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AUGUSTO CÉSAR DOS REIS COSTA
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Abstract. We investigate questions on the existence of nontrivial solution for a class
of the critical Kirchhoff-type problems in Hyperbolic space. By the use of the stereo-
graphic projection the problem becomes a singular problem on the boundary of the open
ball B1(0)⊂ Rn. Combining a version of the Hardy inequality, due to Brezis–Marcus, with
the mountain pass theorem due to Ambrosetti–Rabinowitz are used to obtain the nontriv-
ial solution. One of the difficulties is to find a range where the Palais Smale converges,
because our equation involves a nonlocal term coming from the Kirchhoff term.

2000 Mathematics Subject Classification. Primary 58J05; Secondary 35R01, 35J60,
35B33

1. Introduction. In this paper, we investigate questions on the existence of nontriv-
ial solution for the following Kirchhoff-type equation

−
(

a + b

∫
B3

|∇B3 u|2dVB3

)
�B3 u = λ|u|q−2u + |u|4u in u ∈ H1(B3) (1.1)

in Hyperbolic space B3, where a, b, and λ are positive constants, 4< q< 6, H1(B3) is
the usual Sobolev space on the disc model of the Hyperbolic space B3, and �B3 denotes
the Laplace Beltrami operator on B3. For the hyperbolic space Hn, we make use of the
stereographic projection E :Hn → Rn, where each point P′ ∈Hn is projected to P ∈ Rn,
where P is the intersection of the straight line connecting P′ and the point (0, ..., 0,−1).
More exactly, we have explicitly the projection operator G : Rn →Hn and G−1 :Hn → Rn

given by

G(x)= (x.p(x), (1 + |x|2)p/2) and G−1( y)= 1

yn+1
y, x, y ∈ Rn,

where p(x)= 2

1 − |x|2 .
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This projection takes Hn onto the open ball B1(0)⊂ Rn, and we denote by D ⊂ B1(0)
the stereographic projection of D′ ⊂Hn. See more details in the excellent books [54, 58].

We will consider the metric

ds = p(x)|dx|, where p(x)= 2

1 − |x|2 ,

and we denote by Bn the ball B1(0) endowed with the above metric.
The gradient, the Dirichlet integral, and the Laplace–Beltrami operator corresponding

to this metric are

∇Bn u = ∇u

p2
, Du =

∫
D′

|∇Bn u|2dVBn =
∫

D
|∇u|2pn−2dx,

�Bn u = p−ndiv( pn−2∇u).

See [13, 37, 57].
Elliptic problems, in an euclidean space, involving Sobolev’s critical exponent, that

is, when the non-linearity behaves as a polynomial function of degree 2∗ = 2N
N−2 , N ≥ 3,

were studied in a pioneering and remarkable article due to Brezis and Nirenberg [19]. In
that paper, the lack of compactness was overcome by analyzing the critical level set of the
functional associated with the problem. From this work, several authors have been working
on the theme trying to extend or complement existing results in several directions, in that
sense, we would like to mention some articles, and we apologize for not mentioning all
the authors. For such problems modeled in a bounded domain, we cite [3, 5, 10, 14, 16,
20, 23, 24, 29, 32, 56, 62], while we mention [33, 51, 50, 63] for problems in unbounded
domains. For the problems involving the p -Laplacian operator or more general degenerate
operators, the following works have treated these subjects, [21, 38–40, 51]. The authors
in [8, 9, 12] and also in [11, 13, 15, 22, 36, 37, 41, 49, 57] have treated some critical
problem in a sphere and in a hyperbolic space, respectively. We cite [15, 41] for the related
problems in the cases linear or supercritical. See references therein, as well as the book
[61] for additional remarks and results. On the other hand, our equation in an euclidean
space is related to a stationary Kirchhoff equation [45], namely,

utt − M

(∫
�

|∇xu|2dx

)
�xu = f (x, t), (x, t) ∈�× R,

where � is bounded domain, M(s)= a + bs, a, b> 0, and f is a suitable function, which
is an extension of the classical D’Alembert’s wave equation, since in this case, the model
considers the effects of the changes in the length of the strings during the vibrations. See
[46]. The main difficulty is because the term containing M in the equation makes this
equation nonlocal, that is, the equation does not satisfy a pointwise identity any longer.

