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An intriguing experimental observation in electrocoalescence of water-in-oil emulsions
is the occurrence of a very low critical electric field, beyond which chaining of droplets
and shorting of electrodes is observed, as compared with the experimental and theoretical
predictions based on two equal sized water droplets in oil. Motivated by these observations,
a numerical, analytical and experimental study on the interaction between multiple,
unequal sized, perfectly conducting droplets in a perfectly dielectric medium under an
electric field is presented here. We show that the critical capillary number (Cac), based on
the bigger droplet, in a two droplet system, reduces as the radius ratio of the smaller to
bigger drop decreases. Secondly, in a system of three equally sized droplets, it is expected
that the Cac will be smaller than a two equal sized droplet system, since the electric field
experienced by the central droplet is higher when surrounded by two droplets instead
of one. Our results show that nonlinearity in the system due to both the asymmetric
shape deformation and the electrostatic interaction between the multiple droplets, leads to
significant reduction in Cac for onset of non-coalescence in an unequal sized two droplet
system or for equal and unequal sized three droplet systems, as compared with Cac for
two equal sized droplets. This is possibly one of the underlying mechanisms for observing
much smaller Cac in emulsions as compared with a system of two equal sized droplets,
and could be responsible for a polydisperse water-in-oil emulsion being exceptionally
susceptible to chaining under an electric field.
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1. Introduction

Electro-desalting of crude oil is typically the first unit operation in crude refining, wherein
electro-desalters, employing electric fields, are used to dewater brine droplets from crude
oil emulsions (Chen et al. 1994; Eow & Ghadiri 2002; Less & Vilagines 2012; Anand et al.
2018). The process leads to the removal of salt and water to an extent suitable for further
processing of crude oil in a refinery. An electro-desalter typically has parallel electrodes
generating a uniform electric field. The crude oil emulsion, when subjected to this field,
results in electrocoalescence of the brine droplets that leads to their growth and subsequent
separation from the emulsion by gravitational settling. It has been widely reported that,
although strong electric fields hasten the approach of the water droplets, the droplets
could, instead of coalescence, exhibit non-coalescence (Anand et al. 2019; Roy, Anand &
Thaokar 2019). The phenomenon of coalescence of droplets under the effect of an electric
field involves, (i) approach of the droplets, (ii) drainage of the liquid from between the
droplets and (iii) formation of a bridge between the droplets. If the bridge thickens, it
leads to coalescence of the two droplets (Atten 1993). However, under certain conditions,
especially under a strong electric field, the bridge could thin, instead of thickening, leading
to breakage of the bridge, and this is referred to as non-coalescence. The process of
coalescence, thus hindered, results in reduced efficiency of desalters/electrocoalescers and
an optimum separation of oil and water is not achieved. Further, it prohibits use of strong
electric fields in desalters/electrocoalescers.

Theoretical models were put forth by Bird et al. (2009) and Bartlett, Généro & Bird
(2015) wherein symmetric interactions between two equal sized droplets could lead to the
formation of conical ends that could contact to form a liquid bridge. The Laplace pressure
in this bridge depends upon the cone angle of the conical ends, and thereby on the shape
(more accurately, on the two curvatures: azimuthal and meridional) of the bridge. A critical
angle of 30.8◦ was observed beyond which non-coalescence of droplets was observed.

While deciphering the physics behind the interaction of two equal sized droplets gives
a fundamental idea about when droplets, suspended in oil under an electric field, exhibit
coalescence or non-coalescence, in desalters, the emulsions are seldom monodisperse.
Moreover, multiple droplet interactions are likely to be very important. Thus, a need to
understand the critical cone angle and thereby the critical electric field in the interaction of
(i) two unequal sized droplets, and (ii) interaction between three or more droplets aligned
collinearly with the electric field, is expected to be quite relevant. It is therefore necessary
to extend the analysis for two equal sized droplets to multiple droplets of unequal sizes.

Although quite a few numerical, experimental and analytical studies have been
conducted in the recent past to understand the physics of the behaviour of droplets under
an electric field (Chen et al. 2019; Lu et al. 2019; Abbasi et al. 2020; Huang et al. 2020a,b;
Chirkov, Dobrovolskii & Vasilkov 2021; Das & Saintillan 2021; Li et al. 2021b; Sorgentone
et al. 2021; Sorgentone & Vlahovska 2021; Li et al. 2021a; Ou et al. 2022) there have been
very few studies which addressed the interaction of unequal sized droplets under a uniform
electric field (Anand et al. 2019).

As can be seen from table 1, the referred works do not really address the issue of
smaller critical capillary number, seen for non-coalescence of two unequal sized droplets
or three equal or unequal sized droplets, as compared with that of two equal sized droplets
(which has been the simplest, and most commonly addressed, problem in the literature).
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S.N. Fluid Viscosity (cSt) Conductivity (S m−1) Density (kg m−3)

1. Silicone oil 330 1 ×10−12 970
2. Water 1 1.4 ×10−4 1000

Table 2. Physical parameters of fluid used in experiments.

In fact, none of the above works address the issue of the fate of the droplets after
coalescence.

The motivation of our work is really to explain an important question, relevant in
industrial electrocoalescence. Why do water-in-oil emulsions tend to show chaining and
non-coalescence at much smaller electric fields, and thereby a much lower critical capillary
number, as compared with the predictions of two equal sized droplets? And towards this,
the present study indicates that two unequal sized droplets have a lower critical capillary
number. Similarly, a three equal or unequal sized droplet system also has a lower critical
capillary number as compared with the critical capillary number of a two equal sized
droplet system, the most commonly studied system in the literature.

