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Abstract
Modern low-altitude unmanned aircraft (UA) detection and surveillance systems mostly adopt the multi-sensor
fusion technology scheme of radar, visible light, infrared, acoustic and radio detection. Firstly, this paper summarises
the latest research progress of UA and bird target detection and recognition technology based on radar, and provides
an effective way of detection and recognition from the aspects of echo modeling and micro motion characteristic
cognition, manoeuver feature enhancement and extraction, motion trajectory difference, deep learning intelligent
classification, etc. Furthermore, this paper also analyses the target feature extraction and recognition algorithms
represented by deep learning for other kinds of sensor data. Finally, after a comparison of the detection ability of
various detection technologies, a technical scheme for low-altitude UA surveillance system based on four types of
sensors is proposed, with a detailed description of its main performance indicators.

Nomenclature
UA unmanned aircraft
DNNs deep neural networks
LSS Low Slow Small
CFAR constant false alarm rate
MTI moving target indicator
RCS radar cross section
MIMO multi input multi output
FMCW frequency modulated continuous wave
DTMB digital terrestrial multimedia broadcast
m-D micro-Doppler
STFT short time Fourier transform
SVM support vector machine
NBC naive Bayes classifier
FFT Fast Fourier transform
SVD singular value decomposition
CVD cadence velocity diagram
EMD empirical mode decomposition
PCA principal component analysis
LTCI long time coherent integration
NUSP non-uniform sampling order reduction
RFT Radon Fourier Transform
CNNs convolutional neural networks
SNR signal to noise ratio
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MLP multi-layer perceptron
YOLO You Only Look Once
MFCCs Mel-frequency cepstral coefficients
RDF Radio Direction Finding
TDOA time difference of arrival

1.0 Introduction
At present, unmanned aircraft (UA) are widely used around the world, in fields including aerial photog-
raphy, express transportation, emergency rescue, electric power inspection, agricultural plant protection,
border monitoring, mapping, fire monitoring and environmental protection. However, the rapid popular-
isation of UA also brings serious security problems [1]. In recent years, the media have reported dozens
of public security incidents caused by UA intrusion, whose main targets are airports, prisons, public
buildings and other sensitive places [2].

UA detection systems generally use radar as the core, supplemented by photoelectric (visible and
infrared), acoustic, radio detection and other sensors, aiming at achieving all-round situation aware-
ness in the guarantee of major events and the defense of important places. When multiple sensors are
deployed, both visible and infrared devices have some classification ability and have more accurate
positioning and ranging functions. Visible-light cameras are usually cheap, while infrared cameras are
expensive, but both are sensitive to environmental conditions. In addition, although an acoustic sensor
is not as sensitive to the environments, its limited detection range limits its application. Radio detection
technology is sensitive to complex electromagnetic environments, and is ineffective to electromagnet-
ically silent UA. Therefore, in view of radar’s accurate positioning ability and large detection range,
as well as its better target classification ability and environmental adaptability, it has become the most
common UA detection means.

Since current multi-sensor UA detection systems cannot realise automatic operation, it is necessary
to confirm the detected target manually. For example, the early detection results from the radar might
guide the operator to observe the direction of the target through the optical camera for confirmation [3].
In recent years, the demand for multi-source information fusion in various applications is increasing day
by day, which makes the data fusion technology widely important. The goal of data fusion is to make up
for the weakness of a single sensor, so as to obtain more accurate detection results. On the other hand,
artificial intelligence and deep neural networks (DNNs) have become a very attractive data processing
method, which can find high-order abstract features that are difficult to find by typical feature extraction
methods. Therefore, they are widely used in massive multi-source data processing, and have achieved
good results in UA detection and classification.

This paper focuses on the research results of UA detection and classification using radar, visible
light, infrared, acoustic sensors and radio detection as the data acquisition tools and deep learning as
the main data analysis tool. In recent years, there has been a growing demand for multi-source infor-
mation fusion in various applications, and data fusion technology has been widely considered [4]. The
sensors selected in this paper have excellent performance in the typical monitoring system, and com-
plement each other in the multi-sensor information fusion scheme. Radar is generally considered as
reliable detection equipment, but in most cases, it is still difficult to distinguish small UA from birds [5].
Taking the airport clearance area as an example, birds and UA are the two main dangers that threaten
the safety of flight during takeoff and landing. The airport needs to take different countermeasures after
discovering the target. After the UA target is found, the airport will first issue an early warning, guide
the takeoff and landing flights to avoid the target and coordinate with the airport and local public secu-
rity for disposal. After a bird target is found, the airport will use a variety of bird repulsion equipment
to drive it away from the dangerous area or take certain avoidance measures based on a bird driving
strategy. Therefore, it is necessary to identify both UA and birds. Due to the wide variety of UAV and
bird targets and their different size, shape and motion characteristics, the targets have different radar
scattering and Doppler characteristics. Therefore, they belong to typical Low Slow Small (LSS) targets
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with low observability. At present, the detection methods of LSS targets mainly involve constant false
alarm rate (CFAR), moving target indicator (MTI), moving target detection (MTD), coherent accumu-
lation, feature detection and other methods. When using the existing technology to detect LSS targets,
due to the complex environment, many false targets, strong target mobility, short effective observation
time and many other problems, it leads to low target detection probability, high-clutter false alarm, low
accumulation gain and unstable tracking, which bring great difficulties to target detection and judgment,
making the detection of birds and UA a worldwide problem.

This paper summarises the research progress of unmanned rotorcraft and bird target detection and
recognition technology based on multi-source sensors in complex schemes in recent years, and points
out its development trend. The paper is organised as follows. Section 2 introduces the radar detection
technology for UA and bird targets and introduces the relevant system applications. Section 3 focuses on
the technical methods of UA radar target detection and classification. Firstly, from the aspects of target
characteristic cognition and feature extraction, echo modeling and micro-motion characteristic cognition
methods are introduced to realise the fine feature description of the target. The method of distinguish-
ing UA from birds according to the difference of motion trajectory and polarisation characteristics is
discussed. Finally, combined with machine learning or deep learning methods, the effective technical
approaches and related achievements of target intelligent recognition are summarised. Section 4 intro-
duces multi-source detection methods of non-cooperative UA targets, such as visible light, infrared,
acoustic and radio detection, and discusses the target detection and classification methods based on
various technical means. On the basis of comparing the detection ability and performance of various
sensors, Section 5 introduces several typical cases of multi-sensor fusion detection systems, and rec-
ommends a construction scheme of UA detection systems based on four types of sensors. Section 6
summarises the full text and proposes a research and development trend in future.

