 
stochastic process {X(f, «), —oo < t < oo, n = 1,2,...}, where X(t, n) = EjjLj Xk(t), 
X(t, 0) = 0 for alW G R and established P. Levy type moduli of continuity, large 
increment rates for the latter process and the following law of the iterated logarithm: 

THEOREM A. Let \*N = maxi<;<w A/, and aN = a(N) = E ^ 7//A,. Assume that 

(1) (logA#*)/loglogN—>0, as N —> oo, 

and that the non-decreasing sequence {T^} satisfies 

(2) log TNI log log Â  —> 0, as N -> oo. 
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160 QI-MANSHAO 

Suppose also that for every e > 0 there exist 1 <9\ < #2 such that 

(3) lim sup a(6\+{)/a(9\) < 1 + e 
k—>oo 

and 
(4) l imsupa (^ ) / a (^ + 1 )<e . )u\U2)/ vyu 

1/2 
77ié7i, w/r/i/3^ = (2 (E^ 7//A,-) log log Af) ; , we have 

lim sup |X(7#, N)\/(3*N = lim sup max sup |X(f, n)\/(3*N = 1 a.s. 
N-+oo /V-^oo ! ^ n <N | r | < TN 

Schmuland(1987), using Dirichlet form-techniques, proved that \flk/\k = 1 and 
£"=1 7//(2n log log n) —• 0 as n —> oo, then 

(5) P{limsupX(r,«)/(2«loglog«)1/2 = 1 for all r G /?} = 1. 

It is not difficult to see that (3) and (4), in fact, imply that there exists positive constants 
a i , c*2, c\ and c2 such that 
(6) ^ / ^ K d ^ / / 1 

and 
(7) an/n

a>>c2am/ma> 

for each 1 < n < m. 
Unfortunately, conditions (1) and (2) in Theorem A are too restrictive to be satisfied 

even for Â  = ka, or Â  = loga(l + k) (a > 0), or TN = logN. The aim of this note is to 
relax the conditions of Theorem A and that of Schmuland(1987) as well. 

Let {7V, n > 1} be a non-decreasing sequence of positive numbers. Put 

aN = a(N) = ^i/*h r ^ = £ 7 ô 
i=l i=\ 

1 /? 

f}N = \2(TN(\og(TNTN/(jN) + log log aN) J , 

where and in the sequel, logjc = Wmax(;c, e)\ In is the natural logarithm. 
For 0 < e < 1, define 6n(e) as the solution of the equation 

(8) ±^e-™v = œn. 

THEOREM 1. Assume that 

(9) TMTM/CTN + ON —> oo, as N —> oo. 

Then, we have 
(10) lim sup max sup \X(t,ri)\//3N < I a.s. 

N-^oo l<n<N\t\<TN 
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THEOREM 2. Assume that (9) is satisfied and that there exists a positive constant C 
such that 

(11) &N < Ca^-i for every N>1, 

(12) l o g ^ < ( l + C 6 ) l 0 g / f - + C6l0gl0gayv, 

for every 0 < e < 1 as N —>oo. Then, we have 

(13) limsup sup \X(t,N)\/pN=la.s. 
N^oo 0<t<TN 

(14) limsup max sup |X(f,n)|//?#= 1 «s. 

/£ in addition, we also have 

(15) log log GN = o I log j ^ a s N — > o o . 
V (TN / 

(16) lim sup |X(f,A0|/ftv= lfl.s. 

(17) lim max sup |X(f, w)|//3#= 1 0.£. 
AMool</i<^| r |< r j v 

THEOREM 3. Assume that (11) w satisfied. Moreover, suppose that 

(18) log(rN/aN) = 0(loglog<7tf)ay#—> oo, 

am/ 
(19) GN—> oo as N ^ oo. 

Then, we have 

(20) P{limsupX(r,A0/(2^1ogloga-Ar)1/2 = \ for all te R) = 1. 
N—>oo 

Before stating our corollaries, we introduce the following notations: 

" 7 / 

mn(2. e) = min £ : V -^ > (1 — e)<rn L A^(e) = max( min À/, min A/}. 
I ~~f A/ ~~ i Vmn(l,e)<i<N l<i<m„(2,e) J 

A sequence {an} is called quasi-increasing if there exists a positive constant C such that 

dk < C n̂ f° r e a c n k <n. 
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COROLLARY 1. Assume that (9) and (11) are satisfied and that there exists a positive 
constant C such that 

X*N<C(XN(e))l+CelogaaN 

for every 0 < e < 1. Then, (13) and (14) hold. If we also have (15), then (16) and (17) 
are true. 