The above equation has been received special attention after the work by Lions [46],
where a non-linear functional analysis approach was proposed. Up to our knowledge, Ma
and Rivera [48] were the pioneers to study this problem by variational methods, more
exactly, by using the minimization method. In [1], was employed the mountain pass theo-
rem, while in [53] a topologic argument was used, more specifically, the Yang index and
critical groups, and in [44] is studied the equation by using the minimization arguments
and fountain theorem. We would like to cite [26, 35, 60] for more multiplicity results.
For the Kirchhoff equation involving critical exponents we refer to [2, 34, 42, 43, 47] and
references therein. See [4, 7, 28, 30] and [25, 27, 55] for some related results.

https://doi.org/10.1017/S0017089518000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000563


CLASS OF CRITICAL KIRCHHOFF PROBLEM 111

Returning to our subject, restricted to n = 3, if u is a solution of equation (1.1), putting
v := p

1
2 u, then v satisfies the following problem:⎧⎨

⎩
(
a + b‖v‖2

) (−�v + (3/4)p2v
) = λpα|v|q−2v + |v|4v, in B1(0)

v = 0, on ∂B1(0),
(1.2)

where α = (6 − q)/2 and ‖v‖2 =
∫

B1(0)

(|∇v|2 + (3/4)p2v2
)
.

From now on, we will consider � := B1(0). We will denote by H1
0,r(�) the subspace

of H1
0 (�) of the radial functions which is endowed with the norm given by

‖v‖2 =
∫
�

(|∇v|2 + (3/4)p2v2
)
.

Since the euclidean sphere with center at the origin 0 ∈ RN is also a hyperbolic sphere with
center at the origin 0 ∈ Bn, H1

0,r(�) can also be seen as the subspace of H1
0 (�) consisting

of the hyperbolic radial functions. See this characterization as well as others remarks in
[13, Appendix]. We observe that in [13, Theorem 3.1],H1

0,r(�) is embedded compactly in
Lq(�) for 2< q< 2∗. Note also that here 2∗ = 6.

We have the following functional J : H1
0,r(�)→ R associated with problem (1.2)

J(v) = a

2
‖v‖2 + b

4
‖v‖4 − λ

q

∫
�

pα|v|q − 1

6

∫
�

|v|6, (1.3)

whose Gateaux derivative is given by

J ′(v)w = (
a + b‖v‖2

) ∫
�

(
∇v∇w + 3

4
p2vw

)
− λ

∫
�

pα|v|q−2vw −
∫
�

|v|4vw. (1.4)

Now, we present our main result.

THEOREM 1.1. Suppose 4< q< 6. Then, for every λ> 0 the problem (1.1) has a
nontrivial solution u ∈ H1(B3).

This result of existence of nontrivial solution, in the hyperbolic space, extends results
presented in [22, 43].

2. Proof of the main result. The proof is made by applying the mountain pass
theorem (See Willem [61] for a reference). To this end, we have the following

LEMMA 2.1. (Mountain pass geometry).

(a) There exist β > 0 and ρ > 0 such that J(v)≥ β when ‖v‖ = ρ.
(b) There exists an element e ∈ H1

0,r(�) with ‖e‖>ρ such that J(e) < 0.