2.0 Radar technology
As the main means of air and sea target surveillance and early warning, radar is widely used in the
field of national defense and public security. Compared with other technologies, radar is actually the
only technology that can realise long-range detection from several to tens of kilometres, and is almost
unaffected by unfavourable light and weather conditions. However, traditional surveillance radar is gen-
erally used to detect moving targets with relatively large radar cross section (RCS) and high speed, and
it is not suitable for detecting low-altitude flying targets such as UA with very small RCS and slow speed
(LSS) targets. In addition, the similarity between UA and birds is very high, so reliable classification
of two kinds of targets is another problem. Therefore, special design is required for avian radar accord-
ing to the above demanding requirements [6]. The scheme based on deep learning arranges the original
data into a specific data structure, greatly reduces the workload of manual annotation through fusion
processing and ensures the recognition effect of the system under the condition of low amount of data
and low annotation [7].

2.1 UA detection system
The traditional surveillance radar usually uses a mechanically scanning antenna to search the whole
airspace, so that the residence time on a single target is short. It can only obtain limited target data such
as the azimuth, angle, radial velocity and RCS, so it is difficult to detect LSS targets. However, with the
continuous development of radar technology in recent years, the ability to detect weak targets is steadily
improving, which provides a new way to detect and recognise LSS targets. In recent years, new radar
systems for weak target such as UA have become a research focus [8].

Some research institutions and enterprises, such as the University of London, Warsaw University of
Technology, Fraunhofer-Gesellschaft, French National Aerospace Research Center, Robin Radar of the
Netherlands, Aveillant Radar of the UK and the Wuhan University, conduct a series of UA detection
and identification research projects with advanced radar technologies of active phased array, multi input
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Figure 1. Typical UA detection radar system.

Figure 2. UA target surveillance application based on DTMB signal passive radar [9].

multi output (MIMO), frequency modulated continuous wave (FMCW), holographic and passive radar,
which have developed preliminary engineering capacity. Figure 1 shows the Robin phased array radar,
Aveillant holographic radar and Fraunhofer-Gesellschaft LORA11 passive radar for UA detection.

Active radar requires frequency allocaiton and strong electromagnetic radiation. However, in some
application scenarios, such as airports, strict electromagnetic access systems are in place. The manage-
ment department is usually cautious about the use of active radar, where even scientific experiments
need to go through a strict approval process. However, passive radar has the advantages of low power
consumption, concealment and good coverage. As an economical and safe means of non-cooperative tar-
get detection, it has attracted extensive attention in academic circles in recent years. Especially with the
improvement of hardware performance and the development of available external radiation sources such
as communication and wireless network, passive radar has attracted universal attention and extensive
research in various countries. The radio wave propagation laboratory of Wuhan University has carried
out a series of research projects on UA detection using passive radar [9–11]. It uses digital terrestrial
multimedia broadcast (DTMB) signals to carry out UA detection experiments, and studies time-varying
strong clutter suppression in urban complex environment. Experimental results show that after clutter
suppression, the detection distance is more than 3km for a typical DJI Phantom 3. Figure 2 shows an
example of a UA target surveillance application based on DTMB signal passive radar.

2.2 Avian radar system
Since 2000, a number of avian radar systems have been developed, the most representative of which are
Merlin radar from the United States, Accipiter radar from Canada and Robin radar from the Netherlands.
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Figure 3. Typical avian radar system.

Table 1. Comparison of typical avian radars

System name Technical characteristics and deployment modes
Merlin Combination of horizontal and vertical scanning radar.

The horizontal scanning radar is usually deployed near the center of the airport,
which is responsible for low altitude early warning around the airport; the
vertical scanning radar is usually deployed in the center of each runway to
monitor the flight take-off and landing channel.

Accipiter Combination of horizontal and vertical scanning radar with additional parabolic
antenna.

The deployment mode is similar to Merlin.
Robin In the early stage, the horizontal and vertical scanning radars were combined. In a

later stage, they were upgraded to FMCW. The latest generation employed
phased arrays.

The deployment mode of the early product is similar to Merlin. The latest product
is usually deployed in the center of the airport.

Merlin radar was the first avian radar in the world. It is equipped with two navigation radars of
different wavebands, one being S-band horizontal scanning, the other being X-band vertical scanning,
both of which adopt standard T-shaped waveguide array antennae [12]. This dual-radar system has also
become the most typical technical scheme for other avian radar systems. Figure 3(a) shows a typical
Merlin radar system. For large birds or flocks, the detection range of the system can reach 4 to 6nmi (7 to
10km) horizontally and 15,000feet (4,500m) vertically. For small- and medium-sized birds, the detection
range of the system can reach 2 to 3nmi (4 to 6km) horizontally and 7,500feet (2,300m) vertically.

The Accipiter radar has also developed a similar avian radar system with horizontal and vertical
scanning radars, which has been applied in some airports in the United States and Canada. In order to
obtain 3D target information, some Accipiter radars replace the waveguide slot antenna with a parabolic
antenna, and integrate the data processor, control system, GPS, mobile power supply and other auxiliary
operation systems on a mobile trailer, as shown in Fig. 3(b). The X-band parabolic antenna used in
the Accipiter radar is usually placed on top of the trailer. However, compared with the waveguide slot
antenna with larger beam width, the detection efficiency of this kind of antenna is lower. In order to
make up for the deficiency of parabolic antenna detection efficiency, Accipiter has developed a variety
of avian radar antennae, such as multi-beam parabolic antennae, dual axis scanning parabolic antennae
and two parabolic antennae with different tilt angles, to improve the coverage of parabolic antennae in
the vertical plane [13, 14].
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The first generation Robin avian radar, which appeared after 2010, continues the dual-radar scheme
of S-band horizontal scanning radar and X-band vertical scanning radar adopted by Merlin [15]. The
antenna length of the S-band horizontal scanning radar is 3.6m. The rotating speed reaches 45rpm,
which is the fastest among the existing avian radars. The S-band radar can detect large birds within a
radial distance of 10km and a vertical height of 2km. The antenna of the X-band vertical scanning radar,
which is 8feet (2.4m) long, can scan the airspace vertically and rotate at 24rpm, detecting small birds
within 2.5km and large birds and flocks within 5km. The information of the overlapped coverage area
of the two radars can be associated and integrated to obtain three-dimensional target information in this
area. In addition, Robin has developed a mechanically scanned FMCW radar to replace the X-band ver-
tical scanning radar with an average output power of only 400mW, as shown in Fig. 3(c). Different from
pulse radar with only one antenna, FMCW avian radar adopts two separate antennae. One antenna con-
tinuously transmits electromagnetic waves of different frequencies, and the other continuously receives
echo information. FMCW radar has more powerful bird detection ability with three working modes of
scanning, tracking and staring, which is especially suitable for professional ornithological research. The
latest generation of Robin radar shown in Fig. 1(a) adopts technologies of X-band FMCW and phased
arrays, with an average output power of 20W. It can obtain the three-dimensional information of the
target in the whole airspace within 15km, and the target trajectory update rate is 1s. At the same time, it
has the ability to distinguish between flying birds and UA based on the micro-Doppler (m-D) feature.

