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Abstract. We consider a robust class of random non-uniformly expanding local
homeomorphisms and Hölder continuous potentials with small variation. For each element
of this class we develop the thermodynamical formalism and prove the existence and
uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we
show that these equilibrium states and the random topological pressure vary continuously
in this setting.
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1. Introduction
The thermodynamic formalism, developed by Sinai, Ruelle and Bowen in the 1970s and
1990s, is a part of ergodic theory that came into existence through the application of
techniques and results from statistical mechanics in the realm of smooth dynamics. One
of its main goals is to describe the statistical behavior of a dynamical system via invariant
measures, called equilibrium states, that maximize the free energy of the system.

In the classical setting, an equilibrium state associated to a continuous transformation
T : M → M defined on a compact metric space M and a continuous potential φ : M →
R is an invariant probability measure μT ,φ characterized by the following variational
principle:

PT (φ) = hμT ,φ (T )+
∫
φ dμT ,φ = sup

μ∈MT (M)

{
hμ(T )+

∫
φ dμ

}
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where PT (φ) is the topological pressure, hμ(T ) denotes the entropy and the supremum is
taken over all invariant probability measures.

This theory was initiated by the pioneering work of Sinai [27] who proved the existence
and uniqueness of equilibrium states for Anosov diffeomorphisms and Hölder continuous
potentials. In subsequent works Bowen [11] and Ruelle [25] extended the results of Sinai
to uniformly hyperbolic systems and Hölder continuous potentials. Since then, important
contributions for this theory in the deterministic case have been given by several authors
(see, for example, [13, 21, 26, 29]).

In the context of random dynamical systems, the study of equilibrium states is still
quite far from being well understood, despite some advances in the area. Briefly, a random
dynamical system is a skew-product F(w, x) = (θ(w), fw(x)) where the randomness
is modeled by an invertible transformation θ preserving an ergodic measure P. We are
interested in understanding the dynamics of compositions

f nw := fθn−1(w) ◦ · · · ◦ fθ(w) ◦ fw.

As in the deterministic case, the random topological pressure of the system is the
supremum of the entropy plus the integration of the potential among all invariant
probability measures whose marginal is P. We refer the reader to [6] for the background to
and a treatment of this topic.

Having established a variational principle for random maps, it is natural to ask what
kinds of random dynamical systems and potentials we can develop the theory of equilib-
rium states. In [16] Kifer proved the existence and uniqueness of equilibrium states for
random uniformly expanding maps associated to Hölder continuous potentials. In [18] Liu
extended this result for uniformly hyperbolic random systems. Later, the thermodynamical
formalism was developed by Kifer [15] for random expansion in average transformations,
and by Mayer, Skorulski and Urbanski [20] for distance expanding random mappings.
In the context of random countable Markov shifts, the thermodynamic formalism was
proved by Denker, Kifer and Stadlbauer in [14]. The existence of equilibrium states with
positive Lyapunov exponents was proved by Arbieto, Matheus and Oliveira [5] for certain
non-uniformly expanding maps and continuous potentials with low variation. In [10]
Bilbao and Oliveira obtained uniqueness of maximizing entropy measures in this context.
Recently, Stadlbauer, Suzuki and Varandas [28] developed the thermodynamical formalism
for a wide class of random maps with non-uniform expansion and differentiable potentials
at high temperature.

In this work we develop the thermodynamical formalism for a robust class of random
non-uniformly expanding local homeomorphisms associated to Hölder continuous poten-
tials with small variation. First, we prove the existence of an invariant measure absolutely
continuous with respect to the leading eigenmeasures of the dual transfer operators. This
invariant measure is indeed an equilibrium state for the random dynamical system and it
is unique in the setting of non-uniformly expanding measures. Moreover, we show that
the random topological pressure is the integral of the leading eigenvalues of the transfer
operators. As an application of our techniques, we extend the results obtained in [5, 9] for
Hölder continuous potentials with small variation.
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Finally, we study the persistence of the equilibrium state under small perturbations of
the system. In the context of Sinai–Ruelle–Bowen measures, the continuous dependence
with respect to the dynamics was obtained by Alves and Viana [4] for maps with
non-uniform expansion. Such continuity was also proved by Baladi [7] and Young [30] for
random perturbations of uniformly hyperbolic systems and by Alves and Araújo in [1] for
random perturbations of non-uniformly expanding maps. More generally, the continuity of
the equilibrium state was proved by Castro and Varandas [12] for a class of non-uniformly
expanding maps and potentials with small variation. This property was also obtained
by Alves, Ramos and Siqueira [3] for non-uniformly hyperbolic systems and hyperbolic
potentials. Here, we deal with a family of random non-uniformly expanding maps and
potentials with small variation. We prove that the non-uniformly expanding equilibrium
state as well as the random topological pressure vary continuously within this family.

We organize this paper as follows. In §2 we present our setting and state the main
results. In §3 we introduce basic definitions such as random topological pressure and
projective metrics. In §4 we recall the definition of reference measures and prove some
properties that will be useful throughout the work. In §5 we use the projective metric
approach to obtain the thermodynamical formalism. In §6 we prove the existence and
uniqueness of equilibrium states among non-uniformly expanding measures. In §7 we
show the continuous dependence of these equilibrium states and the topological pressure
as functions of the random dynamics and the potential. In the final section we describe
some applications of our results.

2. Setting and main results
Let M be a compact and connected manifold with distance d and � the space of local
homeomorphisms defined on M . Consider a Polish space X (that is, a separable complete
metric space) and an invertible measurable map θ : X → X preserving an ergodic Borel
measure P of X. We recall that a random dynamical system is a continuous map f : X → �

given by w �→ fw ∈ � where (w, x) �→ fw(x) is measurable. For every n ≥ 0 we define

f 0
w := Id, f nw := fθn−1(w) ◦ · · · ◦ fθ(w) ◦ fw, f−n

w = (f nw)
−1.

The skew-product generated by the maps fw is the measurable transformation

F : X ×M → X ×M; F(w, x) = (θ(w), fw(x)).

In particular, Fn(w, x) = (θn(w), f nw(x)) for every n ∈ Z.
LetMP(X ×M) be the space of probability measures onX ×M such that the marginal

on � is P. Denote byMP(F ) ⊂MP(X ×M) the set of F-invariant measures. Note that,
by Rokhlin’s disintegration theorem [24], for every μ ∈MP(F ) there exists a system of
sample measures {μw}w∈X of μ such that

dμ(w, x) = dμw(x) dP(w).

We say that an F-invariant measure μ is ergodic if (F , μ) is ergodic.

2.1. Hypothesis about the generating maps. For each w ∈ X, let fw : M → M be a
local homeomorphism satisfying the following requirement: there exist δw > δ > 0 and a
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continuous function Lw : M → R+ such that for every x ∈ M we can find a neighborhood
Ux where fw : Ux → Bθ(w)(fw(x), δw) is invertible and

d(f−1
w (y), f−1

w (z)) ≤ Lw(x)d(y, z) for all y, z ∈ fw(Ux) = Bθ(w)(fw(x), δw).

As fw is a local homeomorphism defined on a compact metric space, we have that
the number of preimages deg(fw) : #f−1

w (x) is constant for all x ∈ M . We assume that
deg(F ) = supw deg(fw) < ∞.

Suppose that there are an open region Aw ⊂ M , constants σw > 1 and Lw ≥ 1 close
enough to 1 such that the following conditions hold.

(I) Lw(x) ≤ Lw for every x ∈ Aw and Lw(x) < σ−1
w for every x ∈ Acw = M \Aw.

(II) There exists a finite coveringUw of M, by open domains of injectivity for fw, such
thatAw can be covered by qw < deg(fw) elements ofUw.

(III) For every ε > 0 we can find some positive integer ñ = ñ(w, ε) satisfying
f ñ
θj (w)

(Bθj (w)(f
j
w(x), ε)) = M for any j ≥ 0.

We observe that the continuous function Lw(·) associates the Lipschitz constant of
the inverse branches. This property and the assumption δw > δ > 0 imply the uniform
openness Bθ(w)(fw(x), δ) ⊂ fw(Ux), and thus for every (w, x) ∈ X ×M there exists a
unique continuous inverse branch of fw defined on Bθ(w)(fw(x), δ) sending fw(x) to x.
Conditions (I) and (II) mean that expanding and contracting behavior may exist in M, but
at least one preimage is required for every point in the expanding region. Condition (III)
means that the skew-product F is topologically exact.

Next, we present the setting of potentials that will be considered. For α > 0, consider
the space Cα(M) of Hölder continuous functions ϕ : M → R endowed with the seminorm

|ϕ|α = sup
x 
=y

|ϕ(x)− ϕ(y)|
d(x, y)α

and the norm

‖ϕ‖α = ‖ϕ‖∞ + |ϕ|α ,

where ‖ · ‖∞ stands for the sup norm. Denote by L
1
P
(X, Cα(M)) the space of all measur-

able functions φ : X ×M → R such that for all w ∈ X, the fiber potential φw : M → R

defined by φw(x) := φ(w, x) is Hölder continuous and ‖φ‖1 = ∫
X
‖φw‖∞ dP(w) < +∞.

For φ ∈ L
1
P
(X, Cα(M)) we assume the existence of some positive εφ > 0 satisfying, for

all w ∈ X,

sup φw − inf φw + εφ < log deg fw − log qw and |eφw |α < εφe
inf φw . (IV)

Notice that all potentials φ ∈ L
1
P
(X, Cα(M)) in a neighborhood of zero satisfy condition

(IV). In the literature this class of potentials is referred to as small variation.
Let pw := deg fw − qw. The choice of εφ and Lw must satisfy, for each w ∈ X,

γw := eεφ
[
pwσ

−α
w + qwL

α
w(1 + (Lw − 1)α)

deg(fw)

]
+ εφL

α
w

[
1 +m(diamM)α

]
≤ γ < 1.

(V)
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2.2. Statement of results. Consider the space C0(M) of real continuous functions ψ :
M → R endowed with the uniform convergence norm. Given w ∈ X, let fw : M → M be
the dynamics and φw : M → R be the potential on the fiber. The Ruelle–Perron–Frobenius
operator or simply transfer operator associated to (fw, φw) is the linear operator Lw :
C0(M) → C0(M) defined by

Lw(ψ)(x) =
∑

y∈f−1
w (x)

eφw(y)ψ(y).

Its dual operator L∗
w : [C0(M)]∗ → [C0(M)]∗ acts on the space of Borel measures as

follows: ∫
ψ dL∗

w(ρθ(w)) =
∫
Lw(ψ) dρθ(w).

In our first result we describe the thermodynamic formalism for random non-uniformly
expanding maps.

THEOREM A. Consider a random dynamical system F : X ×M → X ×M satisfying
conditions (I), (II) and (III). For any potential φ : X ×M → R satisfying (IV) and (V)
the following assertions hold.
(1) There exists a unique measurable family of probabilities {νw}w∈X such that

L∗
wνθ(w) = λwνw where λw = νθ(w)(Lw(1)), for almost every w ∈ X.

(3) There exists a unique measurable family of Hölder continuous functions {hw}w∈X
bounded away from zero and infinity such that

Lwhw = λwhθ(w) and νw(hw) = 1 for almost every w ∈ X.

(3) The probability measure μ := {μw}w∈X where μw := hwνw is F-invariant.

