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Abstract

A concept of synchronicity associated with convex functions in linear spaces and a Chebyshev type
inequality are given. Applications for norms, semi-inner products and convex functions of several real
variables are also given.
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1. Introduction

The Jensen inequality for convex functions plays a crucial role in the theory of
inequalities due to the fact that other inequalities such as the arithmetic–geometric
mean inequality, Hölder and Minkowski inequalities, and Ky Fan’s inequality can be
obtained as particular cases of it.

Let C be a convex subset of the linear space X and f be a convex real-valued
function on C . If p= (p1, . . . , pn) is a probability sequence and x= (x1, . . . , xn) ∈

Cn , then

f

( n∑
i=1

pi xi

)
≤

n∑
i=1

pi f (xi ), (1.1)

is well known in the literature as Jensen’s inequality.
For refinements of the Jensen inequality and applications related to Ky Fan’s

inequality, the arithmetic–geometric mean inequality, the generalized triangle
inequality and the f -divergence measures, see [5–11, 13–16, 21].

Assume that f : X→ R is a convex function on the real linear space X . Since for
any vectors x, y ∈ X the function

gx,y : R→ R, gx,y(t) := f (x + t y)
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is convex, it follows that the limits

∇+(−) f (x)(y) := lim
t→0+(−)

f (x + t y)− f (x)

t

exist and are called the right (left) Gâteaux derivatives of the function f at the point x
in the direction y.

It is obvious that, for any t > 0> s,

f (x + t y)− f (x)

t
≥ ∇+ f (x)(y)= inf

t>0

[
f (x + t y)− f (x)

t

]
≥ sup

s<0

[
f (x + sy)− f (x)

s

]
=∇− f (x)(y)

≥
f (x + sy)− f (x)

s

(1.2)

for any x, y ∈ X and, in particular,

∇− f (u)(u − v)≥ f (u)− f (v)≥ ∇+ f (v)(u − v) (1.3)

for any u, v ∈ X . We call this the gradient inequality for the convex function f . It will
be used frequently in the following in order to obtain various results related to Jensen’s
inequality.

The following properties are also of importance:

∇+ f (x)(−y)=−∇− f (x)(y) (1.4)

and
∇+(−) f (x)(αy)= α∇+(−) f (x)(y) (1.5)

for any x, y ∈ X and α ≥ 0.
The right Gâteaux derivative is subadditive while the left one is superadditive,

that is,
∇+ f (x)(y + z)≤ ∇+ f (x)(y)+∇+ f (x)(z) (1.6)

and
∇− f (x)(y + z)≥ ∇− f (x)(y)+∇− f (x)(z) (1.7)

for any x, y, z ∈ X . Some natural examples can be provided by the use of normed
spaces.

Assume that (X, ‖ · ‖) is a real normed linear space. The function f : X→ R,
f (x) := 1

2‖x‖
2 is a convex function which generates the superior and inferior semi-

inner products

〈y, x〉s(i) := lim
t→0+(−)

‖x + t y‖2 − ‖x‖2

t
.
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For a comprehensive study of the properties of these mappings in the geometry of
Banach spaces see the monograph [10].

For the convex function f p : X→ R, f p(x) := ‖x‖p with p > 1,

∇+(−) f p(x)(y)=

{
p‖x‖p−2

〈y, x〉s(i) if x 6= 0
0 if x = 0

for any y ∈ X . If p = 1, then

∇+(−) f1(x)(y)=

{
‖x‖−1

〈y, x〉s(i) if x 6= 0
+(−)‖y‖ if x = 0

for any y ∈ X . This class of functions will be used to illustrate the inequalities obtained
in the general case of convex functions defined on an entire linear space.

In the recent paper [12] the following refinement and reverse of the Jensen
inequality in terms of the gradient were obtained.