Table 1 compares the technical characteristics and deployment modes of three typical avian radars.
In the remainder of this section, the latest research results of UA detection and classification with radar
will be introduced, including the traditional target feature-based classification method and the latest deep
learning method.

3.0 Radar target detection and recognition method
3.1 M-D feature extraction
The micro-motion of moving target components will introduce modulation sidebands near the radar
Doppler signal generated by the motion of the target body, resulting in Doppler spectrum broadening,
which is called m-D signal [16]. At present, as the most commonly used radar fine signal feature in
automatic target classification, the m-D feature has been widely used in automatic target classification,
such as ground moving target classification, ship detection, human gait recognition and human activity
classification, and has become a very popular research direction in UA radar detection application in
recent years [17].

The internal motion of the target, including blade rotation of the rotor UA or helicopter, the turbine
propulsion of a jet, the wing flapping of a bird and so on, can be statistically described by m-D features
[18]. The m-D feature could be generated by the flapping of bird wings and the rotation of a UA rotor,
which is the main technical means of radar target recognition [19]. Figure 4 shows the simulation results
of m-D characteristics of bird and rotor UA at X-band. It can be seen that the m-D of bird targets is
generally concentrated in the low-frequency region with long period, which is closely related to the
flapping motion characteristics of different types of bird wings, while the m-D characteristics of UA
targets show obvious periodic characteristics, significantly different from birds. The echo of a rotor UA
is the superposition of Doppler signals of the main body and rotor components, therefore, the m-D
characteristics of UA with different types and numbers of rotors are also different.

The modeling of m-D characteristics and fine characteristic cognition of rotor UA are the pre-
conditions for subsequent detection and target classification. The echo signal of the rotor UA is the
superposition of the Doppler signal of the main body of the UA and the m-D signal of the rotor
components, as shown in Fig. 5 [20].

Firstly, the main body motion and micro-motion of UAV target with micro-motion components
are modeled, analysed and parameterised, and then the corresponding relationship among Doppler
frequency, rotation rate, number and size of blades is deduced [21]. For multi-rotor UAV, assuming that
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Figure 4. Simulation results of m-D characteristics of flying birds and rotor UA [19].

Figure 5. m-D characteristics of four-rotor UA [20].

the RCS of all rotor blades is the same and the RCS value is 1, based on the helicopter rotor model, the
target echo model of multi-rotor UAV is as follows [22]
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where, M is the number of rotors, N is the number of blades per rotor, L represents the length of blade,
R0m is the distance from the radar to the centre of the mth rotor, z0m

represents the height of the mth rotor
blade, βm is the pitch angle from the radar to the mth rotor, �m is the rotation angle frequency of the mth

rotor with the unit of rad/s, and ϕ0m is the initial rotation angle of the mth rotor.
The instantaneous Doppler frequency of the echo signal can be obtained from the time derivative of

the phase function of the signal, and the equivalent instantaneous m-D frequency of the kth blade of the
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Figure 6. Measurement results of m-D characteristics of flying birds and UA targets [23].

mth rotor is obtained as

fm,k(t) = −L�m

λ
cos βm sin

(
�mt + ϕ0m + 2kπ/N

)
(3)

It can be seen from the above formula that the m-D characteristic of a multi-rotor UA is composed
of M × N sinusoidal curves and is affected by carrier frequency, number of rotors, rotor speed, number
of blades, blade length, initial phase and pitch angle. Among them, the carrier frequency, blade length
and pitch angle are only related to the amplitude of the m-D frequency, while the number of rotors, rotor
speed, blade number and initial phase will affect the amplitude and phase of the m-D characteristic
curve.

Due to the influence of environmental noise, it is difficult to measure the m-D characteristics in the
outfield, which requires the radar to have strong accumulation ability of target Doppler echo information.
Figure 6 compares the field measurement and data processing results of the m-D characteristics of an owl
and a DJI S900 UA. Since the wing width of an owl is large, its flapping frequency is significantly lower
than the rotor speed of the UA, resulting in the m-D intensity of UAV is significantly weaker than that of
owl, while the m-D period is significantly faster than that of owl [23]. Therefore, the obvious difference
of m-D characteristics between them lays a theoretical foundation for the establishment of a classification
and recognition algorithm for birds and UA, which has good discrimination and high reliability without
prior information. At present, the main difficulties of using m-D features in avian radar to recognise
and classify such LSS targets include weak echo and low time-frequency resolution, and the unclear
corresponding relationship between m-D features and the micro motion of target components.

In Refs [24, 25], the m-D feature was used to classify UA, and the short time Fourier transform
(STFT) was used to extract m-D features, where the method of extracting key features such as speed,
tip speed, rotor diameter and rotor number from radar signals was studied, so as to classify different
rotor UA. Following a similar method, Molchanov et al. [26] used STFT to generate m-D features,
which extracted feature pairs from the correlation matrix of m-D features, and trained three classifiers,
including a linear and a nonlinear support vector machine (SVM) classifier, and a naive Bayes classifier
(NBC), and realised the classification of 10 types of rotorcraft and birds. Chinese Academy of Sciences
[27] proposed a m-D feature extraction algorithm based on instantaneous frequency estimation of a
Gabor transform and Fast Fourier transform (FFT) to estimate the number of rotors, speed and blade
length of UA.

DeWit et al. [28] followed a signal processing flow similar to Ref. [26] before applying singular value
decomposition (SVD) to spectra. In order to achieve fast classification, three main features of target
speed, spectrum periodicity and spectrum width were extracted. Similarly, in Ref. [29], the author used
three common signal characterisation methods to generate m-D signals, namely STFT, cepstrum and
cadence velocity diagram (CVD), and then used the combination of SVD feature extraction and an SVM
classifier to classify the measured data of fixed wing, rotor UA and flying birds. The Chinese Academy
of Sciences [30] proposed a method of estimating UA rotor rotation frequency based on autocorrelation
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cepstrum joint analysis, which can estimate the UAV rotor rotation frequency more effectively through
weighted equalisation.

In order to use the phase spectrum in the m-D feature extraction process, Ren et al. [31] proposed
a robust signal representation method, namely two-dimensional regularised complex logarithm Fourier
transform and object-oriented dimension reduction technology, where the subspace reliability analysis
was designed for a binary UAV classification problem to distinguish UA and bird targets. Another m-D
label extraction algorithm was proposed in Ref. [32], where the author used empirical mode decomposi-
tion (EMD) to classify UA automatically. On the basis of Ref. [32], Ma et al. [33] studied the feasibility
of six entropies of a group of intrinsic mode functions extracted from EMD for UA classification, and
proposed to fuse the extracted features into three kinds of entropies, and obtained the features through
signal down sampling and normalisation as the input of a nonlinear SVM classifier. In Ref. [34], the
problem of UA wing type and UA positioning was studied. They treated the positioning as a classifica-
tion problem and expanded the number of different categories according to a group of positions of each
UA. The method combined EMD and STFT to generate m-D features, which were analysed by principal
component analysis (PCA), and the problem of UA target classification and location based on nearest
neighbor, random forest, NBC and SVM was studied.

