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Abstract

In this paper we find many families in the product space H2
×R of complete embedded, simply

connected, minimal and surfaces with constant mean curvature H such that |H | ≤ 1/2. We study
complete surfaces invariant either by parabolic or by hyperbolic screw motions. We study the notion
of isometric associate immersions. We exhibit an explicit formula for a Scherk-type minimal surface. We
give a one-parameter family of entire vertical graphs of mean curvature 1/2.We prove a generalized Bour
lemma that can be applied to H2

×R, S2
×R and to Heisenberg’s space to produce a family of screw

motion surfaces isometric to a given one.
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1. Introduction

In a pioneering paper, Rosenberg [17] studied minimal surfaces in M2
×R, where

M2 is a round sphere, a complete Riemannian surface with a metric of nonnegative
curvature, or M2

=H2, the hyperbolic plane. He opened a quite interesting new
branch of research in surface theory, stimulating several works on the subject. The
main scope of the present paper is to discover complete embedded minimal and
constant mean curvature surfaces. Now, we briefly summarize our results, as follows.

We will study minimal and constant mean curvature surfaces in H2
×R, invariant

by parabolic screw motions, that is, invariant by a one-parameter group of isometries
such that each element is given by the composition of a parabolic translation with
a vertical translation. We will find a two-parameter family of complete embedded,
simply connected, minimal surfaces which contains surfaces invariant by parabolic
translations. We also will obtain a one-parameter family of complete, embedded,
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0

FIGURE 1. A ball model for H2
× {0}.

simply connected, stable minimal surfaces which contains the hyperbolic plane
H2
× {0}.We will then construct a two-parameter family of complete H -surfaces, that

is, surfaces with constant mean curvature H , such that |H |< 1/2, simply connected
and embedded, which contains a surface invariant by parabolic translations. We will
find in this family explicit nonparametric formulas for a one-parameter subfamily of
complete, embedded, stable, H -surfaces (|H |< 1/2). Furthermore, we will exhibit a
one-parameter family of minimal and constant mean curvature surfaces (H = 1/2),
invariant by hyperbolic screw motions. We also obtain minimal and H -surfaces
(|H |< 1/2) invariant by hyperbolic translations. Each such surface is complete,
embedded, simply connected, and stable. We note that there are no stable H -surfaces,
complete and noncompact, for H > 1/

√
3. This is a result of Nelli and Rosenberg [15].

Furthermore, we will derive an explicit simple nonparametric formula for a Scherk-
type minimal surface, invariant by hyperbolic translations, as found independently by
Abresch (private communication). Abresch and Rosenberg have applied it as a barrier
studying the Dirichlet problem for the minimal surface equation in H2

×R. We will
explain their geometric construction later on in the text. We observe that this Scherk-
type surface can be seen as a complete vertical graph over a domain in H2 taking ±∞
value boundary data on a geodesic and zero (or constant) asymptotic value boundary
data, that is, taking zero on an arc of the circle at infinity. See the shaded domain in
Figure 1. In a paper with Toubiana [19] the current author studied surfaces in H2

×R
and S2

×R invariant by standard screw motions, that is, a one-parameter group of
isometries such that each element is the composition of a rotation around the vertical
axis with a vertical translation. In that paper the authors obtained for ` > 1/

√
2 a

complete embedded simply connected minimal screw motion surface in H2
×R with

pitch `. If `= 1, each such surface has Gaussian curvature K ≡−1 (see also [11,
Example 18, p. 284]).

The current author working with Toubiana and Hauswirth established a uniqueness
theorem in H2

×R, or S2
×R [11]. They proved that the conformal metric and the

related holomorphic Hopf function, arising from the theory of minimal immersions
and conformal mappings, determine a minimal conformal immersion, up to an
isometry of ambient space. They proved an existence theorem that produces the
existence of the minimal associate family as a corollary. They also generalized a
theorem by Krust (see [6, p. 118]) which states that an associate surface of a minimal
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vertical graph on a convex domain is a vertical graph. This theorem is true in M×R
when the Gaussian curvature satisfies KM ≤ 0; see [11].

Now let us make some more detailed comments about the present paper. Our idea
is simple: we will consider H2

= {x + iy, y > 0}, the upper half-plane model of the
hyperbolic plane, and we will consider the product space H2

×R, with coordinates
(x, y, t), endowed with the metric dσ 2

= (dx2/y2)+ (dy2/y2)+ dt2.We will search
for surfaces invariant by parabolic screw motions—a parabolic translation is identified
with a horizontal Euclidean translation in this model. That is, we will study
immersions of the form

X (x, y)= (x, y, λ(y)+ `x). (1)

Thus we will search for minimal and for constant mean curvature surfaces generated
by applying Euclidean translations to the vertical graph t = λ(y) lying in the (y, t)
vertical plane along the directions of the vector (1, 0, `). We say that ` is the pitch.
When `= 0, we obtain a surface invariant by parabolic translations. Of course, in this
model this is related with two notions of nonparametric graphs. We will introduce them
now for motivation. First, let us consider prescribed mean curvature horizontal H-
graphs given by y = g(x, t), where g(x, t) is a positive C2 function. A computation
shows that the horizontal mean curvature equation in H2

×R is given by

2H

g2 (g
2
t + g2(1+ g2

x ))
3/2
= gxx (g

2
+ g2

t )+ gt t (1+ g2
x )

− 2gx gt gxt + g(1+ g2
x ). (2)

An interesting question that arises is the Bernstein problem for these graphs: Are
entire H -graphs invariant under parabolic screw motions?

Some classical constant mean curvature surfaces in H2
×R that arise naturally

from this nonparametric point of view are related to this question: indeed, note
that when g is constant we obtain the vertical cylinder over a horocycle of mean
curvature 1/2. If gt ≡ 0, we obtain the minimal vertical cylinder over a geodesic,
the constant mean curvature vertical cylinder over an equidistant curve (|H |< 1/2),
and the constant mean curvature vertical cylinder over a circle (|H |< 1/2). If H
is constant and gx ≡ 0, we obtain the Abresch–Rosenberg [1] surface with mean
curvature H , where |H |< 1/2 given by y = et/a, a =−2H/

√
1− 4H2. Note that

if H = 0 and gx ≡ 0, we can obtain a very simple formula for a one-parameter
family of minimal stable complete surfaces invariant by a parabolic motion y =
(sin t)/d, d 6= 0. This formula has already been established by Daniel [2] and this
surface was known to Hauswirth [10]. We will construct a two-parameter family
y = gH (x, t, d, `), d 6= 0 of horizontal minimal graphs, which produces complete,
simply connected and embedded minimal surfaces. If `= 0,we rediscover the Daniel–
Hauswirth minimal surface. Fixing the parameter d and varying ` we get a family
of nonisometric deformations of Daniel–Hauswirth minimal surfaces, that is, two
surfaces with different values of pitch ` are nonisometric.

https://doi.org/10.1017/S1446788708000013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000013


116 R. Sa Earp [4]

Let us now turn attention to vertical H-graphs given by a C2 function t = u(x, y).
The vertical mean curvature equation in H2

×R is given by the following equation:

divH

(
∇Hu

Wu

)
= 2H, (3)

where divH and ∇H are the hyperbolic divergence and gradient, respectively, and

Wu =

√
1+ |∇Hu|2H, | · |H being the norm in H2.

Gradient interior estimates and infinite boundary value problems for H -vertical
graphs were inferred by Spruck [21] and Hauswirth et al. [12].