We also derive that the F-invariant family {μw}w∈X obtained in the last theorem has an
exponential decay of correlations for Hölder continuous observables.

THEOREM B. There exists 0 < τ < 1 such that for any ϕ ∈ L1(μθn(w)) and ψ ∈ Cα(M)
there exists a positive constant K(ϕ, ψ) satisfying∣∣∣∣

∫
(ϕ ◦ f nw)ψ dμw −

∫
ϕ dμθn(w)

∫
ψ dμw

∣∣∣∣ ≤ K(ϕ, ψ)τn,

for all n ≥ 1.

The weak hyperbolicity property of the generating maps allows us to prove that the
F-invariant measure given by Theorem A is indeed an equilibrium state for the random
dynamical system. Moreover, it is unique if we consider only the measures whose pressure
is located on the expanding region. We specify the setting as follows.

Suppose that there exists c > 0 such that for P-almost every w ∈ X we can find L̃w
close enough to 1 and σ̃w > 1 satisfying for every j ≥ 0 that

Lθj (w) ≤ L̃w, σ̃w ≤ σθj (w) and L̃ρwσ̃
−(1−ρ)
w < e−2c < 1, (VI)

where ρ is given by Lemma 4.2.
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We say that a subset H of X ×M is non-uniformly expanding if there exists some
positive constant c > 0 such that

H :=
{
(w, x) ∈ X ×M; lim sup

n→+∞
1
n

n−1∑
j=0

log Lθj (w)(f
j
w(x)) � −2c < 0

}
. (�)

A probability measure η, not necessarily invariant, is called non-uniformly expanding with
exponent c if η(H) = 1. Condition (VI) above will be used to prove that the F-invariant
measure given by Theorem A is non-uniformly expanding.

Our next result states uniqueness of equilibrium states for random dynamical systems
among non-uniformly expanding measures.

THEOREM C. Let F : X ×M → X ×M be a random dynamical system and φ : X ×
M → R be a potential function satisfying conditions (I)–(VI). There exists only one
F-invariant non-uniformly expanding measure μF ,φ ∈MP(F ) maximizing the variational
principle

PF |θ (φ) =
∫

log λw dP(w) = hμF ,φ (F |θ)+
∫
φ dμF ,φ = sup

{
hμ(F |θ)+

∫
φ dμ

}

where the supremum is taken in the set MP(F ). Thus, μF ,φ is the unique non-uniformly
expanding equilibrium state of (F |θ , φ).

Once we have proved uniqueness of equilibrium states, we will investigate its persis-
tence under small perturbations of the random system and the potential.

As defined above, consider the space L
1
P
(X, Cα(M)) of integrable potentials and let

D ⊂ � be the space of C1 local diffeomorphisms defined on M. We shall consider the
product topology onD× L

1
P
(X, Cα(M)). We fix an invertible transformation θ : X → X

preserving an ergodic measure P and consider the family S of skew-products generated by
maps ofD,

F : X ×M → X ×M; F(w, x) = (θ(w), fw(x)),

where (w, x) �→ fw ∈ D is measurable. Now we define the family

H = {(F , φ) ∈ S× L
1
P
(X, Cα(M)); (F , φ) satisfying conditions (I)–(VI)}.

By Theorem C, each (F , φ) ∈ H has only one non-uniformly expanding equilibrium state.
Our last main result establishes the continuity in the weak star topology of such equilibria
within this family; this property is called equilibrium stability. We also prove the continuity
of the random topological pressure in this setting.

THEOREM D. The non-uniformly expanding equilibrium state and the topological pres-
sure vary continuously onH.

We point out that we are fixing an invertible transformation θ : X → X preserving an
ergodic measure P. However, the proof of Theorem D remains true if we vary θ in the
space of continuous functions.
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3. Preliminaries
In this section we state some basic definitions and results about random dynamical systems
that will be used throughout the text. We also recall the notion of hyperbolic times and
projective metrics.

3.1. Entropy and topological pressure. We start with the definition of entropy and
topological pressure for random transformations. The reader can consult more results and
properties in Kifer [15] and Liu [18].

Let μ ∈MP(F ) be an F-invariant measure. Given a finite measurable partition ξ of M,
we set

hμ(F |θ ; ξ) := lim
n→+∞

1
n

∫
X

Hμw

( n−1∨
j=0

f−j
w (ξ)

)
dP(w)

where Hν(ξ) = − ∑
P∈ξ ν(P ) log ν(P ) for a finite partition ξ and μw is the sample

measure of μ. The entropy of (F |θ , μ) is

hμ(F |θ) := sup
ξ

{hμ(F |θ ; ξ)}

where the supremum is taken over all finite measurable partitions of M.
Denote by L

1
P
(X, C0(M)) the space of all measurable functions φ : X ×M → R such

that φw : M → R defined by φw(x) := φ(w, x) is continuous for all w ∈ X and ‖φ‖1 =∫
X
‖φw‖∞ dP(w) < +∞.
Fix w ∈ X. Given ε > 0 and an integer n ≥ 1, we say that a subset Fn ⊆ M is

(w, n, ε)-separated if for every two distinct points y, z ∈ Fn there exists some j ∈
{0, 1, . . . , n− 1} such that d(f jw(y), f

j
w(z)) > ε.

For φ ∈ L
1
P
(X, C0(M)), ε > 0 and n ≥ 1 we consider

PF |θ (φ)(w, n, ε) = sup
{ ∑
y∈Fn

eSnφ(w,y); Fn is a (w, n, ε)-separated set
}

where Snφ(w, y) := ∑n−1
j=0 φθj (w)(f

j
w(y)).

The random topological pressure of φ relative to θ is defined by

PF |θ (φ) = lim
ε→0

lim sup
n→∞

1
n

∫
X

log PF |θ (φ)(w, n, ε) dP(w).

Thus, the following pressure map is well defined:

PF |θ : L
1
P
(X, C0(M)) −→ R ∪ {∞}

φ �−→ PF |θ (φ).

In particular, the topological entropy of F relative to θ is htop(F |θ ) = PF |θ (0).
The topological pressure and the entropy are related by the well-known variational

principle. The reader can see a proof of this result in [18].
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THEOREM 3.1. (Variational principle) Assume that (X, P) is a Lebesgue space. Then for
any φ ∈ L

1
P
(X, C0(M)) we have

PF |θ (φ) = sup
μ∈MP(F )

(
hμ(F |θ)+

∫
φ dμ

)
. (1)

Moreover, when P is ergodic, we can consider the supremum over ergodic measures.

Motivated by the variational principle, we say that an F-invariant measure μ ∈MP(F )

is an equilibrium state for (F |θ , φ) relative to θ if the supremum (1) is attained by μ,
that is,

PF |θ (φ) = hμ(F |θ)+
∫
φ dμ.

Next we define the random topological pressure via open coverings and via dynamic
balls. We take as reference the deterministic case where this approach is characteristic in
dimension theory. We refer the reader to [22, 28] for more details.

Let w ∈ X and denote by U a finite open cover of M. Denote by Sn(U) the set
of all strings U = {Ui0 , . . . , Uin−1 ; Uij ∈ U} of length n = n(U) and put S = S(U) =⋃
n≥0 Sn(U). Given a string U = {Ui0 , . . . , Uin−1} ∈ S(U), we consider the cylinder

Xw = Xw(U) := {x ∈ M; f jw(x) ∈ Uij for j = 0, . . . , n(U)− 1}.
Let F(N ,w) be the collection of all cylinders of depth at least N, that is,

F(N ,w) = F(N ,w)(U) = {Xw(U); U ∈ Sn(U) for n ≥ N}.
For β ∈ R and φ ∈ L

1
P
(X, C0(M)) let

mβ(w, φ, F |θ ,U, N) = inf
F

{ ∑
Xw∈F(N ,w)

e−βn(U)+Sn(U)φ(Xw)
}

, (2)

where Sn(U)φ(Xw) = supy∈Xw
∑n(U)−1
j=0 φθj (w)(f

j
w(y)) and the infimum is taken over all

finite families F of F(N ,w) in order that (2) is measurable in w (see, for example, §9 of
[28]). As N goes to infinity we define

mβ(w, φ, F |θ ,U) = lim
N→∞ mβ(w, φ, F |θ ,U, N).

The existence of the limit above is guaranteed by the function mβ(w, φ, F |θ ,U, N) to be
increasing with N. Taking the infimum over β we call

PF |θ (w, φ,U) = inf{ β : mβ(w, φ, F |θ ,U) = 0}.
Let |U| = max{diamUi ; Ui ⊂ U} be the diameter of the coverU and consider

PF |θ (w, φ) = lim|U|→0
PF |θ (w, φ,U).

In [22, Theorem 11.1] it was showed that this quantity is well defined and does not depend
on the cover U. Moreover, since all quantities defined above are measurable functions of
w ∈ X (see, for example, §9 of [28]), we can define the random topological pressure of
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(F |θ , φ) as

PF |θ (φ) =
∫
PF |θ (w, φ) dP(w).

In the following we present another way to define the random topological pressure. We fix
w ∈ X and ε > 0. For n ∈ N, x ∈ M , let Bw(x, n, ε) be the dynamic ball

Bw(x, n, ε) := {y ∈ M : d(f jw(x), f
j
w(y)) < ε, for 0 ≤ j ≤ n}.

We denote by G(N ,w) the collection of dynamic balls:

G(N ,w) := {Bw(x, n, ε) : x ∈ M and n ≥ N}.
Let Uw be a finite or countable family of G(N ,w) which covers M. For every β ∈ R and
φ ∈ L

1
P
(X, C0(M)) let

mβ(w, φ, F |θ , ε, N) = inf
Uw⊂G(N ,w)

{ ∑
Bw(x,n,ε)∈Uw

e−βn+Snφ(Bw(x,n,ε))
}

,

where Snφ(Bw(x, n, ε)) = supy∈Bw(x,n,ε)
∑n−1
j=0 φθj (w)(f

j
w(y)). When N goes to infinity

we consider

mβ(w, φ, F |θ , ε) = lim
N→∞ mβ(w, φ, F |θ , ε, N).

Taking the infimum over β, we define

PF |θ (w, φ, ε) = inf{β : mβ(w, φ, F |θ , ε) = 0}.
Since PF |θ (w, φ, ε) is decreasing on ε we can take the limit

PF |θ (w, φ) = lim
ε→0

PF |θ (w, φ, ε).

Now if we consider a finite open coverU of M with Lebesgue number ε(U) we have

Bw
(
x, n(U), 1

2ε
) ⊂ Xw(U) ⊂ Bw(x, n(U), 2|U|)

which implies that

PF |θ (w, φ) = lim
ε→0

PF |θ (w, φ, ε) = lim|U|→0
PF |θ (w, φ,U).

Therefore, the definitions of random topological pressure via coverings and via dynamic
balls coincide.

3.2. Hyperbolic times. In order to explore the non-uniform expansion of the set H we
need the notion of hyperbolic times. The reader can obtain more details of this concept in
[2, 5]. In our context, the function Lw(·) plays the role of the derivative ‖Dfw(·)−1‖.

Definition 3.1. Let w ∈ X and Lw : X → R be as in §2. We say that n ∈ N is a
c-hyperbolic time for (w, x) ∈ X ×M if

n−1∏
j=n−k

Lθj (w)(f
j
w(x)) � e−ck for every 1 � k � n. (3)
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It is a well-known fact that if η is a non-uniformly expanding measure with exponent c
then η-almost every point (w, x) ∈ H has infinitely many c-hyperbolic times. A proof of
this result can be found in [2].