In addition to the typical radar with single antenna, some studies consider multi-antenna, multi-station
radar and passive radar. In Ref. [35], the author proposed an NBC and discriminated analysis classifier
based on Doppler and bandwidth centeed features of m-D signal, where the experiment considered the
actual measurement of rotorcraft, including the loading and unloading of potential payload. In a similar
study, Hoffman et al. [36] proposed a UA detection and tracking method with multi-station radar, which
combines the m-D features with constant false alarm rate (CFAR) detector to improve the detection
effect of UA, using an extended Kalman filter for tracking.

In Ref. [37], the author uses two radars of different bands to extract and fuse m-D features, so as to
classify three kinds of rotorcraft. Tsinghua University [38] proposed a UA recognition method based on
micro-motion feature fusion with multi-angle radar observation. Wuhan University [39] carried out the
m-D effect experiment of multi-rotor UA using multi-illuminator-based passive radar, which confirmed
the technical feasibility of micro-motion feature extraction of UA with passive radar.

In recent years, with the continuous development of phased array, holographic, MIMO and multi-
static radar technology, the gain and velocity resolution of the target signal can be improved by
prolonging the observation accumulation time, and the high-precision extraction and description of
complex m-D features can be realised [40–42]. Traditional MTD methods usually use the combination of
range migration compensation and Doppler migration compensation, but the algorithm is complex and
cannot achieve long-term and fast coherent accumulation of target echoes [43]. The long-time coherent
integration (LTCI) method determines the search range based on the multi-dimensional motion param-
eters of the target, and accumulates the observed values of the extracted target by selecting specific
transformation parameters. This technique involves a large amount of calculation and is difficult to
apply [44]. On the basis of LTCI, the target long-time coherent integration method based on non-uniform
sampling order reduction and variable scale transformation (NUSP-LTCI) is adopted to reduce the high-
order signal to first-order, which greatly reduces the amount of calculation and creates conditions for
engineering application, whose algorithm flow is shown in Fig. 7(a) [45]. Figure 7(b-d) compares the
low-altitude radar target coherent integration results of different algorithms, where the NUSP-LTCI
algorithm has higher parameter estimation accuracy and stronger clutter suppression ability, compared
with the traditional MTD algorithm and the classical Radon Fourier Transform (RFT) algorithm.

3.2 Feature extraction of target echo and motion
Traditional surveillance radar usually uses mechanical scanning antennae to detect and track multiple
targets, whose design purpose is to find new targets by constantly searching the space. Since this kind of
radar is always searching in all directions, the time of focusing on a single target is usually very short,
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Figure 7. Processing flow of NUSP-LTCI algorithm and comparison of low-altitude radar target
coherent accumulation results [45].

which makes it difficult to extract m-D features. Therefore, only the RCS and other echo signal features
or motion features of the target can be used to classify detected targets [46].

Chen et al. proposed a target classification method based on motion model, using traditional surveil-
lance radar data to classify UA and birds [47]. Based on Kalman filter tracking, a smoothing algorithm
is proposed to enlarge the difference between the conversion frequency estimation of bird and UA target
models. The method is based on the assumption that birds have higher manoeuverability. Figure 8 shows
the flow of the algorithm and an example of target classification in low-altitude clutter environment.
Firstly, multiple motion models are established to track the target trajectory, and then the manoeuver-
ability characteristics of the target are extracted by estimating the conversion frequency of the target
model, and finally the classification of bird and UA targets is realised. It is shown in Fig. 8(b) that the
flight path of a UA target is relatively straight and stable, while the trajectory of a flying bird target is
shorter and more variable. It should be noted that there are also some special cases that UA manoeuvers
along the curve while bird keeps flying in a straight line, which inevitably results in some limitations of
this method.

Messina and Pinelli [48] studied the problem of UA classification using two-dimensional surveillance
radar data. The method was divided into two steps. Firstly, the UA and bird targets were classified, and
then rotary wing and aircraft were classified. By creating a set of feature sets based on the target RCS,
signal-to-noise ratio, tracking trajectory and speed information, SVM was selected as the classifier, and
a subset of 50 features was established to achieve high classification accuracy.

Polarisation feature is another effective method to distinguish birds and UA. Figure 9(a) shows the
periodic echo maps of a DJI UA under HH, HV and VV polarisation conditions, where the HH polarisa-
tion has the strongest fluctuation characteristics. Figure 9(b) shows the classification results for four types
of targets (two types of UA, gliding bird and wing-flapping bird) with different polarisation parameters
and sampling intervals [49].

3.3 UA target detection and classification based on deep learning
In recent years, deep learning methods have been successfully applied in audio and video data process-
ing, but the application on radar data has just started. Typical deep learning schemes usually need to
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Figure 8. Classification of flying birds and UA based on flight trajectory characteristics [47].

Figure 9. Examples of target scattering characteristics and classification results based on polarisation
characteristics [49].

label a large amount of real data, which is easy to generate for audio and video data, but the labeling
for radar data is still very limited. Despite the above difficulties, the work of combining radar data with
deep learning has increased in recent years.

In Ref. [50], convolutional neural networks (CNNs) were first used to directly learn m-D charac-
teristic spectra and classify UA. The spectra of UA were measured and treated by GoogleNet, where
two UA were tested in indoor and outdoor environments. Mendis et al. [51] developed a UA classifi-
cation algorithm based on deep learning for an S-band radar. They tested three different UA types of
two rotary-wing and one aircraft, where the autocorrelation function (SCF) was used to identify the
modulation components.