It has been shown that a size difference between the droplets can lead to an interaction
termed ‘cone–dimple interaction’, wherein the smaller of the two interacting droplets
forms a cone at the adjacent poles of the droplets, while the bigger one forms a dimple.
While substantial work has been done on equal sized, two droplet interactions, a thorough
numerical, analytical and experimental study on the interaction of collinear multiple
droplets, aligned in the direction of electric field, is lacking and will be the subject of
this study.

Chaining in electrodesalters is observed when multiple droplets, on application of an
electric field, approach each other and form long chains which hinder the process of
coalescence that can lead to shorting of the electrodes, thereby leading to loss of efficiency
of the process (Pearce 1954; Chen et al. 1994). The critical electrocapillary number,
Cac = RεeE2

o/γ (where, R is the radius of the drop, εe is the electrical permittivity of
the outer medium, the oil phase, γ is the interfacial tension and Eo is the applied electric
field) at which non-coalescence is observed is found to be 0.06 in theoretical studies and
0.054 in experiments (Anand et al. 2019). However, the chaining of droplets leading to
discontinuation of operation in desalters/electrocoalescers is found to occur at fields much
smaller than one would expect from the critical capillary number observed in two equal
sized droplets. It is therefore important to investigate if size asymmetry or multiple droplet
interactions, lead to a reduction in the critical electrocapillary number. The present work
tries to address these issues using experiments, analytical theory and boundary element
calculations.

2. Experiment

Silicone oil of viscosity 330 cSt (25 ◦C) and density 970 (kg m−3) purchased from
Sigma-Aldrich, was used without further purification. Deionized (DI) water of
conductivity σ = 1.4 × 10−4 S m−1 was obtained from EVOQUA Deionizer (Evoqua
Water Technologies, Warrentdale). The interfacial tension of the silicone oil–water system,
used in the study is 23 mN m−1 (Anand, Juvekar & Thaokar 2020). The other physical
parameters used in the experiments and simulation are reported in table 2 and table 3.
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Figure 1. (a) Experimental set-up to study interactions of two or three aqueous droplets suspended in silicone
oil. (b) (i) Three aqueous droplets undergoing coalescence: Ca = 0.024, (ii) three aqueous droplets undergoing
non-coalescence: Ca = 0.04 (iii) two aqueous droplets undergoing non-coalescence: Ca = 0.043 and (iv) two
aqueous droplets undergoing coalescence: Ca = 0.044. Scale bar is 500 μm. Here, the radius ratio is χ =
R2/R1.

Figure 1(a) shows the schematic diagram of the experimental set-up. The experimental
set-up consisted of a rectangular cuvette (10 mm × 10 mm), where two parallel copper
plate electrodes (45 mm × 10 mm × 1.5 mm) were fixed onto the opposite walls of the
cuvette. The copper electrodes were connected to a high voltage amplifier (Trek, 20/20C).
The voltage amplitude and the frequency (50 Hz) of the AC signal were adjusted with the
help of a function generator (Agilent, 33220A). The cuvette was filled with silicone oil,
wherein two or three DI water droplets were inserted with the help of a syringe. In the case
of three droplets, the size of the central droplet varied in the range 100–200 μm, whereas
the size of the two adjacent droplets varied from 300 to 400 μm.
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Symbols Meaning

β1 Semi-cone angle of outer left droplet
β2 Semi-cone angle of centre droplet
γ Interfacial tension
ε Permittivity of phase
κ Mean curvature
λ Viscosity ratio
μ Viscosity of phase
σr Conductivity ratio
σ Conductivity of phase
τH Hydrodynamic stress
φ Electric potential
χ Radius ratio
Ca Electrocapillary number
Cac Critical electrocapillary number
e Medium phase
i Drop phase
n, t Outward unit normal and unit tangent
E0 Applied electric field
Q Permittivity ratio
R1, R2, R3 Radius of outer left droplet, centre droplet and outer

right droplet
z2 Parameter in analytical model of asymmetric drops

Table 3. Parameters used in numerical modelling.

For capturing coalescence and non-coalescence interactions of the droplets, high-speed
videography (5000–10 000 frames s−1) was conducted using a camera (Vision Research,
Phantom v12). The camera was attached to a stereo zoom microscope (Nikon Instruments,
model SMZ1000) to magnify the image. A fibre optics light source (Nikon, model:
C-FI230) was used for providing sufficient light. The high-speed images were analysed
using ImageJ. All the experiments were conducted at room temperature (25 ◦C).

An earlier study on two drop interactions under an applied uniform electric field, (Anand
et al. 2019) showed that the cone angles, as well as the critical cone angle and the
capillary numbers, are remarkably insensitive to the frequency of the applied field. The
frequencies explored were in the range ω = 50–5000 Hz. Even for the highest frequency
explored, the time period of the AC signal (0.2 ms) was at least one order higher than the
Maxwell–Wagner relaxation time for the system tMW = (εi + 2εe)/(σi + 2σe), which is
of the order of 0.02 ms for a deionized water–oil system. Here, ε and σ represent the
permittivity and conductivity, and the subscripts are i for droplet phase and e for the
external phase. Thus there is an instantaneous charge relaxation within a time period
of the AC signal, thereby eliminating the possibility of the influence of frequency (in
the ω < 50 000 Hz range) in the approach and pre-contact phases. In our current work
the experiments were conducted at 50 Hz AC and this frequency was kept constant for
all the experiments. Most electro-desalters that are used in refineries for breaking the
water-in-oil emulsions typically employ AC fields with a frequency corresponding to the
frequency of the voltage distributed in the power grids (which could be 50 or 60 Hz); AC
fields offer an advantage over DC fields by suppressing electrophoretic motion thereby
enabling systematic experiments and preventing electrode-to-electrode oscillations.
In figure 4, wherein numerical results are compared with experiments, a frequency of
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E0

R1 R2

2R1 2R2

z1 = 1 z2

d

R3

β2β1

(a)

(b)

Figure 2. Schematic for (a) droplets under electric field and (b) the Bird et al. (2009) model modified to
analytically solve for asymmetric cone formation with two cone angles β1 and β2.