The uniform domination required in condition (VI) will allow us to prove that the
F-invariant measure μ given by Theorem A is non-uniformly expanding. Thus, we will
conclude that μ-almost every point (w, x) ∈ X ×M has infinitely many hyperbolic times.

LEMMA 3.1. Given c > 0, there exists δ̃ = δ̃(c) > 0 such that, for P-almost every w ∈ X,
if n is a c-hyperbolic time of (w, x) then the dynamical ball Bw(x, n, δ̃) around x is
mapped homeomorphically onto the ball Bθn(w)(f nw(x), δ̃). Moreover, for z ∈ Bw(x, n, δ̃)
and f nw(z) ∈ Bθn(w)(f nw(x), δ̃), we have

d(f n−kw (z), f n−kw (x)) ≤ e−ck/2d(f nw(z), f nw(x)),

for each 1 ≤ k ≤ n.

We point out that the proof of the lemma above is analogous to the proof of Lemma 5.5
in [5] since in the definition of hyperbolic times we just replace the function ‖Dfw(·)−1‖
by the Lipschitz function of the inverse branches Lw(·).

Let B be the Borel σ -algebra of M . We say that ξ is a μ-generating partition if

+∞∨
j=0

f−j
w (ξ) ≡μ B for P-almost every w ∈ X.

The next result states that every non-uniformly expanding measure admits a generating
partition. See a proof of this in [5].

LEMMA 3.2. Given a non-uniformly expanding measure η with exponent c > 0, consider
δ̃ = δ̃(c) > 0 as in Lemma 3.1. Then any measurable partition P of M with diameter less
than δ̃ is an η-generating partition.

3.3. Projective metrics. To finish this section we present the definition of projective
metrics associated to convex cones. This theory was introduced by Birkhoff [10] and
provides an interesting way to obtain spectral properties of the transfer operator (see, for
instance, [8, 19]).

Consider a Banach space V. We say that a subset C ⊂ V \ {0} is a cone in V if C ∩
(−C) = {0} and λ · v ∈ C for all v ∈ C, λ > 0. Moreover, a cone C is convex if v, w ∈ C
and λ, η > 0 and we have λ · v + η · w ∈ C. The closure of a cone C, denoted by C̄, is the
set

C̄ := {w ∈ V | there are v ∈ C and λn → 0 such that (w + λnv) ∈ C for all n ≥ 1}.
We say that a cone C is closed if C̄ = C ∪ {0}.

Consider a closed convex cone C. Given v, w ∈ C, define

A(v, w) = sup{t > 0 : w − tv ∈ C} and B(v, w) = inf{s > 0 : sv − w ∈ C},
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where by convention sup ∅ = 0 and inf ∅ = +∞. It is straightforward to check that
A(v, w) is finite, B(v, w) is positive and A(v, w) ≤ B(v, w) for all v, w ∈ C. We set

�(v, w) = log
(
B(v, w)
A(v, w)

)
.

From the properties of A and B it follows that �(v, w) is well defined and takes values
in [0, +∞]. Notice that �(v, w) = 0 if and only if v = tw for some t > 0. Therefore, �
defines a pseudo-metric in the cone C, and so it induces a metric on a projective quotient
space of C. This metric is called the projective metric of C.

It is easy to verify that the projective metric depends monotonically on the cone: if
C1 ⊂ C2 are two convex cones in V, then �2(v, w) ≤ �1(v, w) for any v, w ∈ C1, where
�1 and �2 are the projective metrics in C1 and C2, respectively.

In particular, if V1, V2 are complete vector spaces and L : V1 → V2 is a linear
operator such that L(C1) ⊂ C2 for C1, C2 convex cones in V1, V2 respectively, then
�2(L(v), L(w)) ≤ �1(v, w) for any v, w ∈ C1, where �1 and �2 are the projective
metrics in C1 and C2, respectively. The next result states that L will be a strict contraction
if L(C1) has finite diameter in C2.

THEOREM 3.2. Let C1 and C2 be closed convex cones in the Banach spaces V1 and V2,
respectively. If L : V1 → V2 is a linear operator such that L(C1) ⊂ C2 and � =
diam�2(L(C1)) < ∞, then

�2(L(ϕ), L(ψ)) ≤ (1 − e−�) ·�1(ϕ, ψ) for all ϕ, ψ ∈ C1.

In this work we will restrict our attention to cones of locally Hölder continuous
observables. We prove that, applying the last result, the transfer operator is a contraction
in this setting.

We fix δ > 0 as in §2 and we say that a function ϕ : M → R is (C, α)-Hölder
continuous in balls of radius δ if for some constant C > 0 it follows that

|ϕ(x)− ϕ(y)| ≤ Cd(x, y)α for all y ∈ B(x, δ).

Denote by |ϕ|α,δ the smallest Hölder constant of ϕ in balls of radius δ > 0.
The next lemma states that every locally Hölder continuous function defined on a

compact and connected metric space is Hölder continuous.

LEMMA 3.3. Let M be a compact and connected metric space. Given δ > 0, there exists
m � 1 (depending only on δ) such that if ϕ : M → R is (C, α)-Hölder continuous in balls
of radius δ then it is (Cm, α)-Hölder continuous.

Proof. The compactness allows us to cover M with N balls of radius δ where
N depends only on δ. Moreover, since M is connected, given x, y ∈ M there are
z0 = x, z1 . . . zN+1 = y satisfying d(zi , zi+1) ≤ δ and d(zi , zi+1) ≤ d(x, y) for all
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i = 0, . . . , N . Since ϕ is (C, α)-Hölder continuous in balls of radius δ we have that

|ϕ(x)− ϕ(y)| ≤
N∑
i=0

|ϕ(zi)− ϕ(zi+1)| ≤
N∑
i=0

Cd(zi , zi+1)
α ≤ C(N+1)d(x, y)α

which implies that ϕ is (C ·m, α)-Hölder continuous for m = N + 1.

Notice that the same argument used in the lemma above gives an estimate for the Hölder
constant of ϕ in balls of radius (1 + r)δ for 0 < r ≤ 1. Indeed, let r ∈ [0, 1] and x, y ∈ M
with d(x, y) < (1 + r)δ. Since M is connected there exists z ∈ M such that d(x, z) = δ

and d(z, y) < rd(x, z). Thus,

|ϕ(x)− ϕ(y)| ≤ |ϕ(x)− ϕ(z)| + |ϕ(z)− ϕ(y)|
≤ Cd(x, z)α + Cd(z, y)α ≤ C(1 + rα)d(x, y)α .

Therefore, we conclude that if ϕ : M → R is (C, α)-Hölder continuous in balls of radius δ
then ϕ is (C(1 + rα), α)-Hölder continuous in balls of radius (1 + r)δ for each 0 < r ≤ 1.

For each k > 0 we consider the convex cone of locally Hölder continuous observables
defined on M by

Ckδ =
{
ϕ : M → R : ϕ > 0 and

|ϕ|α,δ

inf ϕ
≤ k

}
. (4)

It follows by definition that Ck1
δ ⊂ Ck2,

δ if k1 ≤ k2.
From Lemma 3.3 and from the definition of |ϕ|α,δ we have that

sup ϕ − inf ϕ ≤ |ϕ|α,δ ·m · d(x, y)α ≤ (inf ϕ · k) ·m · (diam M)α , (5)

and thus sup ϕ ≤ inf ϕ · (1 +m(diam M)αk) for any ϕ ∈ Ckδ .
In the cone Ckδ of locally Hölder continuous observables we can give a more explicit

expression for the projective metric. We refer the reader to [12] for its proof.

LEMMA 3.4. The projective metric �k in the cone Ckδ is given by

�k(ϕ, ψ) = log
(
Bk(ϕ, ψ)
Ak(ϕ, ψ)

)
,

where

Ak(ϕ, ψ) := inf
d(x,y)<δ,z∈M

k|x − y|αψ(z)− (ψ(x)− ψ(y))

k|x − y|αϕ(z)− (ϕ(x)− ϕ(y))

and

Bk(ϕ, ψ) := sup
d(x,y)<δ,z∈M

k|x − y|αψ(z)− (ψ(x)− ψ(y))

k|x − y|αϕ(z)− (ϕ(x)− ϕ(y))
.

In particular, we have that

Ak(ϕ, ψ) ≤ inf
x∈M

{
ϕ(x)

ψ(x)

}
and Bk(ϕ, ψ) ≥ sup

x∈M

{
ϕ(x)

ψ(x)

}
.

From the expression for the projective metric in the cone Ckδ one can prove that its
diameter is finite for k large enough; see [12].
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PROPOSITION 3.1. For 0 < γ < 1, the cone Cγ kδ has finite diameter in Ckδ .

4. Reference measure
For w ∈ X, let fw : M → M be the fiber dynamics and φw : M → R be the potential. Let
Lw : C0(M) → C0(M) be the transfer operator associated to (fw, φw), defined by

Lw(ψ)(x) =
∑

y∈f−1
w (x)

eφw(y)ψ(y).

Consider also its dual operator L∗
w : [C0(M)]∗ → [C0(M)]∗ which satisfies∫

ψ dL∗
w(ρθ(w)) =

∫
Lw(ψ) dρθ(w).

We say that a probability measure νw ∈M1(M) is a reference measure associated to
λw ∈ R if νw satisfies

L∗
w(νθ(w)) = λwνw.

As in the deterministic case, by applying the Schauder–Tychonoff fixed point theorem, it
is straightforward to prove the existence of a system of reference measures {νw}w∈X where
νw is associated to λw given by

λw = L∗
wνθ(w)(1) = νθ(w)(Lw(1)) (6)

for P-almost every w ∈ X. See [20] for details. In what follows we derive some properties
of the reference measure.

The Jacobian of a measure η with respect to f is a measurable function Jηf such that

η(f (A)) =
∫
A

Jηf dη,

for any measurable set A where f |A is injective.

LEMMA 4.1. The Jacobian of νw with respect to fw is given by Jνwfw = λwe
−φw .

Moreover, νw is an open measure. In particular, supp(νw) = M .

Proof. Let A ⊂ M be a measurable set such that fw|A is injective. Notice that, for any
bounded sequence {ζn} ∈ C0(M) which converges to the characteristic function XA of A,
we have∫
M

λwe
−φwζn dνw =

∫
M

e−φwζn d(L∗
wνθ(w)) =

∫
M

Lw(e−φwζn)(y) dνθ(w)(y)

=
∫
M

∑
fw(z)=y

ζn(z) dνθ(w)(y) =
∫
M

∑
fw(z)=y

ζn(f
−1
w (y)) dνθ(w)(y).