Wang et al. [52] proposed a range Doppler spectrum target detection algorithm based on CNNs,
which was compared with the traditional CFAR detection method, achieving satisfactory results. The
structure of the network was an eight-layer CNN trained with different range Doppler fixed windows
under multiple signal to noise ratio (SNR) conditions. The detection problem was treated as the classifi-
cation task of target and clutter, in which the fixed size window slid on the whole range Doppler matrix
to check all units.
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Table 2. Summary of radar based UA classification results in existing literatures

Type number
Target type (UAV + Bird) Classification method Reference
UA type vs. Bird 10 + 1 m-D + Nonlinear SVM [26]
UA type vs. Bird m-D (EMD) + SVM [32]
UA type vs. Bird m-D (EMD), Entropies of EMD + SVM [33]
UA vs. Bird 1 + 1 m-D (SVD) + SVM [29]
UA type 2
UA vs. Bird 1 + 1 Fourier transform + Subspace reliability

analysis
[31]

UA type + positioning 66 m-D (PCA) + Random forest [34]
UA loading vs. unloading) 3 m-D + DAC [35]
UA type 3 Dual radar m-D (PCA) + SVM [36]
UA type 3 Dual radar m-D (PCA) + SVM [37]
UA type vs. Bird 3 + 1 Radar polarization + Nearest neighbor [49]
UA type vs. Bird 5 + 1 m-D (CVD) + CNN [50]
UA type vs. Bird 2 + 1 SCF [51]
UA type 2 IQ + MLP [54]
UA type 3 Point cloud + MLP [55]
UA vs. Bird 1 + 1 Motion model, speed and RCS + MLP [56]
UA type vs. Bird 2 + 1 Motion model, speed and tracking + SVM [48]

In Ref. [53], the range profile derived from the range Doppler matrix and the manually selected fea-
tures were used as the input of DNNs to classify UA. Regev et al. [54] developed a multi-layer perceptron
(MLP) neural network classifier and parameter estimator, which can determine the number of propellers
and blades of UA and realise the diversification of micro-motion analysis of UA. This method was the
first attempt to input the received complex signal directly into the learning network. The network archi-
tecture consisted of five independent branches, which received in quadrature (IQ), time, frequency and
absolute data. There were two unique MLP classifiers, which first analysed the characteristics of pro-
pellers, then analysed the number of blades, and then fed them into the estimation algorithm. Simulation
results showed that the classification accuracy was closely related to SNR.

Habermann et al. [55] studied the classification of UA and helicopters using the point cloud features
from radar. Based on the geometric differences between the point clouds, 44 features were extracted.
Using artificial data training neural network to solve two classification problems, one is the classification
of seven types of helicopters, the other is the classification of three types of rotor UA.

Mohajerin et al. [56] proposed a binary classification method, which used the data captured by
surveillance radar to distinguish the trajectory of UA and birds. Twenty features based on motion, veloc-
ity and RCS are used. The feature manually extracted is combined with an MLP classifier, achieving high
classification accuracy.

Most UA detection and classification methods based on m-D features are listed in Table 2, where
the recognition rate of all methods is more than 90%, and some of them are close to or reach 100%.
Unfortunately, because only part of the literature used the same data set, it is difficult to compare the
performance of all methods directly.

4.0 Other auxiliary detection technologies
At present, some advanced low-altitude surveillance radars have the ability of classification and recogni-
tion of UA, birds and other targets. The development of m-D feature extraction, deep learning and other
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Figure 10. Multi-sensor detection technology of UA.

Figure 11. Visible image.

technologies further promotes progress in this field. At the same time, much experience shows that in
engineering applications, the UA detection technology with radar as the main body, supplemented by
photoelectric, acoustic, radio detection and other multi-source sensor fusion has become the mainstream,
as shown in Fig. 10. In this section, the technical characteristics of various auxiliary sensors and the data
processing methods based on deep learning are discussed.

4.1 Visible light
Compared with radar, the target image information obtained by visible light detection equipment is more
abundant, providing advantages in target recognition. However, a single visible light camera usually does
not have target ranging capability, so it is necessary to obtain the target distance through multi-station
cross positioning or adding laser ranging equipment. Optical cameras are also affected by environmental
factors, and the detection distance is much lower than that of radar, which makes it difficult to use alone in
general. Therefore, visible light cameras are usually only used as supplementary confirmation equipment
for radar. Figure 10(a) shows a typical photoelectric system, which can obtain visible and infrared images
of the target at the same time. Figure 11 shows an example of the images of UA and bird targets captured
by a standard visible-light camera, with a detection range of about 2km.

With the development of neural network and deep learning algorithms, optical images have become
one of the most valuable information sources in UA detection. Since the deep learning method was
successfully applied to the image classification of the ImageNet dataset in 2012, the research around
deep learning has been developing [57]. Most UA target recognition research using DNNs adopts the
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Figure 12. Infrared image.

general target detection structure, and takes the powerful DNNs as the classification model. Most UA
target recognition research using DNNs adopts the general target detection structure, and uses powerful
DNNs as the classification model. In such research, DNNs are usually trained in advance on general
data sets such as ImageNet, and then optimised with UA data to improve the recognition performance
by adjusting the parameters.

Saqib et al. [58] tested the Faster-RCNN model for UA detection. They used VGG-16 [59],
ZF-net [60] and other models to carry out experiments in the detection scheme. It is shown that VGG-16
performs the best. In addition, they trained birds as a separate category, which effectively reduced the
false alarm rate. It has been proposed in recent studies to add a preprocessing module before the formal
detection process to improve the detection effect. In one study, a U-net was inserted in front of the detec-
tor, which was a network that calculated the motion of continuous frames and generated a frame, which
can contain the UA with a certain probability [61]. In other work, a super-resolution processing module
was added in front of the detector to improve the detection ability of UA targets with fewer pixels in the
image due to long detection distance [62].

Aker et al. [63] used a YOLO (You Only Look Once) [64] detector to detect UA targets quickly and
accurately. In addition, they extracted UA targets from some public images and added them to the natural
images with various complex backgrounds, and constructed a new artificial data-set to train UA deep
learning models in different scales and backgrounds, so as to solve the scarcity of UA marked public data.

Rosantev et al. [65] established a detection framework based on spatiotemporal cube video data at
different scales. This method used reinforcement trees and CNNs for classification. The experimental
results showed that time domain information played an important role in small target detection such as
UA, and CNNs performed better in accuracy recovery.

Gökçe et al. [66] proposed a UA detection method with an optical camera based on gradient histogram
feature and cascade classification. The detection part evaluated the increasingly complex features at
different stages through the cascade classification method, and it was regarded as detecting the target if
it successfully passed through all levels of classifiers. In addition, the target distance was estimated by
support vector regression.

4.2 Infrared
Compared with visible light cameras, the main advantage of infrared cameras is that they are not affected
by light or weather conditions and can still operate normally even in complete darkness. Generally, the
resolution of infrared camera imaging is low, and the cost is high. Therefore, it is only used in military
applications, but with the progress of technology, its cost is steadily declining. Figure 12 shows image
data of a UA and a bird target taken by a typical infrared camera at a distance of 2km.

In UA detection systems for security of prisons and other facilities, infrared cameras are generally
placed on top of buildings or monitoring towers. In most multi-sensor systems, infrared cameras are
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usually combined with visible light as auxiliary equipment for radar, but there are some public reports of
using infrared sensors alone to detect, track or classify UA. Like visible light cameras, infrared cameras
cannot measure the distance to the target, so it cannot locate the target. Anthony-Thomas et al. [67]
proposed a method of UA target location by using the images from multiple infrared cameras.