Consider the half-space model for H2, with Euclidean coordinates x, y, y > 0. In
such a model, the above equation takes the following form:

2H

y2 (1+ y2u2
x + y2u2

y)
3/2
= (1+ y2u2

x )u yy + (1+ y2u2
y)uxx

− 2y2ux u yuxy − yu y(u
2
x + u2

y). (4)

Of course, on account of (3), the above equation is a second-order quasilinear
elliptic equation of divergence form, namely

div
(

∇u√
1+ y2|∇u|2

)
=

2H

y2 , (5)

where ∇u stands for the Euclidean gradient. If t = a ln y, we rediscover the Abresch–
Rosenberg surface given above. Notice that the tilted Euclidean plane t = `x , y > 0,
` 6= 0 gives rise to a solution of (4). It turns out that, for `= 1, we will obtain a
conjugate of a Scherk-type minimal surface. If `= 0, we obtain the totally geodesic
hyperbolic plane H2

× {0}. Note that we obtain a one-parameter family of minimal,
nontotally geodesic stable complete surfaces in H2

×R foliated by geodesics of the
ambient space (different from the helicoids) invariant by parabolic screw motions.
Varying `, we have a family of nonisometric deformations of the hyperbolic plane,
that is, two elements of this family with different pitches ` are nonisometric.

We will give an explicit formula for a one-parameter family of vertical H -graphs,
t = u H (x, y, `), in H2

×R over the entire H2 with pitch ` and constant mean
curvature H , where |H |< 1/2. Varying `, we obtain a family of nonisometric
simply connected, embedded and stable deformations of Abresch–Rosenberg surfaces
(`= 0).

In fact, we will construct a two-parameter family of horizontal graphs y =
gH (x, t, d, `), with constant mean curvature H , where |H |< 1/2, over the whole
xt plane that contains the above family; by setting d = 0 we get the family t =
uH(x, y, `) mentioned above. Again, fixing d and varying `, we obtain a family of
nonisometric deformations.

Moreover, we will obtain vertical minimal and H -graphs (|H | ≤ 1/2) over
the entire hyperbolic plane invariant by hyperbolic screw motions (with pitch `).
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Incidentally, we will give an explicit, simple, nonparametric formula for a family of
minimal entire vertical graphs invariant by hyperbolic screw motions.

We also exhibit a one-parameter family of entire vertical graphs of mean curvature
1/2. Rosenberg posed the question of the uniqueness of these vertical graphs in
the class of all 1/2-entire graphs. This is the ‘Bernstein Problem’ for 1/2-surfaces
in H2

×R. We note that very recently Fernández and Mira classified the entire
minimal graphs in Heisenberg space Nil3 [9]. This is related to the Bernstein problem
cited before.

We would like to remark that the notions of horizontal and vertical graphs have
appeared in the study of H -surfaces in hyperbolic space (see, for instance, [18]).

Finally, let M2 be a two-dimensional Riemannian manifold. Assume the existence
of a one-parameter group 0 of isometries acting on M2. We will say that S is a
0-screw motion surface if it is invariant by successive compositions of an element
of 0 with a vertical translation. If 0 consists of rotations about the vertical axis
we will say that this is a standard screw motion, instead of a 0-screw motion. If
M3
=H2

×R, and 0 is the group of parabolic translations we say that they are
parabolic screw motions; if 0 is the group of hyperbolic translations we say that
they are hyperbolic screw motions. We will prove a generalized Bour lemma which
is general enough to be applied to H2

×R and S2
×R (and to Heisenberg space).

Given a 0-screw motion surface S we will obtain a two-parameter family of isometric
0-screw motion surfaces to S, say F(`, m), m 6= 0. In the case of parabolic screw
motions in H2

×R this family contains a parabolic translation. The same is true for
hyperbolic screw motions in H2

×R. The case of standard screw motions is treated
in [19]. More precisely, we find natural parameters (s, τ ), so that the metric is of the
form dσ 2

= ds2
+U 2(s) dτ 2, and we are able to describe entirely any screw motion

surface in terms of the parameters `, m, and the metric determined by U 2. This can
also be applied to Heisenberg space. In this paper, we will apply the Bour generalized
lemma to screw motion surfaces in H2

×R, to show that any two minimal isometric
parabolic screw motion immersions are associate; that is, the absolute values of their
Hopf functions are equal. The current author with Toubiana proved that this result
also holds for standard screw motion surfaces in H2

×R and S2
×R. Moreover,

these authors in the same paper proved that, in H2
×R, a catenoid is conjugate to

a helicoid of pitch ` < 1. In this paper, we deduce that if `= 1 then the helicoid is
conjugate to a Daniel–Hauswirth minimal surface. Daniel has proved this result by
another approach in [2]. It follows from his work that the helicoid of pitch ` > 1 is
conjugate to a surface invariant by hyperbolic isometries. We will deduce this fact
by outlining an alternative proof. Furthermore, we show that each such helicoid
is associate to a parabolic screw motion surface. On the other hand, there exist
families of isometric associate hyperbolic screw motion immersions, but there also
exist isometric nonassociate hyperbolic screw motion immersions. Each parabolic
screw motion surface is associate to a hyperbolic screw motion surface. For other
relevant papers on this subject, the reader is referred to Meeks and Rosenberg [13],
Nelli and Rosenberg [14], and Fernández and Mira [8].
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2. Complete embedded minimal and constant mean curvature surfaces in
H2 × R invariant by parabolic screw motions

Recall that we consider the product H2
×R (here H2 is the upper half-plane model)

with coordinates (x, y, t), endowed with the metric dσ 2
= dx2/y2

+ dy2/y2
+ dt2,

where the inner product is denoted by 〈·, ·〉 and the norm is denoted by ‖·, ·‖. We now
turn our attention to nonparametric vertical graphs X : (x, y) 7→ (x, y, u(x, y)), given
by C2 functions t = u(x, y) over H2. Let ∇̃ be the Riemannian connection on H2

×R.
Let Xx , X y be the coordinate global frame field to the graph. It is straightforward to
deduce that the upper unit normal N is given by

N =
1√

1+ y2(u2
x + u2

y)
(−ux y2,−u y y2, 1).

We can also easily deduce that the connection is determined by the formulas

∇̃Xx Xx = (0, 1/y, uxx ), ∇̃X y X y = (0,−1/y, u yy), ∇̃X y Xx = (−1/y, 0, uxy).

We have therefore that the coefficients of the second fundamental form l :=
〈∇̃Xx Xx , N 〉, n := 〈∇̃X y X y, N 〉, m := 〈∇̃X y Xx , N 〉 are given by

l =
−u y/y + uxx√
1+ y2(u2

x + u2
y)
, n =

u y/y + u yy√
1+ y2(u2

x + u2
y)
, m =

ux/y + uxy√
1+ y2(u2

x + u2
y)
.

Now the Gram–Schmidt orthogonalization process provides a tangent field Y = X y

− 〈X y, Xx 〉Xx/‖Xx‖
2 orthogonal to Xx . Let

−→
H be the mean curvature vector. Now

taking into account the fact that the mean curvature H defined by
−→
H = H N is given

by 2H = (1/‖Xx‖
2)〈∇̃Xx Xx , N 〉 + (1/‖Y‖2)〈∇̃Y Y, N 〉,we infer the formula for the

vertical mean curvature equation in our model stated in the introduction, see Equation
(4). We now observe that this equation is of divergence form, given by Equation (5).

We observe that any vertical minimal graph or H -graph is stable. In fact,
vertical translations provide a foliation of an open subset of ambient space given by
H -surfaces, transverse to the Killing vertical vector field; see [15].

In particular, we now focus on vertical graphs of the form u(x, y)= λ(y)+ `x;
we say that t = λ(y) is the generating curve. In view of (4), we have therefore
that the generating curve t = λ(y) of a parabolic screw motion surface satisfies the
following equation.

PROPOSITION 2.1 (Mean curvature equation). The mean curvature equation is

2H

y2 (1+ y2(`2
+ λ′2))3/2 = (1+ y2`2)λ′′ − yλ′(`2

+ λ′2). (6)

Owing to the fact that the mean curvature Equation (4) is of divergence form (5),
we derive the following crucial formula for parabolic screw motion surfaces.
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LEMMA 2.1 (First integral).(
λ′√

1+ y2(`2 + λ′2)

)′
=

2H(y)

y2 . (7)

In particular, if H is constant, we obtain

λ′√
1+ y2(`2 + λ′2)

=
yd − 2H

y
(first integral). (8)

We remark that Equations (6) and (8) can be alternatively inferred using the
techniques derived in [19].