Since
∫
M

∑
fw(z)=y ζn(f

−1
w (y)) dνθ(w)(y) converges to

∫
M
XA(f−1

w (y)) dνθ(w)(y) and∫
M
XA(f−1

w (y)) dνθ(w)(y) = ∫
M
Xfw(A) dνθ(w) = νθ(w)(fw(A)) we conclude that

νθ(w)(fw(A)) =
∫
A

λwe
−φw dνw.
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Moreover, by induction, we obtain for every n ∈ N that

νθn(w)(f
n
w(A)) =

∫
A

λnwe
−Snφw dνw, (7)

where λnw = λθn−1(w)λθn−2(w) · · · λθ(w)λw.
Now we prove that νw is an open measure. By contradiction, suppose the existence of

some non-empty open set Uw ⊂ M such that νw(Uw) = 0. By the exactness assumption,
we can take ñ ∈ N such that f ñw(Uw) = M . Partitioning Uw into mensurable subsets
Uw,1 . . . Uw,k where f ñw|Uw,j is injective for j = 1 . . . k, we have

νθñ(w)(M) ≤
k∑
j=1

νθñ(w)(f
ñ
w(Uw,j )) =

k∑
j=1

∫
Uw ,j

Jνwf
ñ
w dνw = 0

which is a contradiction. This completes the proof.

In the next proposition we show that the family {νw}w satisfies a Gibbs property at
hyperbolic times.

PROPOSITION 4.1. Let n be a hyperbolic time for (w, x). For every 0 < ε ≤ δ̃ there exist
Kε(w) > 0 and 0 < γε(θ

n(w)) ≤ 1 such that, for all y ∈ Bw(x, n, ε),

γε(θ
n(w))Kε(w)

−1 ≤ νw(Bw(x, n, ε))
exp(Snφw(y)− log λnw)

≤ Kε(w)

where Snφw(y) = ∑n−1
j=0 φθj (w)(f

j
w(y)) and λnw = λwλθ(w) · · · λθn−1(w).

Proof. Fix 0 < ε ≤ δ̃. From Lemma 3.1 and condition (IV) we get

|Snφw(z)− Snφw(y)| ≤
n−1∑
k=0

|φθn−k(w)(f n−kw (z))− φθn−k(w)(f
n−k
w (y))|

≤
n−1∑
k=0

|φθn−k(w)|αe−ck/2d(f nw(z), f nw(y))

≤ ε

∞∑
k=0

|φθk(w)|αe−ck/2 ≤ Kε(w)

for every z, y ∈ Bw(x, n, ε). By once again applying Lemma 3.1 we know that f nw maps
homeomorphically Bw(x, n, ε) into the ball Bθn(w)(f nw(x), ε). Hence, since the Jacobian
of νw is bounded away from zero and infinity we can write

0 < γε(θ
n(w)) ≤ νθn(w)(f

n
w(Bw(x, n, ε))) =

∫
Bw(x,n,ε)

λnwe
−Snφw(z) dνw ≤ 1

where γε(θn(w)) depends only on the radius ε of the ball Bθn(w)(f nw(x), ε). Therefore, for
every y ∈ Bw(x, n, ε) it follows that

γε(θ
n(w)) ≤

∫
Bw(x,n,ε)

λnwe
−Snφw(z) dνw =

∫
Bw(x,n,ε)

λnwe
−Snφw(y)

(
λnwe

−Snφw(z)

λnwe
−Snφw(y)

)
dνw

≤ Kε(w)e
−Snφw(y)+log λnwνw(Bw(x, n, ε)).
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Applying the same argument, we have that

e−Snφw(y)+log λnwνw(Bw(x, n, ε)) ≤ Kε(w)

∫
Bw(x,n,ε)

λnwe
−Snφw(y)

(
λnwe

−Snφw(z)

λnwe
−Snφw(y)

)
dνw

which completes the proof.

Remark 4.1. It is possible to obtain a lower bound for γε(θn(w)). Indeed, from hypothesis
we may find ñ = ñ(w, ε) such that f ñθn(w)(Bθn(w)(f

n
w(x), ε)) = M and by definition of

Jacobian it follows that

1 = νθn+ñ(w)(f
ñ
θn(w)(Bθn(w)(f

n
w(x), ε)))

≤
∫
Bθn(w)(f

n
w(x),ε)

λñθn(w)e
−Sñφθn(w) dνθn(w)

≤ λñθn(w)e
−ñ inf φθn(w)νθn(w)(Bθn(w)(f

n
w(x), ε)).

Thus, eñ inf φθn(w)−log λñ
θn(w) ≤ γε(θ

n(w)). Since ñ depends only on w ∈ X and ε > 0 we
conclude that γε(θn(w)) is uniformly bounded.

Consider c > 0 given by condition (VI). Given w ∈ X, let Hw ⊂ M be the subset of M
such that (w, x) has infinitely many hyperbolic times, that is,

Hw :=
{
x ∈ M; lim sup

n→+∞
1
n

n−1∑
j=0

log Lθj (w)(f
j
w(x)) � −2c < 0

}
.

We next prove that νw(Hw) = 1 for P-almost every w ∈ X.
Recall that we fix εφ > 0 small satisfying εφ < infw(log(deg fw)− log qw). In view of

(IV) we may find 0 < ε0 < εφ such that

sup φw − inf φw + ε0 < log(deg fw)− log qw for all w ∈ X. (8)

LetP be a partition of M with cardinality #P = k. We suppose without loss of generality
that the set Aw is contained in the first qw elements of P for all w ∈ X. Consider the
numbers

p̄w = k − qw, q̂ = sup
w∈X

qw, q̄ = inf
w∈X qw and p̂ = sup

w∈X
p̄w.

These numbers are well defined since we assume that deg(F ) = supw deg(fw) < ∞.
For ρ ∈ (0, 1) and n ∈ N let I (ρ, n) be the set of itinerates

I (ρ, n) = {(iw . . . iθn−1(w)) ∈ {1 . . . k}n; #{0 ≤ j ≤ n− 1 : iθj (w) ≤ qθj (w)} > ρn}
and consider

Cρ := lim sup
n

1
n

log #I (ρ, n).

LEMMA 4.2. [29, Lemma 3.1] Given ε > 0, there exists ρ0 ∈ (0, 1) such that Cρ <
log q̂ + ε for every ρ ∈ (ρ0, 1).
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Proof. Notice that #I (ρ, n) ≤ ∑n
k=[ρn]

(
n
k

)
qwqθ(w) · · · qθk−1(w)pwpθ(w) · · · pθn−(k−1)(w).

By applying Stirling’s formula we have
n∑

k=[ρn]

(
n

k

)
= n

2

(
n

[ρn]

)
≤ C1 exp (2t (1 − ρ)n) for ρ >

1
2

.

Thus, there exist C1 and t > 0 such that #I (ρ, n) ≤ C1 exp (2t (1 − ρ)n) q̂np̂(1−ρ)n.
Taking the limit as n goes to infinity, we have

Cρ = lim sup
n

1
n

log #I (ρ, n) ≤ log q̂ + ε

for any ρ close enough to 1.

From this lemma we can fix ρ < 1 such that

Cρ < log q̂ + ε0

4
.

Recalling equation (8) and the definition of λw in (6), we have that

λw ≥ deg fweinf φw ≥ elog(deg fw)+sup φw−log(deg fw)+log qw+ε0 = e(log qw+sup φw+ε0).

Now, using Lemma 4.1, we obtain that

Jνwfw = λwe
−φw ≥ e(sup φw+log qw+ε0−φw) ≥ elog qw+ε0 > qw. (9)

PROPOSITION 4.2. We have νw(Hw) = 1 for almost every w ∈ X.

Proof. Given n ∈ N, denote by Bw(n) the set of points x ∈ M whose frequency of visits
to {Aθj (w)}0≤j≤n−1 up to time n is at least ρ, that is,

Bw(n) =
{
x ∈ M

∣∣∣∣ 1
n

#{0 ≤ j ≤ n− 1 : f jw(x) ∈ Aθj (w)} ≥ ρ

}
.

Let P(n) be the partition
∨n−1
j=0(f

j
w)

−1P. We cover Bw(n) by elements of P(n) and since
f nw is injective on every P ∈ P(n), we may use (9) to obtain

1 ≥ νθn(w)(f
n
w(P )) =

∫
P

Jνw(f
n
w) dνw =

∫
P

n−1∏
j=0

Jν
θj (w)

fθj (w) dνw

≥
n−1∏
j=0

e
(log q

θj (w)
+ε0)νw(P ) ≥ e(log q̄+ε0)nνw(P ).

Thus,

νw(P ) ≤ e−(log q̄+ε0)n.

Since we can assume q̂ < q̄eε0/2 it follows that

νw(Bw(n)) ≤ #I (ρ, n)e−(log q̄+ε0)n ≤ e(log q̂+ε0/4)ne−(log q̄+ε0)n ≤ e(log q̂/q̄−ε0/2)n.

Hence, the measure νw(Bw(n)) decreases exponentially fast as n goes to infinity. Applying
the Borel–Cantelli lemma, we conclude that νw-almost every point belongs to Bw(n) for

https://doi.org/10.1017/etds.2022.44 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.44


Uniqueness and stability of equilibrium states 2605

at most finitely many values of n. Then, in view of (VI) we obtain for n large enough that

n−1∑
j=0

log Lθj (w)(f
j
w(x)) ≤ ρ log L̃w + (1 − ρ) log σ̃−1

w ≤ −2c < 0

which proves that νw-almost every point has infinitely many hyperbolic times.

Notice that from the last proposition, and recalling that νw is an open measure, we
conclude that Hw is dense in M.

5. Transfer operator
Here we prove Theorems A and B. We use the projective metric approach to show that
the transfer operator is a contraction in some cone of locally Hölder continuous functions.
This contraction implies the existence of the invariant family {hw}w uniformly bounded
away from zero and infinity. Recalling the reference measure νw constructed in the
previous section, we define the probability measure μw := hwνw. From the exponential
approximation of functions in the cone to the family {hw}w we derive that μw has an
exponential decay of correlations.

5.1. Invariant family. For the construction of the invariant family {hw}w we follow the
ideas of Castro and Varandas [12].

Let δ > 0 be as in §2 and consider for each k > 0 the cone of locally Hölder continuous
functions

Ckδ(w) =
{
ϕw : M → R : ϕw > 0 and

|ϕw|α,δ

inf ϕw
≤ k

}
. (10)

Since the cone does not depend on w, we denote this by Ckδ . The next proposition shows its
invariance by the transfer operator.

PROPOSITION 5.1. For every w ∈ X, there exists 0 < γw < 1 such that

Lw(Ckδ) ⊂ Cγwkδ ⊂ Ckδ
for some positive constant k large enough.

Proof. For any ϕ ∈ Ckδ we will show that

|Lw(ϕ)|α,δ

inf Lw(ϕ) ≤ γwk for some 0 < γw < 1.

Given y, z ∈ M satisfying d(y, z) < δ, we denote by yj , zj , 1 ≤ j ≤ deg(fw), the
respective preimages under fw. Note that for any continuous function ϕ we have

Lw(ϕ)(y) =
deg(fw)∑
j=1

eφw(yj )ϕ(yj ) ≥ deg(fw)einf φw inf ϕ. (11)
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From the definition of Lw and the constant |Lw(ϕ)|α,δ we obtain

|Lw(ϕ)|α,δ

inf Lw(ϕ) = sup
d(y,z)<δ

|Lw(ϕ(y))−Lw(ϕ(z)|
inf Lw(ϕ) d(y, z)α

≤ sup
d(y,z)<δ

deg(fw)∑
j=1

|eφw(yj )ϕ(yj )− eφw(zj )ϕ(zj )|
inf Lw(ϕ) d(y, z)α

.