COROLLARY 2. Assume that (11) is satisfied and that there is positive constants a 
and C such that a(n)/na is quasi-increasing and \\k < Cminfc</<2fc A; for each k > 1. 
Then, (13) and (14) hold. If we also have (15), then (16) am/ (17) are true. 

COROLLARY 3. Assume that (11) is satisfied and that 

log = o(log log aN) as N —> oo. 

77ieft, we /lave (13), (14) am/ 

(21) limsupX(rjV,A0/(2a^loglogcrAr)1/2 = 1 a.s. 
N—>oo 

COROLLARY 4. Assume f t o (9) and (11) are satisfied and that Ana*~a am/ crn'
a/Xn 

are quasi-increasing for some 0 < a < 1. Then, (13) and (14) /io/d. 7/* we a/so /zave (15), 
f/ieix (16) and (17) are Jrwe. 

The proof of theorems is based on the following lemmas. 

LEMMA 1 (FERNIQUE(1964)). Let G(t) be a Gaussian process on [0, 1] with 

E(G(t) - G(s)f <A\\t-s\) 

where A is continuous, non-decreasing and satisfies J™ A(e~y )dy < oo and also 
EG2(t) < r2 . Then, for every x>0 

p{ sup |G(0| > J t ( r + 4 J^A(e^ 2 )o> )} < d £° e~y2/2 dy, 

where d is an absolute constant. 

LEMMA 2. For every 0 < e < 1, there exists a constant C = C(e) such that 

(22) P{sup \X(t,n)\>xon/2) < c( 1 + — ) e x p f - ^ — - x 2 ) . 
l\t\<T \ Gn J \ 2 ) 

PROOF. Note that 
(23) EX2(f, n) = on 

and 

(24) E(X(t, n) - X(s, n)f = 2 £ ^ ( 1 - ^~A'|r~j|) < 2rn|f - s| 
Ï=I A/ 
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for every t and s. Put 

32(i-£)»/2 ' r„ ' 

Then 

(25) P/sup |X(?,n)| >xaj / 2 } < 2 ( [ J ] + l)/>{ sup |X(/,«)| >xalJ2} 
\t\<T y l V 1 ' 0<t<6 

= 2 ( [ J | + l ) p { s u p \X(t6,n)\>xal/2}. 
0</<l 

By (23) and (24), we have 
roo 

Using the Fernique lemma, we find 

Ko<t<\ 

(26) ^°°(20r>^2)1 / 2 dy < 4SalJ2. 

(27) P{ sup \X(tO,n)\ >xan
/2} 

<p{ sup \X(t0,n)\ > T-^(°lJ2 + 4 r(26rne-y2)l/2dy\ [o<t<\ l + loc Ji ) 

< rfexp 
x2 

+ Ï6S)2) 

< dexp 

2(1 

Now (22) follows from (27) and (25). 

LEMMA 3. Let 0 < e < \,Qn(t)be the solution of the equation (S).Then, there is a 2 

positive C(e) such that 

x2 ^ * ( e ) 

(28) P{ sup \X(t,n)\ <xalJ2} < f l - C ( e ) e x p ( - )) 
o<t<T V v z(l—2e)/y 

/or each x > 0. 

PROOF. Let {W/(f), 0 < r < oo}£j be independent standard Wiener processes. 
Noting that 

A /7 /A 1 / 2 w ^ 2 A ' 0 {X(f,/i),0 < f < T} and M-A ^ 7 ^ , 0 < / < 7 

have the same distribution, we have 

(29) P{ sup \X(t,n)\<xalJ2} <P{ sup |X(/0*,/i)| < ^ / 2 } 
0<t<T 0<j<[£] 

= p{ max £ ( £ ) 
n<;<r X i - , VA;/ 

^/li\l/2Wi(e
ljXi9'') 