Finally, we observe that in our model the horizontal mean curvature Equation (2),
satisfied by a positive smooth function y = g(x, t), can also be inferred in a similar
way. For the readers benefit, we now give the principal quantities that arise in the
derivation of this formula: the unit normal N pointing towards the half-space {y > 0}
is given by

N =
1√

g2
t + g2(g2

x + 1)
(−gx g2, g2,−gt ).

The coefficients of the second fundamental form are given (in the same notation as
before) by

l =
gxx + (1/g)+ (g2

x/g)√
g2

t + g2(g2
x + 1)

,

n =
gt t − (g2

t /g)√
g2

t + g2(g2
x + 1)

, m =
gxt√

g2
t + g2(g2

x + 1)
.

We will see in the next section how these graphs arise in the construction of
parabolic screw motion surfaces.

2.1. Complete embedded minimal surfaces We will now state the following
existence theorem for minimal surfaces in H2

×R obtained by the construction of
complete horizontal graphs in our model.

THEOREM 2.1 (Existence of embedded minimal surfaces).

(a) The tilted Euclidean half-plane

t = `x, y > 0 (9)

gives rise to a one-parameter family of complete embedded simply connected
minimal stable surfaces in H2

×R invariant by parabolic screw motions. Two
such surfaces with different pitches ` are nonisometric. If `= 0 we get the
hyperbolic plane.
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(b) Let us assume that d 6= 0. The generating curve is obtained by gluing together
a convex vertical graph t = λ(y), 0 6 y 6 1/d, vertical at y = 1/d, and its
vertical reflection. We obtain a horizontal graph family y = gH (x, t, d, `),
d 6= 0, of complete embedded simply connected minimal surfaces invariant by
parabolic screw motions. Fixing the parameter d and varying `, we get a family
of nonisometric deformations of Daniel–Hauswirth minimal surface, that is, two
surfaces with different pitches ` are nonisometric.

We will see in Section 5 that, taking `= 1 in (9), we obtain a conjugate Scherk-type
minimal surface.

PROOF. Now observe that it follows from (8) that λ′ ≡ 0 produces a solution; hence,
up to vertical translation or symmetry about the xy plane, we may assume that λ≡ 0.
Now, on account of (1), we deduce that the tilted Euclidean half-plane t = `x, y > 0
gives rise to a one-parameter family of complete embedded minimal stable surfaces
in H2

×R invariant by screw motions. On account of Corollary 4.1, Equation
(35) (taking H = 0), we see that two such immersions with different pitches ` are
nonisometric. If `= 0 we get the hyperbolic plane. Now let us suppose that
d 6= 0. From (8), up to vertical translation or symmetry about the xy plane, we have
that the minimal parabolic screw motion vertical graph t = λ(y)+ `x , generated by
t = λ(y)= λ(y, d, `), y 6 1/d , is given by

t = d
∫ y

0

√
1+ ξ2`2√
1− ξ2d2

dξ. (10)

Let EllipticE(k) be the complete elliptic integral of the second kind. Note now
that we get an incomplete elliptic integral of the second kind in (10), since
λ(y, d, `)= EllipticE(yd,

√
(−1)`2/d2). Now it is a simple calculation to deduce

that t = λ(y), defined by (10), is increasing and convex in the interval [0, 1/d),
strictly convex in the interval (0, 1/d), and it is vertical at the point y = 1/d.
Another computation shows that the Euclidean curvature at y = 1/d is finite and that
λ(1/d)= EllipticE(

√
−`2/d2). Hence, by gluing together t = λ(y) with its vertical

reflection, say the Schwarz reflection, given by 2EllipticE(
√
−`2/d2)− λ(y), we

obtain an embedded curve which is complete in the ambient space and has ‘sinusoidal
shape’ (from the Euclidean view point). Now, in view of (1), by applying successive
screw motions to this curve, which is a Euclidean translation in the direction
of the vector (1, 0, `), we get the horizontal minimal graph y = gH (x, t, d, `),
d 6= 0. More precisely, this horizontal minimal graph is obtained by gluing together
the vertical graph t = λ(y, d, `)+ `x, y 6 1/d, with its Schwarz reflection given
by 2EllipticE(

√
−`2/d2)− λ(y, d, `)+ `x . Of course, this construction yields a

complete embedded simply connected minimal surface invariant by parabolic screw
motions. Now, by fixing the parameter d and letting ` vary, we get from Corollary 4.1,
Equation (36) (making H = 0), a nonisometric deformation of the Daniel–Hauswirth
minimal surface (`= 0). This completes the proof of the theorem, as desired. 2
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REMARK 1. (1) Let t = λ(y)= λ(y, d, `), y 6 1/d, d 6= 0 be a generating curve of
an embedded minimal surface given by Theorem 2.1. Recall that by gluing together
t = λ(y) with its Schwarz reflection, given by 2EllipticE(

√
−`2/d2)− λ(y), we

obtain an embedded curve generating an embedded minimal surface. Now, for ζ > 0,
let us define f (y) := λ(ζ y), y 6 1/(ζd). It is easy to verify that f (y) satisfies the
minimal Equation (8) (H = 0), with pitch ζ` and parameter ζd. Now we observe that
the resulting minimal surface can be obtained geometrically, by applying a horizontal
translation (horizontal homothety) (x, y, λ(y)+ `x)→ (ζ x, ζ y, λ(y)+ `x) to the
original surface. Thus, making d = `, we obtain a foliation of an open set of the yt-
vertical plane (y > 0) given by a one-parameter family of embedded complete curves
generating a one-parameter family of embedded minimal surfaces. Some of these
generating curves are drawn in Figure 2 (d = `= 4, 2, 1, 2/3, 1/2).

(2) Now let us fix `, say `= 1, for simplicity. We will see that, by varying d in the
interval (0,∞), we obtain a foliation of the half yt-vertical plane (y > 0, t > 0) by
generating curves of embedded, minimal, parabolic screw motion surfaces, producing
a foliation of an open set of ambient space. Consider positive numbers d1, d2
with d2 < d1. Notice that λ(y, d1, 1) > λ(y, d2, 1) if y 6 1/d1. Now observe also
that λ(1/d)= EllipticE(

√
−1/d2) is a strictly decreasing function in the variable d,

satisfying λ(1/d)→∞, as d→ 0, and λ(1/d)→ π/2, as d→∞. Hence, we deduce
that for d2 < d1 the generating curve obtained by λ(y, d2, 1) and its Schwarz reflection
‘involves’ (in the Euclidean sense) entirely the curve determined by λ(y, d1, 1) and
its Schwarz reflection, see Figure 3. Consequently, we infer the desired foliation of
the half-vertical plane. Hence, we get a foliation of an open set of ambient space by
minimal parabolic screw motion surfaces with pitch `= 1. In Figure 3 some generating
curves for `= 1 and d = 1/2, 2/3, 1, 3/2, 2, 10 are drawn.

(3) Finally, we see that t = λ(y, 1, `), y 6 1 gives the generating curve of a family
of nonisometric deformations of the Daniel–Hauswirth minimal surface, obtained by
fixing the parameter d = 1 and varying the pitch `. We obtain an embedded minimal
surface by gluing together t = λ(y, 1, `)+ `x, y 6 1 and its Schwarz reflection, as
we have explained before. Notice that this family of generating curves has self-
intersections. In Figure 4 we show some examples for `= 1/100, 1, 2, 3. We leave
the description of their asymptotic boundaries to the reader.

2.2. Complete embedded H-surfaces We will prove our existence results for
parabolic screw motion H -surfaces in H2

×R, if the mean curvature satisfies
|H |< 1/2. We will construct complete H -surfaces given by vertical graphs over the
entire hyperbolic plane; hence they are stable. Whether there exists a noncompact
complete stable H -surface in H2

×R with mean curvature bigger than 1/2 is an
interesting question. This is related to results derived by Nelli and Rosenberg. These
authors proved that in H2

×R there is no noncompact complete stable H -surface
with H > 1/

√
3, either with or without compact boundary [15]. Does there exist

a complete noncompact stable H -surface with H satisfying 1/2< H 6 1/
√

3 ? For
H = 1/2, surfaces of revolution provide examples of complete noncompact stable
H -surfaces, which have a simple explicit expression, see [1] or [15]. See also [19].
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t

d=4 d=2d=1 d=2/3d=1/2

1
y

FIGURE 2. Generating curves of embedded minimal surfaces obtained by horizontal translations varying
the pitch `= d .

d=10 d=1

d=2

d=3/2

d=2/3

d=1/2

t

(1=1)

0
y

FIGURE 3. Foliation given by generating curves of embedded minimal surfaces obtained by varying d
and fixing the pitch `= 1.