THEOREM 1.1. Let f : X→ R be a convex function defined on a linear space X.
Then for any n-tuple of vectors x= (x1, . . . , xn) ∈ Xn and any probability
distribution p= (p1, . . . , pn) ∈ Pn we have the inequality

n∑
k=1

pk∇− f (xk)(xk)−

n∑
k=1

pk∇− f (xk)

( n∑
i=1

pi xi

)
≥

n∑
i=1

pi f (xi )− f

( n∑
i=1

pi xi

)
≥

n∑
k=1

pk∇+ f

( n∑
i=1

pi xi

)
(xk)−∇+ f

( n∑
i=1

pi xi

)( n∑
i=1

pi xi

)
≥ 0.

(1.8)

A particular case of interest is for f (x)= ‖x‖p where (X, ‖ · ‖) is a normed linear
space. Then for any p ≥ 1, for any n-tuple of vectors x= (x1, . . . , xn) ∈ Xn and
any probability distribution p= (p1, . . . , pn) ∈ Pn with

∑n
i=1 pi xi 6= 0 we have the

inequality

n∑
i=1

pi‖xi‖
p
−

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥p

≥ p

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥p−2[ n∑
k=1

pk

〈
xk,

n∑
j=1

p j x j

〉
s
−

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥2]
≥ 0.

(1.9)

If p ≥ 2 the inequality holds for any n-tuple of vectors and probability distribution.
Also, for any p ≥ 1, for any n-tuple of vectors

x= (x1, . . . , xn) ∈ Xn
\ {(0, . . . , 0)}
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and any probability distribution p= (p1, . . . , pn) ∈ Pn we have the inequality

p

[ n∑
k=1

pk‖xk‖
p
−

n∑
k=1

pk‖xk‖
p−2

〈 n∑
j=1

p j x j , xk

〉
i

]
≥

n∑
i=1

pi‖xi‖
p
−

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥p

.

(1.10)

For related inequalities for norms and inner products, see [1–4, 20, 22].
Motivated by the above results we introduce in this paper a class of sequences

associated with convex functions in linear spaces and establish a Chebyshev type
inequality and some new inequalities for convex functions. Applications for norms,
semi-inner products and convex functions of several real variables are also given.

2. ∇f -Synchronicity

Consider f : X→ R a convex function on the linear space X . We also assume that
u = (u1, . . . , un) and v = (v1, . . . , vn) are two n-tuples of vectors with ui , vi ∈ X ,
i ∈ {1, . . . , n}.

DEFINITION 2.1. We say that v is ∇f -synchronous with u if

∇− f (uk)(vk − v j )≥ ∇+ f (u j )(vk − v j ) (2.1)

for any k, j ∈ {1, . . . , n}. If the inequality is reversed in (2.1) for each k, j ∈
{1, . . . , n}, then we say that v is ∇f -asynchronous with u.

We notice that in general, if v is ∇f -asynchronous with u, this does not imply that u
is ∇f -synchronous with v.

As general examples of such convex functions we can consider f (x)= ‖x‖p,
p ≥ 1, where (X, ‖ · ‖) is a normed linear space. Since (see introduction)

∇− f (x)(y) = p‖x‖p−2
〈y, x〉i for x, y ∈ X with x 6= 0;

∇− f (0)(y) =
{

0 if p > 1
−‖y‖ if p = 1,

for y ∈ X;

∇+ f (x)(y) = p‖x‖p−2
〈y, x〉s for x, y ∈ X with x 6= 0;

∇+ f (0)(y) =
{

0 if p > 1
‖y‖ if p = 1,

for y ∈ X,

where 〈· , ·〉s is the superior semi-inner product and 〈· , ·〉i is the inferior semi-inner
product, we can define the following concepts of synchronicity for the two n-tuples of
vectors u = (u1, . . . , un) and v = (v1, . . . , vn).

Let p ≥ 1 and u, v ∈ Xn be as above. We say that v is p −∇-synchronous with
u if

‖uk‖
p−2
〈vk − v j , uk〉i ≥ ‖u j‖

p−2
〈vk − v j , u j 〉s (2.2)

for any k, j ∈ {1, . . . , n}.
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We observe that for p ∈ [1, 2) we should assume that uk 6= 0 for k ∈ {1, . . . , n}.
For p = 2, the relation (2.2) reduces to

〈vk − v j , uk〉i ≥ 〈vk − v j , u j 〉s for any k, j ∈ {1, . . . , n}. (2.3)