\o<j<[fnm^^iJ ejXA 
^ 1/2 
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where 8n = 9„(e). Set 

It is easy to see that [/ryré,Ef(i-^")) 
Whence 

(30) Uj-Vj~N{Q,(\-e)an) 

by the definition of 9n.Thus, by (30), we obtain 

(31) 

P{ max \Uj\ <xaj ] 

= P( max If/,-1 <xaj , |£/rzi — Vrzi + VrZil < xaj ) lo</<[£] ~" U«J U«J l*«J " J 

^ / ^ ^ « ^ i - ^ i i + y i <^y2}^{vti]<y,o™«L]ic6i <«ry2} 

7 - o o r V((l - e)an)V2J ^ ( ( 1 _ e ) a n ) i /2 ))
 a<-

{VtTiKy, max |C/7| < xcr^2} 
L^ J o<j<[fn] 

<r(®( ^-TM)-M—-^-rr;)]dP{VrT,<y, max ll/.-l <xcri /2} 
- / - o o ^ V(l — e)1/2 7 V(l — e)1/2/y l irj "o</<[£] Jl ~ j 

= [ 1 T = r ° e^^dApi max lf/,1 < xa^2} 
V \ / 2 ^ 7 ^ 7 i y lo</<[£] J 

< (l - C(e)e'^)p{ max |f/7-| <xoX
n
l2\, 

V 7 l°</<[£] J 

here we have used the following facts on the Wiener Process: 
i) £/[Z] — V[i.] and {V^zp Uj, 0 <j < [£]} are independent, 

ii) 0(x — y) — 0(—x — y} < 0(x) — 0(—x) for every y G R and x > 0, 
iii) for each S > 0, there is a C(<5) > 0 such that 

£°e-f'2dt > C(«)expf ^ T ^ l for every x > 0. 

By recurrence, we conclude from (29) and (31) that (28) holds true. 
From (28) it is easy to see that 

LEMMA 4. Let 0 < e < ̂ , 0n(e) be f/ie solution of the equation (8). 77ien, f/iere is a 
positive C(e) SWC/Î that 

v2 

(32) P{ sup |X(f, n)| > x ^ / 2 } > C(e)(l + J ) expf-
0<f<r V t /n y V 

X" 

2(1 - 2e) 
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for each x> (2(1 - 2e)log £ ) 1 / 2 . 

LEMMA 5. For each 0 < e < | , there is a constant C = C(e) such that 

(33) Wmax sup \X(t,n)\ > xalJ2) < c{\ + — ) expf- ( 1 ~ ^ Y 
ll<n<N^T \ GN J \ 2 ) 

PROOF. (33) will follow from Lemma 2 and 

(34) P{ max sup\X(t, n)\ > xalJ2 ) 
l i<«</V| , j< r 

<4(l + 7^)p{ sup \X(t,N)\>x(\-e)al
N

/2} 

for every x sufficiently large. Let 

B = aN/TN, Ei = (sup \X(t, 1)| > x a j % 
\A<B 

Et - (max sup \X(tJ)\ < xaj < sup \X(t, i)\}, i = 2,...,N. 
j<i \t\<B \t\<B 

Noting that 

{ max sup \X(t, n)\ > xaj2 ) = \J En C {sup \X(t, N)\>x(l- e)alJ2} 
"l<n<N\tl<B „=1

 L|,|<B 

U LJ (£„ n {sup \X(t,N)\ < x(\ - e)alJ2}) 
n=\ \t\<B 

c{sxxv\X{t,N)\>x(\-eWj2} 
\'\<B 

N—\ 

U U ( £ » n { sup \X(t, N) - X(t, n)\ > exaj2}) 
n=l \t\<B 

and that {X(t, N) — X(t, n), \t\ < B} and En are independent, we have 

P{ max sup|X(/, n)\ >xaj ) 
ll<«<iV|,|<B 

<P{sup\X(t,N)\>x(l-e)aJ2} 
\<\<B 

+ f^P{ sup \X(t, N) - X(t, n)\ > exalJ2 }P(En) 
«=I |«|<B 

<P{sup\X(t,N)\>x(l-e)alJ2} 
\'\<B 
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< pi sup |X(f,N)\ > x(l - e)aH2} + 2 J e x p f - ^ — ) £) P(£„) 
|f|<B V 4 7 n=l 