50 Hz was used to simulate experimental conditions in a perfectly conducting perfect
dielectric set-up. The rest of the numerical results were obtained by applying a DC electric
field to study deformations and cone angles since the frequency is expected not to be an
important parameter.

3. Numerical method

Two or three uncharged droplets of an infinitely conducting fluid having radii R1, R2 and
R3, and suspended in a non-conducting medium are considered. Here, R1 and R3 are kept
equal while R2 � R1. The droplets are aligned along the direction of the applied electric
field (Ẽ0 = E0ez), as shown in figure 2(a). The non-dimensional field is given by ez. In the
three droplet system, we refer to the middle droplet as the central droplet, and both perfect
geometry-centric and off-centric positions of the central droplet have been considered in
this work. The two poles of the two droplets which face each other are termed the ‘adjacent
poles’, whereas the other two poles are termed the ‘distant poles’.

The parameters used to characterize the system are the viscosity ratio (λ = μi/μe),
permittivity ratio (Q = εi/εe), conductivity ratio (σr = σe/σi) and the electrocapillary
number (Ca = R1ε0εeE2

0/γ ), where i and e are the droplet and medium phases,
respectively. Taylor’s leaky dielectric theory is used to model the system and the perfectly
conducting droplet in a perfectly dielectric medium is realized using σr = 0.001 in a leaky
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dielectric formalism. We present quantities in their non-dimensional form, the electric field
non-dimensionalized by the magnitude of the applied field Eo, the electric potentials by
EoR1, the distances by R1, the size of the bigger droplet, the time by μe/εeE2

o, the velocities
by R1εeE2

o/μe and the stresses by εeE2
o. The electric field and potentials are given by

∇ · Ei,e = 0 or ∇2φi,e = 0, (3.1)

where φ is the electric potential.
The boundary conditions at the fluid interfaces are

n · Ee = 1
σr

n · Ei, (current continuity), and (3.2)

t · Ee = t · Ei (Continuity of tangential electric field). (3.3)

Here, n and t are the outward unit normal and unit tangent, respectively. The Maxwell
stress tensor at the interface is given by

τE
i,e = εi,e

(
Ei,eEi,e − 1

2
E2

i,eI
)

. (3.4)

The fluid velocity u is given by the Stokes and continuity equations as

μλ,1∇2ui,e − ∇pi,e = ∇ · τi,e
H = 0 and ∇ · ui,e = 0, (3.5)

where p is the pressure and τH is the hydrodynamic stress. At the interface, continuity of
velocity is applicable. The interfacial tension balances the stress jump and is written as

�f = [[τH
i,e · n]] = 1

Ca
κn − [[τE

i,e · n]], (3.6)

where κ = ((I − nn) · ∇) · n is twice the mean curvature of the interface and [[ · ]]
denotes the stress jump across the interface of the droplet. The system is assumed to
be axisymmetric and calculations are carried out on one half of the one-dimensional arc
discretized into N elements. The arclength (c) is used for parameter representation, and the
node points are described in a cylindrical coordinate system by cubic spline interpolation.

The normal electric field is calculated using the following integral equation (Sherwood
1988; Baygents, Rivette & Stone 1998):

Ene(x0) = 2
1 + σr

n(x0) · ez + 1 − σr

2π(1 + σr)
n(x0) ·

2,3∑
i=1

∫
ζi

x0 − x

(|x0 − x|)3 Eni(x) dc(x),

(3.7)

where x0, x are the position vectors of the observation and force singularity points on the
interface. Here, ζi is the arclength for the droplets 1 and 2 or 1, 2 and 3 for the 2 and 3
droplet cases. Knowing the normal electric field, the potential is given by

φ(x0) = φo(x0) −
(

1 − σr

4π

) 2,3∑
i=1

∫
ζi

Eni(x)

|x0 − x| dc(x), (3.8)

where φo(x0) = −z is the applied potential.
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The instantaneous distribution of non-dimensional velocity over the interface at any
point x0 is given by the Fredholm integral equation of second kind (Pozrikidis 1992, 2001)

uo(x0) = − 1
4π(1 + λ)

2,3∑
i=1

∫
ζi

�f (x) · G(x, x0) dc(x)

+ 1 − λ
4π(1 + λ)

2,3∑
i=1

∫ PV

ζi

n(x) · T (x, x0) · u(x) dc(x), (3.9)

where PV is the principal value integral pertaining to the droplet over which integration
is carried out and G and T are known kernels of the velocity and stress field, respectively.
The electric stress jump at the interface is given by (3.6), where

[[n · τE]] = 1
2

[E2
ne(1 − σ 2

r Q) − E2
te(1 − Q)]n + EneEte(1 − σrQ)t. (3.10)

Once the instantaneous velocity for every node point is known, the interface is temporally
advanced using the explicit Euler scheme for each time step δt

xt+δt
0 = xt

0 + u(xc)δt. (3.11)

The change in volume was also computed for all our simulations and it was noted that
the value always remained below 0.5 %. The simulations were continued until the droplets
contact. In post-contact phase, bridge models numerically obtained from a modified
analytical theory are stitched to bridge the off-centric two or three droplets. The BEM
formalism, which is explained and used in Roy & Thaokar (2020), is adopted to further
simulate the droplets until coalescence or non-coalescence is achieved. Thus, the entire
simulation is conducted discontinuously in two steps.