At present, many UA detection systems integrated with infrared sensors have realised a UA target
recognition function based on infrared images. The target recognition algorithm usually draws lessons
from the existing deep learning model, but there is little literature on the topic. The rest of this sec-
tion will review some published results of the application of infrared vision in other target detection,
tracking and classification tasks, in order to provide reference for the application scenarios of UA target
recognition.

Liu et al. [68] designed and evaluated different pedestrian target detection solutions based on Faster-
RCNN architecture and multispectral input data. They started from different branches of each input data,
and established a VGG-16 basic network at each branch, exploring the feature fusion technologies at low,
medium and high levels of the network.

Cao et al. [69] adjusted the general pedestrian detector to the multispectral domain and used the
complementary data captured by visible light and infrared sensors, which not only improved the pedes-
trian detection performance, but also generated additional training samples without manual labeling.
Pedestrian detection was realised by the proposed network, while unsupervised automatic labeling was
based on a new iterative method to mark moving targets from calibrated visible and infrared data.

John et al. [70] used CNNs to classify candidate pedestrian targets. Firstly, the infrared image was
segmented by fuzzy clustering, and the candidate pedestrians were located. The candidate pedestrians
were screened according to the human body posture characteristics and the second central moment
ellipse. Then the cropped image block around each candidate object was adjusted to a fixed size and
input into eight-layer CNNs for binary classification. Finally, the training was carried out based on the
sample data set.

Ulrich et al. [71] realised human target detection based on the fusion of infrared image and m-D radar
data based on dual stream neural network. Firstly, the Viola-Jones framework [72] was used to detect
human targets in infrared images, and then the calculated sensor distance was used to perform associated
processing between infrared and radar targets. Finally, the information obtained by each sensor was fused
in the feature layer of a single joint classifier.

Liu et al. [73] redesigned the CNN training framework for infrared target tracking based on the relative
entropy theory, and its performance was verified on two public infrared data sets. In this method, multiple
weak trackers were constructed by using the features extracted from different convolution layers pre-
trained on ImageNet, and the response diagram of each weak tracker was fused with the strong estimation
of target position.

4.3 Acoustic
Acoustic technology uses the special “audio fingerprint” generated by UA flight to detect and identify.
As a passive technology, acoustic technology has become an important technical means of multi-sensor
fusion detection of UA, and can be a useful supplement to radar, photoelectric and other detection
technologies, which does not interfere with other detectors.

Based on acoustic detection technology, relevant research institutions and companies in South Korea,
France, Hungary, Germany, the Netherlands and the United States have developed corresponding UA
detection systems and proposed relevant solutions. Figure 13 shows SkySentry, an acoustic system devel-
oped by MicroflownAvisa in Netherlands, which can accurately locate small UA in urban environments
[74]. The core technology of SkySentry is an acoustic multi-mission sensor with an acoustic vector
measurement function, which can track and locate low-altitude small UA by placing sensor array in a
certain area. The capability is based upon either ground-based or vehicle-based node sensor that could
be used stand-alone or networked. Depending upon the deployment of the sensors nodes, a perimeter
can be sealed off against incoming intruder UA or a complete area can be covered.
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Figure 13. SkySentry system example.

A general acoustic detection system consists of three main modules: detection, feature extraction
and classification. The detection module captures the original audio signal of the target in the noise
environment; the feature extraction module automatically extracts features from the original signal as
the input of the classifier; the classification module assigns the extracted features to the corresponding
classes. The ability of deep learning networks to extract unique features from raw data makes them highly
suitable to acoustic detection. Lee et al. [75] produced one of the earliest research results of unsupervised
learning of audio data using convolutional deep belief networks, where the features learned from the
neural network correspond to the phonemes in the speech data one by one. Piczak [76] tested a simple
CNN architecture with ambient audio data, whose accuracy is close to the most advanced classifier.
Lane et al. [77] created a mobile application program that can perform very accurate speech binarisation
and emotion recognition using deep learning. Recently, Wilkinson et al. [78] performed unsupervised
separation of environmental noise sources, added artificial Gaussian noise to the pre-labeled signal, and
used an automatic encoder for clustering. However, the background noise in environmental signals is
usually non-Gaussian, which makes this method only suitable for specific data sets.

In UA detection, Park et al. [79] proposed a method of fusing radar and acoustic sensors to realizse
the detection, tracking and identification of rotor UA based on feed-forward neural networks. Liu et al.
[80] used the Mel-frequency cepstral coefficients (MFCCs) and an SVM classifier to detect UAV. Kim
et al. [81] introduced a real-time detection and monitoring system of UA based on microphones, which
used nearest neighbor and graph learning algorithms to learn the characteristics of FFT spectra. Kim
and Kim [82] expanded on their own work, and improved the classification accuracy of the system
from 83% to 86% by using artificial neural networks. Jeon et al. [83] proposed a binary classification
model, which used audio data to detect UA, used an F-score as performance measure, compared CNNs
with Gaussian mixture model and recurrent neural network, and synthesised the original UA audio with
different background noise. In addition, many research institutions used the improved MFCC acoustic
feature extraction method to continuously improve the UA target recognition ability in different ways
[84, 85].

4.4 Radio detection
Radio detection uses radio frequency scanning technology to monitor, analyse and measure the data
transmission signals, image transmission signals and satellite navigation signals of civil UAV in real
time. Firstly, the spectrum characteristics of UA data and image transmission signals are extracted, and
the UAV feature database is established to realise the discovery of UA; then, the UA positioning, tracking
and recognition are realised by using the technology of Radio Direction Finding (RDF) [86] or the
technology of time difference of arrival (TDOA) positioning [87].

In RDF, a 3D array antenna is usually used to receive the electromagnetic signal transmitted by UA
in real time, and the received signal is analysed by spectrum analyser and monitoring software. At the
same time, the spectrum analyser and monitoring software collect and analyse the frequency, bandwidth,
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Figure 14. UA target data obtained by radio detection system.

Figure 15. UA target data obtained by TDOA system.

modulation mode, symbol rate and other data of the signal, and compare them with the established UA
signal feature library to identify the signal features. Figure 14 shows the target azimuth and frequency
data of UA obtained by a typical radio detection system.

The biggest advantage of radio detection systems is that they do not emit electromagnetic waves and
belong to green passive technology. At present, a large number of companies and scientific research insti-
tutions have developed relevant systems using radio detection technology, and some of them have been
widely used in the security of airports, prisons, stadiums, public buildings and major events. However,
the biggest problem with radio monitoring technology is that it may not be able to detect “silent” UA
that turn off data transmission and image transmission signals.

TDOA is a method of positioning by using time difference, which determines the location of a signal
source by comparing the time difference of signals arriving at multiple monitoring stations. TDOA
positioning systems have the characteristics of low cost and high accuracy, but usually need to place
more than three stations, whose equipment includes antenna, receiver and time synchronisation module.
Figure 2(c) shows typical TDOA station equipment and Figure 15 shows the UA target data obtained by
a typical TDOA system.