< P{sup |X(r,iV)| > x(l - e)°N2} + ~^{ max sup \X(t,n)\ > xalj2} 
\t\<B 2 l^N\t\<B 

provided x > 4(log(8d))/e. In the last but second inequality we have used the fact that 
f(y) = ye~ay is decreasing on [1 /a , oo) for each a > 0 fixed, and d is an absolute constant 
as in Lemma 2. The above inequality yields 

P{ max sup |X(f, n)\ > xalJ2} < 2P{ sup |X(r, A0| > *(1 - e)<rl/2} 

fovx > 4(log(8d))/e, as desired. 

PROOF OF THEOREM 1. It suffices to show that for each 0 < e < 1/8 

(35) limsup max sup |X(f, n)\j'/3N < 1 + 8e a.s. 
tf—oo l<n<N\i\<TN 

For k > 0, put 

Hk = {N : (l + e)k < (3N <(l+e)k+l}, 

Mk = max{N : N <G Hk}. 

Clearly, (9) implies that f3N —* oo as N —-* oo. So, we have 

(36) lim sup max sup |X(r, n)| //3A? 

< lim sup max max sup |X(r, ri)\lfiN 
fc_oo ^G^Jk l<n<^ | f | <7 N 

<( l+e) l imsup max sup \X(t,n)\/(l +e)k+{. 
k->oo X^n<^M*\t\<TM, 

From the definition of Mk , we find that 

(1 + e)2* (l+e)2(/c+1) 

<°Mk < 2(\og(TMkTMk l°Mk) + log log <7M*) " 2(log(rM,rM, l<JMk) + log log aM,) 

Whence, for each k > 1 

(37) aMj > (1 + e)k or ( Z ^ i + e ) > e x p ( i ( l + e)*). 

https://doi.org/10.4153/CJM-1993-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-009-2


LAW OF THE ITERATED LOGARITHM 167 

Using Lemma 5, we deduce 

(38) P\ max sup |X(/,n)| > (1+e)*+1(l+e)2} 

< P{ max sup \X(t, n)\>/3Mt(l+ e)2} 

< C(e)(l + Zklk)e x p(_ ( 1 + e ) ( l o g ^ I k +loglogaMt)l 

< C(e)k-(i+€) 

by (37). Now (35) follows from (36), (38) and the Borel-Cantelli lemma. This completes 
the proof of Theorem 1. 

PROOF OF THEOREM 2. Noting that ON is non-decreasing, we have 

ON —> (J 2LS N —• OO, 

where 0 < o < oo. If 0 < a < oo, then (9) implies TNTN/aN —> oo and hence (15) is 
satisfied. So we only need to consider two cases: one is o = oo, the other is (15) being 
satisfied. We formulate the proof below in two steps, which together with (10) will imply 
our statements. 

STEP 1. Suppose o = oo, then, for each 0 < e < 1 /{AC2) 

(39) limsup sup \X(t,N)\/f3N> l - e ^ a . s . 
7V-+00 0<t<TN 

Let 
r /8C2\*i 

Ni = 1, Nk+i =min|rt : on > [—) j , £ = 1 , 2 , . . . . 

From condition (11), we get 

/ 8 C V /8C 2 \* 
(40) ( - J - ) < ^ 1 < c ( 7 r ) . 

Clearly, a = oo implies Nk t oo as k —-> oo. Then 

(41) limsup sup \X(t,N)\/fa > limsup sup |X(f,W*)|//?ty 
N-+00 0<t<TN k->oo 0<t<TNk 

> limsup sup \X(t,Nk)-X(t,Nk-i)\/l3Nk 
k-^oo 0<t<TNk 

- l imsup sup \X(t,Nk-i)\l(}Nk. 
k^oo 0<t<TNk 
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Using Lemma 5 again, we have 

Pi sup \X(t,Nk^)\/f3Nk>~ 
{0<t<TNk * 

< C(e)(l + Mjfc-) e x p ( - ^ ( l o g ^ +loglog^)ï 

< C(e)(l + ^ ) ( l + Ï^Y2loë-iaNk 

< C(e)k~2 

by (40). This implies that 

(42) limsup sup \X(t,Nk-{)\/l3Nt < \ a.s. 