4. Results and discussions

The dynamics of two and three droplet systems, equal and unequal in size, in an externally
applied uniform electric field is divided into three phases. The first phase is the approach
phase that starts from the time the field is applied to the droplets, to the point where
cones are formed at the poles adjacent to each other. This is followed by a contact
between these cones formed at the two approaching poles of the droplets. Lastly, in the
post-contact phase, a bridge is formed at contact which eventually leads to coalescence or
non-coalescence of the droplets.

4.1. The main experimental observation
Three DI water droplets were suspended in silicone oil, collinear to each other, aligned in
the direction of the applied electric field (figure 1a (i), (ii)). The droplets on either side
were similar in diameter while the droplet at the centre was smaller than the other two.
A slight off-centric location of the central droplet led to an asymmetric contact of the
central droplet under an applied electric field. The central droplet moved towards either the
left or to the right droplet (depending upon its initial position) and an asymmetric double
cone structure was observed between the droplets at contact. A bridge was formed between
the contacting droplets, which either grew and showed coalescence for low electric fields
or snapped and exhibited non-coalescence for high electric fields. In a similar way, in the
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Figure 3. Variation of Ca with radius ratio (χ = R2/R1) for both two droplet and three droplet systems.

two droplet system, a cone–cone contact was observed and the outcome could be either
coalescence or non-coalescence (figure 1b (iii), (iv)) of the droplets in concurrence with
our earlier reported study (Anand et al. 2019; Roy et al. 2019).

For a pair of equal sized droplets suspended in silicone oil and subjected to a uniform
electric field, the experimentally observed critical Ca is (Cac) ∼ 0.054, at which a
transition from coalescence to non-coalescence of the droplets occurs (Anand et al. 2019).
However, such a systematic study has not been reported for two unequal sized droplets.
Therefore, several experiments were conducted with two unequal sized droplets under
an electric field and the outcomes on contact of these droplets are plotted in figure 3.
Similarly, such studies have not been conducted for a three droplet system either, and are
also presented in figure 3, which shows the coalescence or non-coalescence outcomes of
two and three equal and unequal sized droplets under a uniform external electric field.
These experimental data are presented on a phase diagram with Ca and the radius ratio χ

as the axes. Here, Ca is based on the radius of the bigger droplet. The radius ratio χ =
R1/R2 is defined as the ratio of the radius of the smaller droplet to that of the bigger droplet.
A phase boundary is observed between the coalescence and non-coalescence regimes. It
is observed that the critical capillary number shows a systematic decrease from a value of
0.054 for two equal sized droplets, to much lower values as the ratio of the droplet size is
reduced in the two droplet system. Figure 3 also shows that the critical capillary number
is around 0.03 for the system of three equal sized droplets, much smaller than Cac ∼ 0.06
for the system of two equal sized droplets. This critical capillary number further reduces
when the radius ratio decreases, that is, when the radius of the droplet at the centre is
smaller than the two adjacent droplets. The sensitivity of Cac to the radius ratio, as seen in
experiments, is much greater for the two droplet system as compared with the three droplet
system.

Explaining these observations, namely the reduction in Cac with radius ratio for the two
droplet system and reduction in Cac in the three droplet system, for both equal and unequal
sized droplets, forms the objective of this work. These findings are consistent with the
typical observation in electrocoalescence of water-in-oil emulsions that the field required
for effective dehydration is of the order of 1 kV cm−1. Any field higher than this leads
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to chaining and electric sparks, thereby prohibiting any further increase of field. If one
considers that droplets grow to 800 μm in emulsion dehydration, this results in a critical
capillary number Cac = 0.005 for typical interfacial tension values of 30 mN m−1. This
is almost 10 times lower than the theoretical value of Cac = 0.06 or experimental value of
Cac = 0.054 for a two droplet system. The two and three droplet experimental results in
figure 3 indicate a trend of reduction of Cac with the radius ratio χ , which could possibly
explain the lower critical capillary numbers observed in electrocoalescence of polydisperse
emulsions.

4.2. Analytical theory and numerical calculations to understand the mechanism
Numerical simulations using the boundary element method were carried out to predict the
simultaneous translation and deformation of the droplets in two and three droplet systems.
For example, in the three droplet system, the movement of the slightly off-centred central
droplet towards its neighbours was calculated using BEM and compared with experiments.
It was observed that BEM calculations, qualitatively as well as quantitatively and to quite
an extent, agree with the asymmetric contact seen in experiments (figure 4). It should
be noted that the initial conditions for the simulations were taken from the experimental
pictures, and no other fitting parameter was used (figure 4).

The coalescence and non-coalescence phenomena critically depend upon the cone angle
formed at the adjacent poles, in two and three droplet systems (Anand et al. 2019). The
cone angle at the poles is a balance of electric, capillary stresses and hydrodynamic
stresses. A systematic analysis of electric field at the poles, the deformation and cone
angle at the interacting poles was therefore undertaken.

Figure 5 shows a schematic of a three drop system at the points of contact. Symmetric
deformation was estimated by D = (P + Q − 2M)/(P + Q + 2M) and asymmetric
deformation was estimated by AD = P/Q − 1. A similar exercise was adopted for two
drop interaction as well.