If (X, ‖ · ‖) is a smooth normed space, meaning that the norm is Gâteaux
differentiable on any x ∈ X , x 6= 0, and if we denote by [· , ·] the semi-inner product
generating the norm ‖ · ‖ (see [10, pp. 19–20]), then the fact that v is p −∇-
synchronous with u means that

‖uk‖
p−2
[vk − v j , uk] ≥ ‖u j‖

p−2
[vk − v j , u j ] (2.4)

for any k, j ∈ {1, . . . , n}. For p = 2,

[vk − v j , uk] ≥ [vk − v j , u j ] for any k, j ∈ {1, . . . , n}. (2.5)

Moreover, if the norm ‖ · ‖ is generated by an inner product 〈· , ·〉, then v is p −∇-
synchronous with u means that

〈vk − v j , ‖uk‖
p−2uk − ‖u j‖

p−2u j 〉 ≥ 0 for any k, j ∈ {1, . . . , n}, (2.6)

while for p = 2, it reduces to

〈vk − v j , uk − u j 〉 ≥ 0 for any k, j ∈ {1, . . . , n}, (2.7)

which is the concept of synchronous sequences in inner product spaces that was
introduced in [18]. For some inequalities for synchronous sequences in inner product
spaces, see [17, 18].

As natural examples of synchronous sequences in inner product spaces, we can
consider the sequences {xi }i∈N and {Axi }i∈N where A : X→ X is a positive linear
operator on X , that is, 〈Ax, x〉 ≥ 0 for any x ∈ X .

For a convex function f : X→ R we define ∇̃f (·)(·) as

∇̃f (x)(y) := 1
2 [∇− f (x)(y)+∇+ f (x)(y)], (2.8)

where x, y ∈ X . We observe that for f as above, we have the homogeneity property:

∇̃f (x)(αy)= α∇̃f (x)(y) for any x, y ∈ X, (2.9)

and any α ∈ R.
The following inequality for ∇ − f -synchronous sequences holds.

THEOREM 2.2. Assume that v is ∇ − f -synchronous with u and p= (p1, . . . , pn) is
a probability distribution. Then

n∑
i=1

pi ∇̃f (ui )(vi )≥

n∑
i, j=1

pi p j ∇̃f (ui )(v j ). (2.10)

PROOF. Since ∇+(·)(·) is subadditive in the second variable, then

∇+ f (u j )(vi − v j )≥ ∇+ f (u j )(vi )−∇+ f (u j )(v j ) (2.11)
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for any i, j ∈ {1, . . . , n}. Also, by the fact that ∇−(·)(·) is superadditive in the second
variable, we have that

∇− f (ui )(vi )−∇− f (ui )(v j )≥ ∇− f (ui )(vi − v j ) (2.12)

for all i, j ∈ {1, . . . , n}. Now, by (2.11), (2.12) and by the definition of ∇ − f -
synchronicity, we deduce that

∇− f (ui )(vi )−∇− f (ui )(v j )≥ ∇+ f (u j )(vi )−∇+ f (u j )(v j ),

which is equivalent to

∇− f (ui )(vi )+∇+ f (u j )(v j )≥ ∇+ f (u j )(vi )+∇− f (ui )(v j ) (2.13)

for all i, j ∈ {1, . . . , n}.
Therefore, by multiplying (2.13) with pi p j ≥ 0 and summing over i and j from 1

to n, we get

n∑
i=1

pi∇− f (ui )(vi )+

n∑
j=1

p j∇+ f (u j )(v j )

≥

n∑
i, j=1

pi p j∇+ f (u j )(vi )+

n∑
i, j=1

pi p j∇− f (ui )(v j ).