(d=1)

1=3

1=2

1=1

1=1 / 100
t

y

FIGURE 4. Generating curves of embedded minimal surfaces obtained by varying the pitch ` and fixing
the parameter d = 1.
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FIGURE 5. The ball model for H2
× {0}. Nonisometric deformation in H2

×R of the hyperbolic plane
(`= 1). A conjugate Scherk-type minimal surface.

(a)

(b)

FIGURE 6. The ball model for H2
× {0}. (a) Nonisometric deformation (d = `= 1) in H2

×R of the
Daniel–Hauswirth minimal surface. (b) The asymptotic boundary of a nonisometric deformation of the

Daniel–Hauswirth minimal surface (d = `= 1).
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We will obtain in the next section examples of entire vertical graphs with mean
curvature H = 1/2.

THEOREM 2.2 (Existence of embedded H -surfaces). For any H in (−1/2, 0), there
exists a one-parameter explicit family of vertical H-graphs with pitch `, each one
if which is stable and embedded, given by t = uH(x, y, `) := λ(y, `)+ `x over the
entire hyperbolic plane H2

× {0}. Varying `, we obtain a family of nonisometric,
simply connected and embedded, stable deformations of the Abresch–Rosenberg
surface (`= 0). More precisely, the generating curve t = λ(y, `) is given by

t = λ(y, `)=
−2H

√
1− 4H2

[
ln
(√

1+ `2 y2 − 1√
1+ `2 y2 + 1

)1/2

+

√
1+ `2 y2

]
(` 6= 0). (11)

For any H in (−1/2, 0), there exists a two-parameter explicit family of horizontal
H-graphs given by y = gH(x, t, d, `) over the entire xt plane, each one of
which is embedded, that contains the above family: if d = 0, the generating
curve is given by (11). These horizontal H-graphs are obtained by applying
Schwarz reflection to a vertical parabolic screw motion graph generated by
t = λ(y, d, `), 0< y < (1− 2|H |)/d, and its vertical reflection at the vertical point
y = (1− 2|H |)/d. Fixing d and letting ` vary, we obtain a family of nonisometric
deformations. Thus, each such H-surface is a complete simply connected embedded
surface, invariant by parabolic screw motions.

PROOF. From (8), up to vertical translation or symmetry about the xy plane, we have
that a screw motion H -vertical graph t = λ(y, d, `)+ `x, with |H |< 1/2, generated
by t = λ(y, d, `), is given by

t =
∫ y

∗

(2|H | + ξd)
√

1+ ξ2`2

ξ
√

1− (2|H | + ξd)2
dξ (d > 0). (12)

Letting d = 0 in (12), we infer that

t := λ(y, `)=
2|H |

√
1− 4H2

∫ y

∗

√
1+ ξ2`2

ξ
dξ. (13)

The behavior of λ(y, `) can be analyzed as follows. Notice that on account of (8)
we are assuming that |H |< 1/2, with H < 0. Now clearly λ(y, `) is an increasing
function for y > 0. A computation shows that λ(y, `) is strictly concave. Next,
notice that

√
1+ y2`2 = 1+ (`2/2)y2

+ o(y2), near y = 0; hence λ(y, `) has a log
behavior as y→ 0. Clearly, at infinity λ(y, `) has a linear behavior. Thus, uH(x, y, `)
:= λ(y, `)+ `x is a vertical graph over the entire hyperbolic plane H2

× {0}, which
yields a complete horizontal H -graph over the (x, t) plane, as well. We conclude
therefore that there exists a one-parameter family of vertical H -graphs, and each
one is stable and embedded. On the other hand, observe that Equation (13) is
easily solved by elementary integration techniques: we therefore obtain the explicit
form (11) in the theorem, the graph of which, for H =−1/4, `= 1, is drawn in
Figure 7. Now, if d 6= 0, we define λ(y d, `) by (12). Clearly, λ(y, d, `) is an
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y
t

FIGURE 7. The generating curve of an embedded H -surface belonging to the family (d = 0) given by the
elementary formula (11).

t

y

FIGURE 8. The generating curve of an embedded H -surface (d = `= 1).

increasing function, which is vertical at y = (1− 2|H |)/d. By reasoning analogous
to that used above, the local behavior of λ(y, d, `) at y = 0 is of log type. Now after
a computation we infer that at y = (1− 2|H |)/d the Euclidean curvature is finite,
so hence by vertical reflection at y = (1− 2|H |)/d we obtain a complete horizontal
H -graph y = gH (x, t, d, `) (|H |< 1/2) over the entire (x, t) plane, which is simply
connected, embedded and invariant by parabolic screw motions. The generating curve
for H =−1/4, d = `= 1, is drawn in Figure 8. It follows from Corollary 4.1 that, by
fixing d and varying `, the family t = u H (x, y, `) (d = 0) is determined by (11) and
the family y = gH (x, t, d, `) is formed by nonisometric H -surfaces. This concludes
the proof of the theorem, as desired. 2
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FIGURE 9. The ball model for H2
× {0}. A nonisometric, simply connected and embedded stable

deformation (d = 0, `= 1) in H2
×R of the Abresch–Rosenberg surface, H =−1/4.

FIGURE 10. The ball model for H2
× {0}. A complete embedded H -surface (d = 1, `= 1) in H2

×R,
invariant by parabolic screw motions, H =−1/4.

3. A generalized Bour lemma

We will now prove a generalized Bour lemma that can be applied to parabolic
and hyperbolic screw motion surfaces in H2

×R and screw motion surfaces in
Heisenberg’s space. This generalizes a result in [19]. Ordóñes, following ideas
of Do Carmo and Dajczer [4], proved another generalization of the Bour lemma
applied to surfaces invariant by screw motions in a three-dimensional space form. It is
reasonable to expect a general Bour lemma that holds in all situations. However, we
will not pursue this task here.

We will now consider the three-dimensional Riemannian manifold M3 given by an
open set of the Euclidean 3-space R3 equipped with coordinates {(ρ, ϕ, t), ρ > 0} and
metric dσ 2 given by

dσ 2
=92(ρ) dρ2

+82(ρ) dϕ2
−32(ρ) dt dϕ + dt2 (14)

where 92, 82 and 32 satisfy some further conditions, as we will see in what follows.
We will call 0 the one-parameter group of isometries acting on M3 by translation on
the ϕ variable.

DEFINITION 3.1. We say that a surface S immersed into M3 is a 0-screw motion
surface (with vertical axis t) if it is invariant by successive compositions of an element
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of 0 with a vertical translation. More precisely, using coordinates (ρ, ϕ, t), S is given
by (ρ, ϕ) 7→ (ρ, ϕ, λ(ρ)+ `ϕ),where `> 0, is called the pitch. We say that the curve
(ρ, λ(ρ)) lying on {ϕ = 0} is the generating curve.

We have studied in [19] the generating curve of standard screw motion surfaces in
H2
×R and S2

×R. In Section 2, we studied the generating curve of parabolic screw
motion surfaces in H2

×R.
Next, let us give some motivating examples to see that the metric given by (14)

appears naturally in this context.

REMARK 2.
(1) The ambient space is H2

×R.
(a) Standard screw motion surfaces. Here we take the ball model H2

=

{(x, y), x2
+ y2 < 1} as the hyperbolic plane equipped with the hyperbolic metric

(4/(1− |z|2)2)|dz|2. The metric in H2
×R using cylindrical coordinates (ρ, ϕ, t)

(where ρ is the hyperbolic distance measure from the origin of H2, that is, R =
tanh ρ/2, R =

√
x2 + y2 and t is the height) is given by dσ 2

= dρ2
+ sinh2 ρ dϕ2

+

dt2. Thus we have 82
= sinh2 ρ, 8′2 = cosh2 ρ = F1(8

2), where F1(u)= 1+ u.
92
≡ 1 and 3≡ 0.