4.2.1. Two droplet system
The details of the analytical theory in the small deformation limit are presented in the
supplementary material available at https://doi.org/10.1017/jfm.2022.925. The analytical
results agree with those of Sorgentone et al. (2021) but differ from Zabarankin (2020).
While electric interactions between the droplets, as well as shape–translation coupling, is
taken into account in the analytical theory, the hydrodynamic interactions are neglected.
Thus the hydrodynamics is solved over an isolated droplet subject to a uniform electric
field. Electrohydrodynamic flows due to tangential electric stresses are absent in perfect
conductor drops in a perfect dielectric medium. Therefore hydrodynamic interactions are
not expected to be important (Sorgentone et al. 2021; Sorgentone & Vlahovska 2021).

Analytical results (equation (14) of the supplementary material)

d(t) =
(

d5
o − (60χ2(1 + χ)(1 + λ)

(2 + 3λ)
t)1/5

)
, (4.1)

indicate that the time of contact of the droplets increases as the ratio of radii, χ = R2/R1
decreases, essentially because the reduction in the electrostatic force of attraction is much
smaller ∼ χ3 than the reduction in the drag on the smaller droplet ∼ χ . (Note, the time of
contact is obtained by putting d(t) = 1 + χ .)
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Figure 4. (a) Experimental (BEM superimposed) and (b) BEM prediction for DI water droplet in silicone oil
at time t = 0 and at time t = contact, for (i) Ca = 0.033, (ii) Ca = 0.036 and (iii) Ca = 0.038. (c) Numerically
and experimentally obtained variation of separation distance with time for a three droplet system under an
electric field with Ca = 0.036 and R2/R1 = 0.51.
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Figure 5. Estimation of symmetric and asymmetric deformation.
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Figure 6. Numerically obtained variation of non-dimensional electric field at the adjacent poles (Ep
n) for two

droplet system with non-dimensional time (t). (Inset: closer look at variation of electric field from time t = 0.01
to t = 5.)

The analytical theory suggests that the electric field experienced by the smaller droplet
remains unchanged with a decrease in χ . However, the electric field in the bigger
droplet decreases as χ3 as the radius ratio χ decreases (equations (10) and (11) of the
supplementary material). This is essentially because the unperturbed electric field is equal
to 3 (non-dimensional) in both the smaller and bigger droplets, independent of their size.
When the droplets interact, the disturbance electric field due to the bigger droplet, which
is experienced by the smaller droplet, scales as R3

1. Thus the non-dimensional electric field
experienced by the smaller droplet scales as 3 + 6/d3. On the other hand, the field on the
bigger droplet scales as 3 + 6χ3/d3, and therefore reduces as χ decreases. This is indeed
seen in simulations as well (figure 6), at very short times.

However, as the time progresses, very soon, the electric field in the bigger droplet,
as seen in simulations, becomes greater than that in the smaller droplet (figure 6).
The small deformation theory, which predicts that the smaller droplet continues to
experience a greater electric field throughout the temporal evolution, fails at this point
(refer to supplementary material (figure 3a of supplementary material)). To understand the
transition of the electric field in the bigger droplet from being smaller to greater than that of
the smaller droplet, a careful investigation of simultaneous deformation and development
of the electric field at the poles of the droplets is undertaken.
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Figure 7. (a) Numerically obtained variation of symmetric deformation, (D) of individual droplets under
electric field with non-dimensional time (t) in two droplet system. (b) Numerically obtained variation of
asymmetric deformation, (AD) of individual droplets under electric field with non-dimensional time in two
droplet system.

For any given ratio, χ , the analytical theory predicts that the deformation of the smaller
droplet is smaller than the bigger droplet. This is because the size and hence the effective
capillary number of the smaller droplet is smaller. The off-centric deformation (AD) of the
smaller droplet is same as that of the bigger droplet. However, this value of AD decreases as
the χ decreases. Thus, within the realm of far field linear theory, the smaller droplet seems
to deform less for any given χ (equations (24) and (25) of the supplementary material). The
smaller deformations predicted by the analytical theory for the smaller droplet as compared
with greater deformations for the bigger droplet are indeed seen in simulations as well
(figure 7). This deformation of the bigger droplet continues to be greater than the smaller
droplet (figure 7) in agreement with theory (refer to supplementary material (figure 4
of supplementary material)). One can conjecture that the greater deformability of the
bigger droplet can lead to greater curvatures and thereby greater accumulation of charge
and thereby electric field at the pole of the bigger droplet, explaining the development
of greater electric field at the adjacent pole of the bigger droplet at short times and the
cross-over from the field being lower in the smaller droplets to being greater in the smaller
droplets (figure 6).
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Figure 8. Numerically obtained variation of cone angles at contact with non-dimensional time (t) for two
droplet system under electric field where β1 and β2 are the angles subtended by droplet 1 and droplet 2,
respectively.

In line with the electric field in the smaller droplet changing from being greater
than that in the bigger droplet at small times to being smaller than that in the bigger
droplet at intermediate times, the cone angle at the smaller droplet, that represents local
deformability, also shows a similar transition. The cone angle at the smaller droplet is
greater than that of the bigger droplet at short times, and then shows a transition whereafter
it is slightly smaller than the cone angle of the bigger droplet (figure 8).