By equation (11) the last inequality is less than or equal to

sup
d(y,z)<δ

deg(fw)∑
j=1

(
esup φw |ϕ(yj )− ϕ(zj )|

deg(fw)einf φw inf ϕ d(y, z)α
+ sup ϕ|eφw(yj ) − eφw(zj )|

deg(fw)einf φw inf ϕ d(y, z)α

)
. (12)

Recall that, by hypothesis, we can take some x ∈ M and neighborhood Ux ⊂ M such that
y, z ∈ Bθ(w)(fw(x), δ) and so the inverse branches satisfy

d(f−1
w (y), f−1

w (z)) ≤ Lw(x) d(y, z).

Moreover, we are assuming that every point has qw preimages in the region A and pw
preimages in the expanding region M \A where Lw ≤ σ−1

w . Since, by Lemma 3.3, ϕ is
((1 + (Lw − 1)α)|ϕ|α,δ , α)-Hölder continuous in balls of radius Lwδ we conclude that the
sum (12) is bounded from above by

qw∑
j=1

(
esup φw(1 + (Lw − 1)α)|ϕ|α,δL

α
wd(y, z)α

deg(fw)einf φw inf ϕ d(y, z)α
+ sup ϕ|eφw |αLαwd(y, z)α

deg(fw)einf φw inf ϕ d(y, z)α

)

+
pw∑
j=1

(
esup φw |ϕ|α,δσ

−α
w d(y, z)α

deg(fw)einf φw inf ϕd(y, z)α
+ sup ϕ|eφw |αLαwd(y, z)α

deg(fw)einf φw inf ϕ d(y, z)α

)
.

And this expression is equal to

esup φw [pwσ−α
w + qwL

α
w(1 + (Lw − 1)α)] |ϕ|α,δ

deg(fw)einf φw inf ϕ
+ sup ϕ|eφw |αLαw

einf φw inf ϕ
.

Using inequality (5), the definition of cone and condition (IV), it follows that the sum
above is less than or equal to[

eεφ
[
pwσ

−α
w + qwL

α
w(1 + (Lw − 1)α)

deg(fw)

]
+ εφL

α
w[1 +m(diamM)α]

]
k.

By hypothesis (condition (V)), there exists some positive constant 0 < γw < 1 such that
the previous sum is bounded from above by γwk. This finishes the proof.

From the last proposition we have the invariance of the cone Ckδ . Since this cone has
finite diameter, according to Proposition 3.1, we can apply Theorem 3.2 to conclude the
next result.

PROPOSITION 5.2. For every w ∈ X the operatorLw is a contraction in the cone Ckδ , that
is, writing �w = diam�k (Cγwkδ ) > 0, it follows that

�k(Lw(ϕ), Lw(ψ)) ≤ (1 − e−�w) ·�k(ϕ, ψ) for all ϕ, ψ ∈ Ckδ .
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Since we assume in condition (V) the existence of γ ∈ (0, 1) such that γw ≤ γ for all
w ∈ X we conclude that

�k(Lw(ϕ), Lw(ψ)) ≤ (1 − e−�) ·�k(ϕ, ψ) for all ϕ, ψ ∈ Ckδ and w ∈ X
where � = supw(�w) ≤ diam�k (Cγ kδ ).

Let {νw}w be the family of reference measures and λw = νθ(w)(Lw(1)). The contraction
in the cone allows us to prove the existence of the family {hw}w invariant by the transfer
operator.

PROPOSITION 5.3. For almost w ∈ X there exists a Hölder continuous function hw :
M → R bounded away from zero and infinity satisfying Lwhw = λwhθ(w).

Proof. Consider the normalized operator L̂w := λ−1
w Lw and define the sequence (ϕn)n

by ϕn := L̂nθ−n(w)(1) where

L̂nθ−n(w) := L̂θ−1(w) ◦ L̂θ−2(w) ◦ · · · ◦ L̂θ−(n−1)(w) ◦ L̂θ−n(w)

for each n ≥ 0. By definition of conformal measure we have∫
ϕn dνw =

∫
L̂nθ−n(w)(1) dνw =

∫
1 d(L̂∗

)n
θ−n(w)νw =

∫
1 dνθ−n(w) = 1.

Hence, each term ϕn satisfies sup ϕn ≥ 1 and inf ϕn ≤ 1. Since 1 ∈ Ckδ and Ckδ is invariant,
it follows that ϕn ∈ Ckδ and so, applying inequality (5), we obtain that the sequence (ϕn)n
is uniformly bounded away from zero and infinity by

1
R

≤ inf ϕn ≤ 1 ≤ sup ϕn ≤ R.

where R = (1 +mkdiam(M)α). Moreover, as ϕn is C-Hölder continuous in balls of radius
δ, by Lemma 3.3 we obtain that ϕn is a Cm-Hölder continuous function.

Next we prove that (ϕn)n is a Cauchy sequence in the C0-norm. From Proposition 5.2,
for every m, l ≥ n the projective metric satisfies

�k(ϕm, ϕl) = �k(L̂mθ−m(w)(1), L̂
l

θ−l (w)(1)) ≤ �τn where τ := 1 − e−�.

Recalling the expression for the projective metric �k(ϕm, ϕl) = log(Bk(ϕm, ϕl)/Ak
(ϕm, ϕl)), we apply Lemma 3.4 to obtain

e−�τn ≤ Ak(ϕm, ϕl) ≤ inf
ϕm

ϕl
≤ 1 ≤ sup

ϕm

ϕl
≤ Bk(ϕm, ϕl) ≤ e�τ

n

.

Thus, for all m, l ≥ n, we have

‖ϕm − ϕl‖∞ ≤ ‖ϕl‖∞
∥∥∥∥ϕmϕl − 1

∥∥∥∥∞
≤ R(e�τ

n − 1) ≤ R̃τn

which proves that (ϕn)n is a Cauchy sequence. Hence, (ϕn)n converges uniformly to a
function hw : M → R in the cone Ckδ satisfying

∫
hw dνw = 1 for almost everyw ∈ X. In

particular, this function is Hölder continuous and uniformly bounded away from zero and
infinity. To complete the proof of the proposition, we will show that Lwhw = λwhθ(w).
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Consider the sequence

ϕ̃n,w := 1
n

n−1∑
j=0

ϕj = 1
n

n−1∑
j=0

L̂jθ−j (w)(1).

By what we have proved above, (ϕ̃n,w) converges uniformly to hw for almost every w ∈ X.
From the continuity of Lw we obtain

L̂w(hw) = lim
n→+∞ L̂w(ϕ̃n,w) = lim

n→+∞
1
n

n−1∑
j=0

L̂w(L̂jθ−j (w)(1))

= lim
n→+∞

1
n

n−1∑
j=0

L̂jθ−j (θ(w))(1)+ 1
n
(L̂nθ−n(θ(w))(1)− 1).

Since L̂nθ−n(θ(w))(1) is uniformly bounded we conclude that L̂w(hw) = hθ(w).

From the proof of the previous proposition we conclude that the family {hw}w∈X is
uniquely determined. Moreover, every hw satisfies

1
R

≤ inf hw ≤ 1 ≤ sup hw ≤ R.

where R = (1 +mk diam(M)α).

5.2. Measurability. In the previous subsection we proved the existence of a family
{hw}w invariant under the action of the transfer operator. Here we prove that this family
is measurable as well as the family {νw}w. Moreover, defining the probability measure
μw := hwνw, we also prove that μw has an exponential decay of correlations and that the
family {μw}w is F-invariant.

The next proposition states an exponential approximation of functions in the cone to the
invariant family {hw}w. This is the main ingredient in the proof of the exponential decay
of correlations.

PROPOSITION 5.4. For almost w ∈ X there exist constants K > 0 and 0 < τ < 1 such
that for every ϕ ∈ Ckδ satisfying

∫
ϕ dνw = 1 we have that

‖L̂nw(ϕ)− L̂nw(hw)‖∞ ≤ Kτn for all n ≥ 1,

where L̂w = λ−1
w Lw is the normalized operator.

Proof. Given ϕ ∈ Ckδ satisfying
∫
ϕ dνw = 1, we have for every n ≥ 1,∫

L̂nw(ϕ) dνθn(w) =
∫
ϕ d(L∗

w)
n(νθn(w)) =

∫
ϕ dνw = 1.

Since hw ∈ Ckδ also satisfies
∫
hw dνw = 1, we derive for every n ≥ 1 that

inf
L̂nw(ϕ)
L̂nw(hw)

≤ 1 ≤ sup
L̂nw(ϕ)
L̂nw(hw)

.
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Recalling that L̂nw(hw) = hθn(w) for all n ≥ 1, we apply the same projective metric
argument used in the proof of Proposition 5.3 to obtain

‖L̂nw(ϕ)− L̂nw(hw)‖∞ ≤ ‖hθn(w)‖∞
∥∥∥∥ L̂

n

w(ϕ)

L̂nw(hw)
− 1

∥∥∥∥∞
≤ R(e�τ

n − 1) ≤ Kτn.

Let μw be the probability measure defined by μw := hwνw. From the last proposition
we derive the proof of Theorem B.

THEOREM B. For almost everyw ∈ X, the probability measureμw has exponential decay
of correlations for Hölder continuous observables: there exists 0 < τ < 1 such that for any
ϕ ∈ L1(μθn(w)) and ψ ∈ Cα(M) there exists a positive constantK(ϕ, ψ) satisfying for all
n ≥ 1 that ∣∣∣∣

∫
(ϕ ◦ f nw)ψ dμw −

∫
ϕ dμθn(w)

∫
ψ dμw

∣∣∣∣ ≤ K(ϕ, ψ)τn.

Proof. Given ϕ ∈ L1(μθn(w)) andψ ∈ Cα(M), we suppose without loss of generality that∫
ψ dμw = 1. Let L̂w = λ−1

w Lw be the normalized operator. As a first case we consider
ψ · hw in the cone Ckδ for k large enough. Recalling that μw = hwνw and that L∗

wνθ(w) =
λwνw, we have ∣∣∣∣

∫
(ϕ ◦ f nw)ψ dμw −

∫
ϕ dμθn(w)

∫
ψ dμw

∣∣∣∣

=
∣∣∣∣
∫
(ϕ ◦ f nw)ψ · hw dνw −

∫
ϕ · hθn(w) dνθn(w)

∣∣∣∣

=
∣∣∣∣
∫
ϕ · L̂nw(ψ · hw) dνθn(w) −

∫
ϕ · hθn(w) dνθn(w)

∣∣∣∣
≤ ‖ϕ‖1‖L̂nw(ψ · hw)− L̂nw(hw)‖∞.

Since ψ · hw ∈ Ckδ and
∫
ψ · hw dνw = ∫

ψ dμw = 1 we can apply Proposition 5.4 to
conclude the existence of constants K > 0 and 0 < τ < 1 such that

‖L̂nw(ψ · hw)− L̂nw(hw)‖∞ ≤ Kτn for every n ≥ 1.

For the general case we write ψ · hw = g where

g = g+ − g−; g± = 1
2 (|g| ± ψ)+ C and C = k−1|ψ · hw|α,δ .

Therefore, g± ∈ Ckδ . From the previous estimates on g± and by linearity the proposition
holds.