Proof. For item (a), we observe that by [17, 18], there exists a constant C> 0, such
that

∫
�

pαvq ≤ C

(∫
�

|∇v|2
) q

2

≤ C

[∫
�

(|∇v|2 + (3/4)p2v2
)] q

2

.
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Thus,

J(u)≥ a

2
‖v‖2 + b

4
‖v‖4 − Cλ

q

[∫
�

(|∇v|2 + (3/4)p2v2
)] q

2

− 1

6

∫
�

|v|6,

and by the Sobolev continuous embedding, there is a constant C̃> 0, verifying

J(u)≥ a

2
‖v‖2 + b

4
‖v‖4 − Cλ

q
‖v‖q − C̃

6
‖v‖6 ≥ β,

where the conclusion follows by making ‖v‖ = ρ sufficiently small.
Now for item (b), take 0< v ∈ H1

0,r(�) and 0< t. Note that

J(tv)= at2

2
‖v‖2 + bt4

4
‖v‖4 − λtq

q

∫
�

pα|v|q − t6

6

∫
�

|v|6.

Therefore, J(tv)→ −∞ as t → +∞. Consequently, J satisfies the geometry of the
mountain pass theorem.

Lemma 2.1 and Ekeland’s Variational Principle [6] allow us to use the general minimax
principle, see [61, Theorem 2.9], which gives us a Palais-Smale sequence, (vk)⊂ H1

0,r(�),
at the level c, i.e.,

J(vk)→ c and ‖J ′(vk)‖H1
0,r(�)

∗ → 0, as k → ∞, (2.5)

where

c = inf
γ∈
 sup

t∈[0,1]
J(γ (t)),

and 
 = {
γ ∈ C([0, 1],H1

0,r(�)); γ (0)= 0, J(γ (1)) < 0
}
.

LEMMA 2.2. The sequence (vk)⊂ H1
0,r(�) defined above is bounded.

Proof. Since (vk) is a Palais-Smale sequence at the level c,

c + 1 + ‖vk‖ ≥ J(vk)− 1

q
J ′(vk)vk .

Thus, by Sobolev continuous embedding, there is a constant C̃′ > 0, such that

c + 1 + ‖vk‖ ≥
(

a

2
− a

q

)
‖vk‖2 +

(
b

4
− b

q

)
‖vk‖4 + C̃′

(
1

q
− 1

6

)
‖vk‖6.

Therefore, the sequence is bounded.

LEMMA 2.3. We have c<
1

4
abS3 + 1

24
b3S6 + 1

24
(b2S4 + 4aS)3/2, where

S := inf
u∈H1

0,r(�)

∫
�

|∇u|2(∫
�

u6

)1/3
.

Proof. In this proof, we will follow some of the arguments made in [19], see also,
for instance, [43, 42, 50]. First, we observe that it suffices to show that there exists a v0 ∈
H1

0,r(�), v0 = 0 such that
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sup
t≥0

J(tv0) <
1

4
abS3 + 1

24
b3S6 + 1

24
(b2S4 + 4aS)3/2. (2.6)

Indeed, observing that J(tv0)→ −∞ as t → ∞, there exists R> 0 such that
J(Rv0) < 0. Now, we write u1 := Rv0, and from Lemma 2.1, we have

0<β ≤ c = inf
γ∈
 max

τ∈[0,1]
J(γ (τ ))≤ sup

t≥0
J(tv0) <

1

4
abS3 + 1

24
b3S6 + 1

24
(b2S4 + 4aS)3/2.

Therefore, we are going to prove the existence of a function v0 such that (2.6) holds.
Let 0< R< 1

2 be fixed, and let ϕ ∈ C∞
0 (�) be a cut-off function with support at B2R,

such that ϕ is identically 1 on BR and 0 ≤ ϕ ≤ 1 on B2R, where Br denotes the ball in R3

with center at the origin and radius r.
Given ε > 0, we set ψε(x) := ϕ(x)ωε(x), where

ωε(x)= (3ε)
1
4

1

(ε+ |x|2) 1
2

,

and ωε satisfies (see[59]) ∫
R3

|∇ωε|2 =
∫

R3

|ωε|6 = S1/2. (2.7)