As the droplets further approach each other, and are near contact, a dramatic cross-over
is observed, wherein the electric field at the bigger droplet now becomes lower than that at
the smaller droplet (figure 6). This coincides with a remarkable increase in the deformation
of the smaller droplet. Simultaneously, the cone angle of the smaller droplet becomes
greater than that of the bigger droplet (figures 7 and 8). This can be explained by the
observation that, as the two droplets approach and are near contact, the lubrication pressure
in the intervening thin film increases. At this point, as the two droplets push against each
other, the conical deformation in the bigger droplet (that is more deformable) is retarded,
thereby reducing the growth of its local curvature at the pole. This also decreases the rate
of increase of its electric field, and thereby its deformation and cone angle are also reduced.
Simultaneously, the deformation, the electric field and the cone angle at the smaller droplet
increase and exceed those on the bigger droplet. To summarize, at contact, for any given
χ , the cone angle at the smaller droplet is greater, and so is the electric field at its pole.

The more important question is whether this cone angle at the smaller droplet at contact
increases or decreases with χ . It is observed that, at short to intermediate times after
application of the electric field, indeed the deformation, the electric field and the cone
angle in the smaller droplet decrease as χ decreases, in accordance with the linear theory.
However, towards the end of the process, that is, near contact, when the mechanism
of lubrication pressure induced deformation sets in, it appears that, as χ decreases, the
smaller droplet is able to deform more and push itself into the bigger droplet, and thereby
subtend a higher cone angle. This only becomes stronger as the droplet size decreases,
because the relative size difference between the two droplets is greater. The smaller cone
angle in the larger droplet at t = 0 is a consequence of inter-droplet interaction, even at
t = 0, due to the small initial separation between the droplets. To explain this in another
way, if the two droplets were of the same size, neither would be pushed back at near

953 A11-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.925


S. Roy, V. Anand and R.M. Thaokar

80

60

40

20

0

t
10–2 10–1 100 101 102

Epn

Epn

t

5

4

3
10–2 10–1 100

χ = 1, drop 1

χ = 1, drop 2

χ = 0.5, drop 1

χ = 0.5, drop 2

χ = 0.3, drop 1

χ = 0.3, drop 2

Figure 9. Numerically obtained variation of electric field at the adjacent poles (Ep
n) for three droplet system

with the non-dimensional time (t). (Inset: closer look at variation of electric field from time t = 0.01 to t = 5.)

contact, and the rate of increase of cone angle of the two similarly sized droplets would be
more moderate (figures 6–8).

Thus, unlike the predications of the linear theory, two nonlinear phenomena seem to
be at play. Firstly, the higher deformability of the bigger droplet initially results in the
bigger droplet experiencing a greater electric field. Secondly, near contact, the greater
deformability of the bigger droplet results in the smaller droplet admitting a greater electric
field and cone angle. Thus, the end result is a consequence of great nonlinearity in the
system. The cone angle in the smaller droplet at contact is greater than the bigger droplet,
and this cone angle increases as χ decreases. This ultimately results in a smaller critical
capillary number with a reduction in χ . Therefore, the presence of smaller droplets in a
polydisperse emulsion can lead to increased chaining and the results for two equal sized
droplet system may be inaccurate.

4.2.2. Three droplet system
The analytical theory for small deformations, presented in the supplementary material,
considers a symmetric case, wherein the central droplet does not move, and the two
droplets on either side are attracted to the inner droplet. Thus, the two droplets are
considered at equal distances from the central droplet and are of the same size R3 = R1.

For χ = 1, the analytical theory suggests that the electric field in the central droplet
is greater than the other two, and so are the deformation and cone angles. This can be
seen in the simulations as well (figures 9–11). The trend is unchanged all the way up to
contact of the droplets. The cone angle of the inner droplet is greater than that in the two
droplet case with the same droplet size due to the stronger electric field experienced by the
central droplet in the three droplet system. The effective capillary number experienced by
the central droplet in the three droplet system is certainly higher than an equivalent two
droplet system. In fact, in the case of a central droplet surrounded by n droplets on either
side, a converged value of the enhanced electric field experienced by the inner droplet can
be obtained, as shown in the supplementary material. This can partly explain the reduction
in the critical electric field in a system of many droplets with the same size.

When χ < 1, and the central droplet is smaller than the other two, the behaviour is very
similar to the two droplet case. Initially, the electric field of the central droplet is higher (in
agreement with theory). However, as the droplets approach, the electric field of the outer
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Figure 10. (a) Numerically obtained variation of symmetric deformation (D) of individual droplets under
electric field with non-dimensional time (t) in a three droplet system. (b) Numerically obtained variation of
asymmetric deformation (AD) of individual droplets under electric field with non-dimensional time (t) in a
three droplet system.
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Figure 11. Numerically obtained variation of cone angles at contact with non-dimensional time (t) for three
droplet system under an electric field where β1 and β2 are the angles subtended by droplet 1 and droplet 2,
respectively.
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droplet exceeds the inner droplet, possibly due to higher deformation of the outer droplets
(figure 10). Finally, at contact, the smaller central droplet exhibits higher deformation due
to a similar mechanism of higher intrusion of the cones of the smaller droplets into the
bigger droplet. The cone angle too (figure 11) of the smaller inner droplet remains greater
than the outer droplet at contact. The susceptibility to forming cones is also indicated in
the asymmetric deformation plots (figure 10).

4.3. Comparison between experiments and theory
The comparison of the separation between two droplets in the three droplet system vs time
is shown in figure 4(c). The quantitative agreement between experiments and simulations
is not very satisfactory and can be attributed to several factors, such as the effect of the
conductivity of oil and inertial effects, amongst others, which are not accounted for in the
model. The analytical theory was conducted by Sorgentone et al. (2021) and Zabarankin
(2020) and a similar exercise was conducted incorporating simultaneous shape changes,
and is presented in the supplementary material.