Now we state the measurability of the families {νw}w and {hw}w. We start by observing
that for almost every w ∈ X and every continuous function g ∈ C0(M) we have

1
hθn(w)

L̂nw(g · hw) −→
∫
g · hw dνw when n → ∞, (13)
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where L̂ is the normalized operator L̂w = λ−1
w Lw. Indeed, we can suppose that the

function gw is Hölder continuous because any continuous function is approximated by
such functions. Moreover, following the proof of Theorem 5.2, we can just consider the
case g · hw ∈ Ckδ for k large enough. We have that
∥∥∥∥ 1
hθn(w)

L̂nw(ghw)−
∫
ghw dνw

∥∥∥∥∞
≤

∥∥∥∥ 1
hθn(w)

∥∥∥∥
∥∥∥∥L̂nw(ghw)−

∫
ghw dνw · hθn(w)

∥∥∥∥
≤ R‖ghw‖∞

∥∥∥∥L̂nw
(

ghw∫
ghw dνw

)
− L̂nw(hw)

∥∥∥∥∞
.

By Proposition 5.4 the convergence in (13) follows. We use this on the next result.

LEMMA 5.1. Let λw = νθ(w)(Lw(1)). The family {νw} is uniquely determined by

L∗
wνθ(w) = λwνw.

Moreover, the map w �→ νw(gw) is measurable for any g ∈ L
1
P
(X, C0(M)).

Proof. Fix w ∈ X and let (xn) be a sequence of points in M. Define the probability

νw,n = (Lnw)∗δxn
Lnw1(xn)

.

Since νw satisfies the condition L∗
wνθ(w) = λwνw we can apply the convergence (13) to

conclude that for almost every w ∈ X and any continuous function gw we have

lim
n→∞ νw,n(gw) = lim

n→∞
(Lnw)∗δxn(gw)
Lnw1(xn)

= lim
n→∞

Lnwgw(xn)
Lnw1(xn)

= lim
n→∞

Lnw
(
gw

hw
· hw

)
(xn)

Lnw
(

1
hw

· hw
)
(xn)

= νw(gw).

The convergence of νw,n
w∗−→ νw therefore follows. Since the sequence (xn) was arbitrary

the uniqueness of the family {νw} is proved. Moreover, the equality

lim
n→∞

‖Lnwgw‖∞
‖Lnw1‖∞

= νw(gw)

implies the measurability of w �→ νw(gw) since the transfer operator is measurable.

The lemma above enables us to define the probability measure ν on the Borel sets of
X ×M by

ν(g) =
∫
X

∫
M

gw dνw dP(w).
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Let c > 0 be given by condition (VI) and let H ⊂ X ×M be the non-uniformly
expanding set defined in (�). As in §4, for w ∈ X consider

Hw :=
{
x ∈ M; lim sup

n→+∞
1
n

n−1∑
j=0

log Lθj (w)(f
j
w(x)) � −2c < 0

}
.

By Proposition 4.2 for almost every w ∈ X we have νw(Hw) = 1. Thus, we conclude that
ν(H) = 1, that is, ν is a non-uniformly expanding measure.

Notice that since λw = νθ(w)(Lw(1)) we have that the map w �→ λw ∈ R is measur-
able. Recalling that for almost every w ∈ X the function hw is given by

hw = lim
n→∞ L̂

n

θ−n(w)1,

we deduce the measurability of the map (w, y) �→ hw(y) from the measurability of λw

and the transfer operator. From this result the probability measure μF ,φ ∈MP(X ×M) is
well defined by the formula

μF ,φ(g) =
∫
X

∫
M

gw · hw dνw dP(w).

In order to prove the F-invariance of μF ,φ we first observe that

μw(gθ(w) ◦ fw) =
∫
gθ(w) ◦ fw · hw dνw

=
∫
L̂w(gθ(w) ◦ fw · hw) dνθ(w)

=
∫
gθ(w) · L̂w(hw)

hθ(w)
dμθ(w) = μθ(w)(gθ(w)).

Therefore, for every integrable function we get∫
g ◦ F dμF ,φ =

∫∫
gθ(w) ◦ fw(x) dμwdP(w) =

∫∫
gθ(w) dμθ(w) dP(w) =

∫
g dμF ,φ .

This finishes the proof of Theorem A.

6. Equilibrium states
In this section we prove that the measure μF ,φ constructed above is an equilibrium state for
(F |θ , φ). Moreover, we show that any ergodic non-uniformly expanding equilibrium state
has disintegration absolutely continuous with respect to the system of reference measures.
From this we derive the uniqueness.

As a first step, in the next proposition we obtain an upper bound for the topological
pressure of the random dynamical system.

PROPOSITION 6.1. For any potential φ satisfying condition (IV) we have that

PF |θ (φ) ≤
∫
X

log λw dP(w).
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Proof. Fix w ∈ X such that Hw is not empty (see definition in §4) and let ε > 0 be small.
Since every point x ∈ Hw has infinitely many hyperbolic times, for N > 1 large enough
we have

Hw ⊂
⋃
n≥N

⋃
x∈Hn

Bw(x, n, ε),

where Hn = Hn(w) denotes the set of points that have n as a hyperbolic time. From
Lemma 3.1 each f n(Bw(x, n, ε)) is the ball Bθn(w)(f nw(x), ε) in M, thus by applying the
Besicovitch covering lemma it is straightforward to check that there exists a countable
family Fn ⊂ Hn such that every point x ∈ Hn is covered by at most d = d(dim(M))
dynamical balls Bw(x, n, ε) with x ∈ Fn. Therefore,

FN = {Bw(x, n, ε) : x ∈ Fn and n ≥ N}

is a countable open covering of Hw by dynamic balls with diameter less than ε > 0.
Recalling thatHw is dense on M and the closure of Bw(x, n, ε) is a subset of Bw(x, n, 2ε),
we have that

M = Hw ⊂
⋃

Bw(x,n,ε)∈FN
Bw(x, n, ε) ⊂

⋃
Bw(x,n,ε)∈FN

Bw(x, n, 2ε).

Hence,

GN = {Bw(x, n, 2ε) : Bw(x, n, ε) ∈ FN }

is a countable open covering of M by dynamic balls with diameter less than 2ε.
Let β >

∫
log λw dP(w). By the definition of topological pressure given in §3 and by

applying Lemma 4.1 to each element in GN we obtain

mβ(w, φ, F |θ , 2ε, N) ≤
∑

Bw(x,n,2ε)∈GN
e−βn+Snφ(Bw(x,n,2ε))

≤
∑
n≥N

γ−1
2ε (θ

n(w))K2ε(w)e
−(βn−log λnw)

∑
x∈Fn

νw(Bw(x, n, 2ε))

≤ dK2ε(w)
∑
n≥N

γ−1
2ε (θ

n(w))e
−(β−(1/n)∑n−1

i=0 log λ
θi (w)

)n.

As from Remark 4.1 the variable γ−1
2ε (θ

n(w)) is uniformly bounded and by ergodicity
we have limn→∞(1/n)

∑n−1
i=0 log λθi (w) = ∫

log λw dP(w) for almost every w ∈ X, we
obtain as N goes to infinity that

mβ(w, φ, F |θ , 2ε) = lim
N→+∞ mβ(w, φ, F |θ , 2ε, N) = 0,
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for any β >
∫

log λw dP(w) and ε > 0 small. Thus, we necessarily have

PF |θ (w, φ) ≤
∫
X

log λw dP(w).

Since this is true for P-almost every w ∈ X, we prove the proposition.

In the next subsection we will prove that PF |θ (φ) = ∫
log λw dP(w).

6.1. Existence. Consider the family {νw}w∈X of reference measures and {hw}w∈X as in
Theorem A. For each w ∈ X let μw be the probability measure defined by μw = hwνw.
Recalling that the Jacobian of νw is Jνwfw = λwe

−φw , it is easy to verify that the Jacobian
of μw relative to fw is given by

Jμwfw = λwe
−φwhθ(w) ◦ fw

hw
. (14)

Consider the probability measure μF ,φ whose disintegration is {μw}w, that is,

μF ,φ(g) =
∫
X

∫
M

gw · hw dνw dP(w),

for every continuous function g : X ×M → R. As we saw in §5.2, μF ,φ is F-invariant. In
the next proposition we show its ergodicity.

PROPOSITION 6.2. The probability measure μF ,φ is ergodic.

Proof. Given a F-invariant set A ⊂ X ×M , for each w ∈ X denote by Aw the set Aw =
{z ∈ M; (w, z) ∈ A}. The F-invariance of A implies that f−1

w (Aθ(w)) = Aw. Consider
X0 = {w ∈ X; μw(Aw) > 0}. It is straightforward to check that X0 is a θ -invariant subset
of X. Since θ is ergodic with respect to P, we will obtain the ergodicity of μF ,φ by showing
that for almost every w ∈ X0 we have μw(Aw) = 1, if P(X0) > 0.

Let ϕw be the characteristic function of Aw, that is, ϕw = 1Aw . Notice that ϕθn(w) ◦
f nw = ϕw holds P-almost everywhere. Given ψw ∈ L1(μw) such that

∫
ψw dμw = 0, it

follows from the decay correlation property of μw (Theorem B) that

μw((ϕθn(w) ◦ f nw) · ψw) → 0 when n → +∞.

And thus
∫
Aw
ψw dμw = 0 for any ψw ∈ L1(μw) satisfying

∫
ψw dμw = 0. This proves

that μw(Aw) = 1 for P-almost every w ∈ X0 which finishes the proof.

In §5.2 we observe that the measure ν defined by

ν(g) =
∫
X

∫
M

gw dνw dP(w)

is non-uniformly expanding. Since μF ,φ is absolutely continuous with respect to it, we
have that μF ,φ is also a non-uniformly expanding measure. In particular, by Lemma 3.2, it
admits a generating partition. Thus, we can use the random Rokhlin formula to express the
entropy of μF ,φ in terms of its Jacobian.

https://doi.org/10.1017/etds.2022.44 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.44


2614 R. Bilbao and V. Ramos

THEOREM 6.1. (Random Rokhlin formula) Let μ ∈MP(F ) be an ergodic measure which
admits a μ-generating partition. Then

hμ(F |θ) =
∫

log Jμ(F ) dμ =
∫
X

( ∫
M

log Jμwfw(y) dμw(y)
)
dP(w),

where Jμwfw denotes the Jacobian of fw relative to μw.

The reader can consult [23, Theorem 1.9.7] for a proof of the last result. Now we are
ready to prove that μF ,φ is an equilibrium state for (F |θ , φ). We have

hμF ,φ (F |θ) =
∫
X

∫
M

log Jμwfw(y) dμw(y) dP(w)

=
∫
X

∫
M

log
(

λwe
−φwhθ(w) ◦ fw

hw

)
(y) dμw(y) dP(w)

=
∫
X

∫
M

log λw dμw(y) dP(w)−
∫
X

∫
M

φw dμw(y) dP(w)

+
∫
X

∫
M

(
log hθ(w) ◦ fw(y)− log hw(y)

)
dμw(y) dP(w).

From the F-invariance of μF ,φ we derive that
∫
X

∫
M

(
log hθ(w) ◦ fw(y)− log hw(y)

)
dμw(y) dP(w) = 0.

Thus, we can write

hμF ,φ (F |θ) =
∫
X

∫
M

log λw dμw(y) dP(w)−
∫
X

∫
M

φw dμw(y) dP(w)

=
∫
X

log λw dP(w)−
∫
φ dμF ,φ .