Radio signal recognition is the core technology of radio detection system, which is essentially the
same as the recognition technology for radar, visible light and infrared signals. It uses fixed rules or
machine learning classifiers based on the extraction of key features of signals. In recent years, the appli-
cation of deep learning theory has sprung up in the field of artificial intelligence. In 2016, O’Shea et al.
took the lead in applying deep learning algorithm to radio signal recognition, which used the CNN
framework to automatically recognise 11 kinds of modulation signals [88]. Compared with traditional
machine learning algorithms, the recognition rate was greatly improved. Since then, there have been a
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lot of research results of radio signal recognition based on deep learning. Karra et al. first distinguished
analog modulation from digital modulation, and then identified the specific modulation type and order
by using the cascade identification method of CNN networks [89]. West and O’Shea [90] further opti-
mised the network structure by combining the CNN network with the signal timing characteristics. On
the basis of the model proposed in Ref. [88], Arumugam et al. [91] used cyclostationary characteris-
tic parameters as the input of CNN networks, which improved the recognition results at the expense
of greater computational complexity. Schmidt et al. [92] identified three kinds of radio communication
standard signals by using FFT results as the input to CNNs.

5.0 Multi-sensor system performance
The purpose of data fusion based on multiple sensors is to combine the data from different modes to
produce an effect that cannot be achieved by a single sensor. In recent years, the application of arti-
ficial intelligence and deep neural networks in multi-source data processing has been widely pursued,
providing a possible solution for complex multi-modal learning problems [93].

5.1 Performance analysis
The performance and working characteristics of various types of sensors are compared in Table 3. This
section further summarises and analyses their advantages and disadvantages, potential limitations and
development prospects.

Radar can effectively detect potential UA and track multiple targets in the whole airspace. Radar
systems that can detect small UA usually work in X-band, but the cost of such systems is usually high,
accompanied by a certain false alarm rate. Except for passive radars, most radars may cause frequency
interference, whose deployment needs to be approved by the local radio regulator. Radar based UA target
detection and tracking is mainly realised by classical radar signal processing techniques such as CFAR,
Doppler processing and hypothesis testing. At present, the most commonly used radar signal feature in
UA classification is the m-D feature, which is mainly affected by the number of rotor blades, incidence
angle range, pulse repetition frequency and radar irradiation time [26]. In fact, most of the current work
is carried out under the ideal condition of close range [26, 32, 33], and rarely on the original radar
data, because the echo data of small UA targets is difficult to obtain under strong noise conditions in
the field. Otherwise, the traditional surveillance radar uses mechanical scanning antennae, which have a
short residence time for a single target and cannot produce m-D features, when it can only rely on other
information sources such as the trajectory characteristics [47], RCS [48] and polarisation characteristics
[49] of the target. However, compared with m-D methods, this kind of research is relatively rare and
the scope of application is limited. The trajectory classification method based on deep learning has been
successfully applied in general motion model applications, which may be transplanted to UAV trajectory
classification and become a potential research direction [94].

Optical technology can image UA targets in the field of vision in visible or infrared light. There
are visible light image public data sets for UA detection and classification [95, 96]. The common deep
learning architectures for visible light image processing include Faster-RCNN [58], VGG-16 [59] and
YOLO [64], whose performance is far superior to the traditional computer vision methods of manual
calibration features [66]. Note that it is not enough to transplant the existing target detection algorithms
directly to UA image data. It is necessary to improve these methods by studying the characteristics of UA
target detection, so as to avoid false alarm while detecting small targets. Although existing UA detection
systems are generally equipped with infrared cameras, such commercial cameras are unsuitable to detect
small UA due to their low resolution, and the high price of high-resolution infrared equipment may be the
direct reason for the small number of such research papers published. In fact, the processing mechanism
of infrared image is similar to that of visible images. With the decreasing cost of high-resolution infrared
equipment, combined with deep learning algorithms, the research prospects of UA target detection and
classification using infrared data are promising.
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Table 3. Comparison of main performances of various UA detection sensors

Classification
Sensor type Range ability Advantages Disadvantages
Radar 3∼5km Average It is not affected by UA

type and has a long
effective detection
distance. Target
classification can be
realized based on m-D
features.

There is a certain proportion
of false alarm and a certain
range of low altitude
detection blind area; active
radar may cause
interference to the airport
air traffic control
equipment, so frequency
licensing is required before
use.

Visible light 1∼2km Good It can capture all kinds of
UA, realize real-time
and visual monitoring,
and has strong target
classification ability.

Limited by light conditions,
the detection distance is
relatively short. It has no
ranging function.

Infrared 1∼2km Good It is not limited by lighting
conditions, can achieve
real-time, visual
monitoring, and has
strong target
classification ability.

The cost is high and the field
of view is small.

Acoustic 150m Poor Low cost, suitable for
various types of UA, can
achieve all day early
warning detection.

The noise level of UA is very
low. In noisy environments,
the applicability of this
technology is poor and the
detection distance is short.

Radio
detection

1∼2km Poor It is suitable for all types of
UA, and can effectively
detect the UA operator.

“Silent” UA that do not
transmit radio signals
cannot be detected.

Acoustic sensors are light and easy to install. They can be used in mountainous areas or highly
urbanised areas where other devices are not suitable. At the same time, the passive acoustic sensor does
not interfere with the surrounding communication, and the power consumption is very low. However, in
noisy environments, the detection range of a single acoustic sensor is less than 150m [83]. The research
on multichannel audio shows that the detection performance can be significantly improved by using
the most advanced beam-forming algorithms and fusing with other sensors such as optical cameras.
Therefore, the establishment of a UA audio signal public database is of great significance to promote
the research and development in this field. In addition, marking such data sets is prone to human errors,
which mislead the machine learning algorithm. Therefore, in the field of environmental audio mon-
itoring, unsupervised deep learning algorithms have attracted great attention in recent years, and its
application in UA target detection and recognition worth pursuing [75].

Radio detection technology is a traditional tool of radio spectrum management, and has become
an important technical means of UA detection and identification. Compared with radar, photoelectric,
acoustic and other technical means, the biggest advantage of radio detection technology is that it can
detect the position of the UA operator, and the biggest problem is the technology may fail for the “silent”
UA without communication links. In addition, the complex electromagnetic environment could cause
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interference to the radio detection technology, affecting its detection range and performance. Radio
signal recognition technology based on deep learning can adapt to the complex electromagnetic envi-
ronment and ensure a certain recognition rate under conditions of low signal to noise ratio (SNR), which
represents the development direction of current radio detection technology [97]. At the same time, we
notice that TDOA technology has been successfully applied in a UA detection and positioning system
based on various sensors such as radio detection, MIMO radar and microphone arrays.