From the definition of ωε, it can be shown that∫
BR

|∇ωε|2 ≤
∫

BR

|ωε|6, (2.8)

and ∫
B1−BR

|∇ψε|2 = O(ε
1
2 ) as ε→ 0. (2.9)

Now, we define

vε := ψε(∫
B2R

ψ6
ε

)1/6

and also Xε :=
∫

B1

|∇vε|2. Then, we have

Xε =
∫
�

|∇vε|2 =
∫
�

|∇ψε|2
B2

=
∫

BR

|∇ψε|
B2

+
∫

B2R−BR

|∇ψε|
B2

,

where B :=
(∫

B2R

ψ6
ε

)1/6

. Then, since, ϕ ≡ 1 and consequently ∇ϕ ≡ 0 on BR, we have

Xε = 1

B2

∫
BR

|∇ψε|2 + 1

B2

∫
B2R−BR

|∇ψε|2

= 1

B2

∫
BR

|∇ωε|2 +
∫

B2R−BR

|∇ψε|2.
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By equations (2.8) and (2.9) and considering δ= 1
2 we obtain

Xε ≤ 1

B2

∫
BR

|ωε|6 + O(εδ)=

∫
BR

|ωε|6(∫
BR

|ωε|6 +
∫

B2R−BR

|ψε|6
)1/3

+ O(εδ)

≤

∫
BR

|ωε|6(∫
BR

|ωε|6
)1/3

+ O(εδ)≤
(∫

BR

|ωε|6
)2/3

+ O(εδ)

≤
(∫

R3

|ωε|6
)2/3

+ O(εδ)= S + O(εδ)

Therefore, we have

Xε ≤ S + O(εδ). (2.10)

On the other hand, we have

lim
t→+∞ J(tvε)= −∞, ∀ ε > 0.

This implies that there exists tε > 0 such that sup
t≥0

J(tvε)= J(tεvε). Now, we will prove

an estimate for this tε.

J ′(tvε)
∣∣
t=tε

= 0.

Thus,

atε‖vε‖2 + bt3
ε‖vε‖4 − λtq−1

ε

∫
�

pα|vε|q − t5
ε

∫
�

|vε|6 = 0,

which implies

a‖vε‖2 + bt2
ε‖vε‖4 − λtq−2

ε

∫
�

pα|vε|q − t4
ε

∫
�

|vε|6 = 0,

Since
∫
�

|vε|6 = 1, we have

−a‖vε‖2 − bt2
ε‖vε‖4 + t4

ε ≤ 0.

Hence

0 ≤ t2
ε ≤ b‖vε‖4 + [

(b‖vε‖4)2 + 4a‖vε‖2
]1/2

2
:= t0.

Since the function t �→ a

2
t2‖vε‖2 + b

4
t4‖v‖4 − t6

6
is increasing on [0, t0), denoting C1 =

a‖vε‖2 and C2 = b‖vε‖4, we have
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J(tεvε)≤ at0
2

‖vε‖2 + bt2
0

4
‖vε‖4 − λtq

ε

q

∫
�

pαvq
ε − t3

0

6

≤ t0C1

2
+ t2

0C2

4
− λtq

ε

q

∫
�

pαvq
ε − t3

0

6

≤ 1

2

[
C2 + (C2

2 + 4C1)
1/2

2

]
C1 + 1

4

[
C2 + (C2

2 + 4C1)
1/2

2

]2

C2

− 1

6

[
C2 + (C2

2 + 4C1)
1/2

2

]3

− λtq
ε

q

∫
�

pαvq
ε

≤ C1C2

4
+ C3

2

24
+ 1

24
(C2

2 + 4C1)
3/2 − λtq

ε

q

∫
�

pαvq
ε.