Applying the variational principle (1) and Proposition 6.1, it follows that∫
X

log λw dP(w) = hμF ,φ (F |θ)+
∫
φ dμF ,φ ≤ PF |θ (φ) ≤

∫
X

log λw dP(w),

which implies, in particular, that PF |θ (φ) = ∫
X

log λw dP(w) and so μF ,φ is an equilib-
rium state.

6.2. Uniqueness. So far we have proved the existence of an equilibrium state for
(F |θ , φ). Here we prove uniqueness in the set of non-uniformly expanding measures.

Let η be an ergodic non-uniformly expanding equilibrium state for (F |θ , φ). We prove
that the disintegration of η is absolutely continuous to the reference measure. For this we
use the following remark from the basic calculus.

Remark 6.1. (Jensen’s inequality) Given positive numbers pi > 0 and qi > 0, i =
1, . . . , n, such that

∑n
i=1 pi = 1, we have that

∑n
i=1 pi log qi ≤ log(

∑n
i=1 piqi), with

equality holding if and only if the qi are equal.
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PROPOSITION 6.3. Consider any ergodic non-uniformly expanding equilibrium state η ∈
MP(F ) of (F |θ , φ) and let (ηw)w be its disintegration. Then, for almost w ∈ X, ηw is
absolutely continuous with respect to νw.

Proof. We begin by proving that for almost every w ∈ X the Jacobian of ηw is given by

Jηwfw = λwe
−φw · hθ(w) ◦ fw

hw
.

Indeed, since η is an ergodic non-uniformly expanding equilibrium state we can apply the
Rokhlin formula to obtain that

hη(F |θ) =
∫
X

( ∫
M

log Jηwfw(y) dηw(y)
)
dP(w) =

∫
X×M

log Jηwfw(y) dη(w, y).

Recalling that hw is a bounded function and that the Jacobian of μw is given by Jμwfw =
λwe

−φw · hθ(w) ◦ fw/hw, we have∫
log

Jηwfw

Jμwfw
dη(w, y)

=
∫

log Jηwfw dη −
∫ (

log λw − φw + log
hθ(w) ◦ fw

hw

)
dη

= hη(F |θ)− PF |θ (φ)+
∫
φw + log hw − log hθ(w) ◦ fw dη ≥ 0.

From the definition of Jacobian we can write∫ ∑
z=f−1

w (y)

Jηwf
−1
w (z) log

Jηwfw

Jμwfw
(z) dη(w, y) =

∫
log

Jηwfw

Jμwfw
(y) dη(w, y) ≥ 0.

(15)

Take pi = Jηwf
−1
w (zi) and qi = Jηwfw(zi)/Jμwfw(zi) where the zi are the preimages

of y. Since (fw)∗ηw = ηθ(w) we have
∑deg(fw)
i=1 pi = ∑

z=f−1
w (y)

Jηwf
−1
w (z) = 1 for

ηθ(w)-almost every y ∈ M . Therefore, we can apply Remark 6.1 to conclude that

∑
z=f−1

w (y)

Jηwf
−1
w (z) log

Jηwfw

Jμwfw
(z) ≤ log

( ∑
z=f−1

w (y)

Jηwf
−1
w · Jηwfw
Jμwfw

)
(z)

= log
(∑

z=f−1
w (y)

eφw(z)hw(z)

λwhθ(w) ◦ fw(z)
)

= log
(

λwhθ(w)(y)

λwhθ(w)(y)

)
= 0

for ηθ(w)-almost every y ∈ M . Recalling the inequality (15), we obtain that

0 ≤
∫

log
Jηwfw

Jμwfw
(y) dη(w, y) =

∫ ∑
z=f−1

w (y)

Jηwf
−1
w (z) log

Jηwfw

Jμwfw
(z) dη(w, y) = 0.

Thus, from the second part of Remark 6.1, the values qi = Jηwfw(zi)/Jμwfw(zi) must be
the same for all zi ∈ f−1

w (y) in a full ηθ(w)-measure set. In other words, for every y ∈ M
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on the preimage of a full ηθ(w)-measure set, we have

Jηwfw(y) = Jμwfw(y) = λwe
−φw · hθ(w) ◦ fw

hw
(y).

To finish the proof of the proposition we observe that 1/hw · ηw is a reference measure
associated to λw for the dual transfer operator:

L∗
w

(
1

hθ(w)
· ηθ(w)

)
(ψ) =

∫
Lw(ψ)(x) d

(
1

hθ(w)
· ηθ(w)

)

=
∫ ∑

y=f−1
w (x)

eφw(y)(y)ψ(y) · 1
hθ(w)

(x) dηθ(w)

=
∫ ∑

y=f−1
w (x)

λw
ψ(y)

hw(y)

(
hw(y)

λwe−φw(y) · hθ(w) ◦ fw(y)
)
dηθ(w)

=
∫ ∑

y=f−1
w (x)

λw
ψ(y)

hw(y)
Jηwf

−1
w (y) dηθ(w)

= λw

∫
ψ d

(
1
hw

· ηw
)

.

From the uniqueness given by Theorem A we conclude that 1/hw · ηw is equivalent to νw
and thus ηw is absolutely continuous to the latter.

Finally, we prove the uniqueness of the equilibrium state associated to (F |θ , φ).
Suppose that there exist two ergodic equilibrium statesμ and η. Let (μw)w∈X and (ηw)w∈X
be the disintegration of μ and η, respectively.

By the proposition above we have that μw and ηw are equivalent measures. From the
Radon–Nikodym theorem we know that there exists a mensurable function qw : M → R

such that μw = qwηw for every w ∈ X. Consider q : X ×M → R, defined by q(w, x) =
qw(x). Given a measurable set E ⊂ X ×M , consider Ew ⊂ M the intersection Ew =
E ∩M . Then we have that

μ(E) =
∫
X

μw(Ew) dP(w) =
∫
X

∫
Ew

qw dηw dP(w) =
∫
E

q dη.

Moreover, it follows from the F-invariance of μ and η that

μ(E) = F∗μ(E) = (q ◦ F)F∗η(E) = (q ◦ F)η(E).
Since the Radon–Nikodym derivative is essentially unique, we conclude that q = q ◦ F

at η-almost every point. By ergodicity we have that q is constant everywhere and thus
μ = η.

6.3. Positive Lyapunov exponents. The main tool in the proof of Proposition 6.3
is the existence of a generating partition for the equilibrium state. In the context of
random dynamical systems generated by non-uniformly expanding maps, the existence of
generating partitions for ergodic measures with Lyapunov exponents bounded away from
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zero was proved by Bilbao and Oliveira in [9]. Therefore, in this setting we can also apply
our Proposition 6.3 to obtain uniqueness of equilibrium states. This is our goal now.

Consider a compact and connected Riemann manifoldMd of dimension d. Let F : X ×
M → X ×M be the skew-product (θ(w), fw(x)) generated by C1 local diffeomorphisms
fw : M → M satisfying conditions (I)–(III). For 1 ≤ k ≤ d − 1, define

Ck(w, x) = lim sup
n→+∞

1
n

log ‖�kDf nw(x)‖ and Ck(w, F) = max
x∈M Ck(w, x),

where �k is the kth exterior product. We suppose that, for some ε > 0,

β(F ) := (1 − ε)

∫
log deg(fw)dP(w)− max

1�k�d−1

∫
X

Ck(w, F) dP(w) > 0.

For potentials φ ∈ L
1
P
(X, Cα(M)) satisfying conditions (IV) and (V) such that for almost

every w ∈ X the inequality sup φw − inf φw < ε
∫

log deg(fw) dP(w) holds, we obtain
the following result.

COROLLARY 6.1. There exists only one equilibrium state associated to (F |θ , φ).

Proof. Let η ∈MP(F |θ) be an ergodic equilibrium state for (F |θ , φ). Denote by
λ1(w, x) ≤ · · · ≤ λd(w, x) the Lyapunov exponents of η at (w, x). We claim that they
are bigger than β(F ) > 0. If not, by applying the random version of the Marquis–Ruelle
inequality [18, Theorem 2.4] we have

hη(F |θ) ≤
∫ d∑

i=1

λ+
i (w, x) dη(w, x)

=
∫

λ+
1 (w, x) dη(w, x)+

∫ ∑
i∈{2...d}

λ+
i (w, x) dη(w, x)

≤ β(F )+
∫
Cd−1(w, x) dη(w, x) ≤ β(F )+ max

1≤k≤d−1

∫
Ck(w, F) dP(w)

≤ (1 − ε)

∫
log deg(fw) dP(w).

Thus, for potentials such that sup φw − inf φw < ε
∫

log deg(fw) dP(w) it follows that

hη(F |θ)+
∫
φ dη ≤ (1 − ε)

∫
log deg(fw) dP(w)+

∫
sup φw dη

<

∫
log deg(fw) dP(w)+

∫
inf φw dη ≤ PF |θ (φ).

which is a contradiction. Therefore, the Lyapunov exponents of η are bigger than β(F ), and
so η admits generating partitions with small diameter. Applying the proof of Proposition
6.3, we have that η is absolutely continuous with respect to ν, and thus the uniqueness is
proved.
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7. Equilibrium stability
Consider a sequence (Fk , φk) in H converging to (F , φ). For each k ∈ N, let μk be
the non-uniformly expanding equilibrium state of (Fk , φk). We will prove that any
accumulation point μ of the sequence (μk) is the non-uniformly expanding equilibrium
state of (F , φ).

For each k ∈ N, consider the disintegration {μk,w}w∈X of μk . From Theorem A, we
know that μk,w = hk,wνk,w where hk,w and νk,w satisfy

L∗
k,wνk,θ(w) = λk,wνk,w Lk,whk,w = λk,whk,θ(w) with λk,w = νk,θ(w)(Lk,w(1)).

We point out that for anyψ ∈ Cα(M)we haveLk,w(ψ) converging toLw(ψ) in C0-norm,
a proof of which is given in [3].

Let λw, νw and hw be as in Theorem A applied to (F , φ). The main step in the proof of
the equilibrium stability is the following proposition.

PROPOSITION 7.1. For almost all w ∈ X we have the convergence

λk,w → λw νk,w
w∗−→ νw and hk,w → hw as k goes to infinity.

Proof. Recalling that for each k ∈ N we have

deg(fk,w)e
inf φk,w ≤ λk,w ≤ deg(fk,w)e

sup φk,w ,

the sequence (λk,w) admits some accumulation point λ̄w. Moreover, taking subsequences,
if necessary, there exist probability measures ν̄w and ν̄θ(w) such that νk,w

w∗−→ ν̄w and
νk,θ(w)

w∗−→ ν̄θ(w). We will prove that L∗
wν̄θ(w) = λ̄wν̄w.

For any ψ ∈ Cα(M) we can write

L∗
wν̄θ(w)(ψ) = ν̄θ(w)(Lw(ψ)) = ν̄θ(w)( lim

k→∞ Lk,w(ψ)) = lim
k→∞ ν̄θ(w)(Lk,w(ψ)).

From the convergence of νk,θ(w) to ν̄θ(w) we have

lim
k→∞ ν̄θ(w)(Lk,w(ψ)) = lim

k→∞ νk,θ(w)(Lk,w(ψ)) = lim
k→∞ L

∗
k,w(νk,θ(w))(ψ).

Since νk,θ(w) is a reference measure, the last equality can be rewritten as

lim
k→∞ L

∗
k,w(νk,θ(w))(ψ) = lim

k→∞ λk,wνk,w(ψ) = λ̄wν̄w(ψ).

