AN INCLUSION THEOREM FOR GENERALIZED CESARO AND RIESZ MEANS

A. MEIR

For a positive integer, p, a strictly increasing unbounded sequence of positive numbers $\{\lambda_n: n \geqslant 1\}$ and an arbitrary sequence of complex numbers $\{a_n\}$ let

(1)
$$A^{p}(\omega) = \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{p} a_{\nu},$$

(2)
$$C_n^p = \sum_{\nu=0}^n (\lambda_{n+1} - \lambda_{\nu}) \dots (\lambda_{n+p} - \lambda_{\nu}) a_{\nu}.$$

The series $\sum a_{\nu}$ is said to be (R, λ, p) summable to s if

(3)
$$R^{p}(\omega) \equiv \omega^{-p} A^{p}(\omega) \to s \quad \text{as } \omega \to \infty,$$

and (C, λ, p) summable to s if

(4)
$$t_n^p \equiv (\lambda_{n+1} \lambda_{n+2} \dots \lambda_{n+p})^{-1} C_n^p \to s \quad \text{as } n \to \infty.$$

D. C. Russell (2) proved that $(C, \lambda, p) \subseteq (R, \lambda, p)$ for any $\{\lambda_n\}$ and any $p \geqslant 0$. In the opposite direction he showed that $(R, \lambda, p) \subseteq (C, \lambda, p)$ for $p \geqslant 3$ if the sequence $\{\lambda_n\}$ satisfies the condition

(5)
$$\frac{\lambda_n}{\lambda_n - \lambda_{n-1}} = O\left(\frac{\lambda_{n+1}}{\lambda_{n+1} - \lambda_n}\right),$$

and for all $\{\lambda_n\}$ if p = 0, 1, 2. In a recent note, D. Borwein (1) established the same inclusion relation under another (independent) condition:

$$(6) \lambda_{n+1} = O(\lambda_n).$$

We shall prove here that the inclusion relation holds for all $p \ge 0$ without any restriction on the sequence $\{\lambda_n\}$.

THEOREM. $(R, \lambda, p) \subseteq (C, \lambda, p)$ for all sequences λ and $p \geqslant 0$.

The proof of the theorem is an immediate consequence of the following lemma.

LEMMA. For every $n \geqslant 1$ there exist real numbers $C_j^{(n)}$, $\omega_j^{(n)}$ (j = 0, 1, ..., p) satisfying

(7)
$$\sum_{i=0}^{p} C_{i}^{(n)} = 1,$$

(8)
$$|C_j^{(n)}| \leq H, \quad j = 0, 1, \ldots, p;$$

Received October 21, 1966.

736 A. MEIR

where H depends on p but not on n,

(9)
$$\lambda_n \leqslant \omega_j^{(n)} \leqslant \lambda_{n+p}, \qquad j = 0, 1, \dots, p,$$

and

(10)
$$t_n^p = \sum_{j=0}^p C_j^{(n)} R^p(\omega_j^{(n)}).$$

Proof of the lemma. We may take $p \ge 1$ in the proof. Let n be any fixed integer. We distinguish between two cases.

Case (i). Suppose that

$$(11) \lambda_{n+p}/\lambda_n \leqslant (p+1)^p.$$

From equations (3), (4), and (5) of (1) it follows that there exist $y_j^{(n)}$ and $\omega_j^{(n)}$ satisfying

$$\lambda_n \leqslant \omega_j^{(n)} \leqslant \lambda_{n+n},$$

$$|y_j^{(n)}| \leqslant (p+1)! (p+1)^{2p},$$

(14)
$$C_n^{p} = \sum_{i=0}^{p} y_i^{(n)} A^{p}(\omega_i^{(n)}).$$

Also it follows from the construction of the y_j 's that

(15)
$$\sum_{j=0}^{p} y_{j}^{(n)} (\omega_{j}^{(n)})^{p} = \lambda_{n+1} \dots \lambda_{n+p}.$$