Considering A = 3/4
∫
�

p2v2
ε , by definition of the norm, and the inequality (2.10), we

obtain

J(tεvε)≤ ab

4
(Xε + A)3 + b3

24
(Xε + A)6 + 1

24

[
b2(Xε + 4)4 + 4a(Xε + A)

]3/2

− λtq
ε

q

∫
�

pαvq
ε

≤ ab

4

(
S + O(ε1/2)+ A

)3 + b3

24

(
S + O(ε1/2)+ A

)6

+ 1

24

[
b2

(
S + O(ε1/2)+ A

)4 + 4a
(
S + O(ε1/2)+ A

)]3/2 − λtq
ε

q

∫
�

pαvq
ε.

By using several times the standard inequality (see, e.g., [50, p. 778])

(a + b)β ≤ aβ + β(a + b)β−1b, ∀ β ≥ 1, ∀ a, b> 0,

we infer that

J(tεvε)≤ abS3

4
+ b3S6

24
+ 1

24
(b2S4 + 4aS)3/2 + O(ε1/2)+

∫
B2R

(
3C

4
p2v2

ε − λCεp
αvq
ε

)
,

(2.11)

for some constant C> 0, where Cε = tq
ε

q
.

At this point, we can assume that there exists a positive constant C0 such that Cε ≥
C0 > 0, ∀ ε > 0. If that was not the case, we could find a sequence εk → 0 as k → ∞, such
that tεk → 0 as k → ∞, since Cε ≥ 0. Now, passing to a subsequence, if necessary, which
still denoted by εk , we have tεk vεk → 0 as k → ∞.

Therefore,

0< c ≤ sup
t≥0

J(tvεk )= J(tεk vεk )= J(0)= 0,

which is a contradiction.
Observing that

∫
B2R

p2v2
ε <∞, we claim

Claim: lim
ε→0

1

ε1/2

∫
B2R

(
3C

4
p2v2

ε − Cελpαvq
ε

)
= −∞.
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Assuming the Claim is proved, from equation (2.11), we have

J(tεvε) <
abS3

4
+ b3S6

24
+ 1

24
(b2S4 + 4aS)3/2,

for some ε > 0 sufficiently small, and the proof is complete.
Now, we are going to prove the Claim. For this, it is sufficient to show that

lim
ε→0

1

ε1/2

(∫
BR

(
3C

4
p2ω2

ε − Cελpαωq
ε

))
= −∞ (2.12)

and ∫
B2R−BR

(
3C

4
p2v2

ε − Cελpαvq
ε

)
= O(ε1/2). (2.13)

First, we will consider

Jε = 1

ε1/2

∫
BR

(
3C

4
p2ω2

ε − Cελpαωq
ε

)

= 3C

4ε1/2

∫
BR

(
2

1 − |x|2
)2

(3ε)1/2

(ε+ |x|2) − λCε
ε1/2

∫
BR

(
2

1 − |x|2
)α

(3ε)q/4

(ε+ |x|2)q/2

= C̃

∫
BR

(
2

1 − |x|2
)2 1

(ε+ |x|2) − λC̃ε ε
(q−2)

4

∫
BR

(
2

1 − |x|2
)α 1

(ε+ |x|2)q/2
= J1 − J2, for some constant C̃> 0. (2.14)

We observe that on BR,

2<
2

1 − |x|2 ≤ 2

1 − R2
. (2.15)

Therefore, making the change of variables x = ε1/2y and then using the polar coordi-
nates, we obtain, for some constant C̃> 0,

J1 ≤ 4C̃

(1 − R2)2

∫
BR

1

(ε+ |x|2) = 4C̃

(1 − R2)2

∫
BRε−1/2

ε3/2

(ε+ ε|y|2)

= 4C̃

(1 − R2)2
ωε1/2

∫ Rε−1/2

0

r2

(1 + r2)
dr. (2.16)

Now, for J2, we have, considering again equation (2.15), the change of variables
x = ε1/2y and then using the polar coordinates that, we get for some constant C̃ε > 0,

J2 ≥ λC̃ε ε
(q−2)