To estimate |X(f, Nk) — X(f, N*-i)| //?wt, we let #£(e) be the solution of the equation 

i"=l+A/*_i A ' « = 1 + ^ - 1 A / 

and let 

& = hi E Y)(l0g^/^£))+l0sl0g £ r> • 
Then, in terms of (32), we obtain 

P{ sup | X ( f , ^ ) - X ( f , i V n ) l M > ( l - 2 e ) 1 / 2 } 
o</<rw, 

7) >C(e)( l + ^ - ) e x p ( - ( / 3 ; ) 2 / 2 ) 
91(e) 

>C(£)log-'( £ r 
\=1+Ak_! A * 

> C(e)k-{ 

by (40) again. Therefore, we have 

(43) limsup sup \X(t,Nk) - X(t,Nk^)\/(3'k > (1 - 2e)1/2 a.s., 
* — K » 0<t<TNk 

since {sup0<r<TN |X(f, A )̂ — X(f, A^-i)|, & > 1} are independent random variables. 
On the other hand, it follows from the definitions of 6Nk(e/2) and Q\ that 

4 1=1 A * 

i=l+/Vt_, ^< 
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and 

< -jiPNt -°Nk^)+^°Nk-

From the latter, we find that aNk < 4(aNk — aNk^ ). Hence 

Nk s\ Nk <y 

g iig-2Af-^(i) < g lLe-2\i<rkv^ 

which is equivalent to say that ^ ( f ) > 01(e). Combining the above results with the 
assumption (12), we finally conclude that 

(44) limsup sup \X(t, Nk) - X(f, Nk^)\//3Nk > f/ ~^\ a.s. 
*-»cx> 0<t<TNk (I + Ce) 

This proves (39) by (41), (42) and (44). 

STEP 2. If, in addition, (15) is satisfied, then for each 0 < e < | 

(45) liminf sup \X(t,N)\/aN > 1 - 4e a.s., 
N-ioo o<t<TN 

where a^ = (2a,ylog ^ ) 1 / 2 . 

Let 1 < 0 < 1 + ̂ . Define 

A* = {N : eka} <aN< 0*+Vi}, £ = 0 , 1 , . . . , 

5.= U : ^ < Z M ^ + i < r i l ; = o,i,..., 

LkJ = min{Af : N G A ^ } , L^- = max{7V : Af G AkBj}, 

Clearly, (15) implies that TNrN/aN —» oo and that A^B, = 0 if & > 0e-7, when 7 is 
sufficiently large. Thus, we have 

(46) liminf sup \X(t,N)\/aN 
N-^oo o<t<TN 

> liminf inf sup \X(Î,N)\/(XN 
J-+00 NeBj0<t<TN 

> liminf inf inf sup \X(t,N)\/(XN 
j-^00 0<k<W NeBjAk o<t<TN 

> liminf inf inf sup ——- n. , , ,_ 
~ /-KX) 0<*<#/ tfefyl* 0 < K ^ . (2ôk+l l o g #>+1 )* / 2 

^ r . f . f \x(t,LkJ)\ 
> liminf inf sup —-— ^ . . ,,, 
- /-KX) o ^ ^ o ^ K r ^ . (2^+1log6^+1)1/2 

|x(r,A0-x(f,M 
— lim sup sup sup sup j—>oo 0 » Z. ,<N<Ll, 0<,<TLi, ( 2 ^ 1 log 0M )' /2 
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Similarly to (33), we can obtain that 

P{ sup sup J — , , , .". > e 
U ^ S ^ C K K T ^ (2^+1log0/+1)1/2 -

C(e)(l + ^ ^ ) e x p ( - ^ + ' l 0 ^ ' + ' ) . 