(b) Parabolic screw motion surfaces. We take the upper half-plane model H2
=

{(x, y), y > 0} equipped with the hyperbolic metric (dx2/y2)+ (dy2/y2). We set
y = ρ and x = ϕ. The metric is given by dσ 2

= (dx2/y2)+ (dy2/y2)+ dt2. We
have 82

= 1/y2, 8′2 = 1/y4
= F1(8

2), where F1(u)= u2. 92
= G1(8

2), where
G1(u)= u and 3≡ 0.

(c) Hyperbolic screw motion surfaces. We again take the upper half-plane
model and polar coordinates x = R cos θ, y = R sin θ, 0< θ < π, R > 0. In view of
(14), we set ρ := θ and eϕ := R. Thus we have H2

= {(x = eϕ cos ρ, y = eϕ sin ρ),
0< ρ < π}, equipped with the hyperbolic metric. The metric in H2

×R using
coordinates (ρ, ϕ, t) is given by dσ 2

= (dρ2/ sin2 ρ)+ (dϕ2/ sin2 ρ)+ dt2. We
have 82

= 1/ sin2 ρ, 8′2 = F1(8
2), where F1(u)= u2

− u. 92
= G1(8

2), where
G1(u)= u and 3≡ 0.

(2) Screw motion surfaces in S2
×R.Now let S2

=C ∪ {∞} be the sphere equipped
with the spherical metric (4/(1+ |z|2)2)|dz|2. The metric in S2

×R using cylindrical
coordinates (ρ, ϕ, t) (where ρ is the sphere distance measure from the origin of
S2, that is, R = tan ρ/2, R =

√
x2 + y2 and t is the height) is given by ds2

=

dρ2
+ sin2 ρ dϕ2

+ dt2. We have 82
= sin2 ρ, 8′2 = F1(8

2), where F1(u)= 1− u.
92
≡ 1 and 3≡ 0.

(3) Screw motion surfaces in Heisenberg space. Consider R3 equipped
with the metric dσ 2

= dx2
+ dy2

+ [dt + (1/2)(y dx − x dy)]2. We write x =
2 sinh(ρ/2) cos ϕ, y = 2 sinh(ρ/2) sin ϕ. The metric using coordinates (ρ, ϕ, t) is
given by

dσ 2
= cosh2(ρ/2) dρ2

+ sinh2 ρ dϕ2
− 4 sinh2(ρ/2) dt dϕ + dt2.
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We have 82
= sinh2 ρ, 8′2 = F1(8

2), where F1(u)= 1+ u. 92
= G1(8

2), where
G1(u)= (1+

√
1+ u)/2. Also 32

= G2(8
2), where G2(u)= 2(

√
1+ u − 1),

3′2 = G1(8
2).

Next, we will prove a central result in this section. It contains some apparently
complicated formulas but, as we will see afterwards, when it is specialized to parabolic
or hyperbolic screw motion surfaces the formulas look much nicer.

THEOREM 3.1 (Generalized Bour lemma). Let M3 be the Euclidean 3-space en-
dowed with the metric given by (14) and the one-parameter group of isometries 0.
Let us assume that 82

+ `2 > `32 and 82 >34/4. Then, any surface invariant by
0-screw motions can be parameterized locally by natural coordinates s, τ, such that
the induced metric dµ2 is given by

dµ2
= ds2

+U 2(s) dτ 2. (15)

Furthermore, assume that82
= f (U 2), 8′2 = F1(8

2), 92
= G1(8

2), 32
= G2(8

2)

and 3′2 = G3(8
2), where f (u), F1(u), G1(u), G2(u) and G3(u) are smooth real

functions for u > 0. Let S be such a 0-screw motion surface. Then there exists a two-
parameter family F(m, `), m 6= 0 of 0-screw motion surfaces isometric to S, given by

m2U 2
= `2
+82

−32`,

ρ′2(s)=
`2
+82

−32`

92(`2 +82 −32`)+ λ′2(ρ)(82 −34/4)
,

ρ′2(s)=
m4U 2U ′2

[

√
f (U 2)

√
F1( f (U 2))− `

√
G2( f (U 2))G3( f (U 2))]2

,

λ◦ρ(s)=
∫

mU

[m2U 2 − (`− G2( f (U 2))/2)2]1/2
· B ds,

where

B(s)=

[
1−

m4U 2U ′2G1( f (U 2))

[

√
f (U 2)F1( f (U 2))− `

√
G2( f (U 2))G3( f (U 2))]2

]1/2

,

ϕ(s, τ )=
τ

m
−

∫
(λ◦ρ)′ [`− G2( f (U 2))/2]

m2U 2 ds. (16)

PROOF. The proof will proceed in the same sprit as in [19]. In view of (14) and
t = λ(ρ)+ `ϕ, we deduce that the induced metric dµ2 of a given screw motion
0-surface S immersed into M3 is given by

dµ2
= (92

+ λ′2) dρ2
+ (82

+ `2
−32`) dϕ2

+ (2`λ′ −32λ′) dρ dϕ. (17)
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Now rewrite the above equation to obtain

dµ2
=

[
92
+
λ′2(82

−34/4)

`2 +82 −32`

]
dρ2︸ ︷︷ ︸

ds2

+ [`2
+82

−32`]︸ ︷︷ ︸
U 2

[
dϕ +

(`−32/2)

`2 +82 −32`
dλ◦ρ

]2

︸ ︷︷ ︸
dτ 2

. (18)

This equation leads to the following system:

ds =

√
92 +

λ′2(82 −34/4)

`2 +82 −32`2 dρ, (19)

dτ = dϕ +
λ′(`−32/2)

`2 +82 −32`
dρ. (20)

By the implicit function theorem (due to the fact that ∂(s, τ )/∂(ρ, ϕ) 6= 0), we
define locally natural coordinates s, τ. Notice that ρ and λ do not depend on τ ; hence
U =U (s) and we deduce (15). Next we search for an explicit parametrization of an
arbitrary screw motion surface (with pitch denoted by ` for convenience) isometric
to S by natural coordinates s, τ, involving a simple expression in terms of U and
parameters `, m as in the theorem. Notice that we may suppose that U > 0, since
we assume momentarily that ρ > 0 (an extension to ρ = 0 or negative values requires
some additional argument). In view of (19) we infer the third equation in the theorem;
hence

(λ◦ρ)′2 =

(
`2
+82

−32`

82 −34/4

)
(1− ρ′292). (21)

Now on account of (18) we see that the expression of U 2 is given by

U dτ =±
√
`2 +82 −32`

[
dϕ +

λ′(`−32/2)

`2 +82 −32`
dρ

]
.

Thus

∂ϕ

∂τ
= ±

U
√
`2 +82 −32`

, (22)

∂ϕ

∂s
=
− λ′ρ′(`−32/2)

`2 +82 −32`
. (23)

In view of (22) and (23), we deduce that ∂ϕ/∂τ does not depend on s; hence we
obtain the crucial formula

±
U

√
`2 +82 −32`

=
1
m
, m 6= 0. (24)
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Then we derive the second formula in the theorem. From (24), by performing some
calculations we are able to express ρ′2 in terms of U 2,U ′2, m4 and (88′ −33′`)2.
Again taking into account (24), by substituting 8, 8′, 3 and 3′ in terms of 82

=

f (U 2), in view of (21), we derive the fourth and fifth formulas in the theorem. The
last formula follows by combining (22), (23) and (24) with the fifth formula. This
concludes the proof of the second part and therefore the proof of the theorem. 2

REMARK 3. We note that from Theorem 3.1 we recover the formulas given in [19],
Theorem 19 and Theorem 20, for screw motion surfaces in H2

×R and S2
×R, see

Remark 2, examples (1)(a) and (2) above. In fact, when the ambient space is the
product M2