4

∫
BR

(
2

1 − |x|2
)α 1

(ε+ |x|2)q/2

≥ λC̃ε ε
(q−2)

4 2α
∫

BRε−1/2

ε3/2

(ε+ ε|y|2)q/2

= λC̃ε2
α ε

(q−2)
4
ε3/2

εq/2

∫
BRε−1/2

1

(1 + |y|2)q/2

= λC̃ε2
αw ε− q

4 +1
∫ Rε−1/2

0

r2

(1 + r2)q/2
dr. (2.17)
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Thus, combining equations (2.14), (2.16), and (3.24), we obtain

Jε ≤ 4C̃

(1 − R2)2
ωε1/2

∫ Rε−1/2

0

r2

(1 + r2)
dr − λC̃ε2

αw ε− q
4 +1

∫ Rε−1/2

0

r2

(1 + r2)q/2
dr.

Observing that ∫ Rε−1/2

0

r2

1 + r2
dr = Rε−1/2 − tan−1(Rε−1/2)

and lim
ε→0+

ε− q
4 +1 = ∞ as 4< q, we conclude that equation (2.12) holds.

Now, we will prove equation (2.13). First, we observe that we can find and fix an ε > 0
sufficiently small such that O(εδ)+ εδIε < 0. As in [19], we obtain∫

B2R

|ψε|6 = 33/2
∫

R3

dx

(1 + |x|2)3 + O(ε3/2). (2.18)

From equation (2.18), we obtain

1

ε1/2

∫
B2R−BR

(
3C

4
p2v2

ε − λCεp
αvq
ε

)
≤ C′

ε1/2

∫
B2R−BR

p2ϕ2ω2
ε .

We define �= B2R − BR. Since R ≤ |x| ≤ 2R, we have

2

1 − R2
≤ p(x)≤ 2

1 − 4R2
,

therefore,

I1 := C′

ε1/2

∫
�

p2ϕ2ω2
ε ≤ 4C′

ε1/2(1 − 4R2)2

∫
�

ϕ2 ε1/2

(ε+ |x|2) .

Making the change of variables x = ε1/2y and later changing to polar coordinates we
obtain

I1 ≤ 4C′

(1 − 4R2)2

∫
�′
ϕ2(ε1/2y)

ε3/2

(ε+ ε|y|2)
≤ 4C′ωε1/2

(1 − 4R2)2

∫ 2Rε−1/2

Rε−1/2

r2

(1 + r2)
dr,

where �′ = B2Rε−1/2 − BRε−1/2 .
By the Mean Value Theorem for integrals, there exists r0 ∈ [Rε−1/2, 2Rε−1/2] such that

I1 ≤
[

4C′ωε1/2

(1 − 4R2)2

]
r2

0(
1 + r2

0

)(
2Rε−1/2 − Rε−1/2

) =
[

4C′ωε1/2

(1 − 4R2)2

]
Rr2

0ε
−1/2(

1 + r2
0

)
≤

[
4C′ωε1/2

(1 − 4R2)2

]
R(2Rε−1/2)2ε−1/2(

1 + (Rε−1/2)2
) =

[
4C′ω

(1 − 4R2)2

]
22R3ε−1(
1 + R2

ε

) .
Therefore,

I1 ≤ C(R)

ε+ R2
.

https://doi.org/10.1017/S0017089518000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000563


118 P. C. CARRIÃO ET AL.

Since 0< ε≤ 1, then

1

1 + R2
≤ 1

ε+ R2
≤ 1

R2
.

Therefore,

I1 ≤ C(R)

R2
.

3. Proof of the theorem. Taking the sequence {vn} given by equation (2.5), by
Lemma 2.2 this sequence {vn} is bounded in H1

0,r(�). So that, we can assume, passing
to a subsequence, that vn ⇀ v, weakly in H1

0,r(�), as n → ∞ and

J ′(vn)w = o(1), ∀ w ∈ H1
0,r(�). (3.19)

Now, note that

|J ′(vn)w − J ′(v)w| → 0, (3.20)

as n → ∞, for all w ∈ C∞
c,rad(�). From this, it follows that J ′(v)w = 0, for all w ∈ C∞

c,rad(�).
By density we conclude that

J ′(v)w = 0, ∀w ∈ H1
0,r(�), (3.21)

and v is a critical point of the functional J restricted to the space H1
0,r(�).