(2.14)

Now, observe that

n∑
j=1

p j∇+ f (u j )(v j )=

n∑
i=1

pi∇+ f (ui )(vi )

and
n∑

i, j=1

pi p j∇+ f (u j )(vi )=

n∑
i, j=1

pi p j∇+ f (ui )(v j ),

which, by (2.14) divided by 2, provides the desired result (2.10). 2

COROLLARY 2.3. With the assumptions of Theorem 2.2, and if in addition ∇̃f (ui )(·)

is additive for any i ∈ {1, . . . , n}, then

n∑
i=1

pi ∇̃f (ui )(vi )≥

n∑
i=1

pi ∇̃f (ui )

( n∑
j=1

p j u j

)
. (2.15)

REMARK 2.4. If f is Gâteaux differentiable at the points ui , i ∈ {1, . . . , n}, then
∇̃f (ui )(·)=∇f (ui )(·) and is therefore linear on X . With this assumption, inequality
(2.15) becomes

n∑
i=1

pi∇f (ui )(vi )≥

n∑
i=1

pi∇f (ui )

( n∑
j=1

p j u j

)
. (2.16)
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Moreover, we note that there are examples of convex functions defined on linear spaces
for which ∇̃f (x)(·) is linear for any x 6= 0 without the function f being Gâteaux
differentiable at that point (see, for instance, [10, pp. 44–45]).

Following [19], we consider the g-semi-inner product 〈· , ·〉g : X × X→ R
defined by

〈y, x〉g := 1
2 [〈y, x〉i + 〈y, x〉s], x, y ∈ X.

Using this notation, we have the following conditional inequality for semi-inner
products and norms in normed linear spaces.

PROPOSITION 2.5. Let (X, ‖ · ‖) be a normed linear space, u = (u1, . . . , un), v =
(v1, . . . , vn) ∈ Xn and p ≥ 1. If

‖uk‖
p−2
〈vk − v j , uk〉i ≥ ‖u j‖

p−2
〈vk − v j , u j 〉s (2.17)

for any k, j ∈ {1, . . . , n}, then

n∑
k=1

pk‖uk‖
p−2
〈vk, uk〉g ≥

n∑
k, j=1

pk p j‖uk‖
p−2
〈v j , uk〉g (2.18)

for any p a probability distribution. If p < 2, then we should have in (2.17) all uk 6= 0.
If p = 2 and

〈vk − v j , uk〉i ≥ 〈vk − v j , u j 〉s (2.19)

for any k, j ∈ {1, . . . , n}, then

n∑
k=1

pk〈vk, uk〉g ≥

n∑
k, j=1

pk p j 〈v j , uk〉g, (2.20)

for any p a probability distribution.

As a particular case of interest, we state the following result that holds in inner
product spaces.

COROLLARY 2.6. Let (X, 〈· , ·〉) be a real inner product space, u = (u1, . . . , un),
v = (v1, . . . , vn) ∈ Xn and p ≥ 1. If

〈vk − v j , ‖uk‖
p−2uk − ‖u j‖

p−2u j 〉 ≥ 0 (2.21)

for any k, j ∈ {1, . . . , n}, then

n∑
k=1

pk‖uk‖
p−2
〈vk, uk〉 ≥

〈 n∑
j=1

p j u j ,

n∑
k=1

pk‖uk‖
p−2uk

〉
(2.22)

for any p a probability distribution.

REMARK 2.7. We observe that if the n-tuples u and v above are synchronous, that is,

〈vk − v j , uk − u j 〉 ≥ 0 for any j, k ∈ {1, . . . , n}, (2.23)
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then we have the Chebyshev type inequality

n∑
k=1

pk〈vk, uk〉 ≥

〈 n∑
k=1

pkvk,

n∑
k=1

pkuk

〉
. (2.24)

This result was first obtained in [18].

3. Inequalities for convex functions

The following result for convex functions may be stated.

THEOREM 3.1. Let f : X→ R be a convex function on the linear space X and
x, y ∈ Xn . Let p be a probability distribution so that

n∑
i=1

pi xi =

n∑
i=1

pi yi .