Sincexe x is decreasing on [ 1, oo) and akj = aL* — aLk. <(0—l)6k, the above inequality 
is bounded by 

C(c)fl + - ^ 7 ^ ) QM-e
2lo

g-\) ) - C(e)9J+lexP(-31°g^+1) < C^e"v 

for every j sufficiently large. Therefore 

PI sup sup sup J — . , t ,. > e < C(e)0 J, 
\o<k<^LkJ<N<LhO<t<TLkj (2fl*+ 1 l0gff+ l )1 /2 - | -

which follows that 

\X(t,N)-X(t,Lki)\ 
(47) hmsup sup sup sup — / > M M / 2 - 6 a ' s-

j-+oo 0<*<# I*,- <N<L*k. 0<t<TLk. (20k+l log # + 1 ) 1 1 2 

On the other hand, using (28), we have 

\X(t,LkJ)\ ^ l - 2 e 
sup < 

o < K L ( 2 ^ M o g ^ 1 ) 1 / 2 " A 

<P 
\X(t,LkJ)\ ^ 1 

i sup ^ . t ,_ < 1 — 2e 

V W £ ) 
< (l - C(e)exp(-(1 - 2e)log0/+1)) 

< exp(-C(e)6>e-/) 

by (12) and (15), for every sufficiently large j , and hence 

P\ i n f s u p J X ( ^ } ) < I z _ * I < flW-C(e)^') < erJ 
lo<fc<^o<KrLfc. (20*+1log<9/+1)1/2 " 0 J ~ n ; ~ 

provided that j is sufficiently large, which implies immediately 

(48) hminf inf sup —— t , /0 > —^— a.s. 
T-oo 0<k<&o<t<TLk. ( 2 ^ + 1 l 0 g f f / + 1 ) 1 / 2 ~~ # 

by the Borel-Cantelli lemma. 
Now (45) follows from (46)-(48). This completes the proof of Theorem 2. 
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PROOF OF THEOREM 3. It suffices to show that 

(49) VA > 0, lim sup sup / 0 j * ^ ,1 / 9 < 1 a.s. 
»-KX) \t\<A (2an\og\og(Tny/z 

and 

(50) Ve > 0, VA > 0, lim P\ [j f){X(t, i) < (1 - e)(2<7/-loglog<7,-)1/2} = 0 
n^°° K\t\<Ai=n 

hold true. 
(49) follows from Theorem 1 and (18) immediately. We now prove (50). Let 

0 < e < - , nk = max{n : an < ak} 

where a > 1 is a constant which will be specified later. Then 

^<(JNk< ak. 

Clearly, (50) is implied by 

*~"°° K\t\<Ai=k 
(51) l i m / | U n { * M « - ) < 0 -6)(2an /loglog^.)1/2}} = 0. 

Noting that 

{X(t,m) < (1 - e)(2anilog\ogani)
1'2} 

X ( f , / i / _ i ) < - ^ i 

\j[x(t,m) -X(f,/!,-_,) < ( l - ^)(2anToglog^.)1/2 

C {X(r,/i/_i) < - ^ ( 2 ^ 1 o g l o g ^ ) 1 / 2 } 

we have 

oo 

U f){X(t, nt) < (1 - e)(2ani loglog^.)1/2} 
\t\<Ai=k 

C U n{x(r ,n / ) -X(r , / i / _i )<( l -^) (2a n | . log loga n / )
1 / 2 j 

\t\<Ai=k{ \ z; ) 

\t\<Ai=k 

From Theorem 1 and (18) it follows that 

(J U U X(f, «,_!)<--(2an , logloga„,)1 /2 . 

U |J{X(', *«-i) < - ~ ( 2 ^ log log a*,)1/2 — 0 as k - - oo 
|f|<A/'=* Z J 

provided a > 8C/e2. 
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The rest we should do is to prove 

(52) p\ (J n{x(f,n,-) -X(f,n,--i) < ( l - ^W. log logc r , , ) 1 / 2 

l|f|<Ai=*1 V l ) 

as k —> oo. Let & := &fc = 1 /(Ak2). Then 

(53) PJ U n jXf tnO-Xfon/ - ! ) < f1 ~ ^ W , . log log a,,)1/2} 
V|f|<Ai=fel V Z / J 

< p\ (J nU(^w l-)-X(r,n I-_i)< (l-^)(2a„ I . logloga I I l .)
1 / 2 

l | f |<Ai=*1 V Z / 

< 4 / : 2 P ( U nU(^^ ) -X( r ,n I -_ 1 )< ( l - ^ ) (2a l l l . l og loga n £ ) 1 / 2 ) 
{0<t<bi=k[ \ U > 

2k 
n { x ( M i ) - X ( M « - i ) < ( l - ^)(2a„Togloga„,)1/2 

2k 

l o V < ^ (2ani\og\oganiy/2 6 J 

:=h(k) + I2(k). 