Thus, L∗
wν̄θ(w)(ψ) = λ̄wν̄w(ψ) for any ψ ∈ Cα(M). Because Cα(M) is dense in C0(M)

we conclude that L∗
wν̄θ(w) = λ̄wν̄w.

Now we will verify that λ̄w = λw. Therefore, from the uniqueness given by Theorem A
it follows that ν̄w = νw.

Given ε > 0 small and n ∈ N, consider a (w, n, ε)-separated set Fn. LetU be the open
cover of M defined byU := {⋂n−1

j=0 f
−j
w (B(f

j
w(x), ε)); x ∈ Fn}. Because (Lnw)∗ν̄θn(w) =

λ̄nwν̄w it follows that

1 = ν̄w(M) =
∫
(λ̄nw)

−1Lnw(1) dν̄θn(w)

≤ (λ̄nw)
−1

∑
U⊂U

∫
U

eSnφw(z) dν̄θn(w)
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≤ (λ̄nw)
−1

∑
x∈Fn

eSnφw(x)
∫
U

e(Snφw(z)−Snφw(x)) dν̄θn(w)

≤ (λ̄nw)
−1

∑
x∈Fn

eSnφw(x)e
∑n−1
j=0 |φ

θj (w)
|αε.

Thus,
∑n−1
j=0(log λ̄θj (w) − |φθj (w)|αε) ≤ log PF |θ (w, n, ε). As P is ergodic we obtain

∫
log λ̄w dP(w)− ε

∫
|φw|α dP(w) = lim

n→∞
1
n

n−1∑
j=0

log λ̄θj (w) − ε
1
n

n−1∑
j=0

|φθj (w)|α

≤ lim sup
n→∞

1
n

∫
log PF |θ (w, n, ε) dP(w)

for every ε > 0 small. Hence,
∫

log λ̄w dP(w) ≤ PF (φ). On the other hand, since ν̄w is a
reference measure, it satisfies a Gibbs property on hyperbolic times (Proposition 4.1). Thus,
we can apply the proof of Proposition 6.1 to obtain PF (φ) ≤ ∫

log λ̄w dP(w). Recalling
that PF (φ) = ∫

log λw dP(w), we have∫
log λ̄w dP(w) ≤ PF (φ) =

∫
log λw dP(w) ≤

∫
log λ̄w dP(w).

Since this is constant for P-almost every w ∈ X, we have proved that λ̄w = λw.
To finish the proof of the proposition it remains to prove the convergence hk,w → hw.

Since (Fk , φk) ∈ H we can assume that the transfer operatorLk,w preserves the same cone
Ck̂δ for k̂ large enough. Then, recalling the proof of Proposition 5.3, we have each hk,w ∈ Ck̂δ
with

∫
hk,w dνk,w = 1. Moreover, it satisfies

|hk,w(x)− hk,w(y)| ≤ Cm d(x, y)α and |hk,w(y)| ≤ sup hk,w ≤ R.

Therefore, (hk,w) is a discontinuous and uniformly bounded sequence. From the
Arzelà–Ascots theorem there exists some accumulation point h̄w. Notice that h̄w is Hölder
continuous and

∫
h̄w dνw = 1 because νk,w

w∗−→ νw. Moreover, h̄w satisfies

Lw(h̄w) = Lw( lim
k→∞ hk,w) = lim

k→∞ Lw(hk,w) = lim
k→∞ Lk,w(hk,w)

= lim
k→∞ λk,whk,θ(w) = λwh̄θ(w).

By the uniqueness of Theorem A we obtain h̄w = hw almost everywhere.

From the previous result we obtain for almostw ∈ X that the sequence (μk,w) converges
to μw defined by μw = hwνw. Therefore, the sequence (μk) converges to the probability
measure μwhose disintegration is {μw}w∈X. As in §6, we have that μ is the non-uniformly
expanding equilibrium state of (F |θ , φ). Moreover, since in the family H we have that
PF |θ (φ) = ∫

log λw dP(w), we obtain

PF |θ (φ) =
∫

log λw dP(w) = lim
k→∞

∫
log λk,w dP(w) = lim

k→∞ PFk (φk),

which proves that the random topological pressure varies continuously in the family. This
finishes the proof of Theorem D.

https://doi.org/10.1017/etds.2022.44 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.44


2620 R. Bilbao and V. Ramos

8. Applications
In this section we present some classes of systems which satisfy our results. We start
by describing a robust class of local diffeomorphisms which contains an open set of
non-uniformly expanding maps that are not uniformly expanding. This class was studied
in the deterministic case by several authors [1, 2, 12, 29]. The first example is a
one-dimensional version of this class.

Example 8.1. Let g : S1 → S
1 be a C1-local diffeomorphism defined on the unit circle.

Fix ε > 0 small, σ < 1 and consider a covering Q of S1 by injectivity domains of g and a
region A ⊂ S

1 covered by q elements of Q with q < deg(g) such that
(H1) ‖Dg−1(x)‖ ≤ 1 + ε, for every x ∈ A;
(H2) ‖Dg−1(x)‖ ≤ σ , for every x ∈ M \ A.
Let us consider a suitable C1 perturbation of g to produce an open set F of C1-local
diffeomorphisms satisfying conditions (I)–(II). The perturbation can be chosen small
enough to guarantee the uniform openness property in the family F. We also assume that
every g ∈ F is topologically exact and its degree deg g is constant. Notice that F may
contain expanding maps, perturbations of expanding maps and intermittent maps.

Let θ : S1 → S
1 be any invertible function preserving an ergodic measure P on S

1.
Thus, any random dynamical system g = (gw)w generated by maps gw ∈ F satisfies the
hypotheses of our theorems. For potentials φ ∈ L

1
P
(S1, Cα(S1)) satisfying (IV) and (V) we

can apply our results to obtain the thermodynamic formalism in this class and the existence
of only one equilibrium state on the set of non-uniformly expanding measures.

Moreover, if the potential also satisfies the condition sup φ < Pφ(f ) then the equilib-
rium state is unique in the class of ergodic measures. Indeed, using the random versions
of Oseledets’s theorem and Ruelle’s inequality (see [18]), for the equilibrium state μ the
Lyapunov exponent λ(μ) satisfies

λ(μ) ≥ hμ(g) = Pφ(g)−
∫
φ dμ ≥ htop(g)+ inf φ − sup φ

≥ htop(g)− (sup φ − inf φ) ≥ log q > 0.

Therefore, λ(μ) is positive and bounded away from zero. In dimension one this implies
that the equilibrium state is non-uniformly expanding.

The second example is a generalization of the previous one in higher dimension. The
existence of equilibrium state for random transformations given by maps in this setting was
considered by Arbieto, Matheus and Oliveira [5].

Example 8.2. Let Ml be a compact l-dimensional Riemannian manifold and D the space
of C2 local diffeomorphisms on M. Let (�, T , P) be a measure-preserving system where
P is ergodic. Define the skew-product by

F : �×M −→ �×M

(w, x) �−→ (T (w), f (w)x)

where the map f (w) ∈ D varies continuously on w ∈ �. Fix positive constants δ0, δ1, δ2

small and p, q ∈ N, satisfying for every f (w) ∈ D the following properties.
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(H0) There exist δw > δ0 > 0 such that for every x ∈ M we can find a neighborhood Ux
where f (w) : Ux → BT (w)(f (w)(x), δw) is invertible.

(H1) There exists a covering B1 . . . Bp . . . Bp+q of M by injectivity domains such
that:
• ‖Df (x)−1‖ ≤ (1 + δ2)

−1 for every x ∈ B1 ∪ · · · ∪ Bp;
• ‖Df (x)−1‖ ≤ (1 + δ1) for every x ∈ M .

(H2) f is everywhere volume expanding: | det Df (x)| ≥ σ1 with σ1 > q.
(H3) There exists A0 such that | log ‖f ‖C2 | ≤ A0 for any f ∈ F ⊂ D.

Adding other technical hypotheses, the authors in [5] showed the existence of equi-
librium states for potentials with small variation. They also proved that these measures
are non-uniformly expanding. Now, for potentials satisfying conditions (IV) and (V),
we can apply our results to obtain the thermodynamic formalism and the uniqueness
of equilibrium state for this class. Moreover, by considering the set S of skew-products
generated by maps ofD where T : � → � is fixed,

F : X ×M → X ×M; F(w, x) = (T (w), fw(x)),

we define the family H = {(F , φ) ∈ S× L
1
P
(X, Cα(M)); (F , φ) satisfying (I)–(VI)} and

observe thatH satisfies the hypothesis of Theorem D. Thus, the equilibrium state and the
random topological pressure vary continuously within this family.

Next we present an application of our Corollary 6.1. This example appears in [9] in the
context of maximizing entropy measures. Here we prove uniqueness of equilibrium states
for potentials with small variation.

Example 8.3. Let f0, f1 : M → M be C1 local diffeomorphisms of a compact and con-
nected manifold M satisfying our conditions (I)–(III). For 1 ≤ k < dim M = d suppose
that log‖�kDf1‖ < log deg f1 and consider

Ck(w, x) = lim sup
n→+∞

1
n

log ‖�kDf nw(x)‖ and Ck(w) = max
x∈M Ck(w, x).

Let Pα be the Bernoulli measure on the sequence spaceX = {0, 1}Z such that Pα([1]) = α.
In [9] Birkhoff proved the existence of α ∈ (0, 1) close to 1 such that∫

lim
n→∞

1
n

log‖�kDf nw(x)‖ dPα(w) < α log deg(f1)+ (1 − α) log deg(f0)

=
∫

log deg(fw) dPα(w)

for every x ∈ M . Therefore, for some ε > 0 we have

(1 − ε)

∫
log deg(fw) dPα(w)− max

1�k�d−1

∫
X

Ck(w) dPα(w) > 0

which means that the hypothesis of Corollary 6.1 was verified.
Thus, for potentials φ ∈ L

1
P
(X, Cα(M)) satisfying (IV) and (V) with variation

sup φw − inf φw < ε
∫

log deg(fw) dPα we conclude uniqueness of equilibrium states.
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[27] D. Simmons and M. Urbański. Relative equilibrium states and dimensions of fiberwise invariant measures
for random distance expanding maps. Stoch. Dyn. 14 (2014), 1350015.

[28] M. Stadlbauer, S. Suzuki and P. Varandas. Thermodynamic formalism for random non-uniformly expanding
maps. Comm. Math. Phys. 385 (2021), 369–427.

[29] P. Varandas and M. Viana. Existence, uniqueness and stability of equilibrium states for non-uniformly
expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 555–593.

[30] L.-S. Young. Stochastic stability of hyperbolic attractors. Ergod. Th. & Dynam. Sys. 6 (1986), 311–319.

https://doi.org/10.1017/etds.2022.44 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.44

	1 Introduction
	2 Setting and main results
	2.1 Hypothesis about the generating maps
	2.2 Statement of results

	3 Preliminaries
	3.1 Entropy and topological pressure
	3.2 Hyperbolic times
	3.3 Projective metrics

	4 Reference measure
	5 Transfer operator
	5.1 Invariant family
	5.2 Measurability

	6 Equilibrium states
	6.1 Existence
	6.2 Uniqueness
	6.3 Positive Lyapunov exponents

	7 Equilibrium stability
	8 Applications
	Acknowledgements
	References