×R, we have 3≡ 0 (G2 = G3 ≡ 0). Moreover, we have 82
= f (U 2),

where f (u)= m2u − `2, m > 0, `> 0. Hence, the second and the third formulas in
(16) are simplified. The fourth and the last two formulas also become simpler:

ρ′2 =
m4U 2U ′2

(m2U 2 − `2)F1(m2U 2 − `2)
,

λ◦ρ(s)=
∫

mU

[m2U 2 − `2]1/2

[
1−

m4U 2U ′2G1(m2U 2
− `2)

(m2U 2 − `2)F1(m2U 2 − `2)

]1/2

ds,

ϕ(s, τ )=
τ

m
− `

∫
(λ◦ρ)′

m2U 2 ds. (25)

Now let us turn our attention to the Heisenberg space: in view of Remark 2, example
(3) and Theorem 3.1, if M3 is a Heisenberg space, then 82

= f (U 2), where

f (u)= (`+
√

1− 2`+ m2u)2 − 1, m > 0, 0 6 `6 1,

since82
= sinh2 ρ and m2U 2

= `2
+ sinh2 ρ − 4` sinh2(ρ/2)(0 6 `6 1).Hence, we

establish the following formulas for screw motion surfaces in the Heisenberg space:

λ◦ρ(s)

=

∫
mU [(2(`− 1)+ 2

√
1− 2`+ m2U 2)(1− 2`+ m2U 2)− m4U 2U ′2]1/2

2(
√

1− 2`+ m2U 2 + `− 1)
√

1− 2`+ m2U 2
,

ϕ(s, τ )=
τ

m
−

∫
(λ◦ρ)′ [1−

√
1− 2`+ m2U 2]

m2U 2 ds. (26)

We also observe that, in view again of the previous Remark 2, examples (1) (c) and
(3) and (25), explicit formulas may be written either for parabolic or hyperbolic screw
motion surfaces in H2

×R.

4. Complete embedded minimal and constant mean curvature surfaces in
H2 × R invariant by hyperbolic screw motions

Notice that hyperbolic screw motion surfaces in H2
×R can be studied in

the same way as parabolic screw motion surfaces. Recall the definition:
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x = eϕ cos ρ, y = eϕ sin ρ, t = λ(ρ)+ `ϕ, 0< ρ < π. Here we take the upper half-
plane model for H× {0}. As in [19], we deduce that the mean curvature equation
(with respect to the unit normal

N = (1/
√

1+ sin2 ρ(`2 + λ′2) )(sin2 ρ eϕ+iρ(`+ iλ′),−1)

in complex notation) has the following form:

2H(1+ `2 sin2 ρ + λ′2 sin2 ρ)3/2 = −λ′′ sin2 ρ(1+ `2 sin2 ρ)

+ λ′ cos ρ sin3 ρ(`2
+ λ′2).

If H is constant, we deduce that

λ′√
1+ `2 sin2 ρ + λ′2 sin2 ρ

= 2H cot ρ + d. (27)

Notice that, in view of (27), we deduce that the generating curve of an H -hyperbolic
screw motion surface is given (writing θ = ρ) by

t = λ(θ)=
∫ θ

∗

√
1+ `2 sin2 ρ (d + 2H cot ρ)√
1− sin2 ρ (d + 2H cot ρ)2

dρ. (28)

Now observe that any hyperbolic screw motion surface obtained by (28) is stable,
since it is a vertical graph given by

t = λ(arc cot(x/y))+
`

2
ln(x2

+ y2).

Recall that vertical translations of an H -vertical graph are isometric deformations
of ambient space producing a foliation that ensures stability. Notice that, if λ≡ 0
(or d = 0), we obtain a complete, embedded, simply connected, stable minimal
surface in H2

×R, invariant by hyperbolic screw motions (with pitch `). Define
(R, θ) 7→ (R cos θ, R sin θ, ` ln R), R > 0, 0< θ < π. In fact, in view of (27) and
(28), just make θ = ρ, R = eϕ . This one-parameter family of minimal surfaces, as
vertical graphs over the entire hyperbolic plane, is given by the following explicit
nonparametric formula:

t =
`

2
ln(x2

+ y2), y > 0. (29)

With the aid of the nonparametric Equation (4), notice that we may check that (29)
yields a minimal surface. Observe now that by making H = 1/2 (a downward pointing
inner unit normal) and d = 0 in (27) or (28), we obtain a complete, embedded, simply
connected, stable H -surface in H2

×R, invariant by hyperbolic screw motions (with
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FIGURE 11. The ball model for H2
× {0}. A complete embedded stable minimal surface (d = 0, `= 1)

in H2
×R, invariant by hyperbolic screw motions.

pitch `). This surface is a vertical H -graph with H =−1/2 (an upward pointing inner
unit normal), over the entire hyperbolic plane, given by the following explicit formula
(see Figure 13):

t =−

√
x2 + y2 + `2 y2

y
+ `[ln(

√
x2 + y2 + `2 y2 + `y)], y > 0. (30)

Letting `= 0 in (30) and taking the symmetric with respect to the horizontal xy-plane,
we derive a quite simple formula for an H -vertical graph, over the entire hyperbolic
plane (H = 1/2), invariant by hyperbolic translations:

t =

√
x2 + y2

y
, y > 0. (31)

Notice that this entire 1/2-graph (31), invariant by hyperbolic translations, has the
property that the level curve {t = 1} is a geodesic and the level curves {t = c, c > 1}
are equidistant curves in H2.

Of course, using (4) we can readily check that (30) and (31) are indeed H -vertical
graphs. Very recently, Fernández and Mira [7] gave a characterization of (31) (see
Figure 12).

Now, letting H = 0 and d = 1, and `= 0 in (28), we obtain a Scherk-type minimal
surface, invariant by hyperbolic translations, given by the following explicit formula:

t = ln
(√

x2 + y2 + y

x

)
, y > 0, x > 0. (32)

Notice that this function takes infinite boundary value data on the positive y-axis
and zero asymptotic value boundary data on the positive x-axis. So by applying a
(horizontal) isometry of ambient space, we have the situation that we have drawn
schematically in Figure 1.

We note that formula (32) was used by Collin and Rosenberg [5] in the construction
of entire minimal graphs in H2

×R that are conformally the complex plane C,
disproving a conjecture by Schoen [5]. Again, in view of (4), it is easily verified that
(32) yields a minimal surface. Letting H = 0 and `= 0, d = 1/2 in (28), we obtain
a complete, embedded, stable minimal surface invariant by hyperbolic translations.
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FIGURE 12. The ball model for H2
× {0}. A complete embedded stable H -surface (d = 0, `= 0) in

H2
×R, invariant by hyperbolic translations, H = 1/2.

FIGURE 13. The ball model for H2
× {0}. A complete embedded stable H -surface (d = 0, `= 1) in

H2
×R, invariant by hyperbolic screw motions, H =−1/2.

Letting H = 1/4, `= 0 and d = 1/2 in (28) yields a complete, embedded, stable
H -surface invariant by hyperbolic translations. The fact that these H -surfaces are
complete and embedded follows from the analysis of the generating curves. Other
such surfaces may be constructed in the same way.

We pause now to say that the Scherk-type surface (32) (see Figure 14) can
be applied to derive results for the Dirichlet problem for the minimal equation in
H2
×R. Very recently, Collin and Rosenberg have proved the existence of harmonic

diffeomorphisms from C to H2 by studying complete minimal graphs in H2
×R. They

used the formula (32), as we noted before [5].
The following remark is due to Rosenberg.
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FIGURE 14. The ball model for H2
× {0}. Part of a Scherk-type minimal surface (`= 0, d = 1) in

H2
×R, invariant by hyperbolic translations.

l

w

FIGURE 15. The ball model for H2
× {0}.

REMARK 4. Abresch and Rosenberg studied the asymptotic values of minimal graphs
in H2

×R over domains in H2. In particular, they observed that there is no minimal
graph u in a domain W of H2, taking infinite asymptotic values on an arc l of the
asymptotic boundary of W. See Figure 15. This can be seen using the graph S given
by (32) (see also Figure 1) with asymptotic value −∞ on a geodesic arc g inside W
with boundary two points of l. Choose g so that the assumed solution u (which tends to
infinity on l ) is positive on the domain U bounded by g and an arc of l, see Figure 16.
Clearly, the graph of the Scherk-type surface is below u where it is defined. Now
translate the Scherk-type graph upwards. Then there is a first point of contact of the
graph with the graph of u, which is impossible by the maximum principle.
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l

Ug

FIGURE 16. The ball model for H2
× {0}.