If x − y is ∇ − f -synchronous with y and ∇̃f (yi )(·) is additive for each i ∈
{1, . . . , n}, then

n∑
i=1

pi f (xi )≥

n∑
i=1

pi f (yi ). (3.1)

PROOF. Since f is convex, then for any x, y ∈ X ,

f (x)− f (y)≥ ∇+ f (y)(x − y)≥ ∇̃f (y)(x − y). (3.2)

Then from (3.2),
f (xi )− f (yi )≥ ∇̃f (yi )(xi − yi ) (3.3)

for each i ∈ {1, . . . , n}.
If we multiply (3.3) by pi ≥ 0 and then sum over i from 1 to n, we get

n∑
i=1

pi f (xi )−

n∑
i=1

pi f (yi )≥

n∑
i=1

pi ∇̃f (yi )(xi − yi ). (3.4)

If we now use Corollary 2.3 for ui = yi and vi = xi − yi , i ∈ {1, . . . , n}, we deduce
the inequality

n∑
i=1

pi ∇̃f (yi )(xi − yi ) ≥

n∑
i=1

pi ∇̃f (yi )

( n∑
i=1

pi (xi − yi )

)
=

n∑
i=1

pi ∇̃f (yi )(0)= 0.

(3.5)

Combining (3.4) with (3.5), we deduce the desired inequality (3.1). 2

REMARK 3.2. It is clear that if f is Gâteaux differentiable at all the points yi ,
i ∈ {1, . . . , n}, then ∇̃f (yi )(·)=∇f (yi )(·), i ∈ {1, . . . , n}, which are linear on X and
then inequality (3.1) holds true.
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In the case of Gâteaux differentiable functions, we can state the following result as
well.

THEOREM 3.3. Let f : X→ R be a convex and Gâteaux differentiable function on
the linear space X. Assume that x, y ∈ Xn and p is a probability distribution. If x − y
is ∇ − f -synchronous with y and

n∑
i=1

pi xi −

n∑
i=1

pi yi ∈

n⋂
i=1

ker(∇f (yi )(·)),

then
n∑

i=1

pi f (xi )≥

n∑
i=1

pi f (yi ). (3.6)

The proof is as for Theorem 3.1 when in (3.5) we take into account that

∇f (yi )

( n∑
i=1

pi xi −

n∑
i=1

pi yi

)
= 0

for all i ∈ {1, . . . , n} since
n∑

i=1

pi xi −

n∑
i=1

pi yi ∈

n⋂
i=1

ker(∇f (yi )(·)).

The following result in smooth normed linear spaces may be stated.

PROPOSITION 3.4. Let (X, ‖ · ‖) be a smooth normed linear space and let [· , ·] be
the semi-inner product that generates its norm ‖ · ‖. If x, y ∈ Xn and p ≥ 1 are such
that

‖yk‖
p−2
[xk − yk − x j + y j , yk] ≥ ‖y j‖

p−2
[xk − yk − x j + y j , y j ] (3.7)

for any k, j ∈ {1, . . . , n}, then, for any probability distribution p with the property
that

n∑
j=1

p j x j =

n∑
j=1

p j y j , (3.8)

we have the inequality
n∑

k=1

pk‖xk‖
p
≥

n∑
k=1

pk‖yk‖
p. (3.9)

If p ∈ [1, 2) we shall assume that yk 6= 0 for k ∈ {1, . . . , n}.
If p = 2 and

[xk − yk − x j + y j , yk] ≥ [xk − yk − x j + y j , y j ] (3.10)

for any k, j ∈ {1, . . . , n}, then for any probability distribution p satisfying (3.8),
n∑

k=1

pk‖xk‖
2
≥

n∑
k=1

pk‖yk‖
2. (3.11)
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The case of inner product spaces is incorporated in the following corollary.

COROLLARY 3.5. Let (X; 〈· , ·〉) be an inner product space. If x, y ∈ Xn and p ≥ 1
are such that

〈xk − x j , ‖yk‖
p−2 yk − ‖y j‖

p−2 y j 〉 ≥ 〈yk − y j , ‖yk‖
p−2 yk − ‖y j‖

p−2 y j 〉 (3.12)

for any k, j ∈ {1, . . . , n}, then for any p satisfying (3.8) we have inequality (3.9).
If p ∈ [1, 2), then we shall assume that yk 6= 0, k ∈ {1, . . . , n}.
If p = 2 and

〈xk − x j , yk − y j 〉 ≥ ‖yk − y j‖
2, for any k, j ∈ {1, . . . , n}, (3.13)

then for any p satisfying (3.8), we have inequality (3.11).