Since {X(£>, nj) — X(b, nt-_i), k < i < 2k} are independent, we have 

2k 

(54) /!(*) < 4 / : 2 n ( l - C(e)exp(-(1 - ^) log log <^)) 

2k 

< 4 ^ 2 n ( l - a e ) r 1 + ^ ) 
i=k 

, 2k . 

< 4 * 2 e x p ( - £ C ( e ) r 1 + M 

< Ak1 exp(-C(e)fce/6) —> 0, as k -> oo. 

On the other hand, for 0 < t < b and k < i < 2k we have 

E(X(t,ni)-X(t,ni^)-X(b,ni) + X(b,ni^)f = 2 £ ^ ( 1 - e ^ * " » ) 

<4(fc- r ) £ li 
7=l+n,-i 

^ 4 r „ _2 
< - — & CT«,-

<4k-2crni(\ogaNl)/A 

<Sani(loga)/(Ak) 

< e<r„./48 
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provided that k is large enough. 
Consequently, using the Fernique lemma again, we get 

( hlT 
1 + —-)exp(-41ogloga nJ 

On. J 

< C(e)k3 exp(-4 log log a„k ) 

< C(e)k~l —>0 as k -> oo. 

This proves (52) by (53) and (54), as desired. The proof of Theorem 3 is completed. 

PROOF OF COROLLARY 1. It is easy to see that 

TN^N 

ON <*h 
n "y. 

< E r + E V2AA(2f) 

i=\ Ai i=mn(\,t) Ai 

<ean+ £ - , 

7; 

-2\i6n(2e) 

\ = m w ( l , e ) A / y m„(l,e)</<« 

< ecr„ + an exp(—2 min |A;}#n(2e)). 
V mn{\,è)<i<n J 

The latter implies that 

1 > 2 pin {Aj / logd/e) . 
0 „ ( 2 e ) m„(l,c)<Kn 

Similarly, we have 
1 > 2 min {A,}/log(l/e). 

6n(2e) l<K/n«(2,c) 

Consequently, we obtain 

^ > 2 A ; ( e ) / l o g ( l A ) 

This indicates that the condition (12) is satisfied. The corollary now follows from Theo­
rems 2 and 3. 

PROOF OF COROLLARY 2. Since an/n
a is quasi-increasing, there exists a positive 

constant C such that 
(55) at/F <Can/n

a 

for each I < n. From (55) we can find that for every 0 < e < \ 

I /o 
<*i < e<7„ for each £ < I — j n 

https://doi.org/10.4153/CJM-1993-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-009-2


1 7 4 QI-MANSHAO 

and hence 

(56) m„(l, € ) > ( - ) n. 

On the other hand, it is easy to find that from the assumption A^ < Cmmk<i<2k ^i » f° r 

1 
4 ' each 0 < e < 4, there exists a constant C(e) such that 

(57) A* < C(e) min Xh 
en<i<n 

Thus, the assumption of Corollary 1 is satisfied by (56) and (57) and hence the corollary 
holds. 

The proof of Corollary 3 is trivial and so is omitted here. 

PROOF OF COROLLARY 4. By the assumption of quasi-increasing, there is a positive 
constant C such that for each k < n 

and 

Then 

and 

AfcOfc a < C\nan 

°l /h < CalJa/Xn. 

, (^ (<Tj ~ <Tj-l) x 1_<A , 

- l § a } - XnG" ) / a n 

< CXn/a, 

r^ h -2A,-0„(2e) 

ï=m„(l,c) A* 

i=mB(l,e) *,• V Ç a ; 7 y 

» li ( 2\nc
{'a6n(2ey 

< ean+ 2^ T~exP 

Therefore, we have 

i=m„(l,e) ^ Ï V C 

( 2A„e1/^n(2e)A 
< ean + a„ expl I. 

1 > 2Ane
1/« 

6n(2e) ~ Clogd/e) ' 

This proves that condition (12) is also satisfied and hence the corollary follows from 
Theorems 2 and 3. 
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