Dividing both sides of (14) by $\lambda_{n+1} \dots \lambda_{n+p}$ we have that

(16)
$$t_n^p = \sum_{i=0}^p C_i^{(n)} R^p(\omega_i^{(n)}),$$

where

$$C_j^{(n)} = y_j^{(n)} \frac{(\omega_j^{(n)})^p}{\lambda_{n+1} \dots \lambda_{n+n}}.$$

From (15) it follows that

(17)
$$\sum_{j=0}^{p} C_{j}^{(n)} = 1$$

and from (11), (12), and (13) that

(18)
$$|C_i^{(n)}| \leq (p+1)! (p+1)^{2p+p^2}.$$

(12), (16), (17), and (18) prove the lemma in case (i).

Case (ii). Suppose that

$$\lambda_{n+p}/\lambda_n > (p+1)^p$$
.

Then there exists an integer r, $0 \le r \le p-1$, such that

$$\lambda_{n+r+1}/\lambda_{n+r} > p+1$$

and

(20)
$$\lambda_{n+j+1}/\lambda_{n+j} \leq p+1, \quad j=0,1,\ldots,r-1.$$

We define the numbers $\omega_j^{(n)}$ for $j = 0, 1, \ldots, p$ by

$$\omega_{j}^{(n)} = (j+1)\lambda_{n+r},$$

and the numbers $C_j^{(n)}$ by

(22)
$$\prod_{k=1}^{p} \left(1 - \frac{x}{\lambda_{n+k}} \right) \equiv \sum_{j=0}^{p} C_j^{(n)} \left(1 - \frac{x}{\omega_j^{(n)}} \right)^p.$$

It is easily seen that the identity (22) is equivalent to the system of equations:

(23)
$$\sum_{j=0}^{p} C_{j}^{(n)} (j+1)^{-k} = \beta_{k}^{(n)}, \qquad k = 0, 1, \dots, p,$$

where

$$\beta_k^{(n)} = \begin{pmatrix} p \\ k \end{pmatrix}^{-1} \sum_{i=1}^{n} (\lambda_{\nu_1} \cdot \lambda_{\nu_2} \cdot \ldots \cdot \lambda_{\nu_k})^{-1} \lambda_{n+r}^k$$

and the summation extends to all $\binom{p}{k}$ combinations of k integers $\nu_1, \nu_2, \ldots, \nu_k$ from $n+1, n+2, \ldots, n+p$. By (20) we have for all ν obeying

$$n+1 \leqslant \nu \leqslant n+p$$

that

$$0 < \lambda_{n+r}/\lambda_{\nu} \leq (p+1)^p$$

from which it follows easily that for $0 \le k \le p$

$$0 < \beta_k^{(n)} \leqslant (p+1)^{kp} \leqslant (p+1)^{p^2}.$$

Using Cramer's formula to solve (23) for $C_j^{(n)}$ we conclude by an elementary argument that there exists a constant $A = A_p$ independent of n such that

$$|C_j^{(n)}| \leqslant A.$$

It also follows from (23), with k = 0, that

(25)
$$\sum_{j=0}^{p} C_{j}^{(n)} = 1,$$

and from (18) and (20) that

(26)
$$\lambda_{n+\tau} \leqslant \omega_i^{(n)} < \lambda_{n+\tau+1}, \qquad i = 0, 1, \dots, p.$$

Now on putting $x = \lambda_{\nu}$ in (22), multiplying by a_{ν} , and summing over $1 \le \nu \le n + r$,

$$t_n^p = \sum_{j=0}^p C_j^{(n)} R^p(\omega_j^{(n)}),$$

738 A. MEIR

which, together with (24), (25), and (26), concludes the proof of the lemma in case (ii).

REFERENCES

- D. Borwein, On a generalized Cesàro summability method of integral order, Tôhoku Math. J., 18 (1966), 71-73.
- D. C. Russell, On generalized Cesàro means of integral order, Tôhoku Math. J., 17 (1965), 410-442.

The University of Alberta Edmonton, Alberta