REMARK 3.6. We notice that examples of sequences xk and yk , k ∈ {1, . . . , n},
satisfying (3.13) can easily be provided by taking xk = Ayk , k ∈ {1, . . . , n}, where A
is a selfadjoint operator on the Hilbert space H satisfying the condition 〈Az, z〉 ≥ ‖z‖2,
for any z ∈ H , that is, A ≥ I in the operator order of the Banach algebra B(H).

4. Applications for convex functions on Rm

Now consider an open and convex set C in the real linear space Rm , m ≥ 1. For a
convex and differentiable function f : C→ R,

∇f (x)(y)=

〈
∂ f (x)

∂x
, y

〉
, x ∈ C, y ∈ Rm, (4.1)

where
∂ f (x)

∂x
=

(
∂ f (x)

∂x1 , . . . ,
∂ f (x)

∂xm

)
, x = (x1, . . . , xm) ∈ C

and 〈· , ·〉 is the usual inner product in Rm , that is, 〈u, v〉 =
∑m

k=1 ui
· vi , where

u = (u1, . . . , um) and v = (v1, . . . , vm) ∈ Rm .
Now, if v := (v1, . . . , vn) ∈ Rm and u := (u1, . . . , un) ∈ Cm , then we say that v is

∇ − f -synchronous with u if〈
∂ f (uk)

∂x
−
∂ f (u j )

∂x
, vk − v j

〉
≥ 0 for any k, j ∈ {1, . . . , n}. (4.2)

The following result may be stated.

PROPOSITION 4.1. Let f : C→ R be a differentiable convex function on the open
and convex set C ⊆ Rm . If v := (v1, . . . , vn) ∈ Rm and u := (u1, . . . , un) ∈ Cm

are such that v is ∇ − f -synchronous with u, then for any probability distribution
p= (p1, . . . , pn),

n∑
i=1

pi

〈
∂ f (ui )

∂x
, vi

〉
≥

〈 n∑
i=1

pi
∂ f (ui )

∂x
,

n∑
i=1

pivi

〉
. (4.3)

The proof is obvious by Corollary 2.3.
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Now, if uk = (u1
k, . . . , um

k ), k ∈ {1, . . . , n}, and vk = (v
1
k , . . . , v

m
k ), then〈

∂ f (uk)

∂x
−
∂ f (u j )

∂x
, vk − v j

〉
=

m∑
`=1

(
∂ f (uk)

∂x`
−
∂ f (u j )

∂x`

)
(v`k − v

`
j ). (4.4)

REMARK 4.2. Relation (4.4) shows that a sufficient condition for v to be ∇ − f -
synchronous with u is that all the sequences {∂ f (uk)/∂x`}k=1,...,n and {v`k}k=1,...,n are
synchronous, where ` ∈ {1, . . . , m}, that is,(

∂ f (uk)

∂x`
−
∂ f (u j )

∂x`

)
(v`k − v

`
j )≥ 0 for any k, j ∈ {1, . . . , n} (4.5)

and for all ` ∈ {1, . . . , m}.

The following result is an obvious consequence of Theorem 3.3.

PROPOSITION 4.3. Let f : C→ R be a differentiable convex function on the open
and convex set C ⊆ Rm . If x= (x1, . . . , xn) ∈ Rm and y= (y1, . . . , yn) ∈ Cm are
such that 〈

∂ f (yk)

∂x
−
∂ f (y j )

∂x
, xk − x j

〉
≥

〈
∂ f (yk)

∂x
−
∂ f (y j )

∂x
, yk − y j

〉
, (4.6)

for each k, j ∈ {1, . . . , n}, then for any probability distribution p= (p1, . . . , pn)

with
n∑

i=1

pi xi =

n∑
i=1

pi yi , (4.7)

we have the inequality
n∑

i=1

pi f (xi )≥

n∑
i=1

pi f (yi ). (4.8)

REMARK 4.4. As above, a sufficient condition for (4.6) to hold is that the sequences
{∂ f (yk)/∂x`}k=1,...,n and {x`k − y`k }k=1,...,n are synchronous for each ` ∈ {1, . . . , m}.
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