A reasonable agreement is observed between the cone angles of the droplets as
observed in experiments and computed in simulations. The comparison between the cone
angles observed in experiments and predicted by BEM simulations is encouraging. The
observations corroborate the hypothesis that, while at greater separations the cone angle
in the bigger drop is greater, when the droplets contact, the cone angle in the smaller
droplet exceeds that of the bigger droplet (figure 12).

4.4. Post-contact phase
The analysis presented in the previous section indicates that the BEM calculations can
be used to estimate the electric fields as well as the cone angles at the poles of the
droplets. The cone angle at the poles of these droplets can be measured from the shape
of the deformed droplets obtained in these simulations. In experiments, the two cones
then contact, form a bridge and the pressure in the bridge determines whether the droplets
coalesce or show non-coalescence. Experiments as well as simulations indicate that, in
the case of a three droplet system, a slightly off-centre central droplet can lead to an
asymmetric centre of mass motion of the central droplet, leading to contact with only
one of the two outer droplets. Therefore, we consider the contact of two unequal sized
droplets to analyse the bridge between the droplets.

The bridge formed between the droplets can be described by the formalism given by
Bird et al. (2009) for two equal sized droplets. The analytical model leads to the equation

⎛
⎜⎝1 + r̃′2 =

⎛
⎜⎝ r̃

k + pw
2γ

r̃2

⎞
⎟⎠

2⎞
⎟⎠ . (4.2)

Here p, γ , r̃, w, k correspond to capillary pressure, surface tension, non-dimensional r,
height and a constant respectively. The symmetry (equal size) of the two droplets is critical
to the model. This symmetry leads to the two cone angles β1 = β2.

In the present case, however, the two droplets are unequal in size, clearly suggesting that
β1 /=β2. Thus, the model of Bird et al. (2009) has to be modified and solved to adjust for
the asymmetric form of double cones with different boundary conditions for two different
cone angles (β1 and β2) and a third parameter, the distance z2 (figure 2).
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Figure 12. Comparison of variation of numerically and experimentally obtained cone angles at the peak of
AC voltage under electric field with time for three droplet and two droplet systems. (a) Three droplet system:
Ca = 0.036, R2/R1 = 0.51. (b) Three droplet system: Ca = 0.035, R2/R1 = 0.43. (c) Two droplet system:
Ca = 0.063, R2/R1 = 0.7.

The double cone volume V (figure 13 is an exaggerated representation) is redistributed
and conserved as the bridge is formed. Therefore, the neck surface area S can be
minimized. The energy functional F = γ S − pV is considered, where p is the pressure
inside the capillary, the surface area S = 2πr

√
1 + r′2 dz and the volume is given as

V = πr2 dz. The resulting Euler–Lagrange equation leads to the differential equation

1 + r′2 − rr′′ − p
γ

r(1 + r′2)3/2 = 0, (4.3)

with boundary conditions changing to r[−1] = cot β1, r[z2] = cot β2 and
∫ z2
−1 πr2 dz =

1
3 cot β2

1 + 1
3 cot β2

2 . Here, r, z and p are the coordinate axes and the bridge pressure,
respectively.

The condition for coalescence or non-coalescence between two contacting droplets can
be obtained by solving the above equation. The schematic for the problem is shown in
figure 2. Since the parameters involved are β1, β2 and z2, one expects a plane of transition
in these coordinates. For the bridge pressure p = 0, the phase separation plane obtained is
shown in figure 14. The calculation procedure can be outlined as follows: to start with, β1
is fixed to a value corresponding to experiments or simulations, and p = 0 is assumed in
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Volume

conservation zone

Eventual bridge

Double cone formation

Figure 13. Double cone geometry.

the differential equation, for the plane of transition. An initial condition of r(z1 = −1) =
β1 is employed while a guess value of r′(z1 = −1) is updated in an iterative manner.
Also, z2 is the other variable which is varied. The value of β2 is fixed from experiments
or simulations to analytically calculate the volume of the double cone to be used as a
parameter to verify the solution. The equation is solved and the volume of the bridge is
computed numerically. The numerically obtained volume of the bridge is compared with
the analytically calculated volume of the cones at contact and the error is computed. The
value of β2 obtained numerically at each iteration is compared with β2 fixed initially and
calculations are terminated if both β2 and the volume are acceptable by varying r′ and z2.
Thus a consistent set of β1, β2 and z2 is obtained for p = 0.

The phase boundary can be obtained by fitting the data obtained by the above procedure
to an empirical equation 0.044β1 + 0.036β2 + z2 = 3.467, where β1 and β2 are expressed
in degrees and not radians. This plane represents the coalescence–non-coalescence
criterion (henceforth called the C-NC plane). Thus one can predict coalescence or
non-coalescence of droplets for a given a set of parameters β1, β2 and z2 which could
be obtained from boundary element calculations for a given Ca and χ .

In the case of equal sized droplets, β1 = β2 and z2 = 1. This yields β = 30.8◦,
indicating congruence with the case of equal sized droplets. It will be useful to recall
here that a given capillary number inscribes a specific angle β in the case of two equal
sized droplets, given by β ∼ Ca0.3, wherein it is convenient to obtain the critical Ca
by substituting β = 30.8◦ (Bird et al. 2009). This yields Cac = 0.06. In the case of two
unequal sized droplets, however, the state space is increased by 2. Firstly, the two angles
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Figure 14. Phase diagram depicting coalescence and non-coalescence for (a) two and (b) three unequal
droplets and analytically obtained phase separation boundary.