Rosenberg conjectured that there is no minimal graph over a domain in H2 with
infinite asymptotic values on a set of positive measure of the circle at infinity.

We will now establish the following results for further reference.

THEOREM 4.1. Any surface invariant by parabolic screw motions in H2
×R can be

parameterized locally by natural coordinates s, τ. Let S be such a parabolic screw
motion surface. Then there exists a two-parameter family F(m, `), m 6= 0, containing
a surface invariant by parabolic translations, such that each element of the family is a
parabolic screw motion surface isometric to S given by

m2U 2(s)=
1

y2 + `
2,

ρ′2(s)=
y2(1+ y2`2)

1+ y2`2 + y2(λ′(y))2
,

ρ′2(s)=
m4U 2U ′2

(m2U 2 − `2)3
, (33)

λ◦ρ(s)=
∫

mU
√
(m2U 2 − `2)2 − m4U 2U ′2√

(m2U 2 − `2)3
ds,

ϕ(s, τ )=
τ

m
− `

∫ √
(m2U 2 − `2)2 − m4U 2U ′2

mU
√
(m2U 2 − `2)3

ds.

PROOF. Using Remark 2, example (1) (b), Theorem 3.1 and Remark 3, we deduce
the formulas (33) in the theorem. To see that the family contains a surface invariant
by parabolic translations, we argue as follows. Looking at Equations (33), we see
that if these formulas hold for some pitch `> 0, then they also hold for a pitch ˜̀
in the interval [0, `], since (m2U 2

− `2)> 0 and (m2U 2
− `2)2 − m4U 2U ′2 > 0.
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We obtain thereby a family F(m, `), m 6= 0 of surfaces isometric to S containing a
parabolic translation surface (`= 0). This completes the proof of the theorem. 2

THEOREM 4.2. Any surface invariant by hyperbolic screw motions in H2
×R can be

parameterized locally by natural coordinates s, τ. Let S be such a hyperbolic screw
motion surface. Then there exists a two-parameter family F(m, `), m 6= 0, containing
a surface invariant by hyperbolic translations, such that each element of the family is
a hyperbolic screw motion surface isometric to S given by

m2U 2(s)=
1

sin2 ρ
+ `2,

ρ′2(s)=
sin2 ρ(1+ `2 sin2 ρ)

1+ `2 sin2 ρ + sin2 ρ(λ′(ρ))2
,

ρ′2(s)=
m4U 2U ′2

(m2U 2 − `2)2(m2U 2 − `2 − 1)
, (34)

λ◦ρ(s)=
∫

mU
√
(m2U 2 − `2)(m2U 2 − `2 − 1)− m4U 2U ′2

(m2U 2 − `2)
√
(m2U 2 − `2 − 1)

ds,

ϕ(s, τ )=
τ

m
− `

∫ √
(m2U 2 − `2)(m2U 2 − `2 − 1)− m4U 2U ′2

mU (m2U 2 − `2)
√
(m2U 2 − `2 − 1)

ds.

PROOF. The proof is the same as in Theorem 4.1. 2

We now wish to complete the geometric description of the families of minimal and
constant mean curvature parabolic screw motion surfaces given in Section 2. Given
a constant H satisfying |H |< 1/2, we need to determine explicitly the metric of all
such isometric immersions with the same mean curvature H. This is established by the
following result.

COROLLARY 4.1. Let S be a parabolic screw motion minimal or an H-surface
invariant by parabolic screw motion with pitch ` immersed into H2

×R parameterized
by natural coordinates s, τ. Let d be the parameter given by (8). Let us assume that
|H |< 1/2.

If d = 0, then

m2U 2
= e±2

√
1−4H2 (s−s0) + `2. (35)

If d > 0, then√
m2U 2 − `2 =

2|H |d

1− 4H2 +
d

1− 4H2 cosh(
√

1− 4H2 (s − s0)). (36)

PROOF. Assume that −1/2< H 6 0. We combine the first three equations in
Theorem 4.1 with the integral formula. After some computations we obtain

m4U 2U ′2 − (1− 4H2)(m2U 2
− `2)2 + 4|H |d(m2U 2

− `2)3/2

+ d(m2U 2
− `2)= 0. (37)
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Now, by making the change of variables Z = (m2U 2
− `2)1/2, we deduce the

formula
Z ′2 = (1− 4H2)Z2

− 4|H |d Z − d2.

Treating separately the cases d = 0 and d 6= 0, using elementary ordinary differential
equation techniques, we deduce (35) and (36), as desired. This completes the proof of
the corollary. 2

We note that if `= 0, then the Gaussian curvature K := −U ′′/U of a minimal
parabolic screw motion immersion is K ≡−1. Otherwise K satisfies the inequality
−1< K < 0.

Finally, we give a description of the isometric H -surfaces invariant by hyperbolic
screw motions.

COROLLARY 4.2. Let S be a hyperbolic screw motion minimal or an
H-surface invariant by parabolic screw motion with pitch ` immersed into H2

×R
parameterized by natural coordinates s, τ. Let d be the parameter given by (27).

(1) Assume that |H |< 1/2.

(a) If d2 < 1− 4H2, then

√
m2U 2 − `2 − 1=±

√
1− 4H2 − d2

1− 4H2

× (sinh
√

1− 4H2(s − s0))±
2Hd

1− 4H2 . (38)

(b) If d2 > 1− 4H2, then

√
m2U 2 − `2 − 1=

√
d2 − (1− 4H2)

1− 4H2

× cosh(
√

1− 4H2(s − s0))±
2Hd

1− 4H2 . (39)

(c) If d2
= 1− 4H2, then√
m2U 2 − `2 − 1= exp(±

√
1− 4H2 (s − s0))±

2H
√

1− 4H2
. (40)

(2) Assume that |H | = 1/2.

(a) If d = 0, then √
m2U 2 − `2 − 1=±(s − s0).

(b) If |H |> 1/2, then√
m2U 2 − `2 − 1=±

[
d

2
(s − s0)

2
−

1− d2

d2

]
.
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(3) Assume that |H |> 1/2. Then√
m2U 2 − `2 − 1 = ±

√
d2 + 4H2 − 1

4H2 − 1
sin(

√
4H2 − 1(s − s0))

±
2Hd

4H2 − 1
.

PROOF. As in Corollary 4.1, by applying the relations derived in Theorem 4.2 together
with the first integral formula (27), we infer the differential equation

Z ′2 = Z2(1− 4H2)± 4Hd Z + 1− d2,

where Z =
√

m2U 2 − `2 − 1. Now, by working with elementary ordinary differential
equations, we deduce the formulas in the corollary, as desired. 2

5. Associate and conjugate parabolic and hyperbolic screw motion immersions

Let M2 be a two-dimensional Riemannian manifold. Let (x, y, t) be local
coordinates in M2

×R, where z = x + iy are conformal coordinates on M2 and
t ∈R. Let σ 2

|dz|2, be the conformal metric in M2
; hence ds2

= σ 2
|dz|2 + dt2

is the metric in the product space M2
×R. Let �⊂C be a planar domain, w =

u + iv ∈�. We recall that if X :�# M2
×R, w 7→ (h(w), f (w)), w ∈� is a

conformal minimal immersion with induced metric ds2
= µ2
|dw|2, then h :�⊂C→

(M2, σ 2
|dz|2), w 7→ h(w) is a harmonic map, that is, it satisfies

hww + 2
σz

σ
hwhw = 0, (41)

see, for instance, [19]. We recall also that for any harmonic map h :�⊂C 7→ M2

there exists a related Hopf holomorphic function given by

φ = (σ ◦ h)2hwhw, (42)

see [20, 22]. Toubiana and the current author have introduced the notions of associate
and conjugate immersions in [19], following a work in progress with Hauswirth [11].
Namely, two conformal isometric immersions X, X̃ :�# H2

×R are said to be
associate if the Hopf functions satisfy the relation φ̃ = eiθ φ. If φ̃ =−φ, then the two
immersions are said to be conjugate. Daniel has given an alternative and equivalent
definition [2].