Now, we will follow the ideas of [14, 21, 31] (see also [52]). Since H1
0,r(�) is a closed

subspace of H1
0 (�), we can write

H1
0 (�)= H1

0,r(�)⊕ H1
0,r(�)

⊥,

where ·⊥ denotes the orthogonal complement of the space. Therefore, for each w ∈ H1
0 (�),

there exist ϑ ∈ H1
0,r(�) and ϑ⊥ ∈ H1

0,r(�)
⊥ such that

w = ϑ + ϑ⊥. (3.22)

As H1
0,r(�) is a Hilbert space and J ′(v) ∈ H1

0,r(�)
∗, from the Riesz Representation

Theorem there exists z ∈ H1
0,r(�) such that

J ′(v)w =
∫
�

∇z · ∇w, for all w ∈ H1
0,r(�).

Thus, as z ∈ H1
0,r(�) and ϑ⊥ ∈ H1

0,r(�)
⊥, we have

J ′(v)ϑ⊥ = 0. (3.23)

From equations (3.21)–(3.23), for each w ∈ H1
0 (�), we obtain

J ′(v)w = J ′(v)ϑ + I ′(v)ϑ⊥ = 0.

This allows us to conclude that v is a critical point of the functional J in H1
0 (�) and

consequently v is a weak solution for the problem (1.1).
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If v = 0 we are done.
Suppose now that v ≡ 0. Considering vn ⇀ 0, as n → ∞, we have

J ′(vn)vn = a‖vn‖2 + b‖vn‖4 − λ

∫
�

pα|vn|q −
∫
�

|vn|6 = on(1). (3.24)

But

λ

∫
�

pα|vn|q → 0, as n → ∞. (3.25)

Let L1 > 0, L2 > 0 be such that

a‖vn‖2 → L1 and b‖vn‖4 → L2, as n → ∞. (3.26)

By equations (3.24)–(3.26) ∫
�

|vn|6 → L1 + L2, as n → ∞. (3.27)

But

S

(∫
�

v6
n

)1/3

≤
∫
�

|∇vn|2, (3.28)

which implies

aS

(∫
�

v6
n

)1/3

≤ a

∫
�

|∇vn|2 ≤ a

∫
�

(|∇vn|2 + (3/4)p2v2
n

) = a‖vn‖2, (3.29)

and

bS2

(∫
�

v6
n

)2/3

≤ b

[∫
�

|∇vn|2
]2

≤ b

[∫
�

(|∇vn|2 + (3/4)p2v2
n

)]2

= b‖vn‖4. (3.30)

Thus, by equations (3.26), (3.27), (3.29), and (3.30)

L1 ≥ aS (L1 + L2)
1/3 and L2 ≥ bS2 (L1 + L2)

2/3 . (3.31)

On the other hand, J(vn)= c + o(1). So

c = L1

2
+ L2

4
− 1

6
(L1 + L2)= L1

3
+ L2

12
. (3.32)

By equation (3.31), we have

(L1 + L2)
1/3 ≥ bs2 + (b2s4 + 4as)1/2

2
. (3.33)

Hence by equations (3.31)–(3.33)

c ≥ 1

3
L1 + 1

12
L2 ≥ 1

3
aS(L1 + L2)

1/3 + 1

12
bS2

[
(L1 + L2)

1/3
]2

≥ 1

4
abS3 + 1

24
b3S6 + 1

24
(b2S4 + 4aS)3/2,

which is a contradiction with Lemma 2.3. Therefore, we conclude that v = 0.
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