5.2 Some existing cases
In recent years, for UA target detection, recognition and tracking systems based on multi-sensor fusion,
scientific research institutions and related enterprises have put forward a variety of construction schemes
and data fusion methods.

Shanghai Jiao Tong University [98] proposed a low-altitude target monitoring and tracking method
using radar and visible light. This method uses radar as the main tracker and a visible light camera as
the detector to track the target through an interactive multiple model, and realises the monitoring and
tracking simulation of rotor UA and other low-altitude targets.

Park et al. [79] proposed a small UA detection system combining radar and acoustic sensors. The
system uses low-cost radar to scan the interesting area and an acoustic sensor array to confirm the tar-
get. The system uses a pre-trained deep learning framework composed of three MLP classifiers to vote
whether the UA exists or not. The cost of the system is low, but the detection distance is only about 50m.

Liu et al. [80] proposed a solution of joint detection using a camera array and acoustic sensors. The
system is composed of 30 cameras, three microphones, 8 workstation nodes and several network devices.
The UA image and audio data are recognised by an SVM classifier. For the UA target with a height of
100m and horizontal distance of 200m, high detection accuracy is achieved.

Jovanoska et al. [99] built a UA detection, tracking and positioning system based on bearings-only
multi-sensor data fusion, and adopted a centralised data fusion method based on multiple hypothesis
tracker. The system first distinguishes the target and false alarm from different sensors, identifies the
targets and estimates the contribution of each single sensor to the detection. It then uses a fusion
algorithm to predict the target position and modify the target location by fusing the measurement results
of different sensor systems.

Hengy et al. [100] proposed a UA detection, positioning and classification system based on optical,
acoustic and radar multi-sensor fusion. The system uses a multi-signal classification method to realise
acoustic array positioning, uses radar technology to improve the detection rate and reduce the false alarm
rate, and combines an infrared image with a visible image to realise easier and faster detection of UA
targets under clutter, smoke or complex background conditions based on optical sensors.

Laurenzis et al. [101] studied the detection and tracking of multiple UA in an urban environment. The
system consists of a distributed sensor network with static and mobile nodes, including optical, acoustic,
lidar, microwave radar and other sensors. The experimental results show that the average error between
the UA positioning results of the system and the real data is about 6m.

5.3 Suggestions on system construction
Due to the advantages and disadvantages of various kinds of sensors, it is almost impossible to provide
the required situation awareness by using a single sensor for UA detection and identification. However,
if all kinds of technologies can be mixed and complemented, it is possible to find an effective solution.
Figure 16 recommends a construction scheme of UA detection system, which realises all-round situation
awareness in a robust way by fusing the information of four types of sensors.

A long-range radar is placed in the centre of the sensor coverage area. Radar is a reliable early warn-
ing method, among which the holographic radar, which can obtain all-round target fine features with
high data rate, is the best, so as to provide data support for extracting target m-D features. In order to
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Figure 16. Proposal of UA surveillance system.

further correct the range and azimuth information of the detected target, multiple panoramic infrared
cameras need to form complementary and cross validation at the edge of the coverage area to reduce
the false alarm rate. Due to the sensitivity of infrared cameras in bad weather conditions, a visible light
camera with rotation and zoom functions is placed near the radar to further improve the recognition
ability. In addition, in order to avoid ground object occlusion, microphone arrays or TDOA stations can
be distributed around the protected area to provide another complementary and alternative solution. In
addition, the deployment of the TDOA array will help to complement other sensors and help trace the
UA operator. Based on the deep learning method, the deep learning network for UA detection and recog-
nition can utilise the recorded data of each sensor. Finally, the single source warning signals and features
generated by each single source deep learning network are integrated with the deep learning network
of multi-sensor fusion to improve the target recognition ability of the invading UA. The heterogene-
ity of multi-sensor data requires deep learning methods to construct joint representation data by using
its internal relationship to effectively deal with the diversity of data representation. The simultaneous
interpreting of different signals from different sensors can provide important knowledge aggregation
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compared with single sensors, which is the advantage of this scheme using multi-sensor fusion deep
learning.

6.0 Conclusions and prospects
In this paper, the research work of UA detection and recognition methods based on radar, photoelectric,
acoustic, radio detection sensors and multi-sensor information fusion algorithm is reviewed. The m-D
feature reflects the micro-motion of the target body and components, which shows a promising ability
of detection and classification. Photoelectric detection is still an important means of UA target detection
and recognition. In the UA detection mission, the deployment cost of microphone arrays is low, which
will help to form a complementary and robust system framework when combined with other sensors.
The radio detection and positioning technology represented by TDOA can lock the position of the UA
operator, which plays an irreplaceable role in multi-sensor UA detection. In addition, the application of
deep learning may lead to major breakthroughs in this field in the next few years.

With the rapid development of multi-source sensor performance and signal processing and fusion
technology, the development trend of UA detection and recognition is mainly reflected in the following
aspects:

(a) The progress of radar hardware technology provides a solid foundation for the development of
radar target detection refinement and intelligent information processing technology. At the same
time, new radar systems such as digital array systems, external emitter radar, holographic radar,
MIMO radar, software radar and intelligent radar expand the available signal dimension and pro-
vide a flexible software framework for the refinement of radar target detection and the integrated
processing of detection and recognition. In addition, in the complex environment, the compre-
hensive use of the information of photoelectric, acoustic, radio and other multi-source sensors to
make up for the limitations of radar can further improve the recognition efficiency and accuracy.

(b) The fusion of signal and data features is an effective way to improve the accuracy of target
classification. The long-time observation mode of staring radar make it possible to extract high-
resolution m-D features, and can obtain the fine signal features of UA and birds. The m-D features
of UA and bird targets are obviously different, which lays a foundation for classification and
recognition. In addition, the motion trajectories of UA and birds have a certain degree of dis-
crimination, and the mature target tracking algorithm approximates the real motion state of the
target by establishing a variety of motion models. Therefore, the fusion of signal and data fea-
tures of UA and birds can expand the difference in feature space and improve the classification
probability.

(c) Deep learning networks provide a new means for intelligent recognition of UA and bird targets.
Using the idea of intelligent learning such as deep learning, through the construction of multilayer
convolution neural network, the complex structure in high-dimensional data could be found,
whose strong feature expression ability and high classification and recognition accuracy have
been verified in the fields of image recognition and speech recognition. When classifying UA
and bird signals by using only the m-D features obtained from a time-frequency map, the feature
space is limited and the accuracy is low. Therefore, the idea of multi-feature and multi-channel
CNN fusion processing can be adopted to input the echo sequence diagram, m-D time-frequency
diagram, range Doppler diagram, transform domain diagram and motion trajectory diagram of
the target into multi-channel CNNs, so as to make better use of CNNs for feature learning and
target recognition.
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