As we said in the introduction, Toubiana and the current author proved that any
two minimal isometric screw motion immersions in H2

×R and S2
×R are associate.

The same authors proved that, in H2
×R, a catenoid is conjugate to a helicoid of pitch

` < 1.
We will now prove that two minimal isometric parabolic screw motion immersions

are associate.
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THEOREM 5.1. Any two minimal isometric parabolic screw motion immersions into
H2
×R are associate. Furthermore, a helicoid of pitch `= 1 is conjugate to a surface

invariant by parabolic translations, that is, it is conjugate to a Daniel–Hauswirth
minimal surface.

We note that Daniel [2] proved the second part of the above theorem by another
approach.

PROOF. Let us now take natural coordinates s, τ so that the induced metric is given
by dµ2

= ds2
+U 2 dτ 2, see Theorem 4.1. Therefore, we have natural conformal

coordinates υ + iτ , where υ =
∫

1/U ds. Of course, the induced metric becomes
dµ2
=U 2(dυ2

+ dτ 2). We may therefore compute the Hopf function φ for parabolic
screw motion minimal immersions. After a somewhat long computation, working as
in [19], we obtain the relations

4 Re φ =
1

m2

[
`2
−

λ′2

1+ r2(`2 + λ′2)

]
, (43)

Im φ = 0 if `= 0,

4 Re φ =
`2

m2 −
4m2

`2 (Im φ)2 if ` 6= 0.

Using (43) and (8), we deduce that φ is given by

m2φ =
`2

4
−

d2

4
+ i

`d

2
(d > 0). (44)

Thus

16|φ|2 =
(
`2

m2 +
d2

m2

)2

.

Now two isometric minimal parabolic screw motion immersions have the metric
given by Corollary 4.1, making H = 0; that is either

m2U 2
= e2(s−s0) + `2 if d = 0, (45)

or

m2U 2
=

d2

2
cosh(2(s − s0))+ `

2
+

d2

2
if d 6= 0.

In view of (44) and (45), the absolute value of their Hopf functions are the same,
and hence they are associate as well. Now, on account of [19] the helicoid (d = 0) of
pitch `= 1 has metric given by U 2

= (1/m2) cosh2(s − s0) and Hopf function given
by φ = (1/4m2). On the other hand, in view of Corollary 4.1, the Daniel–Hauswirth
minimal surface (`= 0, m = 1) has metric given by U 2

= d2 cosh2(s − s0) and Hopf
function given by φ =−d2/4. Thus we have that if d2m2

= 1, then they are conjugate,
as desired. This completes the proof of the theorem. 2
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Next, we will prove that the nonisometric deformation of the hyperbolic plane given
by tilted Euclidean plane (9), invariant by parabolic screw motions with pitch `= 1,
is conjugate to the Scherk-type minimal surface, invariant by hyperbolic translations
given by (32). See Figures 5 and 14.

Let d be the parameter given in (27).

THEOREM 5.2. The conjugate of the Scherk-type minimal surface invariant by
hyperbolic translations is the minimal surface generated by a horizontal line invariant
by parabolic screw motions with pitch `= 1. If d2 < 1, any two minimal isometric
hyperbolic screw immersions in this family are associate. The same holds if either
d2
= 1 or d2 > 1. To each minimal hyperbolic screw motion immersion in the

family d2 < 1, there exists a minimal isometric nonassociate hyperbolic screw motion
immersion in the family d2 > 1. Furthermore, each parabolic screw motion surface
is associate to a hyperbolic screw motion surface. Any helicoid with pitch ` > 1
is conjugate to a minimal surface invariant by hyperbolic translations (`= 0 and
d2 > 1).

We remark that the last part of theorem (about the helicoid) is a result of Daniel [2].
We will give an alternative proof.

PROOF. We first observe that the structure of the proof is the same as in Theorem 5.1.
On account of Theorem 4.2, we can deduce the following relations:

4 Re φ =
1

m2

[
`2
−

λ′2

1+ sin2 ρ(`2 + λ′2)

]
,

Im φ = 0 if `= 0, (46)

4 Re φ =
`2

m2 −
4m2

`2 (Im φ)2 if ` 6= 0.

Using (46) and (27), we deduce that φ is given by

m2φ =
`2

4
−

d2

4
+ i

`d

2
(d > 0). (47)

Hence

16|φ|2 =
(
`2

m2 +
d2

m2

)2

.

It now follows from (40) and (47) that the metric and the Hopf function of the
Scherk-type minimal surface (32) are given by m2U 2

= e2(s−s0) + 1, φ =−(1/4m2),

respectively. On the other hand, from (35) and (44) the metric and the Hopf function
of the nonisometric minimal deformation of the hyperbolic plane (9) with pitch `= 1
are given by m2U 2

= e2(s−s0) + 1, φ = (1/4m2), respectively. Hence the immersions
are conjugate. This proves the first part of the theorem.
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Let us first assume that d2 < 1. According to (38), the metrics of two isometric
minimal immersions are given by

m2U 2
= (1− d2) sinh2(s − s0)+ `

2
+ 1

= (1− d2) cosh2(s − s0)+ d2
+ `2. (48)

Thus, on account of (47), any two such isometric immersions are associate. Second,
if d2
= 1, we infer from (40) and (47) the same result. Analogously, if d2 > 1, the

metric is given by

m2U 2
=

d2
− 1
2

cosh(2(s − s0))+ `
2
+

d2
+ 1
2

= (d2
− 1) cosh2(s − s0)+ `

2
+ 1. (49)

Now take a minimal hyperbolic screw motion immersion in the first family (d2 < 1),
setting m = m h̄1, d = dh̄1, `= `h̄1 in (48). We see that there exists a minimal
hyperbolic screw motion immersion (m, d, `) in the third family (d2 > 1), see (49),
by setting

d2
− 1

m2 =
1− d2

h̄1

m2
h̄1

,
`2
+ 1

m2 =
d2

h̄1
+ `2

h̄1

m2
h̄1

. (50)

Let φh̄1 and φ be their Hopf functions, respectively. Notice that, using (47) and (50),
we deduce the strict inequality |φh̄1 |< |φ|, and hence these isometric immersions are
nonassociate.

Notice that any minimal parabolic screw motion immersion S = S(dP , mP , `P),
with d2

P 6= 0, has metric given by (36), setting H = 0. In view of (49), (44) and (47),
by setting

d2
− 1

m2 =
d2

P
m2

P
,

`2
+ 1

m2 =
`2

P
m2

P
, (51)

we obtain a minimal hyperbolic screw motion surface in the third family associate to
S. In the same way, we deduce that any minimal parabolic screw motion immersion
(dP , mP , `P),with d2

P = 0, is associate to a minimal hyperbolic screw motion surface
in the second family (d2

= 1). Therefore, we conclude that each parabolic screw
motion surface is associate to a hyperbolic screw motion surface.

Finally, consider a minimal surface invariant by hyperbolic translations with
parameters (d2 > 1, m h̄, `= 0), metric given by (39) or (49) (with m = m h̄ , `= 0,
d2 > 1) and Hopf function given by φh̄ =−d2/4m2

h̄ . Owing to [19], the helicoid with
pitch `H has metric given by

m2
HU 2

=
1
2 cosh(2(s − s0))+ `

2
H −

1
2
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and Hopf function given by φ = `2
H/4m2

H. Therefore, if (d2
− 1)/2m2

h̄ = 1/2m2
H,

and (d2
+ 1)/2m2

h̄ = (2`
2
H − 1)/2m2

H, we deduce that any helicoid of pitch `H > 1
is conjugate to a minimal surface invariant by hyperbolic translations, as desired. This
completes the proof of the theorem. 2
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in: Prépublications, Vol. 375 (Institut de Math. de Jussieu, 2004).
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