β1 and β2 depend on the degree of asymmetry of the two droplets, that is, the radius
ratio, χ = R2/R1. Moreover, z2 is not necessarily equal to z1, which is set as 1. This
necessitates a semi-numerical approach and the numerical fitting of the plane into an
empirical equation is in that spirit.

Figure 14(a) shows the C-NC plane, obtained from analytical theory i.e. 0.044β1 +
0.036β2 + z2 = 3.467 plotted in the coordinates β1, β2, z2 for a two droplet system.
All the experimental data are also presented here for convenience. The experimental
data themselves lead to realization of a plane which is best fitted by the equation,
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0.044β1 + 0.036β2 + z2 = 2.9788. Thus, the plot shows these two planes, and the
experimental data points are shown by blue and red spheres indicating coalescence and
non-coalescence.

It should be remarked here that the experimental data were obtained for both the two
droplet system and the three droplet system. These experimental data are also shown in
figure 14. It should be noted that, although the C-NC plane is determined only for the
case of two unequal sized droplets, the analysis is valid for a three droplet system as well.
This is because, in the three droplet system, the slight off-centre location of the central
(inner) droplet leads to contact of the inner droplet only with one of the bigger droplets, as
discussed earlier.

The figures show that the criterion of coalescence or non-coalescence as captured by
the expressions derived using the analytical theory or the experiments, suffices to well
represent the phenomenon. The discrepancy between analytical theory and experimental
results is understandable given that, even for the system of two equal sized droplets, the
critical cone angles are different, 30.8◦ and 24.7◦, respectively, due to more complex
electrokinetic reasons, as discussed in Anand et al. (2019). However, the theory indeed
captures the experimental results of coalescence and non-coalescence. The criterion for
the coalescence and non-coalescence of droplets as suggested by the semi-analytical model
was validated using the boundary element method. Two cases were considered, one in the
coalescence regime and the other in the non-coalescence regime. The system is simulated
by subjecting the three droplet system to an electric field and simulations continued until
the droplets contacted. At contact, the values of β1, β2 and z2 are extracted, and the bridge
is constructed as per the bridge equations. The three droplet system is then connected
via the bridge and the BEM calculations are continued. Figure 15 shows that the droplets
either coalesce or not depending on Ca or the ratio of radius R2/R3, thereby validating the
model. The outcome of the contact of the droplets, coalescence or non-coalescence, obeys
the equation 0.044β1 + 0.036β2 + z2 = 3.467.

Thus, the semi-analytical model, if provided with β1, β2 and z2, either from experiments
or from simulations, can predict whether the droplets coalesce or exhibit non-coalescence.
A numerical phase diagram on the Cac − χ coordinates was therefore constructed. For
a given capillary number, a two or three droplet system was simulated, and the cone
angles β1, β2 and z2 were measured and the semi-analytical model used to deem the
contact as either coalescence or non-coalescence. The phase diagram thus obtained for
the two and three droplet systems is compared with the phase boundaries obtained
from the experimental data (figure 16). A qualitative agreement is observed between
the experiments and the simulation results. The results prove a reduction in the critical
capillary number for both two unequal sized system, as well as for the three droplet
system. The critical capillary number for the three droplet system is smaller than that
for the two droplet system. This clearly indicates that the polydispersity and many-body
interactions prevalent in an emulsion would certainly lead to a significant reduction in the
critical capillary number for the onset of chaining. This is in agreement with experimental
observations.

5. Conclusions

Experiments and numerical simulations indicate that the critical capillary number for two
unequal sized droplets is less than that for two equal sized droplets. The mechanism seems
to be the greater cone angle at contact subtended by the smaller droplet on account of the
strong electrohydrodynamic interaction with the bigger droplet. As expected, the critical
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Figure 15. (a) Coalescence after bridging three droplet system obtained for Ca = 0.15, for R2/R3 = 0.6, for
non-dimensional times (i) t = 0, (ii) t = 0.005, (iii) t = 0.01, (iv) t = 0.02. (b) Non-coalescence after bridging
three droplet system obtained for Ca = 0.15, for R2/R3 = 0.2, for non-dimensional times (i) t = 0, (ii) t =
0.005, (iii) t = 0.01, (iv) t = 0.02.

capillary number for three equal sized droplets is smaller than that for two equal sized
droplets, but, interestingly, the three unequal sized droplet system has a lower critical
capillary number than the three equal sized droplet system. Our results indicate that
multidroplet interaction in a polydisperse emulsion can indeed lead to a critical capillary
number much smaller than that for a two equal sized droplet system. This could be one
of the mechanisms for the experimental observation that the critical electric field for

953 A11-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.925


S. Roy, V. Anand and R.M. Thaokar

0.07

0.06

0.05

0.04

0.03
C
a c

0.02

0.01

0 0.2 0.4 0.6 0.8 1.0 1.2

2 Drop, experiment

2 Drop, simulation

3 Drop, experiment
3 Drop, simulation

χ

Figure 16. Phase boundary plots as obtained from BEM and experiments for both two and three droplet
systems.

dehydration of a water in oil emulsion is much smaller than that predicted by the critical
capillary number for a two equal sized droplet system.

Several questions remain unanswered. The discrepancy between the phase boundaries
obtained experimentally and analytically remains unexplained. Similarly, the effect of
finite oil and brine conductivity remains unexplored and has been shown to be important
in one of our earlier studies (Anand et al. 2019). Lastly, inertial effects ignored in this work
could become important in low continuous phase viscosity systems, and would be relevant
for crude oil emulsion desalters/electrocoalescers. These effects could significantly alter
the static bridge assumption of Bird et al. (2009), whereby the numerical predictions of
the phase boundaries could improve.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.925.
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